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Efimov scenario for overlapping narrow Feshbach resonances
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While Efimov physics in ultracold atoms is usually modeled with an isolated Feshbach resonance, many real
world resonances appear in close vicinity to each other and are therefore overlapping. Here we derive a realistic
model based on the mutual coupling of an open channel and two closed molecular channels while neglecting
short-range physics as permitted by the narrow character of the considered resonances. The model is applied
to three distinct scenarios with experimental relevance. We show that the effect of overlapping resonances is
manifested most strikingly at a narrow resonance in whose vicinity there is a slightly narrower one. In this
system the Efimov ground state extends not only over the scattering length zero crossing between the two
resonances but also over the pole of the second resonance to finally meet the dissociation threshold below
it. In the opposite scenario, when a narrow resonance is considered in the vicinity of a slightly broader one,
we observe that the Efimov features are pushed to lower binding energies and smaller scattering lengths by a
significant factor facilitating their experimental investigation. Both scenarios are compared with the case of two
narrow resonances which are far enough away from each other to be effectively decoupled. In this case the
two-channel model results are recovered. Finally, we analyze the rich excitation spectrum of the system and
construct and explain its nodal pattern.
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I. INTRODUCTION

Tunability of the s-wave scattering length a via a mag-
netic Feshbach resonance is at the heart of recent studies
of few-body physics in ultracold atoms [1–3]. Conceptually,
a Feshbach resonance can be understood within a simple
two-channel model: it occurs when incoming atoms in an
open channel are coupled to an almost degenerate bound state
in a closed channel [4]. Loosely speaking, one differenti-
ates between two types of Feshbach resonances quantified
by the dimensionless resonance strength parameter sres. A
broad resonance (sres � 1) arises from a strong coupling to
the bound state. The scattering amplitude is largely dominated
by a, which is on the order of the van der Waals length rvdW

(the range of the interaction potential) away from collisional
resonances. On the contrary, a narrow resonance (sres � 1)
arises from a weak coupling. In this case the effective range
re, in addition to a, determines the scattering amplitude at
a given magnetic field. As a new length scale associated
with the narrow resonance one defines R� = −re(Bres)/2 > 0,
where re(Bres) is the value of re at the resonance position
(|a| → ∞). R� is related to sres via R� = ā/sres where ā =
[4π/�(1/4)2]rvdW is the mean scattering length [4]. Thus,
for a broad (narrow) resonance R� � rvdw (R� � rvdw) is
satisfied [5].

It is clear, however, that the description of a real-world
scattering system, which in general is a multichannel problem,
within the framework of a two-channel model is an approxi-
mation and should be applied with caution. It is worth noting
that nearly all atomic species used in experiments exhibit

multiple, often overlapping, Feshbach resonances. Extreme
examples include recently studied cold molecules with their
complex internal structure [6] and heavy lanthanide species
where a dense and chaotic spectrum of Feshbach resonances
has been reported [7].

Ironically, simple analytical or semi-analytical expressions
have been developed to describe the scattering length with
great precision even in the case of a diverging number of
scattering channels [8–10]. This has lured few-body physics
treatments to consider an isolated Feshbach resonance a good
approximation for calculating various properties of few-body
systems such as the energy levels of Efimov trimers [11].
The latter, which is the main focus of this paper, form in
a system with three atoms when the pairwise interactions
exceed the relevant length scale, so a � rvdW (a � R�) for
a broad (narrow) resonance. Efimov physics has been studied
extensively in the recent decade, theoretically and experimen-
tally [1–3], in the vicinity of both isolated broad [12–15] and,
more recently, narrow Feshbach resonances [16–19]. Many
of these studies were performed in the vicinity of overlap-
ping resonances [12–17], but the theoretical treatment rarely
goes beyond an isolated resonance. For a few exception see
Refs. [20,21].

Recent efforts to fully incorporate the multichannel char-
acter of two-body interactions suggest properly including the
hyperfine structure of the real atomic system [18,19,22]. Al-
though this is arguably the most comprehensive approach, it
comes at the expense of heavy numerical calculations and
the absence of direct relations between the microscopic pa-
rameters of the theory and the macroscopic experimental
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observables. Here, in contrast, we consider the simplest way
to deal with a consequence of the multichannel character of
two-body interactions, namely, the existence of two overlap-
ping Feshbach resonances. We generalize the two-channel
model, which is suitable for isolated narrow Feshbach res-
onances [23], to two overlapping resonances by including a
second closed channel with an independently tunable bound
state. For completeness an intermolecular coupling between
the two closed channels is incorporated. We develop a pro-
tocol to fix all model parameters in the two-body sector and
compute the Efimov spectrum without any adjustable param-
eters. In the three-body sector we identify unique features
related to the addition of a second closed channel and discuss
their experimental implications.

The paper is organized as follows. We begin in Sec. II by
examining the expected phenomenology of the three-channel
model. In Sec. III we state the three-channel model Hamilto-
nian and derive equations for the scattering amplitude, dimer
binding energy, and trimer binding energy. The model is
applied to three distinct systems in Sec. IV and their exper-
imental relevance is addressed. The model’s bare parameters
are further discussed in Sec. V and the trimer eigenfunctions
are analyzed in Sec. VI. We conclude in Sec. VII with possible
extensions of the three-channel model.

II. PHENOMENOLOGY OF THREE-CHANNEL MODEL

The two-channel model is very successful at reproducing
the basic phenomenology of a narrow and isolated Fesh-
bach resonance. It captures both the two- and the three-body
sector [23]. In its most fundamental form one considers a
featureless open channel (i.e., no background scattering) and,
coupled to it, a closed (molecular) channel detuned from the
open channel by a magnetic-field-dependent binding energy.
For completeness, this model is reviewed in Appendix A.
It has been applied to various aspects of bosonic [24–28]
and fermionic [29–34] scenarios and may be generalized to
include background scattering in the open channel [35] and to
hetero-nuclear systems [36,37].

Here we take a different route and generalize the model
to three channels by adding a second molecular channel.
The coupling of the two molecular channels to the free-atom
continuum gives rise to two scattering resonances and two
two-body bound states which we call dimers. Note the dis-
tinction between a molecular state, which is a bare state of
the (noninteracting) Hamiltonian, and a dimer, which is the
two-body bound eigenstate of the full Hamiltonian. In the
three-body sector, which is schematically illustrated in Fig. 1,
there are three types of continua. In addition to the free-atom
continuum there are two different dimer-atom continua—one
above each dimer. Around each of the resonances and below
the respective dimers we expect three-body bound states, i.e.,
Efimov trimers. Note though that only the trimers associated
with the higher resonance (higher magnetic field, B(res)

2 in
Fig. 1) are true bound states. The B(res)

1 trimers coexist with
a continuum of dimer-atom states and are therefore not stable
bound states. The question of their existence depends on their
lifetime and they might be manifested as dimer-atom collision
resonances [30]. This subject, however, is beyond the scope

FIG. 1. Schematic representation of the three-body sector of
overlapping resonances. The two resonance positions are labeled
B(res)

1 and B(res)
2 . The binding energies of the dimers (blue curves)

as well as the ground (orange) and excited (green) state trimers are
plotted. The regions of the free-atom continuum (gray, positive en-
ergy) and the two dimer-atom continua (shades of blue) are indicated.
The trimers associated with B(res)

1 are embedded in the dimer-atom
continuum due to the resonance at B(res)

2 .

of the present discussion in which only true bound states are
considered.

III. DERIVATION OF THREE-CHANNEL MODEL

The following three-channel Hamiltonian is the most
general extension of the two-channel model. We use it to
formulate equations for the scattering amplitude and the dimer
binding energy (two-body sector). We examine the two-body
sector and relate the bare parameters to physical observables
before moving on to the three-body sector where the equation
for Efimov bound states is presented and discussed.

A. Three-channel Hamiltonian

The full Hamiltonian of the three-channel model is Ĥ =
Ĥ0 + Ĥint, where Ĥint = Ĥ1 + Ĥ2 + Ĥ12. The first term is the
bare Hamiltonian of all three channels

Ĥ0 =
∫

d3k

(2π )3

[
h̄2k2

2m
â†

�k â�k +
(

Eb,1 + h̄2k2

4m

)
b̂†

�kb̂�k

+
(

Eb,2 + h̄2k2

4m

)
ĉ†

�k ĉ�k

]
, (1)

where â�k annihilates free particles and b̂�k (ĉ�k) annihilates
molecules in the first (second) molecular channel with bare
molecular energy Eb,1 (Eb,2). We assume the latter to be an
affine function of the magnetic field: Eb,i = μi(Bi − B), where
μi is the magnetic moment of the ith molecular channel
with respect to the free-atom continuum and Bi is the bare
resonance position. Without loss of generality we assume
B1 < B2. Both molecular channels are coupled to the open
channel via

Ĥ1 = �1

∫
d3k

(2π )3

∫
d3q

(2π )3

[
b̂†

�kâ�q+ �k
2
â−�q+ �k

2
+ â†

−�q+ �k
2

â†

�q+ �k
2

b̂�k
]
,

(2)
and

Ĥ2 = �2

∫
d3k

(2π )3

∫
d3q

(2π )3

[
ĉ†

�k â�q+ �k
2
â−�q+ �k

2
+ â†

−�q+ �k
2

â†

�q+ �k
2

ĉ�k
]
.

