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Optical focusing of Bose-Einstein condensates
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We theoretically investigate the optical focusing of a rubidium Bose-Einstein condensate onto a planar surface.
Our analysis uses a Gaussian variational method that includes the effects of two-body atom-atom interactions and
three-body recombination losses. The essential factors such as the width, peak density, and atom loss rate of the
focused BEC profile on the surface are investigated and compared to Gross-Pitaevskii numerical simulations. We
find a reasonable agreement in the results between our analytical approach and the numerical simulations. Our
analysis predicts that condensates of 105 atoms could be focused down to ∼10 nm widths, potentially allowing
nanometer-scale atomic deposition with peak densities greater than 105 atoms/μm2.
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I. INTRODUCTION

Atom lithography aims to deposit nanostructures onto a
surface via the direct manipulation of cold-atom beams with
optical fields [1,2]. It potentially offers a controlled and flex-
ible deposition procedure at the atomic scale, which could
increase the density of transistors in computer chips [3,4].
Early theoretical works that detailed how optical beams could
be used to focus atomic beams to nanoscale spot sizes [5–7]
were soon followed by experimental demonstrations of di-
rect depositions with sodium [1] and chromium [2] atoms
in which a 60 nm resolution was achieved. Direct atomic
deposition has also been demonstrated with ytterbium [8] and
iron [9,10] (which, respectively, resulted in 93 and 95 nm
profile resolutions) and is capable of the precise generation
of two-dimensional (2D) and 3D nanostructures [11].

Almost all of the experiments accomplished so far have
used an oven source of atoms in which the beam is colli-
mated with an aperture followed by a transverse laser cooling
process [2] before traveling through a focusing potential.
However, there are advantages to using a Bose-Einstein con-
densate (BEC) of neutral atoms for atom deposition. Since
the de Broglie wavelength of an atomic gas is of the or-
der of the mean distance between particles, a BEC source
would bring atoms to wavelengths between 1 nm and 1 pm
for nano-Kelvin temperatures [12], resulting in an excellent
collimation of the beam of atoms as well as a high flux density
[13]. Using a BEC source can also reduce effects such as
chromatic aberration and angular divergence [14], with the
longitudinal and transverse velocity distributions typically be-
ing much narrower when incident on the surface compared to
those resulting from oven or thermal sources.

There have been efforts to study the manipulation of BECs
using different techniques. In 1996, a work on matter wave
focusing was theoretically conducted [15] where, using the
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trapped BEC, they tried to scale the focusing times for the
ideal and interacting BEC to prove that an interacting BEC
can focus more quickly. In another effort, the diffraction of
a BEC from a solid grating was probed by analyzing the
Casimir-Polder interaction of atoms with a solid grating in
the presence of an external laser source [16]. In 2011, the
interaction of Bose-Einstein condensates with the optical near
field above plasmonic micro- and submicrometer structures
was investigated; the strength of optical near fields was mea-
sured by observing the reflection of cold atoms from the
surface [17]. In [18], the coherent state-selective patterning of
matter waves beyond the diffraction limit was analyzed using
subwavelength localization via an adiabatic passage tech-
nique. Then, further discussion regarding the implementation
of this approach in nanolithography using Ne and 87Rb was
carried out. Later, in a similar work [19], utilizing the same
technique as above, a single-site addressing implementa-
tion of ultracold neutral atoms was considered by loading
them into a two-dimensional optical lattice; using the sub-
wavelength localization via adiabatic passage offers a higher
addressing resolution and other benefits such as robustness
against parameter variations and coherence of the transfer
process. Last but not least, research was performed in 2010
regarding matter wave focusing of BECs using alkali atoms
[20]. Theoretically, they used a different approach than using
optical light fields to focus neutral atoms. Using Frensel zone
plates (FZPs), they studied the compression of a BEC when
passing through the etched holes, and they showed that the
focused deposition of alkali atoms by ZPs can create quantum
electronic components on the 50 nm scale, comparable to
that attainable by ion beam implantation. Providing simple,
quantitative estimates of the deposited focused widths and
peak densities of a BEC source using a light field is the subject
of this paper.

For thermal atomic sources, the atomic density is suf-
ficiently dilute that interatomic interactions are negligible.
Consequently, a classical approach based on single-atom tra-
jectories is suitable in situations where the wavelike properties
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of the atoms are not too important, in analogy to ray op-
tics [21], with some wavelike effects such as diffraction and
chromatic aberration accounted for in an ad hoc manner
[22–24]. However, the effect of interactions must be ac-
counted for in BEC sources. Interatomic interactions in a
BEC are dominated by s-wave scattering [25–28] and, in
certain atomic species, can be tuned from strongly repulsive
to strong attractive via a Feshbach resonance [29]. The matter
wave focusing dynamics of trapped BECs in both repulsively
interacting and noninteracting regimes have been previously
investigated [30]. The significance of our work is to take
the atomic interaction into account when focusing a freely
propagating BEC and to scale its effect on the broadening
of the nano-focal-spot sizes and peak densities achievable in
realistic nanolithography experiments with cold atoms. The
other substantial point considered in this work is the effect
of three-body recombination losses [31–33] on the focusing
scheme. This effect becomes especially striking in the high
flux regimes of focus. The influence of three-body losses can
be controlled via the sign and strength of the s-wave interac-
tions.

In this paper, we use an analytical variational approach
based on a Gaussian ansatz [34] to model the focusing dynam-
ics of a freely falling BEC. Our model assumes a harmonic
optical focusing potential, with optimal focal parameters de-
termined via a classical particle trajectories approach, [14]
and includes two-body atom-atom interactions and three-body
recombination losses. We obtain estimates of the deposited
focused BEC widths and peak densities leading to a resolution
of about 10 nm via the variational method. We also present
the corresponding Gross-Pitaevskii equation (GPE) numerical
results to test the validity of the Gaussian ansatz approach.

