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Enhanced optical nonlinearities under collective strong light-matter coupling
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Optical microcavities and metallic nanostructures have been shown to significantly modulate the dynamics and
spectroscopic response of molecular systems. We present a study of the nonlinear optics of a model consisting
of N anharmonic multilevel systems (e.g., Morse oscillators) undergoing collective strong coupling with a
resonant infrared microcavity. We find that, under experimentally accessible conditions, molecular systems
in microcavities may have nonlinear phenomena significantly intensified due to the high quality of polariton
resonances and the enhanced microcavity electromagnetic energy density relative to free space. Particularly large
enhancement of multiphoton absorption happens when multipolariton states are resonant with bare molecule
multiphoton transitions. In particular, our model predicts two-photon absorption cross-section enhancements
by several orders of magnitude relative to free space when the Rabi splitting �R is approximately equal to
the molecular anharmonic shift 2�. Our results provide rough upper bounds to resonant nonlinear-response
enhancement factors as relaxation to dark states is treated phenomenologically. Notably, ensembles of two-level
systems undergoing strong coupling with a cavity (described by the Tavis-Cummings model) show no such
optical nonlinearity enhancements, highlighting the rich phenomenology afforded by multilevel anharmonic
systems. Similar conclusions are expected to hold for excitonic systems that share features with our model
(e.g., molecular dyes with accessible S0 → S1 → S2 transitions) and strongly interact with a UV-visible
cavity.
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I. INTRODUCTION

The topic of light-induced nonequilibrium phenomena is of
great contemporary interest due to its relevance to the energy,
biochemical, and material sciences. Nonlinear spectroscopy
provides tools for probing and controlling nonequilibrium
quantum dynamics [1,2] driven by external radiation. Appli-
cations of nonlinear optics to chemistry include investigations
of the dynamics of energy and charge transport in light-
harvesting complexes [3,4], organic electronics [5], and other
excitonic systems [6]. Nonlinear optical processes are also
basic to various developing technologies including all-optical
devices [7,8], quantum information processors [9,10], and
enhanced sensors [11].

Unfortunately, the nonlinearities of molecular systems are
generally weak [12]. Recently, hybrid materials consisting of
a molecular ensemble hosted by a photonic (or plasmonic) de-
vice (e.g., optical microcavities and metallic nanostructures)
have been explored as potential sources of magnified nonlin-
ear optical response [13–16]. Under accessible experimental
conditions (room temperature and atmospheric pressure) the
light-matter interaction in photonic materials can become
strong enough that excited states corresponding to superposi-
tion of (collective) material polarization and cavity excitations
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emerge [16–20]. The corresponding hybrid quasiparticles
(modes) are commonly denoted by (cavity) polaritons [21].
They show controllable coherence and relaxation dynamics
that allow modulation of various physicochemical proper-
ties. Molecular phenomena significantly influenced by strong
light-matter interactions include energy transfer [22–24],
charge and exciton transport [25–27], and chemical kinetics
[28–31].

Recent experiments [32–41] have surveyed the nonlin-
ear optics of polaritonic systems to gain further insight into
the relaxation kinetics and optical response of strongly cou-
pled devices. In Refs. [36–38,42], the transient response
and relaxation to equilibrium of vibrational polaritons (those
arising from the strong coupling of molecular infrared po-
larization with a resonant microcavity) were investigated
with pump-probe and two-dimensional infrared spectroscopy.
These studies demonstrated how vibrational anharmonicity is
manifested in the pump-probe polariton response [43]. How-
ever, the observed time-resolved spectra were sensitive to
various system-dependent effects arising from the small Rabi
splittings of the studied materials, and significant static and
dynamical disorder which induces ultrafast polariton decay
into the weakly coupled (dark) molecular modes.

In this paper, we focus on universal (system-independent)
features of molecular polariton nonlinear optics. Our aim is to
provide qualitative and quantitative insight on the potential to
achieve giant optical nonlinearities with molecular polaritons
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FIG. 1. Left: Planar microcavity consisting of two highly re-
flective mirrors filled with a molecular ensemble, e.g., W(CO)6 in
solution, with sufficiently large collective oscillator strength that
hybrid polaritonic states are formed. Right: Mechanism for en-
hancement of two-photon absorption by an ensemble of Morse
oscillators (represented by the various illustrative Morse potentials)
under strong coupling with an optical cavity. An external field res-
onant with the lower polariton (LP) drives the hybrid cavity and
excites two-LP states which can be tuned to be near resonant with
the anharmonically shifted doubly excited molecular states forming
the totally symmetric 2s state. This polariton-mediated absorption
channel allows enhancement of several orders of magnitude of the
molecular two-photon absorption cross section.

in the collective regime (which is the case in most experi-
ments) with a large number of molecules in a microcavity
(nonlinear optical effects of single-molecule polaritonic sys-
tems have been studied within a nonadiabatic model of the
dynamical Casimir effect in Ref. [44], as well as in vibrational
polariton spectra in Ref. [45]).

In Sec. II, we describe our model, provide an analytical
expression for the nonlinear optical susceptibility of an ideal
molecular ensemble under strong interaction with a micro-
cavity (the full derivation is in Appendix B), and discuss its
main features. In Sec. III, we compare the free space and
the polariton-mediated two-photon absorption (TPA) rates,
and show that, especially when overtone polariton transitions
are resonant with multiphoton molecular transitions, non-
linearity enhancements of several orders of magnitude may
be achieved with currently available optical cavities (Fig. 1)
as a result of three main effects: increased electromagnetic
(EM) energy density in the optical microcavity relative to
free space [13,46], creation of new optical resonances, and
strong-coupling induced suppression of line-shape broaden-
ing [47]. A discussion of our main results and conclusions are
given in Sec. IV. The appendices contain the derivations of
the molecular nonlinear susceptibility, and rate of nonlinear
absorption in free space and under strong coupling with an
optical microcavity.

II. MOLECULAR NONLINEAR RESPONSE

A. Effective Hamiltonian

The physical system of interest consists of a molecular
ensemble containing N molecules uniformly distributed in
a region enclosed by two highly reflective planar mirrors
separated by a distance Lc of the order of the wavelength
of a specific material’s infrared excitation (Lc is usually be-
tween 0.1 and 20 μm) [48–50]. This setup corresponds to a
Fabry-Pérot microcavity [13,46] filled with a homogeneous
molecular system. Our description of the molecular subsystem
will include explicitly only the modes which are nearly reso-
nant with the optical cavity. The effects of all other molecular

degrees of freedom will be treated phenomenologically by
introduction of damping to the molecular polarization (see
below).

We suppose that the interaction between the cavity field
and the molecular polarization

∑N
i=1 〈1i|pi|0i〉 (where pi is

the effective dipole operator of the ith molecule and 0i and 1i

denote states where the ith molecule is in the ground and first
excited state, respectively, whereas all other molecules are in
the ground state) is significantly stronger than the coupling
of either subsystem to external (bath) degrees of freedom, but
still only a tenth or less of the bare vibrational and cavity fre-
quencies (so considerations exclusive to ultrastrong coupling
can be ignored [51–53]).

The total Hamiltonian of the composite material is given
by HT (t ) = HL(t ) + HM + HLM, where HL(t ) and HM are the
bare cavity (driven by an external time-dependent field) and
molecular Hamiltonians and HLM contains the interaction be-
tween the cavity EM field and matter. The cavity Hamiltonian
is given by

HL(t ) =
∑

k

h̄ωkb†
kbk

+ ih̄

√
κ

2

∑
k

{[
bL

kin(t )
]†

bk − b†
kbL

kin(t )
}
, (1)

where this effective Hamiltonian can be obtained from input-
output theory [54–56] which describes the interaction of the
optical cavity with left input and right output flux operators
bL

kin(t ) and bR
kout(t ), respectively (Sec. IV), and we include

only a single cavity band and EM field polarization (as the
cavity band gaps are much larger than the cavity and molecu-
lar linewidths, due to the smallness of the cavity’s longitudinal
length Lc, and electric-field polarization conversion gives a
tiny perturbation on the results presented here especially as
we consider isotropic molecular ensembles [57]). The fre-
quency of the mode with (in-plane) wave vector k = (kx, ky)
is ωk = c

√
k2 + m2π2/L2

c/n (m ∈ Z is the index of the cavity
band; n is the index of refraction of the cavity interior; here-
after n = 1), and bk is its annihilation operator. The cavity
leakage (decay) rate is κ . The Heisenberg equations of motion
generated by Eq. (1) are turned into the Heisenberg-Langevin
equations when the replacement ωk → ω̃k ≡ ωk − iκ/2 is
performed (Sec. IV).

The bare vibrational dynamics is generated by the Hamil-
tonian HM given by

HM =
N∑

i=1

h̄ω0a†
i ai − h̄�

N∑
i=1

a†
i a†

i aiai, (2)

where the vibrational creation and annihilation operators of
the ith molecule are a†

i and ai, respectively. The fundamen-
tal frequency of each molecule is ω0, and the anharmonic
coupling is � > 0. We neglect intermolecular interactions
as they are too weak relative to light-matter coupling (the
situation could be different in other situations, e.g., molecular
crystals and liquid-solid interfaces [21,58]). We treat the re-
laxation of the molecular subsystem phenomenologically by
converting the Heisenberg equations of motion (EOMs) of
molecular operators into Heisenberg-Langevin EOMs via the
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substitution ω0 → ω̃0 = ω0 − iγm/2, where γm is the bare
molecule fundamental transition (homogeneous) linewidth.

The light-matter interaction is treated with the multipolar
gauge [59] in the long-wavelength limit within the rotating
wave approximation (RWA) [55] (see next paragraph for a
discussion of these and other approximations):

HLM = −
∑

k

N∑
i=1

(gika†
i bk + ḡikaib

†
k ) + HP2 , (3)

where g jk = μ j · Ec
jk is the coupling constant for the inter-

action between the jth molecular vibration (with effective
transition dipole moment μ j) and the cavity mode k, with
mode profile evaluated at the position r j of the jth molecule,
i.e., Ec

jk = i
√

h̄ωk/(2ε0Vc)eik·r j sin(mπz j/Lz ) (ε0 is the elec-
trical permittivity of free space, Vc is the cavity quantization
volume, and z j is the position of the molecule along the
cavity longitudinal axis); f̄ denotes the complex conjugate
of f ; and HP2 is the molecular self-polarization energy [59].
Although this term ensures the existence of a ground state
for the composite system [60] and it becomes essential for
an appropriate treatment of a system with total light-matter
interaction energy approaching or surpassing the bare cavity
and molecular frequencies [61], HP2 can be neglected under
the strong-coupling conditions assumed here. Therefore, we
will disregard this term onward.

The length scale over which the cavity mode profile varies
substantially (of order 0.1–20 μm) is much larger than typical
molecular diameters (of order 0.5–5 nm). Thus, under strong
coupling, the k ≈ 0 cavity modes interact coherently with
material polarization consisting of a macroscopic number of
molecules. This notion forms the basis for neglecting spa-
tial, orientational, and energetic dispersion of the molecular
excitations, since fluctuations of these quantities are neces-
sarily weak effects compared to the collective light-matter
interactions from which polaritons emerge. Fluctuations about
the mean values of the molecular transition frequency and
dipole moment can lead to dephasing-induced polariton de-
cay [62,63], weak coupling of light to states which are
dark according to Eq. (3), as well as polariton [64,65] and
dark-state localization [64,66]. Since we are not concerned
with transport phenomena, we will not include them in our
model, although Sec. IV qualitatively analyzes their impli-
cations to our main results. Despite neglecting these effects,
we highlight that our input-output treatment of the material
and photonic components naturally accounts for polariton
dissipation via cavity leakage and molecular homogeneous
dephasing [43,54,55,67]. In Eq. (3), we also assumed validity
of the so-called RWA: only light-matter interactions preserv-
ing the total number of cavity and molecular excitations are

retained. This approximation is justified since
√∑N

i=1 |gik|2 	
ω0, ∀ k. In particular, we model systems where the collec-
tive light-matter interaction (typically given as g

√
N , where

g is the long-wavelength limit of the single-molecule light-
matter interaction coupling constant) is less than 10% of the
bare molecule and cavity excitation energies, but still larger
than the energy scale associated to the dissipative interac-
tions between the molecule or cavity with their respective

environment. Under these conditions, the off-resonant correc-
tions to the RWA are negligible. [51,68,69].

We aim to investigate the nonlinear response of the hybrid
system to an input radiation field with k ∈ R2 centered at
k0 ≈ 0, with a small width δk. The frequency ωk0 is nearly
resonant with the bare molecule fundamental frequency ω0.
Therefore, we shall retain only a single cavity mode corre-
sponding to k0 ≈ 0. This assumes there is no variation in
the polariton nonlinear response with respect to changes of
magnitude |δk| in the incident wave vector k0.

Based on the above, we simplify HL(t ) and HLM and
employ the following effective Hamiltonian for the hybrid
cavity-matter system:

HT (t ) = h̄ωcb†b +
N∑

i=1

h̄ω0a†
i ai − h̄�

N∑
i=1

a†
i a†

i aiai

−
N∑

i=1

μ
(
Ec

0 a†
i b + Ē c

0 b†ai
)

− ih̄

√
κ

2

{[
bL

in(t )
]†

b − b†bL
in(t )

}
, (4)

where ωc ≡ ωk0 , b = bk0 , bL
k0in = bL

in, and μEc
0 ≡ g jk0 =

iμ
√

h̄ωc/(2ε0Vc).