(3)
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In addition, the two molecular channels are coupled to each
other via

Ĥ12 = �12

∫
d3k

(2π )3 [ĉ†
�k b̂�k + b̂†

�k ĉ�k]. (4)

The Hamiltonian thus has five bare parameters, namely, the
bare resonance positions B1 and B2, and the coupling con-
stants �1, �2, and �12. Since background scattering in the
open channel is not included in the model, we expect it to
work for systems with vanishingly small background scatter-
ing length abg.

B. Two-body observables: Scattering length, effective range,
and binding energy

To describe the two-body sector we solve the Schrödinger
equation (Ĥ − E )|ψ2B〉 = 0 with the most general two-body
ansatz in the center-of-mass frame:

|ψ2B〉 = γ ĉ†
�k=0

|0〉 + βb̂†
�k=0

|0〉 +
∫

d3k

(2π )3 α�kâ†
�k â†

−�k|0〉. (5)

In the following, all quantities are renormalized with respect
to a naturally arising momentum cutoff kc and its associated
energy Ec = h̄2k2

c /m. For clarity, a dimensionful quantity x
is denoted x̃ after it is renormalized and dimensionless, for
example, the renormalized scattering length a (dimensionful)
is denoted ã (dimensionless) and they are related via ã = kca.

However, dimensions of magnetic field are not renormalized.
The molecular magnetic moment μi (dimensions of energy
per unit magnetic field: J/G) is renormalized to μ̃i = μi/Ec

which has dimensions of 1/G.
For positive energy E = h̄2k2

0/m > 0 the Schrödinger
equation leads to two coupled equations for the molecular
amplitudes β and γ :(

μ̃1(B1 − B) − k̃2
0

)
β̃ + 2�̃1 + �̃12γ̃

− �̃1

π2

(
1 − iπ

2
k̃0

)
(�̃1β̃ + �̃2γ̃ ) = 0, (6a)

(
μ̃2(B2 − B) − k̃2

0

)
γ̃ + 2�̃2 + �̃12β̃

− �̃2

π2

(
1 − iπ

2
k̃0

)
(�̃1β̃ + �̃2γ̃ ) = 0, (6b)

with which the scattering amplitude

f̃k0 = − �̃1β̃ + �̃2γ̃

4π
(7)

is computed. The resulting expression is expanded to second
order in k̃0 and compared with the effective range expansion
f̃ −1
k0

= −ã−1 − ik̃0 + r̃ek̃2
0/2 to find ã and r̃e.

If instead of the scattering states (E > 0) we search for
a bound-state solution E = −h̄2λ2

D/m < 0 (λD > 0), the fol-
lowing equations are obtained for the binding wave number of
the dimer λ̃D and the ratio χ = β̃/γ̃ :

(
μ̃1(B1 − B) + λ̃2

D

)
χ + �̃12 − �̃1

π2

(
1 − λ̃D

π

2

)
(�̃1χ + �̃2) = 0, (8a)

(
μ̃2(B2 − B) + λ̃2

D

) + �̃12χ − �̃2

π2

(
1 − λ̃D

π

2

)
(�̃1χ + �̃2) = 0. (8b)

By eliminating χ , the two coupled Eqs. (8) can be written
as a fourth-order polynomial equation in λ̃D. Depending on
the value of B, it can have two, one, or zero positive solutions.
The values of B at which the number of solutions changes
coincides with the resonance positions a → ±∞ which we
denote B(res)

i .
Details on the derivation of Eqs. (6)–(8) can be found in

Appendix B 1.

C. Relating the bare parameters to observables

Eliminating the amplitudes β̃ and γ̃ from Eqs. (6) with
k̃0 = 0, one finds an analytic expression for ã = − f̃k0=0 =
(�̃1β̃ + �̃2γ̃ )|k0=0/4π which can be parametrized as

ã(B) = �̃1

B(res)
1 − B

+ �̃2

B(res)
2 − B

, (9)

where the resonance widths �̃i and the positions B(res)
i (for

i = 1, 2) are observable parameters [38]. This parametrization
is also obtained in the context of multichannel quantum-defect
theory [9] (see Appendix B 3) and, therefore, generic. Ana-
lytic expressions relating the four observable and five bare
parameters are given in Appendix B 2. As expected, the ob-
servable parameters do not depend on the absolute position
of the bare resonances but only on the difference B1 − B2,

except for B(res)
i which also depend additively on the mean

(B1 + B2)/2 for positioning. Because there is one more bare
parameter than there are observable parameters there is an
apparent redundancy in the model. Indeed, keeping the ob-
servable parameters fixed, one can, for example, find a set
of parameters (�̃1, �̃2, B1, B2) for a variety of �̃12 values
without altering the scattering amplitude, the dimer binding
energy, or the trimer binding energy. This is further discussed
in Sec. V below.

D. Three-body sector: Efimov trimers

Here the main result of this paper, the equation for the
trimer binding energy in the three-channel model, is stated.
Details of the derivation can be found in Appendix B 4. In
short, the trimer binding energy ET = −h̄2λ2

T /m, with λT >

max(0, λD), is the eigenvalue associated with the three-body
wave function:

|ψ3B〉 =
∫

d3k

(2π )3 γ�k ĉ†
�k â†

−�k|0〉 +
∫

d3k

(2π )3 β�kb̂†
�kâ†

−�k|0〉

+
∫

d3k

(2π )3

∫
d3q

(2π )3 α�k,�qâ†

�q+ �k
2

â†

−�q+ �k
2

â†
−�k|0〉. (10)

Hence one must solve the Schrödinger equation (Ĥ − ET )
|ψ3B〉 = 0 to arrive at a closed equation for λT . The condition
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λT > max(0, λD) implies that only trimers associated with the
higher resonance are properly determined by the following
equations. In between the two dimers, where Efimov trimers
associated with the lower resonance are expected (see Fig. 1),
a solution for any value of λT exists due to the dimer-atom
continuum. It is not possible to distinguish between the dimer-
atom and the trimer state since both are of the form (10) [39].

Direct substitution of |ψ3B〉 into (Ĥ − ET )|ψ3B〉 = 0 leads
to three coupled integral equations which are reduced to
two by eliminating the free particle amplitude α�k,�q. It is
then convenient to write the two remaining three-body
scattering amplitudes as a vector ψ (k) = (βk, γk )T and
put the coefficients in a 2×2 matrix MλT (k, q) that de-
pends on λT . The Schrödinger equation thus takes the
form

∫ ∞
0 dqMλT (k, q)ψ (q) = 0 and a nontrivial solution is

obtained for det MλT (k, q) = 0. After renormalizing with
respect to the momentum cutoff and using the practical sub-
stitution k = (2/

√
3)λT sinh ξ , the Schrödinger equation can

be written as ∫ ∞

−∞
dξMλT (ξ, ξ ′)ψ (ξ ′) = 0. (11)

The lower integration limit was extended to −∞ by demand-
ing that both β̃ξ and γ̃ξ be odd functions of ξ . The vector ψ (ξ )
is now defined as ψ (ξ ) = (β̃ξ , γ̃ξ )T and the matrix elements
are

(MλT )i j = [( fi(ξ
′) − h(ξ ′))δi j + h(ξ ′) − �̃i�̃ jg(ξ ′)]

δ(ξ − ξ ′) − �̃i�̃ jL(ξ, ξ ′), (12)

where we have defined

fi(ξ ) = λ̃T cosh ξ + μ̃i

λ̃T cosh ξ
(Bi − B), (13a)

g(ξ ) = 1

π2

(
1

λ̃T cosh ξ
− π

2

)
, (13b)

h(ξ ) = �̃12

λ̃T cosh ξ
, (13c)

L(ξ, ξ ′) = 2√
3π2

ln

(
e2(ξ−ξ ′ ) + eξ−ξ ′ + 1

e2(ξ−ξ ′ ) − eξ−ξ ′ + 1

)
. (13d)

The requirement of a vanishing determinant:

det MλT (ξ, ξ ′) = 0, (14)

is a closed equation for λT . Depending on the magnetic
field there are many values λT = λ

(sol)
T for which Eq. (14) is

satisfied. To single out the physical solutions corresponding
to three-body bound states one must compute the zero-
eigenvalue eigenfunction ψ (ξ ) of M

λ
(sol)
T

in accordance with

Eq. (11) and determine β̃ξ and γ̃ξ . The mathematical solution
λ

(sol)
T is physically relevant only if both are odd functions of

ξ . In addition, the number of nodes in β̃ξ and γ̃ξ allows the
assignment of λ

(sol)
T to the ground or an excited Efimov state

(see Sec. VI).

TABLE I. Parameters of the three model systems.