II. PROBLEM DESCRIPTION

The problem we consider is illustrated schematically in
Fig. 1. A cloud of 85Rb atoms is initially confined by a har-
monic trap potential at t = 0. Having this potential turned off
abruptly, the released BEC starts expanding while propagating
freely along the vertical z axis, while it is approaching the tight
harmonic focusing potential along the x axis. It then travels
through the potential and is focused down to a nanometer
structure along the x axis, where it is deposited on a surface.

We begin by defining the time-dependent nonlinear
Schrödinger equation (i.e., the GPE) [35–38] in 3D,

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2

2m
∇2

r + Vext(r, t ) + uψ |(r, t )|2

− iKψ |(r, t )|4
]
ψ (r, t ), (1)

where h̄ and m are Planck’s constant and the atomic mass
for rubidium 85, respectively. The first nonlinear term,
u|ψ (r, t )|2, is the mean-field potential term, where u = 4π h̄2as

m
is the interatomic interaction strength, |ψ (r, t )|2 is the atomic
density, and as is the s-wave scattering length [25,27,39,40].
The value as can be tuned, in practice, from positive (repul-
sive interactions) to negative (attractive interactions) values
through the use of a Feshbach resonance [29,41,42]. The sec-
ond nonlinear term governs three-body recombination losses.

Trapped BEC 

y

z

x

Lithography Surface

g

FIG. 1. 3D schematic illustration of atom deposition using a 85Rb
BEC focused by an optical potential, assumed to be approximately
harmonic. The BEC falls along the z axis, which is the direction of
gravitational acceleration.

In this work, we set the three-body loss rate coefficient to
K = 4 × 10−41 m6 s−1, consistent with experimentally deter-
mined values for 85Rb condensates [43–45]. At t = 0, the
condensate is initially confined and held by a harmonic trap,
Vext(r, t = 0) = m[ω2

0xx2 + ω2
0yy2 + ω2

0z(z − z0)2]/2, with z0

being the initial distance between the center of mass of the
condensate and the center of the focusing potential, and ω0x,
ω0y, and ω0z are the initial trapping frequencies along the x,
y, and z axes, respectively, at t = 0. For t > 0, the confining
potential is switched off and the focusing parabolic poten-
tial is switched on. We assume an optical focusing potential,
which induces a dipole moment in the atoms of the BEC. The
interaction between the dipole moment and the electric field
causes a dipole force [46] with a gradient towards the nodes
or antinodes of the laser intensity. The focusing potential
generated by a laser of intensity I (x, z) is [47]

Udip(x, z) = h̄�

2
ln

[
1 + γ 2

γ 2 + 4�2

I (x, z)

Is

]
, (2)

where � denotes the detuning of the laser frequency from
the atomic resonance, γ = 38 MHz the natural linewidth of
the D2 atomic transition of 85Rb (i.e., spontaneous decay
rate), and Is = 1.67 mW/cm2 is the saturation intensity of this
transition. An approximately harmonic potential along x can
be engineered using a spatial light modulator [48,49]. Assum-
ing a Gaussian beam profile along z (see Fig. 1), this gives
I (x, z) = I0 exp(−2z2/σ 2

z )(k2x2), where I0 is the maximum
intensity of the spatially varying harmonic profile, σz is the
radius of the beam at 1/e2 value of the maximum intensity,
and k determines the strength of the harmonic focusing.

To study the evolving BEC in a focusing potential, we
assume that the BEC is located in a stationary frame at
z = 0, while the harmonic potential is in a moving frame
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approaching the BEC. In this frame, Eq. (2) is

Udip(x, t ) = h̄�

2
ln

[
1 + γ 2

γ 2 + 4�2

I0

Is
k2x2 f (t )

]
, (3)

where

f (t ) = exp

{−2

σ 2
z

[
z0 − z(t )

]2
}
, (4)

where z(t ) = 1
2 gt2 + v0t is the varying distance in terms of

time, which depends on the gravitational acceleration g and
initial velocity v0 imparted to the BEC. For the relatively
low values of intensity, I0, and relatively large values of the
detuning, �, Eq. (3) reduces to

Udip(x, t ) ≈ h̄�γ 2

(γ 2 + 4�2)

I0

Is
k2x2 f (t ). (5)

In this regime, Eq. (5) takes the form of a harmonic potential
such that Vext(x, t > 0) = 1

2 mω2(t )x2 = Udip(x, t ), with time-
dependent frequency,

ω2
x (t ) = h̄�γ 2k2

m(γ 2 + 4�2)

I0

Is
exp

{−2

σ 2
z

[
z0 −

(
1

2
gt2 + v0t

)]2}
.

(6)

III. THE VARIATIONAL APPROACH

In this section, we consider a variational approach based on
the GPE to model the BEC dynamics. We adapt the approach
considered in Refs. [34,50] to account for the effect of three-
body losses to the BEC dynamics in focusing regimes.

To begin, we note that the GPE wave function that de-
scribes our BEC minimizes the action [51],

S =
∫

Ltot(r, t ) d3r dt, (7)

where Ltot is the total Lagrangian density [52],

Ltot(r, t ) = L + LR = ih̄

2

(
ψ∗ ∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− h̄2

2m
|∇ψ |2

−Vext(r, t )|ψ |2 − g

2
|ψ |4 + LR,

(8)

where LR is the Lagrangian density for the three-body recom-
bination term in Eq. (1), defined by

LR = −1

3

(
Rψ∗), (9)

where

R(ψ,ψ∗) = −iK|ψ |4ψ. (10)

We note that the loss rate due to the two-body spin relax-
ation (two-body losses) between atoms in confined BECs is
negligible in relatively high-density regimes compared to the
three-body recombination losses [53–56]; hence, the contri-
bution of two-body loss is not considered in the GPE [Eq. (1)]
and in the total Lagrangian density [Eq. (8)]. In order to
minimize the GPE action in Eq. (7), we choose an appropri-
ate single-particle trial wave function. A good choice is the

following Gaussian variational ansatz:

ψ0(x, y, z, t )

= A(t ) exp

( ∑
r=x,y,z

×
{

−
[
r − r0(t )

]2

2W2
r (t )

+ i
[
αr (t )r + βr (t )r2 + φr (t )

]})
,

(11)

with the normalization factor

A(t ) =
√

N (t )√
π

3
2 Wx(t )Wy(t )Wz(t )

, (12)

where Wr , r0, βr , αr , and φr are the variational parameters.
Wr corresponds to the respective condensate width, r0 is the
initial position of the BEC center, βr indicates the (curvature
radius)−1/2, αr represents the slope, and φr describes the phase
of the condensate. The term N (t ) represents the number of
atoms in the BEC, which changes with time. This follows
from

∫
d3r |ψ0(r, t )|2, which is not necessarily conserved due

to three-body losses. We set the center of the condensate to the
center of the Cartesian coordinates, (x0, y0, z0) = (0, 0, 0).