B. Nonlinear molecular polarization under strong
light-matter coupling

The optical response of a hybrid microcavity can be
investigated by measuring the transmission, reflection, or ab-
sorption spectrum of light input into the system. For instance,
transmission and reflection spectra can be obtained by apply-
ing the input-output relations to the steady-state cavity field
b(t ) =∑ω>0 b(ω)e−iωt . Because the cavity is weakly cou-
pled to the external fields, the expectation value 〈b(t )〉 admits
a perturbative expansion in powers of the input amplitude
〈b(t )〉 =∑∞

p=1 〈b(t )〉(2p−1), where 〈b(t )〉(2p−1) = O[|bL
in|2p−1]

(only odd powers of the input field appear in the cavity re-
sponse because the material is assumed homogeneous and
symmetric with respect to spatial inversion [1,12]). The ma-
terial polarization P(t ) = μ

∑N
i=1 ai(t ) is strongly coupled to

the optical cavity. Therefore, molecular observables also ad-
mit a perturbative expansion in powers of |bL

in|. Note that the
empty cavity is a linear system, and thus, the source of the
nonlinear part of 〈b(t )〉 is the molecular subsystem (specifi-
cally, the source of 〈b(t )〉(3) is 〈P(t )〉(3) =∑N

i=1 μ 〈ai(t )〉(3);
see Appendix B). Therefore, 〈P(t )〉(3) directly determines the
amplitude of the nonlinear optical response of a strongly
coupled system as measured by the output transmitted and
reflected light.

Neglecting quantum fluctuations of the input field, bin(t ) is
a complex number that we express as

bin(t ) = i
∑
ω>0

√
P (ω)

h̄ω
eiθin (ω)e−iωt , (5)
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FIG. 2. Pictorial representation of nonlinear optical measure-
ments performed on the polaritonic system described in the main
text. The frequencies ωu, ωw , and ωv correspond to those of photons
incident on a cavity strongly coupled to a material system, whereas
ωs is the frequency of photons emitted by the device. The arrows
correspond to particular examples of transitions that can be induced
by the external electromagnetic field. The set of all possible allowed
transitions is included in the computation of χ (3) given in Eq. (7).

where P (ω) is the power of the free space mode with
frequency ω driving the cavity, and θin(ω) is its phase
(Sec. IV).

It follows (Appendix B) that the third-order polarization in
the frequency domain 〈P〉(3) (ωs) can be written in terms of

the input electric fields as follows:

〈P〉(3) (ωs) =
∑

ωu,ωv ,ωw

χ (3)(−ωs; ωv,−ωw, ωu)E (+)
in (ωv )

× E (−)
in (ωw )E (+)

in (ωu) + H.c., (6)

where ωs > 0 is the signal frequency; the brackets denote
expectation values; the driving frequencies ωu, ωv, and ωw

are all positive; the input fields E (+)
in (ωu) are directly propor-

tional to the bin(ωu) (see Sec. IV); and χ (3) is the nonlinear
molecular susceptibility [12] under strong light-matter inter-
action conditions (Fig. 2). The ratio between χ (3) and the
bare molecular system nonlinear susceptibility χ

(3)
0 provides

an external-field independent measure of strong light-matter
coupling effects on the optical nonlinearities of an arbitrary
molecular system.

To obtain χ (3) for the system described by Eq. (4), we
solve perturbatively the Heisenberg-Langevin EOMs for the
molecular polarization to third order in the driving field bL

in
[70,71]. The EOMs for the cavity and material polarization
expectation values admit relatively simple solutions since the
initial condition (ground state) and the time evolution of the
Heisenberg operators [generated by Eq. (4) with natural fre-
quencies ω0 and ωc replaced by complex frequencies with
negative imaginary parts due to the coupling of each degree
of freedom to a corresponding Markovian bath] ensure that
pure-state factorization of normal-ordered operator products
holds throughout the derivation [1,70–72]. The result is (see
Appendix B)

χ (3)(−ωs; ωv,−ωw, ωu) = Nμ(2h̄�)Gmm(ωs)Ḡmm(ωw )�mm,mm(ωu + ωv )Gmm(ωu)Gmm(ωv )

×
[
μ

√
2F
π

G(0)
pp (ωv )

h̄κ

2

][
μ

√
2F
π

h̄κ

2
Ḡ(0)

pp (ωw )

][
μ

h̄κ

2

√
2F
π

G(0)
pp (ωu)

]
δωs,ωv−ωw+ωu , (7)

where F is the cavity finesse (the electromagnetic-field intensity in a resonant cavity is stronger than in free space by the factor
2F/π , or alternatively, F = Q/m, where m is the aforementioned band index, and Q = ωc/κ is the quality factor; see Sec. IV
and Ref. [46]), and Gmm(ω) is the Fourier transform (FT) of the retarded single-molecule propagator:

Gmm(ω) = 1

h̄ω − h̄ω0 + ih̄γm/2 − |μE0|2N
h̄ω−h̄ωc+iκ/2

. (8)

Note the real parts of the poles of Gmm(ω) are the fundamental polariton resonance frequencies

ωLP = ωc + ω0

2
−
√

(ωc − ω0)2 + �2
R

2
, (9)

ωUP = ωc + ω0

2
+
√

(ωc − ω0)2 + �2
R

2
, (10)

where �R = 2|μEc
0 |√N/h̄ is the Rabi frequency (splitting). The imaginary parts of the polariton poles in Gmm(ω) correspond to

their (linear) absorption linewidths. Under weak-coupling conditions, we can neglect the cavity-induced self-energy |μE0|2N
h̄ω−h̄ωc+iκ/2

to obtain the bare molecule propagator G(0)
mm(ω) = 1/(h̄ω − h̄ω0 + ih̄γm/2). Similarly, the photon-photon correlator Gpp(ω) has

resonances at the polariton frequencies, as is clear from its explicit form:

Gpp(ω) = 1

h̄ω − h̄ωc + ih̄κ/2 − |μEc
0 |2N

h̄ω−h̄ω0+ih̄γm/2

. (11)

In the weak-coupling limit, Gpp(ω) approaches the empty cavity frequency-domain propagator G(0)
pp (ω) = 1/(h̄ω − h̄ωc +

ih̄κ/2).
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The function �mm,mm(ωu + ωv ) is the two-particle elastic-scattering matrix element given by

�mm,mm(ω) = (h̄ω − 2h̄ω̃0)(h̄ω − h̄ω̃0 − h̄ω̃c)[(h̄ω − 2h̄ω̃0)(h̄ω − 2h̄ω̃c) − 4g2N]

D(ω)
, (12)

where D(ω) is a fourth-order polynomial of ω given by

D(ω) = D(0)(ω) − 2g2N (h̄ω − 2h̄ω̃0)(h̄ω − 2h̄ω̃0 + 2h̄�)

− 2g2(N − 1)(h̄ω − 2h̄ω̃0 + 2h̄�)(h̄ω − 2h̄ω̃c)

− 2g2(h̄ω − 2h̄ω̃c)(h̄ω − 2h̄ω̃0), (13)

where g = |μEc
0 | is the single-molecule light-matter coupling

and D(0)(ω) = (h̄ω − h̄ω̃c − h̄ω̃0)(h̄ω − 2h̄ω̃0 + 2h̄�) ×
(h̄ω − 2h̄ω̃c)(h̄ω − 2h̄ω̃0).

The roots of D(ω) correspond to the bright two-particle
resonances of the hybrid system, as can be verified by com-
parison to the eigenvalues of the doubly excited block of
the Hamiltonian in Eq. (4) with bL

in = 0. Specifically, if we
use a basis for doubly excited totally symmetric (with re-
spect to a permutation of the molecular labels) consisting
of states containing two cavity photons |20〉, a totally sym-
metric superposition of a single-molecule excitation and a
cavity photon |101m〉 = 1√

N
, a totally symmetric superposi-

tion where two different molecules are excited |1m1m′ 〉m 
=m′ =√
2

N (N−1)

∑
a>b |1a1b〉, and a totally symmetric superposition

of doubly excited molecular states, |2m〉 = 1√
N

∑N
a=1 |2a〉, the

two-particle excited-state eigenvalues and eigenstates can be
straightforwardly obtained by diagonalization of a 4 × 4 ma-
trix (see Sec. IV for a thorough discussion and derivations).
In the resonant case where ωc = ω0, and assuming g

√
N 
=

±2�, we find the following approximate two-particle eigen-
states:

|UP2〉 ≈
√

N

4N − 2
|20〉 +

√
1

2
|101m〉 +

√
N − 1

4N − 2
|1m1m′ 〉

+ g

g
√

4N − 2 + 2�
|2m〉 , (14)

|LP2〉 ≈
√

N

4N − 2
|20〉 −

√
1

2
|101m〉

+
√

N − 1

4N − 2
|1m1m′ 〉 + g

g
√

4N − 2 − 2�
|2m〉 ,

(15)

|2s〉 ≈ |2m〉− g2

g2(2N − 1) − 2�2

(√
N |20〉+√

N −1 |1m1m′ 〉)

+
√

2g�

g2(2N − 1) − 2�2
|101m〉 , (16)

|LU〉 =
√

N − 1

2N − 1
|20〉 −

√
N

2N − 1
|1m1m′ 〉 , (17)

where the subscripts label the dominant character of each
state, e.g., the highest-frequency resonance is dominated
by the component with a doubly excited upper-polariton
(UP) mode while the resonance with frequency ωLU cor-
responds to that containing a lower-polariton (LP) and
UP pair (see Fig. 3). In the large N limit appropriate to

almost all experimental studies of light-matter strong cou-
pling, the corresponding two-particle energy eigenvalues
are given by ωUP2 = 2ωUP + O(g/

√
N ), ωLU = 2ω0, ω2s =

2ω0 − 2� + O(�/N ), and ωLP2 = 2ωLP + O(g/
√

N ). These
energies agree with the real parts of the roots of D(ω) in the
strong-coupling limit (Sec. II).

Physically, �mm(ωu + ωv ) ∝ Gmm,mm(ωu, ωv ) (Appendix
B), where Gmm,mm(ω) is the frequency-domain single-
molecule two-excitation propagator, i.e., the FT of the
probability amplitude that a molecule initially in its doubly
excited state remains in the same state after time t .

Importantly, when N → ∞, Eq. (12) becomes

�mm,mm(ω) ≈ �(0)
mm,mm(ω) ≡ ω − 2ω̃0

ω − 2ω̃0 + 2�
, N → ∞, (18)

where �(0)(ω) is the bare single-molecule two-particle
(elastic) scattering matrix (see next subsection and
Appendix D). This result is expected, since �mm,mm(t )
describes the time-dependent propagation of single-molecule
doubly excited states under interaction with the optical cavity,
and as we show in Appendix G, the totally symmetric doubly
excited molecular state |2m〉 = 1√

N

∑N
i=1 |2i〉 (where |2i〉 is

the state where the ith molecule is in the second excited
state while the cavity and all other molecules are in the
ground state) is only weakly coupled to two-polariton states
via an interaction that is proportional to the single-molecule
light-matter coupling g. Therefore, while polaritons play

FIG. 3. Energy-level diagram for a model system with zero
detuning (ωc = ω0) and Rabi splitting �R > anharmonicity 2�,
including only bright excitations of the single and two-polariton
manifolds (Appendix G).
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FIG. 4. Left (right): Imaginary (real) parts of
χ (3)(−ω; ω, −ω,ω) and χ

(3)
0 (−ω; ω,−ω, ω) for a system with

ω0 = 1983 cm−1, γm = 3 cm−1, κ = 6 cm−1, �R = 40 cm−1, and
� = 8 cm−1. The dotted (gray) curve corresponds to results obtained
for the bare molecular system, while the thick (purple) curve
corresponds to ωc − ω0 = 7 cm−1, the dot dashed (orange) curve
corresponds to ωc − ω0 = −7 cm−1, and the dashed (blue) curve
represents the case where ωc = ω0.

an essential role as intermediate states for TPA by the
molecular subsystem, Eq. (18) indicates the dynamics of
molecular doubly excited states is almost insensitive to their
coupling to the cavity electromagnetic field in the ensemble
strong-coupling limit.

To gain further insight into the molecular nonlinear polar-
ization in the strong light-matter coupling regime, we now
compare Eq. (7) to the nonlinear susceptibility of the bare
molecules in free space (under the rotating wave approxima-
tion) given by

χ
(3)
0 (−ωs; ωv,−ωw, ωu) = Nμ(2h̄�)μ3G(0)

mm(ωs)Ḡ(0)
mm(ωw )

× �(0)
mm,mm(ωu + ωv )G(0)

mm(ωv )

× G(0)
mm(ωu)δωs,ωv−ωw+ωu . (19)

By contrasting Eqs. (19) and (7), we find that the non-
linear optical response of a molecular system (e.g., solution
[37,73], polymer [74,75], etc.) in an optical microcavity is
significantly distinct from that in free space mainly because
of (i) near-resonant intracavity field intensity enhancement
[which renormalizes the induced molecular transition dipole
moments μ → μ̃(ω) = μ

√
2F/π ih̄

√
κ/2G(0)

pp (ω)] and (ii)
the appearance of new (polariton) resonances correspond-
ing to hybrid superpositions of molecular polarization and
cavity modes. In other words, the molecular nonlinear re-
sponse under strong coupling can be written entirely in terms
of cavity-renormalized single-particle [G(0)

mm(ω) → Gmm(ω)]
and two-particle molecular response functions [�(0)

mm,mm(ω) →
�mm,mm(ω)] which are nonperturbatively dressed by the inter-
action with the cavity field, as well as molecular transition
dipoles μ which are renormalized by factors that depend on
the cavity finesse F and the bare photon propagator [μ →
μ̃(ω)].