Type NB NN BN

�1/a0 (G) 150 150 1000

�2/a0 (G) 1000 150 150

B1 − B(res)
2 (G) −39.3857 −23.7856 −54.0702

B2 − B(res)
2 (G) −17.22 −5.76371 −2.53547

�̃1 2.02991 0.776438 2.29268
�̃2 1.21692 0.926494 0.587429
�̃12 0.1 0.1 0.1

IV. APPLICATION TO MODEL SYSTEMS

A. Definitions

To illustrate the three-channel model we choose a model
atom whose molecular bound states are pure spin singlets and
consider high magnetic fields such that the Zeeman shift is
linear to a good approximation. The value of the magnetic
moment is thus μ1 = μ2 = −2μB, where μB = 1.4 MHz/G
is the Bohr magneton. The momentum cutoff is somewhat
arbitrarily fixed to kc = 0.05/a0 but, as discussed in Sec. V,
the results are indifferent to variations in kc. All lengths are
calculated in units of the Bohr radius a0 and all energies in
units of E0 = h̄2/ma2

0, where m is the atomic mass. Three
scenarios are considered: �1 � �2 (denoted NB), �1 = �2

(NN), and �1 � �2 (BN)—see Table I. The distance be-
tween the two resonances is identical in all three scenarios;
we choose B(res)

2 − B(res)
1 = 20 G, so the only difference be-

tween the models is the width. In the NN scenario, as will
be shown, B(res)

2 − B(res)
1 is too large for the two resonances

to be considered overlapping. We therefore expect the results
of the three-channel model to be in good agreement with
those of the two-channel model, i.e., the additional channel
has no influence on the two- and three-channel observables.
This system is used as a sanity check for our three-channel
model. In the NB (BN) scenario the higher (lower) resonance
is broadened to make them overlapping. (Alternatively, one
could keep �1 = �2 constant and decrease B(res)

2 − B(res)
1 to

generate overlap.) Because the three-channel model allows for
the determination of the higher-resonance trimers only, both
the case NB and BN are considered. In each scenario we ask
the question: How does the resonance at B(res)

1 influence the
Efimov spectrum around B(res)

2 ?

B. Two-body sector

From the analytic equations in Appendix B 2 we find the
bare parameters for each model (Table I). Here, because of
the redundancy in the number of bare parameters, we fix
�̃12 = 0.1. Other options and their consequences are dis-
cussed in Secs. V and VI.

We use the two-body equations to compute the scattering
lengths, effective ranges, and dimer binding energies of the
three scenarios. The results are compared with an individ-
ual treatment of the resonances with the two-channel model
(Fig. 2). As expected, the two-channel model is a good ap-
proximation only in the direct vicinity of the resonance. The
three-channel model introduces three important additions: (1)
The scattering length is forced to cross a = 0 in between the

063303-4



EFIMOV SCENARIO FOR OVERLAPPING NARROW … PHYSICAL REVIEW A 103, 063303 (2021)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 2. Two-body sector. The (a), (d), (g) scattering length, (b), (e), (h) effective range, and (c), (f), (i) dimer binding energy for the
(a)–(c) NB, (d)–(f) NN, and (g)–(h) BN scenarios are shown. The three-channel model (solid curves) is compared with the two-channel
model applied to the lower (dotted) and higher (dashed) resonance. In panels (b), (e), and (h), the two-channel value of the effective range is
represented by a point because of its lack of B dependence. The gray vertical lines indicate the resonance positions B(res)

1 and B(res)
2 , and the

shaded region shows the extent of the ground-state Efimov trimer B(0)
� < B < B(0)

− associated with B(res)
2 .

two resonances, close to the narrower one. According to the
two-channel model this never happens (for zero background
scattering length). (2) While in the two-channel model, the
effective range is constant across the Feshbach resonance; it
develops a magnetic-field dependence in the three-channel
model. In particular, at a = 0, re → −∞. (3) Finally, unlike
the two independent dimer energy levels arising from an indi-
vidual treatment of the two resonances with the two-channel
model, level repulsion naturally arises in the three-channel
model. We stress at this point that the level repulsion is not
due to �̃12 but is intrinsic to the model and also happens
for �̃12 = 0. The physical origin of the repulsion in this case
is the second-order coupling through the continuum via Ĥ1

and Ĥ2. Changing �̃12 (and accordingly also �̃1 and �̃2, see
Sec. V) tunes the relative strength of the two.

The NN scenario in Figs. 2(d)–2(f) is hardly affected by
the additional channel. In particular, the two dimers are nearly
identical in both treatments. As mentioned above, this is
the consequence of B(res)

2 − B(res)
1 being large compared with

�1 = �2, and the resonances cannot be considered properly
overlapping. The three-channel model thus reproduces the
results of the two-channel model in the limit of nonover-
lapping resonances. Nevertheless, all three additions of the
three-channel model, however small, are appreciable.

In the NB scenario, on the other hand, extensive repulsion
of the two dimers is visible [Figs. 2(a)–2(c)]. The two-
channel-model dimers are not coupled and intersect each other
at a binding energy of −0.57×10−3E0. The mutual coupling
introduced in the three-channel model leads to an avoided
crossing, strongly altering their functional form. This is in

stark contrast to the two-channel model already at the two-
body level.

Finally, to a lesser extent, this repulsion can also be seen in
the BN scenario; Figs. 2(g)–2(i). The effect is much weaker
because the two-channel-model dimers do not cross. In ad-
dition, a scattering length zero-crossing and its associated
effective range divergence are introduced relatively close to
the narrow resonance due to the neighboring broader reso-
nance.

We note that the scattering length zero crossing could also
be obtained in the two-channel model by using a nonzero
background scattering length to account for the lower reso-
nance. Although the magnetic-field regime, for which the two-
and three-channel scattering length agree, would be extended,
it would remain limited to the vicinity of the resonance. The
use of a nonzero background scattering length also raises the
question of how to define it. Does one prefer a larger regime
of agreement or a perfect overlap at the zero crossing? Using
the lower resonance explicitly avoids these questions, auto-
matically takes into account the background generated by the
nearby resonance and, most importantly, makes it magnetic-
field dependent.

A more general model than we are presenting here would
include both resonances and, in addition, a background scat-
tering which arises from scattering in the open channel—not
another closed channel.

C. Three-body sector

Here we solve the three-body equations for the three sce-
narios. In each case we compute the ground and first-excited
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 3. Three-body sector. The dimer (blue, upper curve), ground-state trimer (orange, lower curve), and excited-state trimer (green, middle
curve) are plotted as a function of (a), (d), (g) the inverse scattering length and, for a > 0, (b), (e), (h) the dimer binding energy. The difference
between the trimer and the dimer is shown in panels (c), (f), (i). As in Fig. 2 the three columns correspond to the (a)–(c) NB, (d)–(f) NN, and
(g)–(i) BN scenario. The three-channel model (solid curves) is compared with the two-channel model (dashed). The arrow in panel (a) indicates
where the lower resonance B(res)

1 is crossed.

Efimov state around B(res)
2 . They are plotted in Fig. 3 as a

function of inverse scattering length and as a function of dimer
binding energy. The three-channel model is compared with
the solution obtained from an isolated resonance according
to the two-channel model. We denote the scattering length
value at which the nth trimer (starting from the ground state
n = 0) crosses the free-atom continuum by a(n)

− and the value
at which it merges with the dimer-atom continuum by a(n)

� .
The corresponding magnetic-field values are denoted B(n)

− and
B(n)

� , respectively. To put the extent of the Efimov spectrum in
context, Fig. 2 highlights the region B(0)

� < B < B(0)
− for the

three scenarios.
As in the two-body sector, the NN scenario is hardly af-

fected by the additional molecule, demonstrating again that
the three-channel model reduces to the two-channel model
for large B(res)

2 − B(res)
1 and small �1,2 [Figs. 3(d)–3(f)]. The

three-channel trimers almost overlap with the two-channel
trimers, although they are pushed to slightly deeper binding
energies.

For smaller B(res)
2 − B(res)

1 the overlap grows and the deep-
ening effect increases. As a real-world example one may
consider the bb channel of 39K, which features two very close
resonances (B(res)

2 − B(res)
1 = 6.8 G) of comparable widths.

Indeed, the � parameters are within 10%–15% of �1/a0 =
�2/a0 = 150 G while B(res)

2 − B(res)
1 is a factor of ≈3 smaller

than in our NN scenario. Experiments have shown deviations
from the prediction of the two-channel model [16]. In fact,
a(0)

− was found to be at a lower scattering-length value than
predicted, in agreement with the general trend pointed out
by the three-channel model. Using coupled-channels values
for the experimentally relevant parameters [40] the three-
channel model predicts a(0)

− ≈ −6030a0. This corresponds to
a shift of ≈8% with respect to the two-channel-model value
a(0)

− ≈ −6550a0. The reported experimental value is a(0)
− ≈

−1000a0. A quantitative comparison to the experiment is,
however, inconvenient since the measurements, as pointed out
in Ref. [16], are accompanied by large uncertainties which
arise mainly from the fact that the functional form of the
experimental results disagree with the known theoretical mod-
els. Thus, the level of understanding of these results have yet
to reach a level which would allow a meaningful comparison
with the three-channel model.

In the NB scenario, the most striking difference is that the
ground-state trimer extends from B(0)

− > B(res)
2 to B(0)

� < B(res)
1

[see shaded region in Figs. 2(a)–2(c)], i.e., it merges with the
atom-dimer continuum after passing through the scattering
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length zero-crossing and the pole of the lower resonance. This
is manifested by ED and E (0)

T exiting the plot in Fig. 3(a)
through 1/a → ∞, reentering from 1/a → −∞, crossing
1/a = 0 again due to the lower resonance [see arrow in
Fig. 3(a)] to finally merge in the a > 0 region. Note that
the Efimov trimer remains bound even though the scattering
length vanishes. The two-channel model cannot possibly cap-
ture this effect due to the absence of the second molecular
channel, even if one would include a nonzero background
scattering length. In fact, the background scattering length
induced by the second resonance obviously diverges at its
pole. This strong magnetic-field dependence makes the ex-
tension of the two-channel model by any finite (constant)
background scattering length ineffective. In addition, although
the three-channel trimer is slightly more deeply bound than
the two-channel trimer for most of the spectrum, as they ap-
proach a(0)

� the two cross and the three-channel trimer merges
at a larger scattering length [Figs. 3(b) and 3(c)]. The effect
on the excited trimer is very similar to the NN scenario.