The objective is to find the equations of motion for these
parameters. Substituting Eq. (8) and Eq. (11) into the average
Lagrangian density, Ltot(t ) = ∫

d3r Ltot(r, t ), we obtain (see
Appendix 1 for details)

Ltot(t )

= −
∑

r=x,y,z

|A|2Wr
√

π

2

[
h̄β̇rW2

r + 2h̄φ̇r + h̄2

2m

( 1

W2
r

)

+ h̄2

2m

(
4β2

r W2
r

) + h̄2

2m

(
2α2

r

) + 1

2
mω2

x (t )W2
x + g|A|2√

2

]

+LR(t ), (13)

where LR(t ) = ∫
d3r LR(r, t ). The equations of motion for all

variational factors are given by the Euler-Lagrange equations
for real and imaginary components of L. Since the imaginary
part is trivial, one can ignore it and only consider the contri-
bution due to the real components,

d

dt

∂L

∂ q̇i
−

[
∂L

∂qi
+ Re

(
∂LR

∂qi

)]
= 0; q ∈ {A(t ),Wr, αr, βr, φr},

(14)

where ∂Ltot
∂ q̇i

= ∂L
∂ q̇i

since ∂LR
∂ q̇i

= 0. Since δLR
δψ∗ = − 1

3 R, we
can write

Re
(∂LR

∂qi

)
= −1

6

(
R

∂ψ∗

∂qi
+ R∗ ∂ψ

∂qi

)
. (15)

Integrating both sides of Eq. (15) and inserting the associated
result into Eq. (14) gives

d

dt

∂L

∂ q̇i
− ∂L

∂qi
= −1

6

∫ (
R

∂ψ∗

∂qi
+ R∗ ∂ψ

∂qi

)
d3r. (16)

063304-3



RICHBERG, SZIGETI, AND MARTIN PHYSICAL REVIEW A 103, 063304 (2021)

Solving Eq. (16) for qi = A,Wr, αr, βr, φr results in the fol-
lowing dimensionless variational equations for the BEC width
dynamics and loss rate (see Appendix 2 for details):

d2Wx

dt2
+ ω2

x (t )Wx = h̄2

m2

( 1

W3
x

)
+ gN

m(2π )3/2W2
x WyWz

− 7K2N4

3(3π )6h̄2W3
x W4

y W4
z

, (17)

d2Wy

dt2
= h̄2

m2

( 1

W3
y

)
+ gN

m(2π )3/2WxW2
y Wz

− 7K2N4

3(3π )6h̄2W4
x W3

y W4
z

, (18)

d2Wz

dt2
= h̄2

m2

( 1

W3
z

)
+ gN

m(2π )3/2WxWyW2
z

− 7K2N4

3(3π )6h̄2W4
x W4

y W3
z

(19)

dN (t )

dt
= − KN3

9
√

3π3h̄W2
x W2

y W2
z

, (20)

with the initial conditions

Wx(t = 0) = W0x; Wy(t = 0) = W0y; Wz(t = 0) = W0z;

Ẇx(t = 0) = Ẇ0x; Ẇy(t = 0) = Ẇ0y; Ẇz(t = 0) = Ẇ0z,

N (t = 0) = N0.

(21)

We estimate the initial BEC widths along all three Cartesian
axes, W0x, W0y, W0z, using [27]

W0i =
(

2

π

)1/10(
N0as

l

)1/5
ω0

ωi
l (i = x, y, z), (22)

in which we have introduced the harmonic oscillator length

l =
√

h̄
mω0

, where ω0 = (ω0xω0yω0z )1/3. This estimate is ob-

tained by minimizing the energy of a 3D Gaussian ansatz and
neglecting the kinetic energy contribution, which is small for
strong repulsive initial interactions.

IV. OPTIMAL POWER FOR FOCUSING

By treating the atom dynamics as classical particle
trajectories and neglecting the y axis due to the transitional
symmetry of the problem, the classical equations of motion
for atomic trajectories along the x and z axes are given by [14]

d2x

dt2
+ 1

m

∂U (x, z)

∂x
= 0, (23)

d2z

dt2
+ 1

m

∂U (x, z)

∂z
= 0. (24)

To achieve the optimal power for focusing, first we combine
Eqs. (23) and (24) using conservation of energy. Second,
we consider the paraxial approximation [14] in which the
wavelength of the focusing potential is considered to be much
larger than the dimension of the falling atoms (i.e., the BEC
width) along the x axis, kx � 1. The approximation neglects

aberrations (i.e., the trajectories are assumed to be per-
fectly parallel to the z axis when falling towards the lattice).
That said, one obtains the following second-order differential
equation:

d2x

dz2
+ q2 exp(−2z2/σ 2

z )x = 0, (25)

where q2 = h̄�
2E0

I0
Is

γ 2

γ 2+�2 k2 and E0 represents the kinetic energy
of the atoms when they hit the focus (i.e., the lithographic
surface). Since the power of a Gaussian laser beam relates to
the peak intensity via I0 = 8P0/πσ 2

z , the laser power needed
to focus the atoms at any desired spot along the focal axis
(z axis) can be determined,

P0 = ξ
π

4

E0

h̄�

γ 2 + 4�2

γ 2

Is

k2
, (26)

where ξ = q2σ 2
z is a dimensionless parameter. A value of ξ =

5.37, determined by solving the classical equations of motion
for atomic trajectories, optimally focuses the atoms onto the
plane z = 0 and x = 0 (the center of the focusing potential).
The selection of lower values of ξ (smaller powers) leads to
focusing on planes z < 0.

