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Quantum decoherence in high-order harmonic generation from solids
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For the high-order harmonic generation (HHG) from solids, the dephasing process induced by many-body
interactions has been discussed extensively in the studies of using the semiconductor Bloch equations (SBEs).
However, the role of dephasing in solid HHG is always ignored in the simulations of using a time-dependent
Schrödinger equation under the independent electron approximation. To solve this problem, we introduce the
imaginary potential to phenomenologically depict the dephasing process in the solid HHG. Compared with
the results of experiment and SBEs, the validity of this approach has been verified by the laser intensity-
and wavelength-dependent HHG spectra. Diffusion of the quantum wave packet controls the time-frequency
characteristic in solid HHG. To obtain semiclassical trajectories whose predictions are consistent with the
quantum simulations, we propose an open-trajectory model by relaxing the zero displacement condition in the
tunneling and recollision steps. In addition, the quantum decoherence adjusts the chirp of the emission time
profile via modulating the coherent overlap between recombined wave packets, which further paves a way to
generate an attosecond pulse from solids and probe the dephasing time via the high-harmonic spectroscopy.
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I. INTRODUCTION

High-order harmonic generation (HHG) is an extremely
nonlinear optical process in which many photons of the
driving laser field are up-converted to one higher-energy
photon [1–6]. HHG in solids has attracted great attention
since its experimental observation in 2011 [7–9]. The three
main theoretical approaches to study solid-state HHG in-
clude (i) the time-dependent Schrödinger equation (TDSE),
(ii) the time-dependent density functional theory (TDDFT),
and (iii) the semiconductor Bloch equations (SBEs). The
approaches such as TDSE and TDDFT ignore the effect of
dephasing time [10–24]. Therefore, in the previous studies
exploiting the first two approaches, the ultrafast dynamics of
quantum wave packets exclude the phase-breaking processes
induced by the many-body scattering effect in condensed
matter.

Three- and four-step models have been proposed to un-
derstand the solid HHG process. The generalized three-step
model can be summarized as the first ionization step, subse-
quent acceleration step of the ionized electron wave packet
in an intense field, and recombination step of the electron
wave packet with hole of any lattice sites [1–3]. However,
before the first step of ionization, the electrons from the dif-
ferent initial states will be accelerated in the valence band
and they can further efficiently tunnel to the conduction
band. Thus, a new four-step model was established by in-
cluding this pre-acceleration prior to tunnel ionization [25].
According to the introduced models, there are different tra-
jectories that contribute to each individual harmonic order.
The quantum interference effects between short and long
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trajectories have been reported experimentally in the HHG
from the sapphire target [26]. In addition, the laser intensity-
and wavelength-dependent HHG yield modulation, spectral
splitting, and unexpected orientation of the polarization-
resolved high-harmonic spectroscopy have been theoretically
attributed to the quantum-trajectory interference [26–28]. And
the rapid dephasing of the electron population plays a signifi-
cant role in quantum-trajectory interference.

Dephasing time was introduced phenomenologically in the
SBEs and led to the quantum decoherence of trajectories
caused by the strong electron-particle scatterings [29]. Con-
sidering the deficiency of the single-active-electron (SAE)
approximation adopted in the TDSE and TDDFT approaches
and the difficulties associated with representing electronic and
electron-phonon interactions in the SAE approximation, how
to include the quantum decoherence in the time-dependent dy-
namics of the electron wave packet is intensively required. In
addition, the partial conclusions in the studies of adopting the
TDSE and TDDFT approaches are incomplete due to the lack
of discussions of dephasing [18–24]. One should note that the
dephasing controls the electron population distribution in the
higher-lying energy bands of the excited band-gap materials.
For instance, the step-by-step interband transitions and Bloch
oscillations of the electron wave packet will be destroyed
[11–13]. The reported phenomena, which lack discussions on
dephasing, such as HHG yield enhancement (modulation) and
energy band reconstruction shall be revisited with inclusion of
the role of dephasing [15–19,22–24].

This paper is organized as follows. In Sec. II, we describe
the method of introducing dephasing into the TDSE for the
HHG process, by adding an imaginary potential to the Hamil-
tonian of the system, and present the numerical method in our
simulations. In Sec. III, we demonstrate the validity of the
method in the solid HHG and modify the closed-trajectory
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model via relaxing two zero displacements in the tunneling
and recollision steps, i.e., the so-called open-trajectory model.
In addition, we discuss the role of dephasing on the dynamics
of the quantum wave packet and the chirp of emission times.
We summarize our work in Sec. IV. Atomic units are used
throughout this work, unless specified otherwise.