A real-world example for the NB scenario is the bb channel
in 7Li. It features two resonances with R�

1 = 722a0 (sres,1 =
0.0411), R�

2 = 60a0 (sres,2 = 0.493), and B(res)
2 − B(res)

1 = 48.4
G [9,41,42]. Indeed, the three-channel model is very good
in the two-body sector. It reproduces the scattering length,
effective range and dimer binding energies better than the
individual two-channel-model treatments (see Appendix C).
However, the three-body sector is unexpectedly dominated by
finite-range corrections despite both resonances having sres <

1 [43]. The reason for this behavior is currently unknown
and considered an open question in few-body physics [44,45].
This puzzle is beyond the reach of our simplified model,
which neglects all van der Waals physics.

The trimer in the BN scenario is pushed to lower energies
by an appreciable amount, as shown in Fig. 3(g). In partic-
ular, the Efimov resonance at a(0)

− is shifted from R�/a(0)
− =

−0.092 in the two-channel model [31] to R�/a(0)
− = −0.174.

This factor of ≈2 reduction in the absolute value of a(0)
−

works in favor of the experimental demonstration of Efimov
physics in the vicinity of narrow resonances, as it relaxes
severe magnetic-field stability requirements necessary for ex-
perimental exploration of narrow Feshbach resonances [17].
On the a > 0 side one notes that a(0)

� is unaltered but the
excited state a(1)

� is [see Figs. 3(h) and 3(i)]. In addition, away
from a(n)

� (n = 0, 1), both states are pushed to deeper binding
energies and reach maximal deviation from the two-channel
model at the resonance position where ED → 0. We note
that, in this particular scenario, a two-channel model which
includes a nonzero background scattering length would be
in better agreement with the three-channel results. However,
we expect the three-channel model to be superior because
it naturally includes the magnetic-field dependence of the
background scattering length. It also removes the unavoidable
ambiguity of choosing a certain background scattering length
in the improved two-channel model.

For the BN scenario we mention the aa channel of the
heteronuclear 6Li -Cs system as a real-world example. Its two
resonances have sres,1 = 0.66 and sres,2 = 0.05 and their dis-
tance is B(res)

2 − B(res)
1 = 49.9 G. In fact, this is the only system

to date where Efimov resonances near a truly narrow Feshbach

(a)

(c)

(b)

FIG. 4. Dependence of (a) �̃1 and �̃2 and of (b) B1 and B2

(with respect to B(res)
2 ) on �̃12 for fixed kc and observable parame-

ters. (c) Dependence of B2 − B1 on �̃12 for various values of kc as
indicated (in units of 1/a0) and fixed observable parameters.

resonance (i.e., for a resonance with sres � 1 as opposed to
sres � 1) were measured [17]. The experimental value of a(1)

−
associated with the B(res)

2 trimers was found to be significantly
lower than that predicted by two-channel theory. Quantitative
analysis of this system with the three-channel model requires
extension of the latter to the heteronuclear case.

V. DISCUSSION OF FREE BARE PARAMETER

As mentioned in Sec. III C (see also Appendix B 2)
there are four observable parameters, namely
{B(res)

1 , B(res)
2 , �1, �2}, related to the five bare parameters

{B1, B2, �̃1, �̃2, �̃12} of the model. Hence, one of the latter
is free to choose. We emphasize though, that as long as the
observable parameters are fixed and therefore constrain the
bare parameters to change in a mutually dependent manner,
all two- and three-body observables (such as scattering length
and binding energies) remain the same.

For illustration, in what follows, we treat �̃12 as the free
parameter and fix the observable parameters to those of the
BN scenario. The �̃12 dependence of the other four bare
parameters is shown in Figs. 4(a) and 4(b) for fixed cutoff
kc = 0.05/a0. As |�̃12| increases, the bare resonance position
difference B2 − B1 decreases towards 0. Beyond the point
where B2 − B1 = 0, no solution exists for the analytic equa-
tions of Appendix B 2. Therefore, there is a maximal value
�̃max

12 which the intermolecular coupling constant can assume.
Although �̃12 may in principle be chosen anywhere in the

range −�̃max
12 < �̃12 < �̃max

12 , additional physical inputs can
constrain �̃12. For example, the absolute position of B1, B2 or
their relative position B2 − B1 introduces a fifth condition on
the bare parameters. Alternatively, one may wish to maintain
|�̃1| > |�̃2|, as is the case in the two-channel model. See,
for example, the case of the bb channel of 7Li considered in
Appendix C.

Figure 4(c) shows the relative position B2 − B1 as a func-
tion of �̃12 for various values of kc. The value of �̃max

12
increases together with kc and so does the range of B1 and
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(a) (c) (d)

(b)

(e) (f)

(g) (h)

FIG. 5. (a) Nodal pattern of the BN scenario ground state. Above and to the left of the black line, which is given by Eq. (16), β̃ξ has one
node such that Nnodes = (1, 1). Below and to the right Nnodes = (3, 1). (b) Plot of the ground state Efimov energy with respect to the dimer-atom
(for B < B(res)

2 ) and free-atom (for B > B(res)
2 ) continuum. The dashed line indicates the transition from Nnodes = (3, 1) to (1, 1) in the case of

�̃12 = 0.16. (c), (e), (g) Plot of β̃ξ and (d), (f), (h) of γ̃ξ for the three values of �̃12 and the four values of B indicated by the points in panel
(a). The points in panel (b) also indicate the values of B.

B2. Physically, kc should be chosen on the order of the inverse
potential range, i.e., kc ∼ 1/rvdW . Variations have no influence
on the two- and three-body observables though. Also here, ad-
ditional physical inputs of a real system may further constrain
the value of kc.

VI. TRIMER EIGENFUNCTIONS

The matrix M
λ

(sol)
T

(ξ, ξ ′), with λ
(sol)
T a solution of Eq. (14),

has one vanishing eigenvalue in accordance with Eq. (11). We
compute the corresponding eigenfunction ψ0(ξ ) satisfying∫

dξ ′M
λ

(sol)
T

(ξ, ξ ′)ψ0(ξ ′) = 0 and extract the amplitudes of

ψ0(ξ ) = (β̃ξ , γ̃ξ )T . Recall that the amplitudes that correspond
to a physical bound state are odd functions of ξ (odd number
of nodes), which implies that they vanish at ξ = 0. Solutions
of Eq. (14) that lead to an even zero-eigenvalue eigenfunction
are discarded on this basis.

For specificity, the following discussion focuses on the
ground state of the BN scenario, whose binding energy is
shown in Fig. 5(b), but the conclusions are general. The
amplitudes β̃ξ and γ̃ξ for the three values �̃12 = 0.1, 0.16,
and 0.24 are shown in Figs. 5(c) and 5(d), 5(e) and 5(f),
and 5(g) and 5(h), respectively. While γ̃ξ is insusceptible
and has a single node (at ξ = 0), the form of β̃ξ , whose
amplitude is an order of magnitude smaller, is sensitive to
changes in �̃12. Figures 5(c), 5(e), and 5(g) shows how
the number of nodes changes from one to three as �̃12 is
increased. For certain values of �̃12, see Figs. 5(b) and 5(e),
the number of nodes depends on the position within the
spectrum. There is a critical magnetic-field value Bcrit

above (below) which β̃ξ has one (three) nodes. Moreover,
Bcrit depends on �̃12 and therefore gives rise to the nodal

pattern represented in Fig. 5(a). For convenience we denote
Nnodes = (number of nodes in β̃ξ , number of nodes in γ̃ξ )
such that Nnodes = (1, 1) to the left of the black curve and
Nnodes = (3, 1) to the right.

The number of nodes in a wave function is indicative of
the excitedness of the state. For example, in the two-channel
model (see Appendix A), since only odd wave functions are
allowed, the nth state (starting at the ground state n = 0)
has 2n + 1 nodes. In the three-channel model, γ̃ξ , which is
the dominant molecule-atom amplitude for the B(res)

2 trimers,
follows this rule. The secondary molecule-atom amplitude β̃ξ ,
on the other hand, may have 2n + 1 or 2(n + 1) + 1 nodes,
signifying it as being in the nth or (n + 1)st state. As we will
show, this is the result of two competing processes whose
amplitudes are proportional to �1 and �12�2. This could
serve as an experimental indicator for the value of �12.

To find an equation for the �̃12-dependent Bcrit we consider
the ratio χξ = β̃ξ /γ̃ξ . At ξ = 0, where both amplitudes have
a node, χξ remains finite. It vanishes only if β̃ξ has a node
while γ̃ξ does not and is thus indicative of the excess number
of nodes in β̃ξ . Switching back to k via k = (2/

√
3)λT sinh ξ ,

the following expression for χk can be readily derived (see
Appendix B 5):

χk = �̃1
[

3
4 k̃2 + λ̃2

T + μ̃2(B2 − B)
] − �̃2�̃12

�̃2
[

3
4 k̃2 + λ̃2

T + μ̃1(B1 − B)
] − �̃1�̃12

. (15)

This function features one zero crossing for Re{k} � 0 (and
another for Re{k} � 0) if

�1 <
�2�12

|ET | + Eb,2
, (16)
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FIG. 6. Analogy of the three-channel model to a three-level sys-
tem. The circled numbers are the quantum optics energy levels. Here,
the two-photon detuning is � = |ET | + Eb,2.

and none otherwise. If Eq. (16) is satisfied, the eigenfunctions
correspond to Nnodes = (3, 1); if not, to (1, 1).