The renormalization of the induced molecular dipoles is a
result of the well-known enhancement of the intracavity elec-
tric field relative to free space [46,76]. In the weak-coupling
regime, a Purcell-like result follows where the molecular
nonlinear susceptibility in a microcavity [Eq. (7)] is simply
related to that of the bare system [Eq. (19)], χ (3) → χ

(3)
0 ×

intracavity field enhancement factors.
Figure 4 illustrates the discussed features of the po-

laritonic nonlinear susceptibility functions by comparing

the real and imaginary parts of χ (3)(−ω; ω,−ω,ω) and
χ

(3)
0 (−ω; ω,−ω,ω) for a representative set of parameters

gathered from prior experiments performed under condi-
tions of infrared strong coupling, namely, a Fabry-Pérot
cavity containing a W(CO)6 solution [37,42]. Specifically,
we used ω0 = 1983 cm−1, γm = 3 cm−1, κ = 6 cm−1,�R =
40 cm−1, and � = 8 cm−1 at both zero (ωc = ω0) and posi-
tive and negative detunings ωc − ω0 = ±7 cm−1. This model
has polariton frequencies ωLP = 1963 cm−1, and ωUP =
2003 cm−1. Notably, Fig. 4 shows that (a) the cavity-assisted
nonlinear response is maximized at the polariton frequencies
(as expected by virtue of the renormalization of the molecu-
lar and photonic response functions due to the formation of
polaritons), (b) the third-order susceptibility is consistently
stronger near ωLP relative to ωUP (as expected from the fact
that 2LP is more strongly perturbed by the doubly excited
molecular states than the 2UP state), and (c) the magnitude
of the polaritonic nonlinear susceptibility can be significantly
stronger than the bare system (due to the renormalization of
the molecular transition dipole moment in the cavity-mediated
nonlinear response as discussed above).

However, by virtue of the cavity-matter strong coupling,
the nonlinear polarization contribution to the energy absorbed
by the molecular subsystem is not directly proportional to
the imaginary part of χ (3)(−ω; ω,−ω,ω) (in contrast to the
nonlinear absorption of bare molecules; see next section and
Appendix E). Therefore, we leave additional comments and a
more detailed numerical comparison of the real and imaginary
parts of Eqs. (7) and (19) as a function of cavity detuning and
Rabi splitting to Appendix F, and focus below on the nonlin-
ear absorption spectrum of the strongly coupled material.

III. POLARITON-ENHANCED
TWO-PHOTON ABSORPTION

The steady-state rate of excitation (absorption spectrum) of
a molecular system driven by the electromagnetic field can be
written as (Appendices E and C)

WT (ω) ≡ 2

h̄
[Im 〈[E (ω)]†P(ω)〉], (20)

where E (ω) is the frequency-domain representation of the
free space or cavity Heisenberg electric-field operator. For
a molecular system in free space interacting weakly with a
classical monochromatic EM field with (positive-frequency)
amplitude E (+)

in (ω), it follows that the photon absorption rate
(in the rotating wave approximation) is [1]

W0(ω) ≡2

h̄
Im
[
χ

(1)
0 (−ω; ω)

]|E (+)
in (ω)|2

+ 2

h̄
Im
[
χ

(3)
0 (−ω; ω,−ω,ω)

]|E (+)
in (ω)|4 + . . . .

(21)

This expression is clearly invalid when the molecular ensem-
ble interacts strongly with a cavity, since in this instance,
the cavity field and the material electrical polarization are
correlated, and therefore 〈E (ω)P(ω)〉 cannot (in general)
be factorized into 〈E〉 (ω) 〈P〉 (ω) (where E refers to the
cavity EM field). Nevertheless, the external input field in-
teracts weakly with the cavity, and the rate of absorption by
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the strongly coupled molecular system admits the following
perturbative expansion in powers of the input field amplitude:

W (ω) = 2

h̄
Im[〈[Ec(ω)]†P(ω)〉(2) + 〈[Ec(ω)]†P(ω)〉(4)

] + . . .

(22)

where Ec(ω) = Ec
0 b(ω). The contribution to the absorption

spectrum dependent on the nonlinear response of the molec-
ular subsystem is given by W NL(ω) = 2

h̄ Im[〈E†
c (ω)P(ω)〉(4)].

In Appendix C, we obtain W NL(ω) by employing the
Heisenberg-Langevin EOMs following the same approach
taken to obtain Eq. (7).

For simplicity, we restrict our analysis of the nonlinear
absorption spectrum to the zero-detuning case where ωc =
ω0. We also simplify W NL(ω) by using the following condi-
tions necessarily valid at strong coupling: �R � h̄ηs ≡ h̄(κ +
γm), and �R � h̄η ≡ h̄κγm/(κ + γm). Under these condi-
tions, the nonlinear component of molecular absorption under
strong coupling with a cavity can be expressed as W NL(ω) =∑4

α=1 W NLα (ω)|E (+)
in (ω)|4, where

W NL1 (ω) ≈ − 2ηκ

h̄

[
1

4(ω − ω0)2 + κ2
+ 1

(�R/h̄)2

]

× Re

[√
2F
π

χ (3)(ω)

]
, (23)

W NL2 (ω) ≈ 4η

h̄

ω − ω0

4(ω − ω0)2 + κ2
Im

[√
2F
π

χ (3)(ω)

]
, (24)

W NL3 (ω) ≈ η
4�2N

(ω − ω0)2 + γ 2
m/4

|〈aiai〉(2) (2ω)|2
|E (+)

in (ω)|4 , (25)

W NL4 (ω) ≈ −η
(2ω − ω20)2�N

(�R/2h̄)2

|〈aiai〉(2) (2ω)|2
|E (+)

in (ω)|4 , (26)

where χ (3)(ω) ≡ χ (3)(−ω; ω,−ω,ω), ω20 ≡ 2ω0 − 2�, and

〈aiai〉(2) (2ω) = −�mm,mm(2ω)Gmm(ω)Gmm(ω)

×
[
μ

√
2F
π

G(0)
pp (ω)

h̄κ

2
E (+)

in (ω)

]2

. (27)

The expression for the nonlinear absorption by the
molecular system under strong coupling with a cavity is
more complicated relative to the bare system given by
W NL

0 (ω)|E (+)
in (ω)|4 = 2

h̄ Im[χ (3)
0 (−ω; ω,−ω,ω)]|E (+)

in (ω)|4.
For example, W NL(ω) shows dependence on both the real
and imaginary parts of χ (3) [Eqs. (23) and (24)] in addition
to the steady-state population of molecular doubly excited
states PT

2m(ω) =∑N
i=1 | 〈aiai〉(2) (2ω)|2/2 [Eqs. (25) and

(26)]. This additional complexity of nonlinear absorption
under strong-coupling conditions is expected, since while
external fields acting on the bare system drive transitions
between three molecular states (ground, first, and second
excited state), at least seven energy levels (Fig. 3) may play a
role in the nonlinear response of a material strongly coupled
to an optical cavity.

Nevertheless, the main features of W NL(ω) can be obtained
from Eqs. (23)–(26).

(1) The nonlinear absorption intensity is largest when
the input field is nearly resonant with either the LP or UP,

FIG. 5. Ratio of nonlinear absorption for a model system with
ω0 = ωc = 1983 cm−1, γm = κ = 3 cm−1, � = 8 cm−1, and �R =
45, 40, and 35 cm−1 to the maximum of the bare molecule non-
linear absorption. The bare system contains a ground-state bleach
and stimulated emission resonance at ω0 = 1983 cm−1 with negative
differential absorption, and a much weaker (positive) two-photon
absorption resonance at ω0 − � = 1975 cm−1, while the strongly
coupled systems show dispersive nonlinear absorption signals at
frequencies around the LP and UP corresponding to each of the
listed coupling strengths. These dispersive features emerge from
ground-state bleach and stimulated emission contributions to W NL,
and positive contributions corresponding to nonlinear absorption at
slightly shifted polariton frequencies induced by their weak interac-
tion with the bright molecular doubly excited states.

since this maximizes |Gmm(ω)|4 which appears in all of
Eqs. (23)–(26). Physically, the polariton resonance condition
for maximal photon absorption is a consequence of the optical
filtering performed by a microcavity (off-resonant external
fields are suppressed relative to the resonant field). The po-
lariton optical filtering effect is clearly illustrated in Fig. 5,
where we observe significant features in the nonlinear ab-
sorption spectrum only near the polariton frequencies. We
obtain additional insight by zooming in at the two-photon
absorption resonance (2ω = 2ω0 − 2�) in Fig. 6, where we
find that, under strong coupling, the two-photon absorption at
the bare frequency becomes weaker when �R − � increases,
i.e., when the two-polariton resonances 2ωLP and 2ωUP are
detuned from the bare molecular doubly excited states.

(2) While the main features of the bare system nonlin-
ear absorption in Fig. 5 can be attributed to ground-state
bleach and stimulated emission (large negative peak at ω =
ω0 = 1983 cm−1) and two-photon absorption (small, barely
visible peak at ω = ω0 − �; see Fig. 6 for a clear view of
this resonance), the polaritonic nonlinear absorption cannot
be as easily interpreted since the spectrum shows dispersive
features at both LP and UP frequencies. Although the negative
nonlinear absorption features can be ascribed to ground-state
bleach and stimulated emission at polariton frequencies, the
positive contributions to W NL(ω) arise by two-photon absorp-
tion at frequencies slightly shifted from the polaritonic. Both
LP and UP positive-nonlinear absorption peaks are redshifted.
These redshifts can be ascribed to the interaction between
each polariton mode and the molecular doubly excited state.
In the case of the LP, we can see from Eq. (15) that a
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FIG. 6. Ratio of the two-photon absorption rate of two
strongly coupled (ω0 = ωc = 1983 cm−1, γm = κ = 3 cm−1, � =
8 cm−1, and �R = 45, 40, and 35 cm−1) systems relative to that of
the molecular ensemble in free space normalized by the maximum
of the latter.

perturbative estimate of the energy of the |LP2〉 state indeed
gives a two-LP state with energy slightly smaller than 2ωLP.
Conversely, Eq. (14) predicts a negligible blueshift to the
two-UP state relative to the unperturbed system. Thus, the
origin of the redshift in the positive nonlinear absorption peak
observed near ωUP cannot be explained with the estimate in
Eq. (14). However, this equation does not consider dissipative
effects due to cavity leakage and bare molecule interaction
with the surrounding bath. These effects give rise to finite
linewidths for the UP resonances, which in our model gives
rise to the positive redshifted peaks near ωUP. Note that, for
the obtained parameters, the UP nonlinear absorption signals
become weaker as 2ωUP − 2ω0 − 2� increases, showing that
spectral overlap between the two-UP absorption transition and
the molecular two-photon absorption plays an essential role in
the generation of the discussed signals.

The points discussed in this part are in contrast to the
observations of reduced Rabi splitting in pump-probe mea-
surements of vibrational polaritons [36,37]. The latter are
understood to arise at relatively long times from polariton
decay into the reservoir of weakly coupled (dark) states. As
mentioned above (see also next section), we disregard such
incoherent effects in our model. This explains the absence of
Rabi splitting contraction in our computations.

(3) W NL3 (ω) is the only component of W NL(ω) which is
positive for all values of the input frequency. Therefore, it nec-
essarily gives molecular excited-state absorption contributions
to W NL(ω). Further evidence is given by the fact that W NL3 (ω)
is proportional to the steady-state population of molecules in
the doubly excited state, and thus,

W NL3 (ω) ≈ 8η�2

(ω − ω0)2 + γ 2
m/4

PT
2m

(2ω)

|E (+)
in (ω)|4 . (28)

All other contributions to the nonlinear absorption can be
either positive (when excited-state absorption processes dom-
inate) or negative (when ground-state bleach and stimulated
emission processes dominate [1]) depending on ω.

FIG. 7. Enhancement of the TPA rate of a strongly coupled
system when �R = 2�, with ω0 = ωc, γ = 3 cm−1, � = 8 cm−1 for
optical microcavities with different cavity lengths (Lc, Lc/2, Lc/4)
and corresponding decay rates.

(4) Based on the previous items, we expect the TPA rate
will be largely enhanced relative to free space when the
doubly excited molecular states are approximately resonant
with either one of the available two-polariton transitions (see
Fig. 1), i.e.,

2ω0 − 2� = 2ωLP, � > 0, or

2ω0 − 2� = 2ωUP, � < 0, (29)

since in this case, all response functions showing up in
Eqs. (7) and (23)–(26), namely, Gmm(ω) and the scattering
amplitude �mm,mm(2ω), become resonant at ω = ωLP (if � >

0) or ω = ωUP (if � < 0). Physically, the polaritons provide
the resonant optical window to efficiently drive the transitions
of interest. In the studied case of zero cavity detuning, the
conditions described in Eq. (29) can be summarized as the
Rabi splitting being equal to the anharmonic shift, that is,
�R = ±2�.

When the criteria in Eq. (29) are satisfied, we expect
strong enhancement of nonlinear absorption based on the
following argument: if the input field consists of photons
with ω = ω0 − � and Eq. (29) is satisfied, polaritons will be
efficiently pumped, and a fraction of those will subsequently
decay by populating molecular doubly excited states. In other
words, when the two-polariton resonance condition is satis-
fied, the molecular doubly excited state provides an efficient
sink for the energy stored in two-polariton modes. This ef-
fect was indeed reported in a recent experiment [42], where
evidence was given that (for systems with weak system-bath
interactions and slow molecular polarization dephasing) the
second excited vibrational state was preferentially populated
over the first when the pump (input) field was resonant with
LP. This enhancement in nonlinear absorption is verified in
Fig. 7 for various cavity lengths, and is further discussed
below.