Equation (26) indicates that the optimal power is a function
of atomic kinetic energy. Since the atoms (in our case, the
BEC) are accelerated over the traveling path due to gravity, the
optimal power becomes dependent on the traveling distance,
z0. Hence, the larger z0, the higher velocity of the BEC at
the focus point, which consequently necessitates a relatively
greater value of power for optimal focusing.

V. ESTIMATE OF DEPOSITED 2D DENSITY
DISTRIBUTION

Suppose we have a substrate placed at the z = 0 plane.
We consider an ideal atom lithographic scenario, where atoms
that intersect the z = 0 plane are deemed deposited on the
substrate surface. While in this case the lithographic surface
might interfere with the focusing light field and cause disrup-
tion (i.e., diffraction and reflection at the surface), practical
solutions are suggested in [2] rectifying this barrier. A time
integral of the density profile at z = 0 therefore provides a
simple estimate of the total 2D distribution of atoms deposited
on this surface,

n0(x, y) =
∫ tend

0
|ψ (x, y, t, z = 0)|2 dt, (27)

where tend is the duration of the atom lithographic process.
This estimate neglects the effect of the surface itself on the
BEC dynamics. For example, as atoms are deposited on the
surface, they leave the condensate and lower the overall mean-
field energy. Furthermore, atoms that are not deposited will be
reflected, potentially impacting the focusing dynamics. Nev-
ertheless, the estimate of the deposited 2D density distribution
provided by Eq. (27) can be considered a “best case.”

Our goal is to determine atomic and focusing potential
parameters that result in narrow deposited distributions with
a high peak density. These can be estimated from Eq. (26)
via the full width at half maximum (FWHM) of n0(x, y)
and maxx,y n0(x, y), respectively. Throughout this paper, we

063304-4



OPTICAL FOCUSING OF BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A 103, 063304 (2021)

-10 0 10

20

0

-20

20

0

-20
-10 0 10

-10 0 10

20

0

-20

20

0

-20
-10 0 10

-10 0 10

20

0

-20

20

0

-20
-10 0 10

-10 0 10

20

0

-20

20

0

-20
-10 0 10

-10 0 10

20

0

-20 0

2000

4000

20

0

-20
-10 0 10

0

2000

4000

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 2. Upper row: The cross-section view of the evolving BEC column density ρ(x, z) = ∫
dyρ(x, y, z) in the plane of (x, z). (a)–(d) The

procedure of focusing when the center of the BEC is located at z = 10, 5, 2, 0 μm, respectively (from left to right). (e) The expansion of
the BEC at z = −5 μm after it has left the focal spot (i.e., focal surface, z = z f = 0). Lower row: The corresponding integrated density
distributions n0(x, y) at the focal surface z = 0 (where the substrate is essentially placed). The value of n0(x, y) reaches its maximum when
all atoms of the cloud have been deposited on the focal surface. All the simulations have been conducted using the variational analysis. The
momentum kick in the simulations is set to zero and as = −1a0. Parameters are N0 = 105, ω0x = 2π × 10 Hz, ω0y = ω0z = 2π × 70 Hz,
p = 32h̄k, σz = 100 μm, and k1 = 2.01384 × 104 m−1.

choose ξ = 5.37 since this provides optimal focusing in the
z = 0 plane.

The principle of BEC deposition using the variational
method is illustrated in Figs. 2(a)–2(j). In the top row, the
density profile of the released BEC in the 2D (x, z) plane
is shown (the profile has been integrated over the y axis).
As it falls through the optical potential, it becomes more
focused along the x axis until it reaches its focal spot at
z = 0 [see Figs. 2(a)–2(d)]. It then begins to expand once it
leaves the focal plane, z = 0 [see Fig. 2(e)]. The second row
[Figs. 2(f)–2(j)] shows the time integrated density in the z = 0
plane, which we interpret as the accumulated or deposited
density on the surface. As seen from left to right, this increases
until all atoms have been deposited on the surface.

VI. RESULTS

In this section, we conduct a number of numerical simu-
lations using the variational approach and discuss the results.
The effect of varying the potential power and imparted mo-
mentum kick to the BEC in the focusing event is studied for a
variety of interatomic interactions. The advantages and draw-
backs of using attractive BECs in high density regimes are
investigated and we realize that in most cases, while utilizing
an attractive BEC might provide a better profile resolution, it
could also have detrimental impacts on the focused structures.

We assume an initial cylindrical BEC of N0 = 105 85Rb
atoms confined by a harmonic trap of axial frequency ω0x =
2π × 10 Hz and radial frequency ω0r = ω0z = ω0y = 2π ×
70 Hz. The center of the trap is located at z0 = 500 μm
from the center of the focusing harmonic potential. 85Rb
has an easily tuneable Feshbach resonance [57,58]. We ini-
tially set the s-wave scattering to as = 100a0 (a0 is the Bohr
radius), giving a condensate with large mean-field energy and

an inverted-parabolic Thomas-Fermi density profile. Once
the trap is switched off and the BEC is allowed to freely
propagate towards the focusing potential, we quench the
scattering length to a value between as = −10a0 (attractive)
and as = 100a0 (repulsive). In the simplest case, the atoms
are simply dropped from the trap and fall under gravity.
We also consider scenarios where a momentum kick is im-
parted to the atoms upon release, which could be achieved
with either a Raman or Bragg [59] optical transition. All
results presented in this paper used a focusing potential with
σz = 100 μm, k1 = k/400 = 2.01384 × 104 m−1 (where k =
2π/λD2 = 8.0554 × 106 m−1), and � = 200 GHz, and use
a three-body recombination loss rate coefficient of K = 4 ×
10−41 m6 s−1 [43].