To give meaning to the inequality we rearrange the chan-
nels as depicted in Fig. 6 and draw the analogy to a three-level
system in quantum optics. While the left-hand-side of Eq. (16)
is analogous to the Rabi frequency for the direct (one-
photon) transition from level 0 to 1, the right-hand side is
the equivalent of the effective Rabi frequency for the indirect
(two-photon) transition via level 2. Thus, the inequality states
that the extra node in βk (for k > 0) is the result of the indirect
coupling strength surpassing the direct one.

For a given �̃12, inequality (16) is solved for Bcrit and
displayed in Fig. 5(a). For the case �̃12 = 0.16 we find Bcrit −
B(res)

2 = −0.57 G as indicated in Fig. 5(b).

VII. CONCLUSIONS

We have developed a simple three-channel theory of
overlapping Feshbach resonances and show that the Efimov
spectrum can be substantially altered in this scenario. Exper-
imental observations that are in disaccord with the isolated
resonance theory can be revisited with the three-channel
model (e.g., 6Li -Cs). Moreover, given the demanding require-
ments for measuring Efimov resonances in the vicinity of a
truly narrow resonance, our treatment allows identification of
the favorable structure of Feshbach resonances.

The model can be generalized to fermionic systems [29]
and Ĥ0 can be extended to include background scattering, as
was done for the two-channel model [35]. In addition to three-
body bound states one may analyze low-energy atom-dimer
and three-atom scattering [30,39] as well as four-body bound
states associated with Efimov trimers [36]. Although cumber-
some, one can speculate of an extension to N-channel theory
for N − 1 > 2 overlapping Feshbach resonances to describe
possible few-body states in even more complex scenarios.
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APPENDIX A: REVIEW OF THE TWO-CHANNEL MODEL

Here the two-channel model is reiterated in a slightly
different approach than usual. In particular, the momentum
cutoff is used for renormalization purposes; see Eq. (A9) be-
low. Following the introduction of the Hamiltonian we show
that the model provides analytic expressions for all two-body
observables. Thereafter, an integral equation for the three-
body bound states is derived.

1. Two-channel Hamiltonian

We start from the Hamiltonian Ĥ = Ĥ0 + Ĥint, where

Ĥ0 =
∫

d3k

(2π )3

[
h̄2k2

2m
â†

�k â�k +
(

Eb + h̄2k2

4m

)
b̂†

�kb̂�k

]
(A1)

entails an open and a closed channel and

Ĥint = �

∫
d3k

(2π )3

∫
d3q

(2π )3 [b̂†
�kâ�q+ �k

2
â−�q+ �k

2
+ â†

−�q+ �k
2

â†

�q+ �k
2

b̂�k]

(A2)
couples them with coupling constant �. Here, â�k (b̂�k) annihi-
lates an atom (a molecule) with momentum h̄�k and mass m
(2m) in the open (closed) channel and â†

�k (b̂†
�k) is its Hermitian

conjugate. The bare molecular binding energy Eb is assumed
to be an affine function of an externally applied magnetic
field B: Eb = μ(B0 − B), where μ is the molecules magnetic
moment with respect to the open channel and B0 is the bare
resonance position. The free parameters of the system are thus
� and B0.

2. Two-body observables: Scattering length, effective
range, and binding energy

To compute two-body observables, the following wave
function is used in the Schrödinger equation (Ĥ − E )|ψ2B〉:

|ψ2B〉 = βb̂†
�k=0

|0〉 +
∫

d3k

(2π )3 α�kâ†
�k â†

−�k|0〉. (A3)

This center-of-mass superposition of two free atoms and one
bare molecule is the most general wave function for a two-
body system and therefore a suitable ansatz. The two coupled
equations (

h̄2k2

m
− E

)
α�k + �β = 0, (A4a)

(Eb − E )β + 2�

∫
d3q

(2π )3 α�q = 0 (A4b)

are obtained. Comparison of the open-channel coefficient α�k ,
as obtained from the first equation for E = h̄2k2

0/m > 0, with
the scattering Green’s function

Gscat(k, k0) = (2π )3δ(�k − �k0) + 4π fk0

k2 − k2
0 − iη

, (A5)

implies that the scattering amplitude is given via

fk0 = −m�β

4π h̄2 . (A6)
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Next, α�k is plugged into the second equation and, exploiting
the spherical symmetry of s-wave scattering α�k = αk , one
finds an equation for the molecular amplitude β:[

μ(B0 − B) − h̄2k2
0

m

]
β + 2� − m�2

π2h̄2

(
kc − iπ

2
k0

)
β = 0.

(A7)
Here a high-momentum cutoff kc was introduced during the
computation of the radial integral to avoid a divergence. If
instead of E > 0 one searches for a bound-state solution E =
−h̄2λ2

D/m < 0 (with λD > 0), the same procedure leads to[
μ(B0 − B) + h̄2λ2

D

m

]
− m�2

π2h̄2

(
kc − λD

π

2

)
= 0, (A8)

where β conveniently canceled. To get rid off the momentum
cutoff we renormalize the model parameters according to

�̃ = �k3/2
c

Ec
, μ̃ = μ

Ec
, β̃ = βk3/2

c , (A9)

where Ec = h̄2k2
c /m. In addition, the scattering and bind-

ing wave numbers are renormalized as k̃0 = k0/kc and λ̃D =
λD/kc. With this, Eqs. (A7) and (A8) become

(
μ̃(B0 − B) − k̃2

0

)
β̃ + 2�̃ − �̃2

π2

(
1 − iπ

2
k̃0

)
β̃ = 0, (A10)

and (
μ̃(B0 − B) + λ̃2

D

) − �̃2

π2

(
1 − λ̃D

π

2

)
= 0, (A11)

and the normalized scattering amplitude f̃k0 = kc fk0 is

f̃k0 = �̃β̃

4π
. (A12)

By solving Eq. (A10) for β̃ and comparing f̃k̃0
to the known

low-energy expansion

1

f̃k0

= −1

ã
− ik̃0 + r̃ek̃2

0

2
, (A13)

where ã = kca and r̃e = kcre are the renormalized scattering
length and effective range, respectively, one finds

ã = − 1

2π

�̃2

μ̃(B0 − B) − �̃2

π2

(A14)

and

r̃e = −4π

�̃2
. (A15)

We note that the effective range is field independent. By de-
noting

Bres = B0 − �̃2

μ̃π2
, �̃ = �̃2

2πμ̃
, (A16)

the scattering length may be written in the familiar form

ã = �̃

B − Bres
. (A17)

Here, � is defined with the opposite sign with respect to
Eq. (9). We note that this expression, which is faithfully re-
produced, is far more general than the two-channel model [9].

The expression for Bres demonstrates that the actual resonance
position is shifted away from the bare resonance position
B0 by the coupling to the open channel. Furthermore, the
expression for �̃ shows that a narrow resonance arises from
weakly coupled channels as eluded to in the introduction.
From Eq. (A11) and the condition λ̃D > 0 the dimer binding
wave number is found to be

λ̃D = μ̃

2
[
√

�̃2 − 4(B − Bres)/μ̃ − �̃]. (A18)

Using the solution for ã and R̃� = −r̃e/2 the well-known
narrow-resonance dimer formula

λD =
√

1 + 4 R�

a − 1

2R�
(A19)

is obtained. Also this equation is far more general than the
simple two-channel model. Finally we note the connection

� = h̄2

mμR�
(A20)

between the resonance width � = �̃/kc and R�. This equation
illustrates that a narrow resonance is related to a large R�.

We have shown that the bare parameters � and B0 are
directly connected to two-body observables such as the scat-
tering length, effective range and dimer binding energy. For a
given atomic species and scattering channel one must fix the
bare parameters such that the observables are reproduced as
well as possible. Incidentally, the set (�, B0) is fully deter-
mined by (R�, Bres ) or (�, Bres ).

3. Three-body sector: Efimov trimers

Having fixed the bare parameters in the two-body sector
we move on to the three-body sector with no more adjustable
parameters. To find the binding energy of Efimov trimers we
search for a negative-energy solution E = −h̄2λ2

T /m, where
λT > max(0, λD), of the Schrödinger equation (Ĥ − E )|ψ3B〉
with

|ψ3B〉 =
∫

d3k

(2π )3 β�kb̂†
�kâ†

−�k|0〉

+
∫

d3k

(2π )3

∫
d3q

(2π )3 α�k,�qâ†

�q+ �k
2

â†

−�q+ �k
2

â†
−�k|0〉. (A21)

Also, here we work in the center-of-mass frame and have
chosen �k and �q to be a set of Jacobi momenta. The Schrödinger
equation leads to the coupled equations(

h̄2q2

m
+ 3

4

h̄2k2

m
− E

)
α�k,�q + �β�k = 0, (A22)

(
3

4

h̄2k2

m
+ Eb − E

)
β�k

+2�

∫
d3q

(2π )3

(
α�k,�q + 2α�q− �k

2 ,− �q
2 − 3�k

4

) = 0. (A23)

One eliminates α�k,�q from the first and plugs it into the second,
upon which the first integral is computed by introducing a
momentum cutoff kc as in the two-body sector. After renor-
malizing with respect to kc, the expressions for ã and R̃� are
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substituted and one obtains[√
3k2

4
+ λ2

T − 1

a
+ R�

(
3k2

4
+ λ2

T

)]
ψ (k)

− 2

π

∫ ∞

0
dq ln

(
k2 + kq + q2 + λ2

T

k2 − kq + q2 + λ2
T

)
ψ (q) = 0, (A24)

where ψ (k) = kβk and all factors of kc have canceled. We
have eliminated the magnetic-field dependence (via the sub-
stitution of a) and can directly compute the scattering length
dependence of λT . We stress that the parameter R� = −re/2
was fixed in the two-body sector [see Eq. (A15)]. To solve
Eq. (A24) we first switch variables via

k = 2√
3
λT sinh (ξ ), q = 2√

3
λT sinh (ξ ′), (A25)

and rescale ψ (k) → ψ (k)/ cosh(ξ ). If we limit ourselves to
odd solutions ψ (k), the lower integration limit may be ex-
tended to −∞ provided we divide the entire integral by two.
One obtains[

1 − 1

aλT cosh ξ
+ R�λT cosh ξ

]
ψ (ξ )

− 4√
3π

∫ ∞

−∞
dξ ′ ln

(
e2(ξ−ξ ′ ) + eξ−ξ ′ + 1

e2(ξ−ξ ′ ) − eξ−ξ ′ + 1

)
ψ (ξ ′) = 0.