(5) Conversely, in the limit where two-polariton states are
highly off resonant with the molecular TPA (|2� − �R| �
0), the nonlinear response substantially weakens. This is il-
lustrated by Fig. 6, which shows that as the Rabi splitting
(molecular density) gets larger, the two-photon absorption
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intensity becomes suppressed relative to free space. In this
limit, the studied model approaches the Tavis-Cummings (TC)
model [77], where a collection of two-level systems interacts
strongly with a single-mode cavity. The nonlinear response
given by this system is known to become negligible in the
large N limit [78]. As we show in Appendix G, in the TC
model, the two-level system nonlinearity produces a large N
limit anharmonic shift proportional to |μEc

0 |/√N .
Equations (14)–(17) provide some insight into why the

model studied deviates substantially from the TC results when
|2�| approaches �R: under such near-resonance condition,
the state |2〉m (corresponding to a totally symmetric combi-
nation of doubly excited molecules) interacts resonantly with
either LP2 or UP2 states. Therefore, molecular doubly excited
states become an efficient channel for the nonlinear decay of
the corresponding (two)-polariton energy. As long as the bare
anharmonic shift |2�| is close to �R, it does not matter how
large N is. Conversely, in the TC model, the molecules are rep-
resented as two-level systems, and therefore, the mechanism
discussed here is excluded from consideration.

It follows, therefore, that the condition given in Eq. (29)
allows the harnessing of the enhanced electromagnetic field
of optical cavities to enhance TPA.

Points 3 and 4 are the main conclusions of our paper. We
will now quantitatively illustrate that under experimentally
accessible conditions, it is possible to employ cavity-strong
coupling to substantially enhance the TPA cross section of a
resonant molecular system.

In Fig. 6, we present the infrared TPA spectrum for a
molecular system in free space [we take representative param-
eters for W(CO)6 in solution [37,42], ω0 = 1983 cm−1,� =
8 cm−1, γ = 3 cm−1], and under strong coupling with a mi-
crocavity (ωc = ω0, κ = γ ) for �R = 40 and 35 cm−1. The
curves are normalized by the maximum of the bare system
TPA. Figure 6 shows the strong dependence of the TPA
cross section on the light-matter interaction: when �R =
40 cm−1 (�R − 2� = 24 cm−1), the nonlinear absorption is
suppressed relative to that given by the bare system. However,
a slight decrease of �R to 35 cm−1 leads to enhanced TPA
due to a stronger spectral overlap between the LP2 mode and
the molecular doubly excited-state transition from the ground
state.

In Fig. 7, we explore the great potential for obtain-
ing polariton-enhanced TPA with optical microcavities of
varying longitudinal lengths Lc, Lc/2, and Lc/4 (with Lc =
10 μm, and cavity mode indices m = 4, 2, and 1, respectively,
which would require cavity mirrors with transmissivity |t |2 ≈
0.01%). We assume the cavities are resonant with the molec-
ular fundamental transition, and the TPA condition �R =
2� = 16 cm−1 is valid (the remaining bare molecule parame-
ters are the same as in Fig. 6). The two main conclusions from
Fig. 7 are that (a) the polariton-mediated TPA cross section
predicted by our model can be larger than the bare one by
close to four orders of magnitude for accessible parameters,
and (b) a decrease in cavity length leads to stronger nonlinear
signals, so that the cavity-mediated TPA will be maximally
efficient when the strongly coupled cavity mode has the lowest
possible longitudinal quantum number and mirrors with high-
est available reflectivity. These conditions, in fact, maximize
the intracavity electromagnetic-field enhancement relative to
free space (see Appendix A).

A similar increase in nonlinear-response signal strength
with decreasing molecular concentration (Fig. 6) or cavity
longitudinal length (Fig. 7) was observed and qualitatively
analyzed in a different context in Ref. [79].

IV. DISCUSSION AND CONCLUSIONS

The computed enhanced polariton-mediated TPA provides
an upper bound estimate to future measurements of TPA
under strong-coupling conditions. Experiments performed on
analogous systems could give reduced enhancements rela-
tive to those presented here for at least two reasons: (a) the
intracavity enhancement factor (represented by the cavity fi-
nesse) varies spatially according to the cavity mode profile
[sin(πz/L) in the simplest case], whereas we assumed that
all molecules are within a small region around an antin-
ode of the cavity field (so that the cavity field enhancement
factor is maximal), and (b) inhomogeneous broadening of
the molecular subsystem allows for potentially fast polariton
relaxation into reservoir (dark) modes, as well as reduction
in efficiency of polariton pumping due to photonic intensity
borrowing. Although we recognize the importance of these
approximations, we disregard them in our explorations, since
the inhomogeneity of the cavity mode profile is expected to
change the nonlinear-response properties by factors of or-
der 1 (alternatively, spacers may be introduced between the
molecular system and the optical cavity so that the molecules
occupy only a small region around the antinode of the cavity
mode profile), while (lower) polariton decay can be slowed
down by increasing the Rabi splitting and (or) lowering the
temperature. Moreover, polariton transitions are well known
to be homogeneously broadened within their lifetimes [47],
and therefore, for molecular systems with significant inho-
mogeneously broadened transitions, we expect polariton line
shapes to be significantly narrower than that of the bare sys-
tem (given the polariton “hole-burning” effect [80] yielding
subnatural linewidths). In this instance, the mechanism for
polariton-mediated TPA presented in our paper would become
even more efficient than in the model considered here.

While our paper focused on infrared polaritonics, we note
that the phenomenology observed in molecular vibrational
and electronic strong coupling can be very similar depending
on the system. For instance, ultrafast pump-probe transmis-
sion recorded for a microcavity strongly coupled to an organic
semiconductor in Ref. [33] showed qualitative features iden-
tical to the first reported vibrational polariton pump-probe
data [36]. The exciton-biexciton ladder described in Ref. [33]
is also notable in the studied context because the energy of
the corresponding biexciton is more than twice that of the
exciton, which would enable verification of the � < 0 case
of Eq. (29). In fact, whenever electronic transitions are only
weakly coupled to high-frequency vibrational modes, and the
electronic S1 → S2 (first to second excited state) transition is
dipole allowed and slightly red or blueshifted from the S0 →
S1 (ground to first excited state), we expect electronic TPA
rates to have similarly appealing potential for enhancement in
optical cavities under the strong-coupling regime as discussed
in Sec. III.

It is also notable that, although our model and ex-
pressions allow us to derive quantitative nonlinear proper-
ties of molecular systems described as three-level system
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ensembles, the enhancement of molecular nonlinear polar-
ization by intracavity field effects and subnatural polariton
linewidths thoroughly discussed in Appendix B are univer-
sal features of the nonlinear susceptibilities of molecular
ensembles under strong coupling. In fact, our paper qual-
itatively corroborates recently reported nonlinear-response
enhancement induced by strong coupling of microcavities
with organic semiconductor materials [81,82] the effective
Hamiltonian of which is not given by Eq. (4). Specifically,
Barachati et al. [81] ascribed third-harmonic generation effi-
ciency gains under cavity strong coupling to intracavity field
energy density enhancement, whereas the recent Z-scan mea-
surements reported by Wang et al. [82] showed that polariton
resonance effects were also essential to obtain increases in the
magnitude of the nonlinear index of refraction and absorption.

In summary, we have derived and analyzed the nonlinear
optical susceptibility and TPA rates for a molecular system
under strong coupling with an infrared microcavity. By con-
trasting the polaritonic response with that of bare molecules
in free space, we found that enhanced nonlinearities in the
strong-coupling regime may emerge due to intracavity field
enhancement, creation of suitable optical resonances, and sub-
natural polaritonic linewidths. Our results suggest an increase
of several orders of magnitude can potentially be achieved for
the polaritonic nonlinear optical response, especially, when
a multipolariton transition is resonant with a multiphonon
(or multielectronic state) absorption of the molecular system.
Application of molecular polaritonics in two-photon imaging
[83], entangled photon spectroscopy [84], and efficient gener-
ation of hot molecular excited-state distributions via (polari-
ton) ladder climbing [85–88] are also envisioned with possible
bypassing of deleterious intramolecular vibrational relaxation.
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APPENDIX A: BASIC DEFINITIONS FOR AN EMPTY
MICROCAVITY

We employ input-output theory [54,55] to describe the
open quantum system dynamics of a planar optical micro-
cavity consisting of two highly reflective symmetric mirrors
[13] separated by a distance Lc. The input radiation is taken
to have zero momentum along the transverse direction to the
cavity longitudinal axis. Since we work in the limiting case
where a single cavity mode interacts with the material system,
we only consider the free space electromagnetic modes to the
right and left of living in a one-dimensional space with length
L sufficiently large for the corresponding field operators to
satisfy periodic boundary conditions.

We suppose the system is probed in transmission geometry,
where the incident light irradiates the “left” mirror and the
optical signal is generated by the photon flux traversing the

“right” mirror. The output photon flux is given by〈[
bR

out(t )
]†

bout(t )
〉
, (A1)

where the output annihilation operator bout(t ) is written in
terms of the right free space modes at a future time t1 > t
[54]:

bR
out(t ) = i√

2π

∫ ∞

−∞
dω′bR

1 (ω′)e−iω′(t−t1 ), t1 > t (A2)

where bR
1 (ω′) is the Heisenberg annihilation operator for a

photon with frequency ω′ in the free space to the right of the
optical cavity at t1. In the absence of any input on the system
from the right mirror, the input-output relations allow us to
directly relate the (right) output EM power at time t with the
state of the cavity at the same moment. In particular [54,55],

bR
out(t ) =

√
κ

2
b(t ), (A3)

where b is the cavity mode annihilation operator and κ is
the total cavity leakage rate (including field decay through
both mirrors). The latter is proportional to the mirrors’ trans-
mission probability |t |2, as well as inversely related to the
cavity round-trip time τc = 2Lc/c (Lc is the cavity longitu-
dinal length) [46], i.e.,

κ = |t |2
τc

= |t |2 c

2Lc
. (A4)

In this paper, we suppose the microcavity is driven by a su-
perposition of coherent-state fields which are nearly resonant
and weakly interact with the cavity (κ is much smaller than the
cavity photon frequency). The rotating wave approximation
is employed throughout, as is customary in an input-output
treatment [55]. We suppose the electric field of the external
source which drives the system is expressed as

EL
in(t ) =

∑
ω>0

[E (+)
in (ω)e−iωt + E (−)

in (ω)eiωt ]

=
∑
ω>0

i

√
h̄ω

2ε0V
[αin(ω)e−iωt − α

†
in(ω)eiωt ], (A5)

where ε0 is the free space permittivity, V = SL is the quanti-
zation volume of the left-hand side (or right-hand side) free
space, and αin ∈ C is a coherent-state amplitude characteriz-
ing the phase and intensity of the input external field mode
with frequency ω. The photon flux corresponding to each
frequency in (A5) is given by |αin(ω)|2c/L.1 The photon input

1Here, we used the following expression for the mean photon flux:

φin = Sε0c

h̄ωT

∫ T/2

−T/2
〈[EL

in(t )
]†

EL
in(t )〉

=
∑
ω>0

|αin(ω)|2c/L, (A6)

which is thus given in units of photon number per unit time.
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operator is thus2

bL
in(ω) = i

√
P (ω)

h̄ω
eiθin (ω), (A8)

where P (ω) = h̄ω|αin(ω)|2c/L and θin(ω) is determined by
the relationship αin(ω) = |αin(ω)|eiθin (ω).

We conclude this section by reviewing some relationships
between the cavity electromagnetic-field intensity in the pres-
ence of steady driving, and the corresponding free space
intensity. This identification will be essential for the compar-
ison of the nonlinear optical response of a hybrid cavity with
that of the bare molecular material.

First, we recall that the mirrors of a good cavity have
nearly vanishing photon transmission probability |t |2 → 0.
The cavity is usually characterized by (a) the total photon
leakage rate κ [Eq. (A4)] dependent on both geometric pa-
rameters (e.g., the cavity length) and the quality of the mirrors
(via its dependence on |t |2), and (b) its finesse coefficient
F = π

√|r|/(1 − |r|) (where r is the field reflection proba-
bility amplitude) [46], which depends only on the quality of
the mirrors. As we demonstrate below, the finesse provides
a simple measure of the steady-state intracavity (resonant)
electromagnetic-field intensity Ic enhancement compared to
free space. In particular, at a cavity antinode, it follows that
[46]

Ic ≈ 2F
π

I0, (A9)

where I0 is the free space electromagnetic-field intensity [46].
In terms of the finesse, the cavity leakage rate κ can be
written as

κ = πc

LcF
. (A10)

Alternatively, F is given as a simple function of the cavity
quality factor Q = ωc/κ [46]:

F = πc

Lcωc

ωc

κ

= Q

m
, (A11)

where m ∈ Z is the longitudinal quantum number of the cavity
mode, and we used that the symmetric planar cavity mode
frequency corresponding to m is given by ωc = cmπ/Lc.

We conclude this section by deriving the cavity electric-
field enhancement factor from input-output theory. Consider
an empty cavity driven by an external field with power
P (ω) = h̄ω|αin(ω)|2c/L, where αin(ω) ∈ C. Using the pre-
viously defined parametrization bL

in(ω) = i
√
P (ω)/h̄ωeiθin (ω)

for the input field, it follows from the input-output treatment

2Note that our input fields are obtained from superpositions of
coherent states of the electromagnetic field in the left-hand side free
space defined by

bL
in(t ) = i√

2π

∫ ∞

−∞
dω′bL

0 (ω′)e−iω′ (t−t0 ) =
∑

ω

bL
in(ω)e−iωt , (A7)

where bL
0 (ω′) is the annihilation operator of the left mode with

frequency ω′ evaluated at a time t0 < t [54].

of an empty driven cavity that the steady-state positive-
frequency component of the empty cavity electric field (in the
rotating wave approximation) E (+)

c (ω) is given by3

E (+)
c (ω) = Ec

0

√
κ

2

−ibL
in(ω)

ω − ωc + iκ/2

= i

√
h̄ωc

2ε0SLc
|αin(ω)|

√
2c

κL

κ/2

ω − ωc + iκ/2
eiθin (ω)

≈
√

2F
π

κ/2

ω − ωc + iκ/2
E (+)

in (ω), (A14)

where we used Ec
0 = i

√
h̄ωc/2ε0SLc. In the last line we em-

ployed ω = ωc + δ and the limit where δω/ωc → 0, i.e., ω ≈
ωc. This approximation is consistent with the weak-coupling
and near-resonant assumptions of input-output theory [54,55],
and is usually satisfied when ω is resonant with polaritons
in the strong-coupling limit (with Rabi splitting significantly
weaker than the relevant bare molecule and cavity frequen-
cies).