Figure 3 shows the results of the integrated peak densities,
FWHM, and atom number variation for different two-body
interaction strengths, from as = −1a0 to as = 100a0, when
there are no momentum kicks. In this case, the required
optimal power to focus the BEC at z = 0 (center of the po-
tential, the focal plane) is estimated as P0h̄k = 4.127 mW by
Eq. (26). For a comparison, results are also reproduced for
different powers. We note that changing the field power for
the same momentum kick (i.e., p = 0h̄k) causes the focal
plane to be shifted along the z axis such that for P > P0h̄k and
P < P0h̄k , the focal plane is located, respectively, above and
below the z = 0 plane. Figure 4 represents the width dynamics
of the BEC along the x (transverse) axis as a function of the
longitudinal position for four various powers: 0.5P0h̄k , P0h̄k ,
2P0h̄k , and 4P0h̄k . Notice that for P > P0h̄k , a breathinglike
oscillation of the BEC occurs as it passes through the focusing
potential along the z axis. In such an event, multiple minimum
peaks appear in the width dynamics. For P = 2P0h̄k (green
dash-dotted curve) and 4P0h̄k (black dotted curve), the lowest
minimum is z f = 23.9 μm and z f = 44.3 μm, respectively,

063304-5



RICHBERG, SZIGETI, AND MARTIN PHYSICAL REVIEW A 103, 063304 (2021)

0 20 40 60 80 100
100

200

300

400

500

0 20 40 60 80 100
0.5

1

1.5

2

2.5 105

0 20 40 60 80 100

100

101

(a)

(b)

(c)

FIG. 3. Characterization of deposited 2D BEC density at
different focal planes, determined from variational analysis for dif-
ferent values of scattering length and focusing power. (a)–(c) The
values of FWHM, integrated peak densities, and atom loss due to
three-body losses, respectively. The focal plane for 0.5P0h̄k , P0h̄k ,
2P0h̄k , and 4P0h̄k is, respectively, located at z f = −31.3, 0, 23.9,
and 44.3 μm along the z axis. Parameters used are N0 = 105,
σz = 100 μm, k1 = 2.01384 × 104 m−1, � = 200 GHz, Is = 16.7
W/m2, γ = 38 MHz, v0 = 0, v(z = 0) = 9.9 cm/s, P0h̄k = 4.127
mW, W0x = 19.6 μm, W0z = W0y = 2.8 μm, Ẇ0z = Ẇ0z = Ẇ0z =
0, a0 = 5.29 × 10−11 m, and K = 4 × 10−41 m6 s−1.

occurring above the plane of z = 0. For P � P0h̄k , however,
there always exists a single minimum peak, which is located
at z f = 0 (red solid curve) and −31.3 μm (blue dashed curve)
for P0h̄k and 0.5P0h̄k , respectively. Hence, varying the power
allows us to compare the quality of the deposited 2D BEC
density at different focal planes; the results of this comparison
are shown in Fig. 3.

As illustrated in Fig. 3(a), for a fixed power value, a de-
crease in the scattering length reduces the FWHM along the
focusing x direction. In other words, narrower and finer struc-
tures are given by smaller s-wave interactions. This variation
becomes more significant as the BEC interactions switch from

500 400 300 200 100 0 -100 -200 -300
0

10

20

30

40

FIG. 4. Transverse width dynamics as a function of the longitu-
dinal direction (z axis) for a focusing BEC dropped at z0 = 500 μm
with zero momentum kick, p = 0h̄k. The blue dashed, red solid,
green dash-dotted, and black dotted curves, respectively, correspond
to 0.5P0h̄k , P0h̄k , 2P0h̄k , and 4P0h̄k , where P0h̄k is the optimal power to
focus the BEC at z = 0 and is estimated as 4.127 mW. The lowest
minimum peak (the focal plane) for 0.5P0h̄k , P0h̄k , 2P0h̄k , and 4P0h̄k is,
respectively, z f = −31.3, 0, 23.9, and 44.3 μm. Parameters are N0 =
105, σz = 100 μm, k1 = 2.01384 × 104 m−1, � = 200 GHz, Is =
16.7 W/m2, γ = 38 MHz, W0x = 19.6 μm, W0z = W0y = 2.8 μm,
as = 100a0, a0 = 5.29 × 10−11 m, and K = 4 × 10−41 m6 s−1.

repulsive to attractive. For as > 5a0, decreasing the scatter-
ing length results in higher peak densities since repulsive
interactions hinder the focusing of the atoms. However, for
as � 5a0, lowering as causes the peak densities to decrease;
see Fig. 3(b). This is due to the three-body recombination
losses which become increasingly important as the density of
the condensate increases. This explains the loss rate of atoms
in Fig. 3(c), which increases as the s-wave scattering length is
reduced. Although three-body losses minimally affect a BEC
with large repulsive interactions, they become significant in
higher density regimes for as � 10a0, where up to 60% of the
atoms can be lost. Altering the laser power also substantially
affects the deposition. According to Figs. 3(a)–3(c), increas-
ing the power leads to a better resolution (smaller FWHM)
and larger peak density for each value of as, at the expense of
moving the focal plane.

We now investigate in more detail the effect of attractive
interactions for −10a0 � as � −1a0. In this regime, small
decreases in the value of the scattering length can consider-
ably alter the density profile. Figure 5(a) compares the BEC
widths, along all x, y, and z axes for different scattering
lengths as = −10,−5,−1a0, as a function of longitudinal
position, z. In this figure, the BEC is prepared at z0 = 500 μm
and dropped (no momentum kick) at t = 0. The minimum
possible value for Wx for all three interaction strengths al-
most occurs at z = 0 (see the overlap between the blue solid,
dashed, and dash-dotted curves). However, the resultant radial
widths, Wy and Wz, are quite different from one scattering
length to another (see the red solid, dashed, and dash-dotted
curves). As revealed, the minimum peak in the Wy and Wz

curves is shifted closer to z = 0 as as is reduced such that
for as = −10a0, this point takes place before z = 0 (z < 0).
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FIG. 5. (a) The width dynamics for as = −10a0 (dash-dotted curves), −5a0 (dashed curves), and −1a0 (solid curves), for a BEC optimally
focused at z = z f = 0. The blue curves illustrate the BEC width evolution along the x axis, whereas the red curves represent this trend along the
y and z axes. (b) The corresponding atom number evolution for the same three scattering lengths. Parameters are N0 = 105, z0 = 500 μm, σz =
100 μm, k1 = 2.01384 × 104 m−1, � = 200 GHz, W0x = 19.6 μm, W0z = W0y = 2.8 μm, a0 = 5.29 × 10−11 m, and K = 4 × 10−41 m6 s−1.