(A26)

By introducing
∫

dξ ′δ(ξ − ξ ′) in the first term it is included
into the integral. One finally finds∫ ∞

−∞
dξ ′MλT (ξ, ξ ′)ψ (ξ ′) = 0, (A27)

with ψ (ξ ) an odd function of ξ and

MλT (ξ, ξ ′) = δ(ξ − ξ ′)
[

1 − 1

aλT cosh ξ ′ + R�λT cosh ξ ′
]

− 4√
3π

ln

(
e2(ξ−ξ ′ ) + eξ−ξ ′ + 1

e2(ξ−ξ ′ ) − eξ−ξ ′ + 1

)
. (A28)

A nontrivial solution is obtained for det MλT (ξ, ξ ′) = 0
which constitutes a closed equation for λT and can be solved
numerically by discretizing ξ and ξ ′. One searches for the
value λT = λ

(sol)
T for which det MλT (ξ, ξ ′) changes sign as

λT is varied through λ
(sol)
T . Note that many solutions λ

(sol)
T exist

for a given a and R�. To verify one solution, the obtained value
λ

(sol)
T is plugged back into M

λT =λ
(sol)
T

(ξ, ξ ′) and its eigenvalues
and eigenfunctions ψ (ξ ) are computed. One of the eigenval-
ues must be equal to zero (within machine precision) and its
associated eigenfunction must be odd (odd number of nodes).

The value of λ
(sol)
T for which ψ (ξ ) has one node is the ground

state. If ψ (ξ ) has three nodes it is the first-excited state and so
on. This formalism was used to produce the dashed curves in
Fig. 3.

APPENDIX B: DETAILS OF THE DERIVATION
OF THE THREE-CHANNEL MODEL

1. Two-body sector

After plugging the two-body wave function (5) into the
Schrödinger equation one obtains the following system of
coupled equations:(

h̄2k2

m
− E

)
α�k + �1β + �2γ = 0, (B1a)

(Eb,1 − E )β + 2�1

∫
d3q

(2π )3 α�q + �12γ = 0, (B1b)

(Eb,2 − E )γ + 2�2

∫
d3q

(2π )3 α�q + �12β = 0. (B1c)

From the expression for α�k as determined from the first equa-
tion with E = h̄2k2

0/m and the scattering problem’s Green’s
function [Eq. (A5)], one finds the scattering amplitude to be

fk0 = − m

4π h̄2 (�1β + �2γ ). (B2)

Then, by plugging α�k into the second and third equation one
obtains Eqs. (6) for E = h̄2k2

0/m > 0, and Eqs. (8) for E =
h̄2λ2

D/m < 0. When solving the integrals in the second and
third equation of (B1) one must introduce a high momentum
cutoff kc to prevent the divergence with respect to which the
various parameters, amplitudes, and variables are renormal-
ized. Note that Eqs. (6) and (8) are the analog of Eqs. (A10)
and (A11) in the two-channel model.

2. Relating the bare parameters to observable parameters

In terms of the bare parameters, the observable parameters
are given via

�̃1 = − L2
s

4π
+ L2

d (B1 − B2) + L4
p

4πR1
, (B3a)

�̃2 = − L2
s

4π
− L2

d (B1 − B2) + L4
p

4πR1
, (B3b)

B(res)
1 = B1 + B2

2
− L2

s

2π2
− R2

2π2
, (B3c)

B(res)
2 = B1 + B2

2
− L2

s

2π2
+ R2

2π2
, (B3d)

where we have defined

R1 = {
2(L1L2 − 2π2L12)2 + 2L2

1L2
2 − 4π4L2

12 + [
π2(B1 − B2) − (

L2
1 − L2

2

)]2}1/2
, (B4a)

R2 = {
4π4L2

12 − 8π2L1L2L12 + L4
s − 2L2

d (B1 − B2) + π4(B1 − B2)2
}1/2

(B4b)

as well as L2
s = L2

1 + L2
2, L2

d = π2(L2
1 − L2

2 ), and L4
p = 4π2L1L2L12 − 2L2

1L2
2 − L4

1 − L4
2. The L parameters correspond to the �

parameters scaled by the magnetic moment, so L1 = �̃1/
√

μ̃1, L2 = �̃2/
√

μ̃2, and L12 = �̃12/
√

μ̃1μ̃2.
Note that the functions produce �̃1 and �̃2 which are related to �1 and �2 in Table I via �̃1/kc = �1 and �̃2/kc = �2,

respectively. Hence, kc must be fixed before solving the equations for the bare parameters.
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3. Relation of Eq. (9) to Eq. (26) in Ref. [9]

For the case of two resonances and vanishing background scattering, Eq. (26) of Ref. [9] can be written as

a(B) = �1(B2 − B) + �2(B1 + B)

(B1 − B)(B2 − B) + (B1 − B)δB2 + (B2 − B)δB1
. (B5)

To obtain this form one must take abg → 0 and �1 → ∞, �2 → ∞ while keeping their product (which we call �1 and �2,
respectively) finite. Furthermore, our expression for the scattering length can be written in the form

a(B) = − L2
1

2π
(B2 − B) − L2

2
2π

(B1 − B) + L1L2L4
12

π

(B1 − B)(B2 − B) − L2
2

π2 (B1 − B) − L2
1

π2 (B2 − B) + 2 L1L2L12
π2 − L2

12

. (B6)

For L12 = 0 one recognizes the same combinations of (Bi − B) in the two expressions. Our model is thus consistent with the
previously used framework of multichannel quantum-defect theory. Note that the apparent connection between �i and δBi

suggested by comparison of the two equations does not exist in Ref. [9]. This is due to the presence of the van der Waals
potential in Ref. [9]; see Eq. (22) there.

4. Three-body sector

From the Schrödinger equation (Ĥ − ET )|ψ3B〉 = 0, where |ψ3B〉 is given in Eq. (10), one obtains three coupled integral
equations: (

h̄2q2

m
+ 3

4

h̄2k2

m
− ET

)
α�k,�q + �1β�k + �2γ�k = 0, (B7a)

(
3

4

h̄2k2

m
+ Eb,1 − ET

)
β�k + �12γ�k + 2�1

∫
d3q

(2π )3

[
α�k,�q + 2α�q− �k

2 ,− �q
2 − 3�k

4

] = 0, (B7b)

(
3

4

h̄2k2

m
+ Eb,2 − ET

)
γ�k + �12β�k + 2�2

∫
d3q

(2π )3

[
α�k,�q + 2α�q− �k

2 ,− �q
2 − 3�k

4

] = 0. (B7c)

The free-particle amplitude α�k,�q is eliminated from the first equation and plugged into the second and third equations. The first
of the two integrals can be solved as in the two-body sector by introducing a high-momentum cutoff kc with which the coupling
constants are renormalized according to �̃1 = �1k3/2

c /Ec, �̃2 = �2k3/2
c /Ec, and �̃12 = �12, Ec, and the amplitudes according

to β̃ = βk3/2
c and γ̃ = γ k3/2

c . The renormalized magnetic moment is μ̃i = μi/Ec and all momenta are k̃ = k/kc. In addition one
uses the s-wave property that β�k = βk and γ�k = γk are spherically symmetric. The equations are then

0 =
(

3

4
k̃2 + λ̃2

T + μ̃1(B1 − B)

)
β̃k + �̃12γ̃k − �̃1

π2

(
1 − π

2

√
3

4
k̃2 + λ̃2

T

)
(�̃1β̃k + �̃2γ̃k )

− �̃1

π2

∫ ∞

0
dq̃

q̃

k̃
ln

(
q̃2 + q̃k̃ + k̃2 + λ̃2

T

q̃2 − q̃k̃ + k̃2 + λ̃2
T

)
(�̃1β̃q + �̃2γ̃q), (B8a)

0 =
(

3

4
k̃2 + λ̃2

T + μ̃2(B2 − B)

)
γ̃k + �̃12β̃k − �̃2

π2

(
1 − π

2

√
3

4
k̃2 + λ̃2

T

)
(�̃1β̃k + �̃2γ̃k )

− �̃2

π2

∫ ∞

0
dq̃

q̃

k̃
ln

(
q̃2 + q̃k̃ + k̃2 + λ̃2

T

q̃2 − q̃k̃ + k̃2 + λ̃2
T

)
(�̃1β̃q + �̃2γ̃q). (B8b)