Equation (A14) demonstrates the well-known results
that under resonant driving (ω = ωc) (a) the cavity
electromagnetic-field intensity is enhanced by a factor of
2F/π (at cavity antinodes) compared to free space, and (b)
the cavity field is phase shifted by −π/2 relative to the phase
of the external field.

APPENDIX B: NONLINEAR SUSCEPTIBILITY OF A
STRONGLY COUPLED MOLECULAR SYSTEM

In this section, we derive the steady-state third-order po-
larization induced by continuous-wave input fields acting on
a molecular system strongly coupled to an optical cavity as
described in the main text. This polarization is the source
of the nonlinear optical signal discussed above. The results
obtained here are essential for the computation of the nonlin-
ear molecular absorption under strong light-matter coupling
which is described in the next section.

To obtain the material nonlinear polarization we solve
perturbatively the EOMs for the expectation value of the
molecular polarization operator in terms of the driving input
fields.

From the effective Hamiltonian introduced in the main text
[Eq. (4)], we obtain the Heisenberg-Langevin EOM for the

3This equation can be simply derived by using the Heisenberg
equations of motion for the driven cavity mode operator:

(ih̄∂t − h̄ω̃c )b(t ) = −ih̄

√
κ

2
bL

in(t )

⇒ b(ω) = −ih̄

√
κ

2

bL
in(ω)

h̄ω − h̄ωc + iκ/2
, (A12)

⇒ E (+)
c (ω) = i

√
h̄ωc

2ε0SLc
b(ω) =

√
h̄ωc

2ε0SLc

√
κ

2

bL
in(ω)

ω − ωc + iκ/2
,

(A13)

where we used ω̃c = ωc − iκ/2, and b(t ) =∑ω b(ω)e−iωt .
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expectation value of the cavity-photon annihilation operator
using ih̄∂t b(t ) = [b(t ), H] − ih̄κb(t )/2:

(
ih̄

d

dt
− h̄ω̃c

)
〈b(t )〉 = −ih̄

√
κ

2
bL

in(t ) − μĒ c
0

N∑
i=1

〈ai(t )〉 ,

(B1)

where the cavity leakage rate κ (derived within input-output
theory) was introduced by the replacement ωc → ω̃c = ωc −
iκ/2. Equation (B1) describes the time-dependent response
of the cavity to a collective molecular polarization and to the
driving by the input field. Similarly, the molecular response to
the cavity electromagnetic field is expressed by the analogous
Heisenberg-Langevin EOMs satisfied by the time-dependent
single-molecule and collective material polarizations:

(
ih̄

d

dt
− h̄ω̃0

)
〈μai(t )〉 = −μ2Ec

0 〈b(t )〉 − 2h̄�μ 〈a†
i (t )ai(t )ai(t )〉

= −μ2Ec
0 〈b(t )〉 − 2h̄�μ 〈a†

i (t )〉 〈ai(t )ai(t )〉 , (B2)(
ih̄

d

dt
− h̄ω̃0

) 〈
μ

N∑
i=1

ai(t )

〉
= −Nμ2Ec

0 〈b(t )〉 − 2h̄�μ

〈 N∑
i=1

a†
i (t )ai(t )ai(t )

〉

= −Nμ2Ec
0 〈b(t )〉 − 2h̄�μ

N∑
i=1

〈a†
i (t )〉 〈ai(t )ai(t )〉 , (B3)

where ω̃0 = ω0 − iγm/2, and we obtained the final equations in each case using the factorization property of the expectation value
of normal-ordered (all annihilation operators are to the right of the creation) correlation functions which for 〈a†(t )a(t )a(t )〉 is
valid to O(|Ein|3) (see, e.g., Refs. [71,72]). Hence, Eqs. (B2) and (B3) are valid to O(|Ein|3).

Each of the time-dependent expectation values appearing in Eqs. (B1) and (B3) admits an expansion in powers of the input
field 〈bL

in〉 (since the cavity is only weakly coupled to the external modes). For instance, we can write 〈ai(t )〉 =∑p 〈ai(t )〉(p),
where 〈ai(t )〉p = O[(bL

in)p]. Hereafter, we will employ the following frequency-domain expansion of the expectation value of
time-dependent operators:

〈O〉 (t ) =
∑

ω

〈O〉 (ω)e−iωt =
∑
ω>0

〈O〉(+) (ω)e−iωt + 〈O〉(−) (ω)eiωt . (B4)

Performing an expansion of both sides of Eqs. (B1) and (B3) in powers of the input electric-field amplitude we find the third-order
contribution to the cavity and molecular annihilation operator expectation values satisfies the following coupled equations in the
frequency domain:

〈b〉(3) (ω) = −μĒ c
0

∑N
i=1 〈ai〉(3) (ω)

h̄ω − h̄ω̃c
, (B5)

(h̄ω − h̄ω̃0)
N∑

i=1

〈μai〉(3) (ω) = −Nμ2Ec
0 〈b〉(3) (ω) − 2h̄�μ

∑
a,b

N∑
i=1

〈a†
i 〉

(1)
(−ωa) 〈aiai〉(2) (ωb)δω,−ωa+ωb . (B6)

The positive frequency material third-order polarization component with frequency ω is given by 〈P〉(3) (ω) = μ
∑N

i=1 〈ai〉(3) (ω).
As shown above, it can be expressed in terms of the photonic variable 〈b〉(3) (ω) and lower-order molecular correlators. Inserting
the formal solution of Eq. (B6) into Eq. (B5), we find

〈b〉(3) (ω) = 2h̄�μĒ c
0

∑
ωaωb

N∑
i=1

〈a†
i 〉

(1)
(−ωa) 〈aiai〉(2) (ωb)

(h̄ω − h̄ω̃c)(h̄ω − h̄ω̃0) − N
∣∣μEc

0

∣∣2 δω,−ωa+ωb, (B7)

4∑
i=1

μ 〈ai〉(3) (ω) = −2h̄�μ
∑
ωaωb

N∑
i=1

h̄ω − h̄ω̃c

(h̄ω − h̄ω̃c)(h̄ω − h̄ω̃0) − N
∣∣μEc

0

∣∣2 〈a†
i 〉

(1)
(−ωa) 〈aiai〉(2) (ωb)δω,−ωa+ωb . (B8)

The first-order molecular expectation values 〈μai(ωa)〉(1) de-
scribe the linear polarization induced on each molecule. By
solving the coupled cavity-matter equations [Eqs. (B1) and
(B3)] to first order in the input field, we can obtain the linear
molecular polarization in the strongly coupled device. In the
frequency domain the equations to be solved are

〈b〉(1) (ω) = −ih̄
√

κ
2 bL

in(ω)

h̄ω − h̄ω̃c
− μĒ c

0

∑N
i=1 〈ai〉(1) (ω)

h̄ω − h̄ω̃c
, (B9)

(h̄ω − h̄ω̃0)
N∑

i=1

〈ai〉(1) (ω) = −NμEc
0 〈b〉(1) (ω). (B10)

The explicit solution for the linear polarization 〈P〉(1) (ω) ≡∑N
i=1 〈μai〉(1) (ω) induced by the input field is given by

〈P〉(1) (ω) = ih̄

√
κ

2

Nμ2Ec
0 bL

in(ω)

(h̄ω − h̄ω̃c)(h̄ω − h̄ω̃0) − ∣∣μEc
0

∣∣2N

= NμGmm(ω)μ

[
Ec

0 G(0)
pp (ω)ih̄

√
κ

2
bL

in(ω)

]
, (B11)
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where G(0)
pp (ω) = 1/(h̄ω − h̄ω̃c) is the bare cavity photon

frequency-domain propagator, and Gmm(ω) is the single-
molecule response function renormalized due to the material
strong interaction with the optical cavity:

Gmm(ω) = 1

h̄ω − h̄ω̃0 − |μEc
0 |2N

h̄ω−h̄ω̃c

. (B12)

Note the light-matter weak-coupling limit for the molecular
response function G(0)

mm = 1/(h̄ω − h̄ω̃0) can be straightfor-
wardly obtained from the above expression by performing a
power series expansion in terms of |μEc

0 |. The linear response
induced by the external field on the cavity photon is similarly
given by

〈b〉(1) (ω) = −ih̄

√
κ

2

(h̄ω − h̄ω̃0)bL
in(ω)

(h̄ω − h̄ω̃c)(h̄ω − h̄ω̃0) − ∣∣μEc
0

∣∣2N

= Gpp(ω)

[
−ih̄

√
κ

2
bL

in(ω)

]
, (B13)

where Gpp(ω) is the frequency-domain representation of the
cavity photon retarded propagator under strong-coupling con-
ditions:

Gpp(ω) = 1

h̄ω − h̄ω̃c − |μEc
0 |2N

h̄ω−h̄ω̃0

. (B14)

Note that the hybrid cavity linear-response field amplitude
given by Eq. (B13) has the same form as that for an empty

cavity [Eq. (A12)]. The bare cavity result is obtained trivially
by simply taking μ → 0 in Eq. (B13). The following relation-
ship between the cavity and molecular polarization retarded
Green functions will be useful later:

Gpp(ω) = G(0)
pp (ω)

Gmm(ω)

G(0)
mm(ω)

. (B15)

The last expectation value which we need to compute
in order to obtain the hybrid cavity third-order response is
〈ai(t )ai(t )〉(2) [see Eq. (B7)]. The time dependence of this
function is coupled to the other totally symmetric (with re-
spect to permutation of the molecular indices) two-particle
variables of the system, namely, 〈b(t )b(t )〉(2) which describes
the evolution of the two-cavity photon state, 〈ai(t )b(t )〉(2)

which probes the correlated propagation of a photon and the
ith molecule phonon, and 〈ai(t )a j (t )〉(2) , i 
= j, that describes
propagation of vibrational excited states in distinct molecules.

The system of Heisenberg-Langevin equations for the
bright two-particle variables mentioned above can be de-
rived using the operator equations of motion generated by
the Hamiltonian in Eq. (4) of the main text, together with
the same replacements effected above: ω0 → ω0 − iγm/2 and
ωc → ωc − iκ/2. It follows from the input-output treatment
[55] that under the assumptions of a Markovian molecular
bath, and in the absence of an input molecular polarization,
the resulting two-particle EOMs are given by

[
ih̄

d

dt
− 2(h̄ω̃0 − h̄�)

]
〈ai(t )ai(t )〉(2) = −2μEc

0 〈ai(t )b(t )〉(2) , (B16)

[
ih̄

d

dt
− (h̄ω̃c + h̄ω̃0)

]
〈ai(t )b(t )〉(2) = −μEc

0 〈b(t )b(t )〉(2) − μĒ c
0

N∑
j=1

〈ai(t )a j (t )〉(2) − ih̄

√
κ

2
bL

in(t ) 〈ai(t )〉(1) , (B17)

[
ih̄

d

dt
− 2h̄ω̃c

]
〈b(t )b(t )〉(2) = −μĒ c

0

∑
i

〈ai(t )b(t )〉(2) − 2ih̄

√
κ

2
bin(t ) 〈b(t )〉(1) , (B18)

[
ih̄

d

dt
− 2h̄ω̃0

]
〈ai(t )a j (t )〉(2) = −μEc

0 [〈ai(t )b(t )〉(2) + 〈a j (t )b(t )〉(2)], j 
= i. (B19)

These equations show, as expected, that two-particle states are
driven by the input field only in the presence of nonvanishing
first-order photonic or molecular polarization (represented by
〈b(t )〉(1) and 〈ai(t )〉(1)). To solve this system in the frequency
domain, we note that the electromagnetic field interacts
equally with each molecule, and therefore, 〈ai(t )b(t )〉 =
〈aj (t )b(t )〉, for all i, j ∈ {1, . . . , N}. From the same argu-
ment, it also follows that the correlators 〈ai(t )a j (t )〉i 
= j and
〈ai(t )ai(t )〉 are independent of the molecular indices. These
considerations imply that, while the system of two-particle
equations given above has (N + 1)2 unknowns, only four
of those are independent. In order to proceed, we need
〈aiai〉(2) (ω) which can be written as

〈aiai〉(2) (ω) = 2(h̄ω − 2h̄ω̃0)

D(ω)

(
μEc

0

)2
f bb
ext(ω)

− 2(h̄ω − 2h̄ω̃c)(h̄ω − 2h̄ω̃0)

D(ω)
μEc

0 f mb
ext (ω),

(B20)

where f bb
ext(ω) = −2ih̄

√
κ
2 〈bL

inb(1)〉(2) (ω) and f mb
ext (ω) =

−ih̄
√

κ
2 〈bL

ina(1)
i 〉(2)

(ω), and D(ω) is a fourth-order
polynomial, with its roots corresponding to the bright
resonances of the doubly excited manifold of the system.
Denoting by D(0)(ω) the bare noninteracting two-particle
resonances, D(0)(ω) = (h̄ω − h̄ω̃c − h̄ω̃0)(h̄ω − 2h̄ω̃0 +
2h̄�)(h̄ω − 2h̄ω̃c)(h̄ω − 2h̄ω̃0), it follows that the interacting
complex two-particle energy eigenvalues are given by the
roots of D(ω) = D(0)(ω) − 2g2N (h̄ω − 2h̄ω̃0)(h̄ω − 2h̄ω̃0