This effect is well explained by the collapse of a BEC in high
density regimes [44,60,61] where the attractive interactions
between atoms cause the BEC to rapidly and strongly shrink
at a critical density and then to expand sharply. As shown in
Fig. 5(b), as the BEC collapses, there is consequently a signif-
icant loss of atoms due to three-body recombination losses.

In Fig. 6, we examine the impact of initial momentum
kicks on the FWHM, peak densities, and atom loss. Each mo-
mentum kick requires a particular optimal power since higher
momentum kicks require larger powers to bring atoms to the
same spot. For example, for a kick towards the focal plane
with a magnitude of 2h̄k, the corresponding optimal power
of P2h̄k = 4.188 mW is required to focus at z = z f = 0. For
larger momentum kicks, the powers needed for a focal plane
of z f = 0 are (P4h̄k, P6h̄k, P8h̄k, P10h̄k, P12h̄k, P14h̄k, P16h̄k ) =
(4.372, 4.678, 5.106, 5.656, 6.329, 7.124, 8.041) mW. As in-
dicated in Fig. 6(a), more powerful kicks reduce the widths
of the deposited atoms along the x direction. Increasing the
momentum kick leads to slightly higher peak densities for re-
pulsive BECs in regimes where the three-body recombination
effects are insignificant [see Fig. 6(c)]. However, larger kicks
give smaller peak densities for a small negative as, as seen in
Fig. 6(b) for as = −1a0.

Finally, in addition to the study of the accumulative atomic
flux on a substrate during the focus process, it is also worth
considering the resultant profile right at the moment of opti-
mal focus at z = z f = 0, known as an instantaneous profile.
This has been used in previous theoretical work to examine
the structures predicted by the particle optics or classical tra-
jectories approach [14]. Figures 7(a)–7(c) illustrate the related
outcomes of resolution, peak density, and atom loss for a prop-
agating condensate immediately at the time its center of mass
reaches the center of the focusing plane, z = 0. As above, it

is assumed that the condensate has started its free propaga-
tion at z0 = 500 μm and is exposed to a focusing potential
comprising the parameters of k1 = 2.01384 × 104 m−1, σz =
100 μm, and � = 200 GHz. There appears a more rapid trend
in the FWHM over different ranges of scattering length [see
Fig. 7(a)] when a momentum kick of p = 32h̄k is applied
compared to that of p = 64h̄k and p = 128h̄k. The impact
of increasing the scattering length on the structure resolu-
tion is more significant for lower kicks, especially in the
regime of relatively low as where the three-body losses are
non-negligible. This is also the case for the scattering length
dependence of the peak density [see Fig. 7(b)]. Although the
trend remains steady with a gradual slope for p = 128h̄k, it
undergoes a fluctuation around as ∼ 1a0 for lower kicks (i.e.,
p = 64h̄k), which becomes steeper with a decrease in kick
values as seen for p = 32h̄k. Turning to the atom number loss
shown in Fig. 7(c), the amount of loss in high density regimes
for lower kicks (e.g., p = 32h̄k) is considerably greater than
higher kicks. In fact, the BEC with a slower longitudinal
velocity is exposed to the field for a relatively longer time,
resulting in a larger atom loss, whereas for higher velocities
(i.e., p = 128h̄k), the BEC has less chance to interact with the
field. Of the parameters that we considered, as = −1a0 and
p = 128h̄k gave the instantaneous profile with the best reso-
lution (FWHMx 	 9 nm) and highest peak density (2 × 106

atoms/μm2).
It should be noted that in terms of the three-body recom-

bination effect, the variational methodology only scales the
impact of the ejected atoms from the BEC (consequently, from
the harmonic potential depth) on the profile structures. Given
that most of the loss occurs at or close to the surface, many of
the lost atoms may still be deposited on the surface, leading to
some smearing around the pedestal of the density profile.
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FIG. 6. Characterization of deposited 2D BEC density at z =
0, determined from the variational analysis for different momen-
tum kicks and scattering lengths. (a)–(c) The values of FWHM,
integrated peak density, and the amount of atom loss, respec-
tively. Parameters are N0 = 105, z0 = 500 μm, σz = 100 μm, k1 =
2.01384 × 104 m−1, � = 200 GHz, Is = 16.7 W/m2, γ = 38 MHz,
W0x = 19.6 μm, W0z = W0y = 2.8 μm, Ẇ0z = Ẇ0z = Ẇ0z = 0,
a0 = 5.29 × 10−11 m, and K = 4 × 10−41 m6 s−1 for Rb 85.