From here one proceeds equivalent to the two-channel model. The amplitudes are rescaled according to β̃k → β̃k/k̃ and γ̃k →
γ̃k/k̃. We then switch from (k̃, q̃) to (ξ, ξ ′) using Eq. (A25) and rescale once more according to β̃ξ → β̃ξ / cosh ξ and γ̃ξ →
γ̃ξ / cosh ξ . Finally, the lower integration limit is extended to −∞ and the integral divided by two. The amplitudes must thus be
odd functions of ξ . One obtains∫ ∞

−∞
dξ ′[{F1(ξ ′)δ(ξ − ξ ′) − �̃2

1L(ξ, ξ ′)
}
β̃ξ ′ + {H (ξ ′)δ(ξ − ξ ′) − �̃1�̃2L(ξ, ξ ′)}γ̃ξ ′

] = 0, (B9a)

∫ ∞

−∞
dξ ′[{H (ξ ′)δ(ξ − ξ ′) − �̃1�̃2L(ξ, ξ ′)}β̃ξ ′ + {

F2(ξ ′)δ(ξ − ξ ′) − �̃2
2L(ξ, ξ ′)

}
γ̃ξ ′

] = 0, (B9b)

where

Fi(ξ ) = fi(ξ ) − �̃2
i g(ξ ),

H (ξ ) = h(ξ ) − �̃1�̃2g(ξ ). (B10a)
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FIG. 7. Magnetic-field dependence of the three relevant channels
as obtained from coupled-channels calculations. The free atoms (yel-
low) experience a linear Zeeman shift. The bare molecules (dashed
light and dark brown) are spin singlets and thus are magnetic-field
independent. The interaction terms of the three-channel model give
rise to the physical dimers (solid light and dark brown).

As discussed in the main text, these two coupled integral
equations can be written in matrix form and the condition
of vanishing determinant gives a closed equation for λT . To
solve Eq. (14), each block Mi j is written as a n × n matrix
by discretizing ξ and ξ ′ in the interval [−ξm, ξm] and step
size dξ = 2ξm/(n − 1). The total matrix thus has dimensions
2n × 2n and its determinant is found numerically. In Fig. 3,
we used ξm = 10.02 (to avoid the singularity at ξ = 0) and
n = 50.

5. Equation for eigenfunction ratio

The first and second equations of (B8) are multiplied by
�̃2 and �̃1, respectively. Subtracting the second from the first
then gives[

�̃2

(
3

4
k̃2 + λ̃2

T + μ̃1(B1 − B)

)
− �̃1�̃12

]
β̃k

=
[
�̃1

(
3

4
k̃2 + λ̃2

T + μ̃2(B2 − B)

)
− �̃2�̃12

]
γ̃k, (B11)

which leads directly to expression (15) for the ratio χk =
β̃k/γ̃k . Looking for zero crossings at positive k, so χk = 0 for
k � 0, leads to condition (16).

APPENDIX C: TWO-BODY SECTOR
OF THE bb-CHANNEL OF 7Li

Here the two-body sector equations of the three-channel
model are applied to the bb-channel of 7Li. Figure 7 shows
coupled-channels calculations of the relevant energy levels
(channels). Both bare molecular states are spin singlets and
therefore have no magnetic moment, i.e., they are magnetic-
field independent. Since the two resonances occur at high
magnetic field, the Zeeman shift is linear in the region of
interest. The two free atoms are essentially a spin triplet and
have a combined magnetic moment of μ = −2.66 MHz/G,
which is close to −2μB of a full triplet, where μB = 1.4
MHz/G is the Bohr magneton.

We note that the coupled-channels data shown in Fig. 7
illustrate the ingredients and phenomenology of the three-

(a)

(b)

(c)

FIG. 8. The (a) scattering length, (b) effective range, and
(c) dimer binding energy of the bb-channel in 7Li as obtained
from the three-channel model are compared with the exact coupled-
channels result and the individual two-channel model treatments.

channel model. The two closed channels of Ĥ0 (straight
dashed lines) intersect the open channel (straight yellow line)
with relative slope μ = μ1 = μ2 at the bare resonance po-
sitions Bi. The energy differences between the two dashed
and the yellow solid line are the bare binding energies Eb,i

and are negative for B < Bi. The atom-molecule couplings Ĥi

and the intermolecular coupling Ĥ12 shift the actual resonance
position to lower energies and higher magnetic fields and alter
the dimer binding energy, as illustrated.

We go through the following three steps to fix the bare
parameters. (1) Fitting Eq. (9) to coupled-channels data of
the scattering length gives (B(res)

1 , B(res)
2 ) = (845.3, 893.7) G,

which are in perfect agreement with the coupled-channels
resonance positions, and (�1, �2)/a0 = (342.37, 3996.93)
G. (2) To approximately satisfy kc ∼ 1/rvdW we choose kc =
1/(60a0). (3) Using B2 − B1 = 5.029 G (Fig. 7) as the ad-
ditional constraint (as suggested in Sec. V) and the analytic
expressions from Appendix B 2 we find (�̃1, �̃2, �̃12) =
(0.561, 2.849, 0.243) and (B1, B2) = (844, 849.1) G.

The computed scattering length, effective range, and dimer
binding energy are shown in Fig. 8. The coupled-channels
scattering length is consistently below the three-channel
result. This is to be expected since the coupled-channels cal-
culation includes background scattering in the open channel
and the shift agrees with its magnitude abg = −18.42a0. The
two-channel model captures the scattering length only in a
small window around the resonance positions which is by-
far narrower than the resonance widths �B. Moreover, since
both resonances are treated individually, it is not capable of
reproducing the zero crossing. The fact that the three-channel
model does capture the zero crossing can be appreciated by
looking at the effective range. In Fig. 8(b) the effective range
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is seen to diverge at the scattering length zero crossing for both
the coupled-channels and three-channel calculations. Accord-
ing to the two-channel model, however, the effective range is
magnetic-field independent and agrees with the three-channel
model only at the resonance positions. The difference of the
coupled-channels effective range at the higher resonance is
due to van der Waals physics [46,47] not taken into account
by either of the models. Finally, Fig. 8(c) and its inset show

also that the dimer binding energy is captured better by an
overlapping resonance theory then by an individual treatment,
especially in the shallow-binding regime. At larger binding
energy the intermolecular coupling manifests itself as level
repulsion. However, as discussed in Sec. V, the level repulsion
is not related to the numerical value assigned to �̃12—which
here was constrained by B2 − B1 = 5.029 G—but to the in-
trinsic cross talk of the two dimers.

[1] C. H. Greene, P. Giannakeas, and J. Pérez-Ríos, Universal
few-body physics and cluster formation, Rev. Mod. Phys. 89,
035006 (2017).

[2] P. Naidon and S. Endo, Efimov physics: A review, Rep. Prog.
Phys. 80, 056001 (2017).

[3] J. P. D’Incao, Few-body physics in resonantly interacting ultra-
cold quantum gases, J. Phys. B: At. Mol. Opt. Phys. 51, 043001
(2018).

[4] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225 (2010).

[5] The meaning of “broad” and “narrow” in the classification of
Feshbach resonances refers to the value of sres. It is not equiv-
alent to the parameter �B in a = abg[1 − �B/(B − B0)] which
is usually termed “resonance width” and signifies the distance
(in units of magnetic field) between the resonance position B0

and the zero crossing. The sres parameter is more general; in
addition to �B it also depends on abg whose value determines
the position of the zero crossing. In fact, up to numerical coef-
ficients on the order of unity and factors of h̄ and mass, sres is
proportional to abgrvdW μ�B [4].

[6] H. Yang, D.-C. Zhang, L. Liu, Y.-X. Liu, J. Nan, B. Zhao,
and J.-W. Pan, Observation of magnetically tunable Feshbach
resonances in ultracold 23N 40K + 40K collisions, Science 363,
261 (2019).

[7] A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C.
Makrides, A. Petrov, and S. Kotochigova, Quantum chaos in ul-
tracold collisions of gas-phase erbium atoms, Nature (London)
507, 475 (2014).

[8] A. D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser,
H.-C. Nägerl, R. Grimm, and C. Chin, Determination of atomic
scattering lengths from measurements of molecular binding
energies near Feshbach resonances, Phys. Rev. A 79, 013622
(2009).

[9] K. Jachymski and P. S. Julienne, Analytical model of overlap-
ping Feshbach resonances, Phys. Rev. A 88, 052701 (2013).

[10] N. P. Mehta, K. R. A. Hazzard, and C. Ticknor, Model for
scattering with proliferating resonances: Many coupled square
wells, Phys. Rev. A 98, 062703 (2018).

[11] V. Efimov, Energy levels arising from resonant two-body forces
in a three-body system, Phys. Lett. B 33, 563 (1970).

[12] N. Gross, Z. Shotan, S. J. J. M. F. Kokkelmans, and L.
Khaykovich, Observation of Universality in Ultracold 7Li
Three-Body Recombination, Phys. Rev. Lett. 103, 163202
(2009).

[13] M. Berninger, A. Zenesini, B. Huang, W. Harm, H. C. Nägerl,
F. Ferlaino, R. Grimm, P. Julienne, and J. Hutson, Universality
of the Three-Body Parameter for Efimov States in Ultracold
Cesium, Phys. Rev. Lett. 107, 120401 (2011).

[14] S.-K. Tung, K. Jiménez-García, J. Johansen, C. Parker, and
C. Chin, Geometric Scaling of Efimov States in a 6Li - 133Cs
Mixture, Phys. Rev. Lett. 113, 240402 (2014).

[15] R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D.
Kuhnle, and M. Weidemüller, Observation of Efimov Reso-
nances in A Mixture with Extreme Mass Imbalance, Phys. Rev.
Lett. 112, 250404 (2014).