+ 2h̄�) − 2g2(N − 1)(h̄ω − 2h̄ω̃0 + 2h̄�)(h̄ω − 2h̄ω̃c) −
2g2(h̄ω − 2h̄ω̃c)(h̄ω − 2h̄ω̃0), where g2 = |μEc

0 |2 as in the
main text. We can also write Eq. (B20) in terms of retarded
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single- and two-particle Green functions in the frequency domain:

〈aiai〉(2) (ω) = −2ih̄

√
κ

2
Gmm,pp(ω)

(
μEc

0

)2 〈
bL

inb(1)
〉
(ω) + ih̄

√
κ

2
Gmm,mp(ω)μEc

0

〈
bL

ina(1)
i

〉
(ω),

= −h̄2 κ

2

∑
uv

[
2Gmm,pp(ωu + ωv )Gpp(ωu) + Gmm,mp(ωu + ωv )Gmm(ωu)G(0)

pp (ωu)
](

μEc
0

)2
bL

in(ωv )bL
in(ωu)δω,ωu+ωv

(B21)

where Gmm,pp(ω) corresponds to the Fourier transform of the probability amplitude for a two-cavity photon state to undergo a
transition into a state where a given molecule is doubly excited, and Gmm,mp(ω) is the transition amplitude into the doubly excited
state of a given molecule from an initial state containing a photon and a single vibrational excitation of the same molecule. These
propagators can be written explicitly as

Gmm,pp(ω) = 2(h̄ω − 2h̄ω0 + ih̄γm)

D(ω)
, (B22)

Gmm,mp(ω) = 2(h̄ω − 2h̄ωc + ih̄κ )(h̄ω − 2h̄ω0 + ih̄γm)

D(ω)
. (B23)

Using the relation introduced in Eq. (B15), we rewrite the two-particle molecular response as

〈aiai〉(2) (ω) = 1

2

∑
uv

{
2Gmm,pp(ωu + ωv )

[
G(0)

mm(ωu)
]−1[

G(0)
pp (ωv )

]−1 + Gmm,mp(ωu + ωv )
[
G(0)

pp (ωv )
]−1}

× Gmm(ωu)
(
μEc

0

)2[−ih̄

√
κ

2
G(0)

pp (ωv )bL
in(ωv )

][
−ih̄

√
κ

2
G(0)

pp (ωu)bL
in(ωu)

]
δω,ωu+ωv

. (B24)

By symmetrizing the summand of the previous equation, we obtain

〈aiai〉(2) (ω) =
∑
uv

�mm,mm(ωu + ωv )Gmm(ωu)Gmm(ωv )

[
−μEc

0 ih̄

√
κ

2
G(0)

pp (ωv )bL
in(ωv )

][
−μEc

0 ih̄

√
κ

2
G(0)

pp (ωu)bL
in(ωu)

]

× δω,ωu+ωv
, (B25)

where � is the two-particle scattering matrix, and �mm,mm is the amplitude for the elastic scattering of two excitations in the same
molecule. It may be written as

�mm,mm(ω) = (h̄ω − 2h̄ω̃0)(h̄ω − h̄ω̃0 − h̄ω̃c)[(h̄ω − 2h̄ω̃0)(h̄ω − 2h̄ω̃c) − 4g2N]

D(ωu + ωv )
. (B26)

The nonlinear component of the molecular polarization 〈P(ωs)〉(3) = μ
∑N

i=1 〈ai(ωs)〉(3) can now be given the explicit form

〈P(ωs)〉(3) =
∑

ωuωvωw

2Nh̄�μ4Gmm(ωs)Ḡmm(ωw )�mm,mm(ωu + ωv )Gmm(ωv )Gmm(ωu)

× G(0)
pp (ωv )Ḡ(0)

pp (ωw )G(0)
pp (ωu)

(
h̄κ

2

√
2F
π

)3

E (+)
in (ωv )E (−)

in (ωw )E (+)
in (ωu)δωs,ωv−ωw+ωu , (B27)

where we used −iEc
0

√
κ
2 bL

in(ω) ≈ κ
2

√
2F
π

E (+)
in (ω) [from Eq. (A14)]. From the above expression and the definition of the

molecular nonlinear susceptibility [12], we find

χ (3)(−ωs; ωv,−ωw, ωu) = 2h̄�NμGmm(ωs)Ḡmm(ωw )�mm,mm(ωu + ωv )Gmm(ωu)Gmm(ωv )

×
[
μ

√
2F
π

h̄κ

2
G(0)

pp (ωv )

][
μ

√
2F
π

h̄κ

2
Ḡ(0)

pp (ωw )

][
μ

√
2F
π

h̄κ

2
G(0)

pp (ωu)

]
δωs,ωv−ωw+ωu . (B28)

APPENDIX C: NONLINEAR ABSORPTION SPECTRUM
UNDER STRONG COUPLING

In this section, we compute the nonlinear part of the ab-
sorption spectrum of an optical microcavity strongly coupled
to the molecular polarization. In particular, we will calculate
the nonlinear part (in the input electric-field amplitude) of the

external field power dissipated by the molecular system under
steady-state conditions.

Mathematically, the steady-state regime is characterized
by a time-independent molecular excited-state population,
i.e., ∂t

∑N
i=1[a†

i (t )ai(t )] = 0. Using the Heisenberg-Langevin
equation for

∑N
i=1 a†

i (t )ai(t ), we find that steady state
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implies

0 = −ih̄γm

N∑
i=1

(a†
i ai )(t ) + μ

(
Ē c

0 b†
N∑

i=1

ai − Ec
0

N∑
i=1

a†
i b

)
(t ),

⇒
N∑

i=1

γm(a†
i ai )(t ) = 2Im

(
N∑

i=1

μĒ c
0

h̄
b†ai

)
(t ) (C1)

The last equality expresses the balance between the steady-
state rate of molecular excited-state decay (left-hand side) and
driving by the external field mediated by the cavity (right-hand
side). Hence, the photon absorption rate by the molecular
system can be written as

W = 2

h̄
Im 〈E†

c P〉SS , (C2)

where E†
c = Ē c

0 b† and P are the (complex conjugate) cavity
electric-field amplitude and collective molecular polarization

in steady state, respectively. Both Ec and P admit power series
expansions in the external fields (see Appendix B). The first
nonvanishing nonlinear term in the series expansion of P
scales cubically with the input field bL

in. Therefore, it follows
that the nonlinear-response contribution to the photon absorp-
tion rate W scales as |Ein|4. To obtain this quantity, we will
solve the coupled Heisenberg-Langevin EOMs for population
and coherence variables in the presence of driving by the ex-
ternal input fields. From now on, we will denote steady-state
quantities by the usual expectation value notation without the
subscript “SS,” as we will always work under steady-state
conditions. Moreover, we will disregard the frequency depen-
dence of all quantities until we obtain the final expression for
the nonlinear absorption. In this section, we take the input
field to be a monochromatic beam, i.e., bin(ω′) = 0 for all
ω′ 
= ω.

In steady state, the cavity-molecular polarization coher-
ence 〈E†

c P〉 satisfies

(h̄ω̃∗
c − h̄ω̃0)

〈
E†

c P
〉 = −μ2

∣∣Ec
0

∣∣2(N 〈b†b〉 −
N∑

i j=1

〈a†
i a j〉

)
− 2h̄�μ

N∑
i=1

〈E†
c a†

i aiai〉 − ih̄

√
κ

2

〈
Ē c

0

(
bL

in

)†
P
〉
. (C3)

Because we only care about the O(|bL
in|4) absorption component, and pure-state factorization holds, it follows by the same

argument employed in Appendix B that 〈b†a†
i aiai〉 = 〈b†a†

i 〉 〈aiai〉. Thus,

(h̄ω̃∗
c − h̄ω̃0) 〈E†

c P〉(4) = −μ2
∣∣Ec

0

∣∣2(N 〈b†b〉(4) −
N∑

i j=1

〈a†
i a j〉(4)

)
− 2h̄�μ

N∑
i=1

〈E†
c a†

i 〉
(2) 〈aiai〉(2) − ih̄

√
κ

2
Ē c

0

(
bL

in

)† 〈P〉(3) ,

(C4)

where we also used that the input fields are classical states uncorrelated with the cavity. Our task is now to express the steady-state
cavity photon number Np = 〈b†b〉, total molecular excited-state population Nm =∑N

i=1 〈a†
i ai〉, and intermolecular coherences

〈a†
i a j〉i 
= j in terms of the input field operators to the desired orders. The steady-state cavity photon number satisfies

N (4)
p = − 2

h̄κ
Im 〈E†

c P〉(4) −
√

2

κ
Re
〈(

bL
in

)†
b
〉(4)

, (C5)

whereas the total molecular excited-state population and intermolecular coherences are given by

N (4)
m = 2

h̄γm
Im 〈E†

c P〉(4)
, (C6)

∑
i> j

N∑
j=1

(〈a†
i a j〉(4) + 〈a†

j ai〉(4)
) = 2(N − 1)

h̄γm
Im 〈E†

c P〉(4) + 4�

γm

N∑
i j=1

Im[〈a†
j a

†
j〉

(2) 〈a jai〉(2)], (C7)

where to obtain the last line, we used Im[〈a†
j a

†
j〉

(2) 〈a ja j〉(2)] = Im[| 〈a†
j a

†
j〉

(2) |2] = 0. Using Eqs. (C5)–(C7), we find the
intermediate result

NN (4)
p −

n∑
i j=1

〈a†
i a j〉(4) = −2N

h̄η
Im 〈E†

c P〉(4) − N

√
2

κ
Re
〈(

bL
in

)†
b
〉(4) − 4�

γm

N∑
i j=1

Im[〈a†
j a

†
j〉

(2) 〈a jai〉(2)], (C8)

where η−1 ≡ κ−1 + η−1. We now have all of the quantities required to obtain the rate of nonlinear absorption W . In particular,
it follows from inserting our last result in Eq. (C4) that

(h̄ω̃∗
c − h̄ω̃0) 〈E†

c P〉(4) = �2
R

2h̄η
Im[〈E†

c P〉(4)
] + �2

R

4

√
2

κ
Re
[(

bL
in

)† 〈b〉(3)
]+ �2

R�

Nγm

N∑
i j=1

Im[〈a†
j a

†
j〉 〈a jai〉]

− 2h̄�μ

N∑
i=1

〈aiai〉(2) 〈a†
i E†

c 〉(2) − ih̄

√
κ

2
Ē c

0

〈
bL

in

〉† 〈P〉(3) , (C9)
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where we used �R = 2|μEc
0 |√N . With ηs = κ + γm, W NL ≡ W (4) = 2

h̄ Im(〈E†
c P〉(4) ), and the right-hand side of Eq. (C9), we

can eliminate Re(〈E†
c P〉(4) ) and solve for W NL in terms of the input field variables, to obtain

W NL = − 2ηh̄ηs

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

�2
R

4h̄

{√
2

κ
Re
[(

bL
in

)† 〈b〉(3)
]+ 4�(N − 1)

γm
Im
[ 〈a†

j a
†
j〉

(2) 〈a jai〉(2)
j 
=i (2ω)

]}

+ 2ηh̄ηs

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

{
2�μNRe[〈aiai〉(2)

〈
a†

i E†
c

〉(2)
] +
√

κ

2
Im
[
Ē c

0 〈bL
in〉† 〈P〉(3)

]}

+ 2ηh̄ηs(ωc − ω0)

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

{
4�μN

ηs
Im[〈aiai〉(2) 〈a†

i E†
c 〉] +

√
2κ

ηs
Re
[
Ē c

0

(
bL

in

)† 〈P〉(3)
]}

, (C10)

where we used that Im[〈a†
j a

†
j〉 〈a jai〉] = 0 when i = j. Thus, our final expression for the total nonlinear absorption is given by

W NL(ω) = − η�2
Rηs

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

Re

[√
1

2κ

[
bL

in(ω)
]† 〈b〉(3) (ω)

]

− η�2
Rηs

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

2�(N − 1)

γm
Im
[ 〈a†

j a
†
j〉

(2)
(−2ω) 〈a jai〉(2)

j 
=i (2ω)
]

+ 2η(2h̄�N )ηs

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

Re[〈a†
i a†

i 〉
(2)

(−2ω) 〈μaiEc〉(2) (2ω)]

+ ηηs

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

Im
[
h̄
√

2κĒ c
0

[
bL

in(ω)
]† 〈P〉(3) (ω)

]

+ 2η(h̄ωc − h̄ω0)4�N

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

Im[〈aiai〉(2) (2ω) 〈μa†
i E†

c 〉(2)
(−2ω)]

+ 2η(h̄ωc − h̄ω0)
√

2κ

2η[(h̄ωc − h̄ω0)2 + (h̄ηs)2/4] + �2
Rηs/2

Re
[
Ē c

0

[
bL

in(ω)
]† 〈P〉(3) (ω)

]
. (C11)

Each of the above terms can be further simplified by using results obtained in Appendix B. For instance, the identities 〈b〉(3) (ω) =
−Ē c

0 G(0)
pp (ω) 〈P〉(3) (ω) and iĒ c

0 [bL
in(ω)]† = √ κ

2

√
2F
π

E (−)
in (ω) [see Eq. (A14)] can be employed to simplify the first line of the last

equation, while the second, third, and fifth lines can be simplified using the following results from Eqs. (B16) and (B19):