VII. NUMERICAL SIMULATIONS (GPE)

In order to investigate the accuracy of our variational so-
lutions, we compare with GPE numerical simulations. We
numerically solved Eq. (1) with an embedded Runge-Kutta
(ERK) scheme along with adaptive Fourier split-step size [62].
We used the third and fourth orders [ERK4(3)] to deliver an
estimation of the local error for adaptive step-size control
purposes in the interaction picture. The initial condition for
each simulation was the GPE ground state, numerically deter-
mined via imaginary-time evolution. Our simulations indicate
that the variational method predicts the evolution of the BEC
widths and density functions well. Figure 8 represents the top
view of the deposited profile on the surface z = 0 extracted by
both the numerical GPE and variational approach when as =
−1a0 and with zero momentum kick. The GPE results for a
variety of s-wave scattering lengths, when the potential power
is set to P0h̄k , are shown in Fig. 9 as well as the corresponding
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FIG. 7. The simulation results of the instantaneous focused
profile at z = 0 when no substrate is considered. The results
are determined from the variational method for different momen-
tum kicks and scattering lengths. (a)–(c) The values of FWHM,
integrated peak density, and the amount of atom loss, respec-
tively. Parameters are N0 = 105, z0 = 500 μm, σz = 100 μm, k1 =
2.01384 × 104 m−1, � = 200 GHz, Is = 16.7 W/m2, γ = 38 MHz,
W0x = 19.6 μm, W0z = W0y = 2.8 μm, Ẇ0z = Ẇ0z = Ẇ0z = 0,
a0 = 5.29 × 10−11 m, and K = 4 × 10−41 m6 s−1 for Rb 85.

variational calculations. There is a good agreement between
the two approaches, especially in the interval of as � 10a0.

It is worth noting that for a BEC moving relatively slowly
through the focusing potential, the dimensionality disruptions
observed in the GPE simulations, which result from exci-
tations, are negligible. Hence, in the slow regime, one can
expect reasonable agreement between the focused profile dis-
tributions of the GPE and variational approaches. However,
as higher momentum kicks are applied to the BEC, excita-
tions during the focusing process become more significant.
Figure 10 illustrates this by comparing the BEC density
profiles along the x axis as calculated from the variational ap-
proach and GPE simulations. For as = 100a0 and p = 32h̄k,
the GPE simulations show that significant fringes emerge,
which are not captured in the variational methodology. The es-
timated resolutions are still in a close agreement, (�x)32h̄k

var =
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)b()a(

FIG. 8. (a) Deposited BEC focused structure on the (x, y) plane (z = 0) carried out via the variational approach. (b) Deposited BEC profile
on the same plane acquired by a numerical GPE simulation. In both simulations, no momentum kick is applied to the BEC and as = −1a0.
Parameters are N0 = 105, ω0x = 2π × 10 Hz, ω0y = ω0z = 2π × 70 Hz, p = 32h̄k, σz = 100 μm, and k1 = 2.01384 × 104 m−1.

47.5 nm and (�x)32h̄k
GPE = 46.4 nm. In the case of no momen-

tum kick, both the GPE and variational distributions tend to
a Gaussian profile (although the GPE curve has a longer tail
than the variational one; see the solid green and dashed red
curves). The tail in the GPE simulations reduces by increasing
the momentum kick, which necessitates an increase in the
potential power and intensity accordingly for the same focus
spot. Again, the estimated resolutions are in close agreement
with (�x)0h̄k

var = 130.1 nm and (�x)0h̄k
GPE = 133.9 nm.

VIII. CONCLUSION

We have investigated the focusing dynamics of a 85Rb BEC
with two-body interactions and three-body recombination
losses due to a harmonic-shaped focusing optical potential.
Using a variational technique, we derived the dynamical be-
havior of the peak densities, FWHMs, and atom number loss
in the focusing regimes when tuning the scattering length over
a large range. We showed that the interparticle interaction can
play an essential role in the deposited profile structures, which
become more sensitive to smaller as as well as its negative
values. We conclude that high peak densities and small resolu-
tions can be achieved in relatively attractive BECs. However,
the three-body losses limit the maximum achievable density
and, when sufficient, can disrupt the deposition quality. Since
highly repulsive BECs are exposed to negligible amounts
of atom loss in the focusing regime, applying a momentum
kick to the BEC can always be beneficial to both the peak
density and resolution of focused structures. Nevertheless,
the scenario is completely different for the attractive BECs.
In this case, although higher momentum kicks and powers
may provide one with more resolution transparency, they can
still destroy the created peak densities. Last but not least, we
inferred that to improve the profile resolution at the same focal
plane, one needs to boost the momentum kick in accordance
with the potential power, whereas for the same momentum
kick, increasing the power leads to a focal plane displacement;

this is optimally shifted along the longitudinal axis to an area
above the center of the focusing potential.

It is worth mentioning that examining focusing using a
one-dimensional (1D) light field is a good proof of principle
and the fastest way to realize the realistic atom lithography,
such as considering the influence of varying different light
field parameters, as well as various momentum kicks and
interaction strengths on the focused profile. While using a
two-dimensional standing wave [63] (i.e., 2D lattice) as a 2D
light mask results in square arrays of fabricated structures,
there is a serious challenge in the experimental setup with a
2D light mask: the deposited pattern is strongly dependent
on the relative temporal phase between the two Gaussian
waves. In this case, the pattern can easily be disrupted if the
temporal phase is not aligned (stabilized) appropriately. More-
over, using a 2D focusing light, almost no improvement is
achieved to the profile resolution, and the profile linewidth
along the x and y directions would approximately be the same
at the end of focusing. This implies that adding the transverse
y axis in the focusing event would not influence the physics of
the problem in atom deposition. However, utilizing a 2D light
mask in focusing BECs along with a fair discussion of the
challenges associated with this could remain as possibilities
for future work.

We also note that the quantum reflection from the surface
has been neglected in our model. This is strongly depen-
dent on the longitudinal velocity of the falling BEC, which
becomes important for relatively low kinetic energies and
longitudinal velocities. In [64], it has been shown that the
quantum reflection in the presence of interatomic interactions
becomes significant for the atom cloud when v � 2 mm/s.
In our simulations, the lowest value of the initial momentum
kick used is p = 0h̄k, resulting in v = 9.9 cm/s (see Fig. 3)
at the surface, which is much larger than the critical value of
quantum reflection regimes [64].