[16] S. Roy, M. Landini, A. Trenkwalder, G. Semeghini, G.
Spagnolli, A. Simoni, M. Fattori, M. Inguscio, and G.
Modugno, Test of the Universality of the Three-Body Efimov
Parameter at Narrow Feshbach Resonances, Phys. Rev. Lett.
111, 053202 (2013).

[17] J. Johansen, B. J. DeSalvo, K. Patel, and C. Chin, Testing uni-
versality of Efimov physics across broad and narrow Feshbach
resonances, Nat. Phys. 13, 731 (2017).

[18] R. Chapurin, X. Xie, M. J. Van de Graaff, J. S. Popowski, J. P.
D’Incao, P. S. Julienne, J. Ye, and E. A. Cornell, Precision Test
of the Limits to Universality in Few-Body Physics, Phys. Rev.
Lett. 123, 233402 (2019).

[19] X. Xie, M. J. Van de Graaff, R. Chapurin, M. D. Frye, J. M.
Hutson, J. P. D’Incao, P. S. Julienne, J. Ye, and E. A. Cornell,
Observation of Efimov Universality Across a Non-Universal
Feshbach Resonance in 39K, Phys. Rev. Lett. 125, 243401
(2020).

[20] Y. Wang and P. S. Julienne, Universal van der Waals physics for
three cold atoms near Feshbach resonances, Nat. Phys. 10, 768
(2014).

[21] K. Kato, Y. Wang, J. Kobayashi, P. S. Julienne, and S. Inouye,
Isotopic Shift of Atom-Dimer Efimov Resonances in K-Rb
Mixtures: Critical Effect of Multichannel Feshbach Physics,
Phys. Rev. Lett. 118, 163401 (2017).

[22] T. Secker, D. J. M. Ahmed-Braun, P. M. A. Mestrom, and S. J.
J. M. F. Kokkelmans, Multichannel effects in the Efimov regime
from broad to narrow Feshbach resonances, Phys. Rev. A 103,
052805 (2021).

[23] D. S. Petrov, Three-Boson Problem Near a Narrow Feshbach
Resonance, Phys. Rev. Lett. 93, 143201 (2004).

[24] A. O. Gogolin, C. Mora, and R. Egger, Analytical Solution of
the Bosonic Three-Body Problem, Phys. Rev. Lett. 100, 140404
(2008).

[25] L. Pricoupenko, Crossover in the Efimov spectrum, Phys. Rev.
A 82, 043633 (2010).

[26] M. Jona-Lasino and L. Pricoupenko, Three Resonant Ultracold
Bosons: Off-Resonance Effects, Phys. Rev. Lett. 104, 023201
(2010).

[27] L. Pricoupenko and M. Jona-Lasinio, Ultracold bosons in the
vicinity of a narrow resonance: Shallow dimer and recombina-
tion, Phys. Rev. A 84, 062712 (2011).

063303-14

https://doi.org/10.1103/RevModPhys.89.035006
https://doi.org/10.1088/1361-6633/aa50e8
https://doi.org/10.1088/1361-6455/aaa116
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1126/science.aau5322
https://doi.org/10.1038/nature13137
https://doi.org/10.1103/PhysRevA.79.013622
https://doi.org/10.1103/PhysRevA.88.052701
https://doi.org/10.1103/PhysRevA.98.062703
https://doi.org/10.1016/0370-2693(70)90349-7
https://doi.org/10.1103/PhysRevLett.103.163202
https://doi.org/10.1103/PhysRevLett.107.120401
https://doi.org/10.1103/PhysRevLett.113.240402
https://doi.org/10.1103/PhysRevLett.112.250404
https://doi.org/10.1103/PhysRevLett.111.053202
https://doi.org/10.1038/nphys4130
https://doi.org/10.1103/PhysRevLett.123.233402
https://doi.org/10.1103/PhysRevLett.125.243401
https://doi.org/10.1038/nphys3071
https://doi.org/10.1103/PhysRevLett.118.163401
https://doi.org/10.1103/PhysRevA.103.052805
https://doi.org/10.1103/PhysRevLett.93.143201
https://doi.org/10.1103/PhysRevLett.100.140404
https://doi.org/10.1103/PhysRevA.82.043633
https://doi.org/10.1103/PhysRevLett.104.023201
https://doi.org/10.1103/PhysRevA.84.062712


EFIMOV SCENARIO FOR OVERLAPPING NARROW … PHYSICAL REVIEW A 103, 063303 (2021)

[28] J. Levinsen, M. M. Parish, and G. M. Bruun, Impurity in a Bose-
Einstein Condensation and the Efimov Effect, Phys. Rev. Lett.
115, 125302 (2015).

[29] Y. Castin, Basic theory tools for degenerate Fermi gases, in
Ultra-Cold Fermi Gases, Proceedings of the Enrico Fermi
Varenna School on Fermi Gases, edited by S. M. Inguscio and
W. Ketterle (2006).

[30] M. Jona-Lasinio, L. Pricoupenko, and Y. Castin, Three fully
polarized fermions close to a p-wave Feshbach resonance,
Phys. Rev. A 77, 043611 (2008).

[31] Y. Nishida, New Type of Crossover Physics in Three-
Component Fermi Gases, Phys. Rev. Lett. 109, 240401
(2012).

[32] Y. Nishida, Polaronic Atom-Trimer Continuity in Three-
Component Fermi Gases, Phys. Rev. Lett. 114, 115302 (2015).

[33] W. Yi and X. Cui, Polarons in ultracold Fermi superfluids,
Phys. Rev. A 92, 013620 (2015).

[34] M. Pierce, X. Leyronas, and F. Chevy, Few-Versus Many-Body
Physics of an Impurity Immersed in a Superfluid of Spin 1/2
Attractive Fermions, Phys. Rev. Lett. 123, 080403 (2019).

[35] F. Werner, L. Tarruell, and Y. Castin, Number of closed-channel
molecules in the BEC-BCS crossover, Eur. Phys. J. B 68, 401
(2009).

[36] Y. Castin, Ch. Mora, and L. Pricoupenko, Four-Body Efimov
Effect for Three Fermions and a Lighter Particle, Phys. Rev.
Lett. 105, 223201 (2010).

[37] Ch. Mora, Y. Castin, and L. Pricoupenko, Integral equations for
the four-body problem, C. R. Phys. 12, 71 (2011).

[38] Since our model does not include background scattering (so
abg = 0) the formula a = abg[1 − �B/(B − B0)], or its exten-
sion to multiple resonances [9], is not applicable. The correct
single-resonance formula is a = abg�B/(B − B0), where abg →

0 and �B → ∞ while their product � = abg�B remains con-
stant. Thus, the width parameter � has dimensions of magnetic
field times length and the renormalized �̃ = kc� is in units of
magnetic field.

[39] The trimers that are associated with the resonance at B(res)
1 and

embedded in the dimer-atom continuum of the dimer associ-
ated with the resonance at B(res)

2 are manifested as scattering
resonances between a B(res)

2 dimer and a free atom. It should
therefore be possible to find them in a scheme similar to the
computation of the three-body recombination rate at E > 0 in
which a(n)

− shows up as a resonance [30].
[40] P. S. Julienne (private communication).
[41] N. Gross, Z. Shotan, O. Machtey, S. J. J. M. F. Kokkelmans, and

L. Khaykovich, Study of Efimov physics in two nuclear-spin
sublevels of 7Li, C. R. Phys. 12, 4 (2011).

[42] P. S. Julienne and J. M. Hutson, Contrasting the wide Feshbach
resonances in 6Li and 7Li, Phys. Rev. A 89, 052715 (2014).

[43] O. Machtey, Z. Shotan, N. Gross, and L. Khaykovich, As-
sociation of Efimov Trimers from a Three-Atom Continuum,
Phys. Rev. Lett. 108, 210406 (2012).

[44] R. Schmidt, S. P. Rath, and W. Zwerger, Efimov physics beyond
universality, Eur. Phys. J. B 85, 386 (2012).

[45] C. Langmack, R. Schmidt, and W. Zwerger, Efimov states near a
Feshbach resonance and the limits of van der Waals universality
at finite background scattering length, Phys. Rev. A 97, 033623
(2018).

[46] B. Gao, Analytic description of atomic interaction at ultracold
temperatures. II. Scattering around a magnetic Feshbach reso-
nance, Phys. Rev. A 84, 022706 (2011).

[47] F. Werner and Y. Castin, General relations for quantum
gases in two and three dimensions: Two-component fermions,
Phys. Rev. A 86, 013626 (2012).

063303-15

https://doi.org/10.1103/PhysRevLett.115.125302
https://doi.org/10.1103/PhysRevA.77.043611
https://doi.org/10.1103/PhysRevLett.109.240401
https://doi.org/10.1103/PhysRevLett.114.115302
https://doi.org/10.1103/PhysRevA.92.013620
https://doi.org/10.1103/PhysRevLett.123.080403
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1103/PhysRevLett.105.223201
https://doi.org/10.1016/j.crhy.2010.12.005
https://doi.org/10.1016/j.crhy.2010.10.004
https://doi.org/10.1103/PhysRevA.89.052715
https://doi.org/10.1103/PhysRevLett.108.210406
https://doi.org/10.1140/epjb/e2012-30841-3
https://doi.org/10.1103/PhysRevA.97.033623
https://doi.org/10.1103/PhysRevA.84.022706
https://doi.org/10.1103/PhysRevA.86.013626