〈aia j〉(2)
i 
= j (ω) = − μEc

0

h̄ω − 2h̄ω̃0
[〈a jb〉(2) (ω) + 〈aib〉(2) (ω)], and

〈aib〉(2) (ω) = − h̄ω − 2h̄ω̃0 + 2h̄�

μEc
0

〈aiai〉(2) (ω), which imply that

⇒ 〈aia j〉(2)
i 
= j (ω) = (h̄ω − 2h̄ω0 + 2h̄� + ih̄γm)(h̄ω − 2h̄ω0 − ih̄γm)

(h̄ω − 2h̄ω0)2 + h̄2γ 2
m

× 2 〈aiai〉(2) (ω). (C12)

Zero detuning

The physical content of the terms in Eq. (C11) becomes
clearer in the zero-detuning case where ωc ≈ ω0, in which
case the last two lines of Eq. (C11) vanish. Taking advantage
also of the fact that when the strong-coupling condition is
satisfied �R � h̄η and �R � h̄ηs, the nonlinear absorption

can be written as a sum of four simple contributions:

W NL(ω) =
4∑

α=1

W NLα (ω)|E (+)
in (ω)|4, (C13)

where

W NL1 (ω) ≈ −2ηκ

h̄

[
1

4(ω − ω0)2 + κ2
+ 1

(�R/h̄)2

]
Re

[√
2F
π

χ (3)(ω)

]
, (C14)

W NL2 (ω) ≈ 4η

h̄

ω − ω0

4(ω − ω0)2 + κ2
Im

[√
2F
π

χ (3)(ω)

]
, (C15)
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W NL3 (ω) ≈ η
4�2N

(ω − ω0)2 + γ 2
m/4

|〈aiai〉(2) (2ω)|2
|E (+)

in (ω)|4 , (C16)

W NL4 (ω) ≈ −η
(2ω − ω20)2�N

(�R/2h̄)2

|〈aiai〉(2) (2ω)|2
|E (+)

in (ω)|4 . (C17)

APPENDIX D: NONLINEAR SUSCEPTIBILITY OF A BARE
MOLECULAR SYSTEM

In order to describe the free space nonlinear polarization
induced on a bare molecule ensemble driven by external
continuous-wave fields, we employ an effective Hamiltonian
that is similar to that used to model the molecular system in an
optical cavity. The main difference is that each molecule now
interacts with several EM modes (with vanishing momentum
along the x, y directions) quantized with periodic boundary
conditions. The total Hamiltonian in the rotating wave approx-
imation is

H =
∑

ω

h̄ωb†
ωbω +

N∑
i=1

(h̄ω0a†
i ai − h̄�a†

i a†
i aiai )

− μ

N∑
i=1

∑
ω>0

(E0ωa†
i bωeiωzi/c + Ē0ωaib

†
ωe−iωzi/c), (D1)

where ω = ck, k = 2πm/L, m ∈ Z, and zi is the projection
of the position of molecule i on the field direction of prop-

agation, and E0ω = i
√

h̄ω
2ε0V . The input field which drives the

material polarization is introduced as a boundary condition to
the electromagnetic mode operators in the Heisenberg picture,
i.e., the input field satisfies the homogeneous part of the EM
field equations. We assume the E0ω are classical variables, as
in the computation performed with the optical cavity in the
previous sections.

The equation of motion for the expectation value of the
molecular polarization is given by

(ih̄∂t − h̄ω̃0) 〈μai(t )〉 = −2h̄�μ 〈a†
i (t )ai(t )ai(t )〉

− μ2
∑

ω

E0ω 〈bω(t )〉 eiωzi/c. (D2)

Using pure state factorization [1,71,72], the equation of mo-
tion for the third-order component of 〈ai(t )〉 is given by

(ih̄∂t − h̄ω̃0) 〈ai(t )〉(3) = −2h̄� 〈a†
i (t )〉(1) 〈ai(t )ai(t )〉(2) .

(D3)

The time evolution of the relevant first- and second-order
molecular expectation values is given by the solutions of the
equations

(ih̄∂t − h̄ω̃0) 〈ai(t )〉(1) = −μ
∑

ω

Eωin(t ), (D4)

(ih̄∂t − h̄ω̃20) 〈ai(t )ai(t )〉(2)

= −2μ
∑

ω

〈ai(t )〉(1) Eωin(t )e−iωzi/c, (D5)

where we made the replacement Eωin(t ) = E0ω 〈bω(t )〉. Using
the long-wavelength limit, and thus disregarding the spatial
dispersion of the electromagnetic field (as in the computations
performed for a molecular system in a cavity), the frequency-
domain solutions of the prior equations are

〈ai〉(1) (ω) = −μ
∑
ωu

Eωuin

h̄ω − h̄ω̃0
δωu,ω, (D6)

〈aiai〉(2) (ω) =
∑
u,v

2μ2EωuinEωv in

(h̄ωu + h̄ωv − h̄ω̃20)(h̄ωu− h̄ω̃0)
δω,ωu + ωv

,

(D7)

where h̄ω̃20 = h̄ω20 − ih̄γm, and h̄ω20 = 2h̄ω0 − 2h̄� is the
energy difference between the doubly excited vibrational state
and the ground state. These results can also be written in terms
of bare molecule single-particle and two-particle retarded re-
sponse functions in the frequency domain:

〈ai〉(1) (ω) = −μG(0)
mm(ω)Eωin, (D8)

〈aiai〉(2) (ω) = μ2
∑
u,v

G(0)
mm,mm(ωu + ωv )G(0)

mm(ωu)

× EωuinEωv inδω,ωu+ωv
, (D9)

where G(0)
mm(ω) = 1/(h̄ω − h̄ω̃0) and G(0)

mm,mm(ω) = 2/(h̄ω −
h̄ω̃20) are the Fourier transform of the single-particle and
two-particle retarded molecular Green functions, respectively.
In the time domain, they measure the probability amplitude
that a single- and a two-phonon state exist for a time t after
their creation. Note that the last equation may also be written
in terms of a vibration-vibrational scattering matrix element
�(0)

mm,mm(ω) = (h̄ω − 2h̄ω̃0)/(h̄ω − h̄ω̃20) as follows:

〈aiai〉(2) (ω) = μ2
∑
u,v

�(0)
mm,mm(ωu + ωv )G(0)

mm(ωu)G(0)
mm(ωv )

× EωuinEωv inδω,ωu+ωv
. (D10)

Direct insertion of Eqs. (D6) and (D7) into the frequency-
domain representation of Eq. (D3) gives the following
solution:

〈ai〉(3) (ωs) =
∑
u,v,w

4μ3h̄�EωuinĒωw inEωv in

(h̄ωs − h̄ω̃0)(h̄ωw − h̄ω̃∗
0 )(h̄ωu + h̄ωv − h̄ω̃20)(h̄ωu − h̄ω̃0)

δωs,ωu+ωv−ωw
. (D11)
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In terms of the bare molecule Green functions and phonon-phonon scattering amplitudes, the bare third-order molecular
nonlinear polarization P(3)

0 (ωs) = μ
∑N

i=1 〈ai(ωs)〉(3) can be written as

〈P〉(3)
0 (ωs) =

∑
ωuωvωw

2h̄�Nμ4G(0)
mm(ωs)Ḡ(0)

mm(ωw )�(0)
mm,mm(ωu + ωv )Gmm(ωv )Gmm(ωu)EωuinĒωw inEωv inδωs,ωu+ωv−ωw

, (D12)

which implies the bare nonlinear susceptibility

χ
(3)
0 (−ωs; ωv,−ωw, ωu) = 2h̄�Nμ4G(0)

mm(ωs)Ḡ(0)
mm(ωw )�(0)

mm,mm(ωu + ωv )G(0)
mm(ωv )G(0)

mm(ωu)δωs,ωv−ωw+ωu . (D13)

APPENDIX E: NONLINEAR ABSORPTION SPECTRUM OF
A BARE MOLECULAR SYSTEM

The steady-state rate of photon absorption by the molecular
system in free space can be computed from the Hamiltonian
in Eq. (D1). In particular, the steady-state condition stipulates
that in the presence of an external radiation field, the rate of
excitation of the molecular system is equal to its rate of decay,
and therefore ∂t

∑N
i=1 〈a†

i (t )ai(t )〉 = 0, where t is an arbitrary
time during which the system satisfies the condition given
above.

Using Heisenberg-Langevin equations of motion for the
description of the response of the molecular system to the
external electromagnetic field we find that

γm

N∑
i=1

〈a†
i (t )ai(t )〉 =

N∑
i=1

∑
ω

Im

[
2μĒ0ω

h̄
〈b†

ω(t )ai(t )〉
]
. (E1)

The left-hand side of the above equality corresponds to energy
extracted from (or transferred to) the molecular system by the

bath, whereas the right-hand side describes the pumping of the
molecular system by the electromagnetic field. Assuming the
usual weak-coupling condition to be valid in free space, and
taking the external field to be given by a macroscopic coherent
state with negligible quantum fluctuations, it follows that the
bare rate of photon absorption is given by

W0 = 2

h̄

∑
ω

Im[Ēωin(t ) 〈P(t )〉0], (E2)

where 〈P(t )〉0 refers to the free space (weakly coupled
to the EM field) molecular polarization, i.e., 〈P(t )〉0 =
〈∑N

i=1 μai(t )〉0. Thus, the nonlinear contribution to the molec-
ular absorption spectrum is given by

W NL
0 = 2

h̄
Im
[
Ēin(tSS) 〈P(tSS)〉(3)

0

]
, (E3)

where tSS is sufficiently long that the system is in steady state.
Equivalently, we can write

W NL
0 (ω) = 2

h̄
Im
∑
ωs

Ēωsin 〈P(ωs)〉(3)
0 = 2

h̄

∑
ωs

∑
ωuωvωw

Im
[
χ

(3)
0 (−ωs; ωv,−ωw, ωu)ĒωsinEωuinĒωw inEωv in

]
δωs,ωv−ωw+ωu . (E4)

The nonlinear absorption spectrum for photons with frequency ω is given by

W NL
0 (ω) = 2|Eωin|4

h̄
Im
[
χ

(3)
0 (−ω; ω,−ω,ω)

]
. (E5)

Using Eq. (19), we find the nonlinear rate of absorption of photons by the molecular system is given by

W NL
0 (ω) = N

2

h̄

4h̄�μ4[
(h̄ω − h̄ω0)2 + h̄2γ 2

m/4
]2 h̄γm(h̄ω0 − h̄ω)

(2h̄ω − h̄ω20)2 + h̄2γ 2
m

|Eωin|4

+ N
2

h̄

4h̄�μ4[
(h̄ω − h̄ω0)2 + h̄2γ 2

m/4
]2 h̄γm(h̄ω20/2 − h̄ω)

(2h̄ω − h̄ω20)2 + h̄2γ 2
m

|Eωin|4. (E6)

Each of the two terms in the above rate of nonlinear absorption corresponds to a distinct nonlinear absorption resonance. This
can be seen by noting that the first term vanishes when ω = ω0, whereas the second vanishes when 2ω is resonant with the
two-photon transition with frequency ω20 = 2ω0 − 2�. When �/γm � 1, the line shapes corresponding to the two possible
nonlinear absorption resonances are well separated, and we can isolate the contribution to W NL

0 (ω) corresponding to two-photon
absorption:

W TPA
0 (ω) ≡ N

2

h̄

4h̄�μ4[
(h̄ω − h̄ω0)2 + h̄2γ 2

m/4
]2 h̄γm(h̄ω0 − h̄ω)

(2h̄ω − h̄ω20)2 + h̄2γ 2
m

|Eωin|4. (E7)

The textbook expression for the two-photon absorption rate
[12] follows from the last result by taking the limit where

� � γ , and by assuming only probe frequencies ω around
the TPA resonance at ω0 − � (so that no other quantum
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transitions interfere with the absorption). In this case, it fol-
lows that4

W TPA
0 (ω) ≈ 2πN

h̄

2μ4

(h̄ω − h̄ω0)2
ρ2(2ω)|Eωin|4, (E9)

where ρ2(2ω) = − 1
π

Im[G(2)
mm,mm(2ω)]:

ρ2(2h̄ω) = − 1

π
Im

[
2

2h̄ω − h̄ω20 + ih̄γ

]

= 1

π

2h̄γ

(2h̄ω − h̄ω20)2 + h̄2γ 2
m

. (E10)

APPENDIX F: QUANTITATIVE COMPARISON OF
MOLECULAR NONLINEAR SUSCEPTIBILITY OF BARE

AND STRONGLY COUPLED SYSTEMS

In this section, we provide an additional quantitative dis-
cussion of the main features of the molecular nonlinear
susceptibility under strong coupling with a cavity. Our anal-
ysis will focus on the system with susceptibility curves given
in Fig. 4, where we employ parameters corresponding to
W(CO)6 molecules in hexane [37] with ω0 = 1983 cm−1,
γm = 3 cm−1, and � = 8 cm−1 to illustrate and compare the
real and imaginary parts of the bare nonlinear susceptibil-
ity [Eq. (D13)] to that obtained for the same system under
strong coupling with an optical cavity [Eq. (B28)] with κ =
6 cm−1, �R = 40 cm−1, and the following cavity frequencies:
ωc = 1977, 1983, and 1990 cm−1 [42,43,79]. All results as-
sume a monochromatic input field with frequency ω (thus,
ωu = ωw = ωw = ω).