Overall, we conclude that reaching nanometer-scale struc-
tures using a BEC source is achievable, which provides much
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FIG. 9. (a) The values of FWHM of the focused distribution
along the x axis for different as. (b) The FWHMs along one of the
radial axes, y, against various scattering lengths. (c) The achieved
values of peak densities of the focused profile when using different
interaction strengths. The red dots in all three graphs indicate predic-
tions from the variational method, whereas the blue dots show results
from the numerical GPE simulations. Parameters are N0 = 105, z0 =
500 μm, σz = 100 μm, k1 = 2.01384 × 104 m−1, � = 200 GHz,
Is = 16.7 W/m2, γ = 38 MHz, p = 0h̄k, P0h̄k = 4.127 mW, a0 =
5.29 × 10−11 m, and K = 4 × 10−41 m6 s−1.

higher profile resolution and peak density than those created
by thermal atomic sources. Finally, we have demonstrated
the power of using a variational methodology to examine a
broad range of parameter space which would not be easily
achievable using 3D GPE simulations.
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APPENDIX

Here we provide a detailed description of our analytical
methods, including a derivation of the Lagrangian given by
Eq. (13) and the variational equations (17)–(20).

1. Derivation of Lagrangian function given by Eq. (13)

Substituting Eq. (11) into Eq. (8) and simplifying give the
Lagrangian density,

L(r, t ) = −
∑

r=x,y,z

|A|2 exp (−r2/W2
r )

×
{

h̄

[
β̇rr2 + α̇rr + φ̇r

]
+ h̄2

2m

[
r2

W4
r

+ 4β2
r r2

+ 4βrαrr + α2
r

]
− 1

2
|A|2u

}

− 1

2
m|A|2ω2

x (t )x2 exp (−x2/W2
x ). (A1)

Note that this excludes the three-body recombination loss
term. Inserting Eq. (A1) into L(t ) = ∫

d3r L(r, t ) gives the
Lagrangian

L(t ) = −
∑

r=x,y,z

|A|2Wr
√

π

2

{
h̄β̇rW2

r + 2h̄φ̇r + h̄2

2m

( 1

W2
r

)

+ h̄2

2m

(
4β2

r W2
r

)+ h̄2

2m

(
2α2

r

)+1

2
mω2

x (t )W2
x + g|A|2√

2

}
,

(A2)
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where the following three well-known Gaussian integrals have
been used:

∫ ∞

−∞
exp(−ar2) dr =

√
π

a
,

∫ ∞

−∞
r exp(−ar2) dr = 0,

∫ ∞

−∞
r2 exp(−ar2) dr =

√
π

2a3/2
, (A3)

where a is a constant.

2. Derivation of BEC variational equations

Substituting Eq. (13) into Eq. (16) and solving for qi =
A,Wr, αr, βr, φr gives the following respective equations:

∑
r=x,y,z

{
h̄β̇rW2

r

2
+ h̄φ̇r + h̄2

m

( 1

4W2
r

)
+ h̄2

m
(β2

r W2
r )

+ h̄2

2m
α2

r + g|A|2√
2

}
+ 1

4
mω2

x (t )W2
x = 0, (A4)

∑
r=x,y,z

{
3

2
h̄β̇rW2

r + h̄φ̇r − h̄2

m

( 1

4W2
r

)
+ h̄2

m
(3β2

r W2
r )

+ h̄2

2m
α2

r + g|A|2
2
√

2

}
+ 3

4
mω2

x (t )W2
x = 0, (A5)

∑
r=x,y,z

{
h̄2

m
|A|2Wrαr

}
= 0, (A6)

∑
r=x,y,z

{
h̄

d

dt

(|A|2W3
r

) − h̄2

m
(4|A|2βrW3

r ) + K|A|6W3
r

9
√

3

}
= 0,

(A7)∑
r=x,y,z

{
h̄

d

dt

(|A|2Wr
) + K|A|6Wr

3
√

3

}
= 0. (A8)

According to the normalization condition N (t ) =∫ +∞
−∞ ψψ∗ dr and Eq. (11), we can write

dN (t )

dt
= √

π
d

dt

(|A|2Wr
)
. (A9)

Combining Eqs. (A7) and (A8), and using Eq. (12), gives
the associated differential equation for the change of atom

number in the condensate,

dN (t )

dt
= − KN3

3
√

3 h̄πW2
r

. (A10)

We then merge Eq. (A4) and Eq. (A5) to acquire

∑
r=x,y,z

{
h̄β̇rW2

r + h̄2

m

(
2β2

r W2
r − 1

2W2
r

)
− g|A|2

2
√

2

}

+ 1

2
mω2

x (t )W2
x = 0. (A11)

Considering the amplitude |A| via Eq. (12); this implies that

β̇x =
( h̄

2m

) 1

W4
x

−
(2h̄

m

)
β2

x −
( m

2h̄

)
ω2

x (t )

+ gN

2(2π )3/2 h̄W3
x WyWz

, (A12)

β̇y =
( h̄

2m

) 1

W4
y

−
(2h̄

m

)
β2

y + gN

2(2π )3/2h̄WxW3
y Wz

, (A13)

β̇z =
( h̄

2m

) 1

W4
z

−
(2h̄

m

)
β2

z + gN

2(2π )3/2h̄WxWyW3
z

. (A14)

Similarly, mixing Eq. (A7) and Eq. (A8) gives

∑
r=x,y,z

{
h̄Ẇr − 2h̄2

m
(βrWr ) − K|A|4Wr

9
√

3

}
= 0. (A15)

Again, using Eq. (12), this gives the evolution of the x com-
ponent width,

Ẇx = 2h̄

m
(βxWx ) + KN2

√
3(3π )3h̄WxW2

y W2
z

. (A16)

Taking the second derivative of (A16) with respect to time for
x-dependent variables gives

Ẅx = 2h̄

m
(β̇xWx + βxẆx ) + 2ṄNK√

3(3π )3h̄WxW2
y W2

z

− KN2Ẇx√
3(3π )3h̄W2

x W2
y W2

z

. (A17)

Using the associated equation for atom number variation in
terms of all x, y, and z components derived from Eq. (A9),

dN (t )

dt
= − KN3

9
√

3π3h̄W2
x W2

y W2
z

, (A18)

as well as Eqs. (A12) and (A16), the variational equation for
the condensate width along the x axis is obtained by Eq. (17).
Repeating the same procedure for the y and z components
gives the variational Eqs. (18) and (19).
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