Figure 4 shows that the bare and strongly coupled
molecular systems display strikingly contrasting nonlinear
polarization. The imaginary part of the bare nonlinear sus-
ceptibility shows absorptive line shapes, whereas dispersive
behavior can be observed for the polaritonic. The opposite
is true for the corresponding real parts. The absorptive line
shapes for Im[χ (3)

0 (−ω; ω,−ω,ω)] centered at ω0 and ω0 −
� (see the small bump of gray curve around ω = 1975 cm−1)
are expected since this function is directly proportional to the
nonlinear absorption rate [Eq. (E5)] by the bare molecules.
The weak resonance at ω0 − � corresponds to two-photon
absorption by the molecular subsystem which absorbs two
input photons with ω = ω0 − � to generate a population
of molecules with energy h̄ω = 2h̄ω0 − 2h̄� in the doubly
excited state, whereas the resonance at ω0 results from stim-
ulated emission by excited-state population and ground-state

4Specifically, letting ω = ω0 − � − ε with ε → 0 and γm/� → 0,
we have

h̄�(h̄ω0 − h̄ω)[
(h̄ω − h̄ω0)2 + h̄2γ 2

m/4
]2 ≈ h̄2�2(1 + ε/�)

[(h̄ω − h̄ω0)2]2

≈ h̄2�2

(h̄ω − h̄ω0)2

(1 + ε/�)

h̄2�2(1 + ε/�)2

= 1

(h̄ω − h̄ω0)2
[1 + O(ε/�)]. (E8)

FIG. 8. Left (right): Imaginary (real) parts of
χ (3)(−ω; ω, −ω,ω) and χ0(−ω; ω,−ω,ω) for a system with
equal cavity and molecular fundamental frequencies and decay
rates and varying Rabi splitting. The barely visible dotted (gray)
curve corresponds to results obtained for the bare molecular system,
whereas the thick (purple), dashed (blue), and dot-dashed (orange)
curves correspond to �R = 20, 16, and 12 cm−1, respectively.

bleach which contribute to the reduced nonlinear photon ab-
sorption probability at the fundamental frequency ω0 (thus
giving rise to the observed negative amplitude).

It is harder to interpret Im[χ (3)(−ω; ω,−ω,ω)]. As dis-
cussed in Appendix C, by virtue of the cavity-matter strong
coupling, the nonlinear polarization contribution to the en-
ergy absorbed by the molecular subsystem is not directly
proportional to the imaginary part of χ (3)(−ω; ω,−ω,ω).
Nevertheless, the most obvious features of the molecular non-
linear susceptibility under strong coupling are visible from
Fig. 4. For instance, the absorptive line shapes displayed by
Re[χ (3)(−ω; ω,−ω,ω)] are all centered at the LP and the
UP frequencies for each of the studied systems. Stronger
nonlinear polarization always happens at ω = ωLP in com-
parison to ω = ωUP. This happens because, while for N � 1
the nonlinear response mediated by LP and UP arises mainly
from their interaction with molecular doubly excited states
(see Appendix G), larger spectral overlap exists between the
molecular two-photon transition and the LP2 resonance (for
the parameters here chosen). As a result, energy or ampli-
tude transfer between polaritons and molecular doubly excited
states is more efficient when the LP is resonantly driven by
the external field (see detailed discussion and connection to
experiments [42] in Secs. III and IV of the main text).

Note also that, for the parameters chosen to obtain Fig. 4,
the maxima of the nonlinear susceptibility obtained for the
molecular system inside and outside of an optical cavity are of
the same order of magnitude. However, we expect that if �R

is modified so that two-polariton states (LP2 in this example)
become nearly resonant with molecular doubly excited states,
the molecular nonlinear susceptibility under strong coupling
will likely undergo significant enhancement, since in this case
spectral overlap between LP2 and molecular doubly excited
states will be large, and the latter will provide an efficient sink
for energy disposal by the former (this is not the case for any
of the scenarios shown in Fig. 4).

We conclude this section by presenting in Fig. 8 the behav-
ior of the strongly coupled molecular nonlinear susceptibility
for �R = 20, 16, and 12 cm−1 for a system with zero real
and imaginary detuning (ωc = ω0 = 1983 cm−1 and κ = γ =
3 cm−1, respectively) and � = 8 cm−1. Our expectation of an
enhanced molecular nonlinear susceptibility under strong cou-
pling with a moderate quality cavity is now verified. Figure 8
shows that as �R − 2� → 0, the nonlinear polarization of
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FIG. 9. Scheme representing the bright (totally symmetric matter
and cavity states) two-particle states which play a role in the non-
linear spectroscopy of vibrational polaritons discussed here. Above
each arrow connecting a pair of states we provide the corresponding
Hamiltonian matrix elements (coupling constants).

the molecular subsystem becomes larger, especially when the
two-LP frequency 2ω0 − �R approaches the TPA resonance
at 2ω = 2ω0 − 2�. We can observe enhancement of both real
and imaginary parts of χ (3) relative to χ

(3)
0 by two orders

of magnitude at ω = ω0 − 2� when the condition �R = 2�

is satisfied. Note that Im[χ (3)(−ω; ω,−ω,ω)] has absorptive
line shapes at the TPA transition. This feature suggests that
the enhanced signal at ω = ωLP is due to two-LP decay into
molecular doubly excited states. This channel is discussed in
detail in Secs. III and IV of the main text.

APPENDIX G: ENERGY EIGENVALUES AND
EIGENSTATES OF NONDISSIPATIVE HAMILTONIAN

In this section, we obtain the optical spectrum of the hybrid
system discussed in the main text. For this purpose, we ne-
glect the effects of dissipation, so that the obtained transition
frequencies are real. In fact, the Hamiltonian of the hybrid
system can be written in this case as

H = h̄ωcb†b +
N∑

i=1

h̄ω0a†
i ai − h̄�

N∑
i=1

a†
i a†

i aiai

−
N∑

i=1

h̄g(a†
i b + b†ai ), (G1)

where g is the single-molecule light-matter coupling constant.
Two conservation laws follow from the effective Hamiltonian
given in the main text. First, the Hamiltonian is invariant under
permutation of the molecules. Thus, the eigenstates of H can
be classified according to the irreducible representation of the
permutation group of N symbols (SN ), and time-dependent
evolution only allows transitions between states which be-
long to the same irrep. Second, it follows from the RWA
approximation to the light-matter interaction that the Hamil-

tonian evolution of the composite system preserves the total
number of excitations of the photonic and matter subsystems
M =∑N

i=1 a†
i ai + b†b. Therefore, the eigenstates of H may

also be classified according to the total number of excitations
in the molecular and photonic subsystems. For instance, the
ground state of the system (M = 0) has all molecules in the
ground state, while the cavity field is in its vacuum state. The
states with M = 1 contain either a single excited vibration
(|1i〉 where 1 � i � N), or a single photon (|10〉), etc.

Of the many irreps of SN , only the totally symmetric is
relevant in our case. In the manifold of states with M = 1, this
feature is well known: only the totally symmetric superposi-
tion of states with a single excited molecule exchanges energy
with the cavity field. The nontotally symmetric states are dark
and thus provide no contribution to the optical response of the
hybrid system (in the studied ideal model).

The lower and upper polariton states are denoted by |LP〉
and |UP〉. They can be written in terms of the local-mode basis
states as follows:

|LP〉 = −sin(θ/2) |10〉 + cos(θ/2) |1S〉 , (G2)

|UP〉 = cos(θ/2) |10〉 + sin(θ/2) |1S〉 , (G3)

where 2θ = tan−1[2g
√

N/(ωc − ω0)] and |1S〉 =
N−1/2∑N

i=1 |1i〉 is the molecular singly excited bright state,
and we denote by g the single-molecule light-matter coupling.

The bright subspace of the doubly excited state (M = 2)
manifold contains the four two-particle (hybrid) states which
are totally symmetric under permutation of the molecular
labels. These states are the only which can be accessed
via two-photon transitions in our model (dark modes are
never accessed since they require molecular permutational
symmetry-breaking operators which are disregarded in our
treatment). They are given by

|20〉, |101m〉 = 1√
N

N∑
a=1

|101a〉 ,

|1m1m′ 〉m 
=m′ =
√

2

N (N − 1)

∑
a>b

|1a1b〉 ,

|2m〉 = 1√
N

N∑
a=1

|2a〉 . (G4)

Figure 9 illustrates how Hamiltonian evolution induces tran-
sitions between these states. From this figure, we can also
see that these four states are the only which can be accessed
from a two-photon initial state. In the subspace spanned by the
previously defined states, the total Hamiltonian is given by

HB
2 =

⎛
⎜⎜⎝

2h̄ωc h̄g
√

2N 0 0
h̄g

√
2N h̄ω0 + h̄ωc h̄g

√
2(N − 1) h̄g

√
2

0 h̄g
√

2(N − 1) 2h̄ω0 0
0 h̄g

√
2 0 2h̄ω0 − 2h̄�

⎞
⎟⎟⎠, (G5)

where the matrix was ordered in the same way as the basis
states in Eq. (G4). From now on, we will focus on the case

where ωc ≈ ω0 since this gives the simplest analytical results,
and is also the most relevant.
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If the molecular oscillators were two-level systems, we
would obtain the restriction of the Tavis-Cummings Hamil-
tonian to the M = 2 Hamiltonian, which is given by

HB
2TC =

⎛
⎝ 2h̄ωc h̄g

√
2N 0

h̄g
√

2N h̄ω0 + h̄ωc h̄g
√

2(N − 1)
0 h̄g

√
2(N − 1) 2h̄ω0

⎞
⎠. (G6)

When ω0 = ωc, the TC eigenstates can be readily obtained
since the secular equation can be written in the simple form

(2ω0 − λ)[(2ω0 − λ)2 − 2(N − 1)g2] − 2g2N (2ω0 − λ) = 0,

(G7)

which has solutions

λTC
UP2

= 2ω0 + 2g
√

N − 1/2 ≈ 2ωUP − g

2
√

N
, (G8)

λTC
LP2

= 2ω0 − 2g
√

N − 1/2 ≈ 2ωLP + g

2
√

N
, (G9)

λTC
LU = 2ω0, (G10)

where the approximate expressions result from taking the
limit where N → ∞. In terms of the bare states |20〉, |101m〉,
and |1m1m′ 〉, the eigenstates corresponding to the above ener-
gies are given by

∣∣UPTC
2

〉 =
√

N

4N − 2
|20〉 +

√
1

2
|101m〉 +

√
N − 1

4N − 2
|1m1m′ 〉 ,

(G11)∣∣LPTC
2

〉 =
√

N

4N − 2
|20〉 −

√
1

2
|101m〉 +

√
N − 1

4N − 2
|1m1m′ 〉 ,

(G12)

|LUTC〉 =
√

N − 1

2N − 1
|20〉 −

√
N

2N − 1
|1m1m′ 〉 . (G13)

Using these states along with the |2i〉 as the new basis
vectors for the totally symmetric doubly excited manifold
of the system allowing two excitations, the Hamiltonian
matrix (with the row and column indices in the order
|LUTC〉 , |UPTC

2 〉 , |LPTC
2 〉 , |2i〉) acquires the simple form

HB
2 =

⎛
⎜⎜⎝

2h̄ω0 0 0 0
0 h̄λTC

UP2
0 h̄g

0 0 h̄λTC
LP2

−h̄g
0 h̄g −h̄g 2h̄ω0 − 2h̄�

⎞
⎟⎟⎠,

h̄ωc = h̄ω0. (G14)

From this, we can see that the state |LUTC〉 is also an
eigenstate of the complete Hamiltonian, and that despite its
delocalization the totally symmetric doubly excited molecular
state |2s〉 is only weakly coupled to polaritons (the corre-
sponding coupling constant is given by the single-molecule
light-matter interaction energy g). If we take the single-
molecule light-matter coupling to be very weak compared

to the energy differences λTC
UP2

− (2ω0 − 2�) = g
√

4N − 2 +
2� and λTC

LP2
− (2ω0 − 2�) = −g

√
4N − 2 + 2�, we can ob-

tain reasonable approximate eigenstates and eigenvalues of
HB

2 (N ). This will almost always be a valid assumption, even
if 2� is nearly equal to g

√
4N − 2, since the single-molecule-

light coupling constant g is generally too small compared to
the energy scale of vibrational motion, and there exists a large
number of (nontotally symmetric) molecular doubly excited
states with energy 2ω0 − 2� that provide an efficient decay
channel for LP2 states. In other words, the TC eigenstates will
almost always be very good approximations to the eigenstates
of HB

2 (N ). The leading-order perturbatively corrected eigen-
values are given by

ωUP2 ≈ 2ω0 + g
√

4N − 2 + 1

2

2g2

g
√

4N − 2 + 2�

≈ 2ωUP − g

2
√

N
+ 1

2

2g2

g
√

4N − 2 + 2�
, (G15)

ωLP2 ≈ 2ω0 − g
√

4N − 2 − 1

2

2g2

g
√

4N − 2 − 2�

≈ 2ωLP + g

2
√

N
− 1

2

2g2

g
√

4N − 2 − 2�
, (G16)

ω2s ≈ 2ω0 − 2� + �
g2

g2(N − 1/2) − �2
, (G17)

ωLU = 2ω0, (G18)

where we included the exact eigenvalue of the |LU〉 state
for completeness. The corresponding approximate eigenstates
can be written as

|UP2〉 ≈
√

N

4N − 2
|20〉 +

√
1

2
|101m〉 +

√
N − 1

4N − 2
|1m1m′ 〉

+ g

g
√

4N − 2 + 2�
|2m〉 , (G19)

|LP2〉 ≈
√

N

4N − 2
|20〉 −

√
1

2
|101m〉 +

√
N − 1

4N − 2
|1m1m′ 〉

+ g

g
√

4N − 2 − 2�
|2m〉 , (G20)

|2s〉 ≈ |2m〉 − g2

g2(2N− 1) − 2�2
(
√

N |20〉 +√
N − 1 |1m1m′ 〉)

+
√

2g�

g2(2N − 1) − 2�2
|101m〉 , (G21)

|LU〉 =
√

N − 1

2N − 1
|20〉 −

√
N

2N − 1
|1m1m′ 〉 . (G22)
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