II. THEORETICAL APPROACH

In the study of solid HHG, it is acceptable to simulate
the semiconductors as an ensemble of noninteracting elec-
trons characterized by a one-particle Hamiltonian ĥ0. In our
simulations, wave functions are expanded by Bloch states
|φn

k〉, which are the eigenstates of the field-free Hamiltonian

ĥ0 = p̂2

2 + V (x), described as

ĥ0|φn
k〉 = En(k)|φn

k〉. (1)

We choose the one-dimensional periodic potential wells of the
ZnO model along the specifically polarized direction, the form
of which is V (x) = −V0[1 + cos( 2π

a0
x)], with V0 = 0.37 a.u.

and lattice constant a0 = 8 a.u. [30].
The quantum decoherence induced by the disorder in real

material [31,32], the propagation of a radiation field [33,34],
and the electron-electron and electron-phonon scatterings
[35,36] are totally neglected in the TDSE simulations of solid
HHG. Decoherence can be referred to as a pure dephasing
process and has been introduced phenomenologically in the
SBE simulations via the term of the dephasing time [37]. To
take account of this dephasing process in TDSE simulations
of solid HHG, we introduce a non-Hermitian Hamiltonian
including the one-particle Hamiltonian ĥ0 and imaginary po-
tential −iU (x), which is written as

Ĥ0 = p̂2

2
+ V (x) − iU (x). (2)

The eigenenergies of this non-Hermitian system become com-
plex values En(k) − i�n(k), and �n(k) is called a dephasing
rate for the band index n. The dephasing time is given as
T n

2 (k) = 1
2�n(k) [38]. The imaginary potential is physically

related to the electron mean free path given by T n
2 (k)vn(k),

where vn(k) is the group velocity of band index n. Note
that the spatial range of U (x) and value of U0 determine the
dephasing (or scattering) time T n

2 . As an example, with the
choice of imaginary potential U (x) = U0[1 + cos( 2π

10a0
x)] and

U0 = 0.0037 a.u. [39], we display the real and imaginary
energies of the non-Hermitian Hamiltonian and compare them
with the energies of the Hermitian Hamiltonian in Fig. 1.
One can observe that in Fig. 1(b), the dephasing rates �n(k)
contributed by the imaginary potential for band index n are es-
sentially k dependent, but almost constant here. In fact, when
the imaginary potential we choose is constant, the dephasing
time will also be constant. The effect of the k-dependent
dephasing rate in solids, such as the trapezoidal envelope
distribution in the Brillouin zone (BZ), has been discussed
[40]. For simplicity, a constant imaginary potential will be
used throughout this work and we subsequently drop the band
index n and momentum k in the dephasing rate (time).

FIG. 1. (a) Real parts of the energy bands obtained by the diag-
onalizations of the non-Hermitian (dispersion curves) and Hermitian
(gray dispersion circles) Hamiltonians. (b) Dephasing rates �n(k)
introduced by the imaginary potential in Eq. (2).

Following the SAE approximation and velocity-gauge
treatment, the TDSE can be written as

i
∂

∂t
|�(t )〉 =

[
[ p̂ + A(t )]2

2
+ V (x) − iU (x)

]
|�(t )〉, (3)

where the dipole approximation has been assumed. A(t ) =
− ∫ t

−∞ F (t ′)dt ′ is the vector potential with cos2 envelope.
The wavelength and duration of the laser pulses are 2.0 μm
and 16 optical cycles, respectively. To avoid the complicated
electronic dynamics processes caused by the Bloch oscillation
across the edge of the BZ, the laser intensity adopted in the
following simulations is relatively moderate. Given the time-
dependent Hamiltonian in Eq. (3), the evolution of the wave
function can be written as

|�k(t0 + �t )〉 = e−i[Ĥ0+Ap̂+A2/2]�t |�k(t0)〉
= e−��t · e−i[ĥ0+Ap̂+A2/2]�t |�k(t0)〉. (4)

In Eq. (4), one will find that the wave function is attenuated
by the imaginary potential at a rate of �, which takes account
of many-body scatterings phenomenologically and is beyond
the SAE approximation.

The time-dependent wave function in a basis of Bloch
states is expressed as

|�k(t )〉 =
∑

n

Cn
k (t )|φn

k〉. (5)

Here, k = k0 − A, reflecting that the vector potential in a given
direction is the momentum that would be imparted to an elec-
tron starting from k0. Electrons around the top of the valence
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FIG. 2. High-order harmonic spectra with and without dephas-
ing. The laser intensity, duration, and wavelength are 1.8 TW/cm2,
16 optical cycles, and 2.0 μm, respectively. The laser optical cycle
is T0 = 6.7 fs. Dephasing times T2 = ∞ (red dash-dotted line) and
T0/4 (blue solid line) are shown. The minimal gap (ε0) is denoted by
the green dashed vertical line.

band have maximal tunneling probability to be pumped into
the conduction band, and the holes are left in the valence
band. We choose the initial wave packet constructed by the
Bloch states within the range of the ±10% BZ area near the
k0 = 0 point [41], and thus the initial wave packet holds a
spatial localization to some extent. Making an insight into the
time-dependent wave function of Eq. (5) in coordinate space,
one can comprehend that the intra- and interband transitions
in the HHG processes correspond to the motions of the Bloch
wave packets moving at group and phase velocities, respec-
tively [22]. Then we calculate the laser-induced current J (t ) as
the coherent sum of the currents for the different initial states,
which is written as

J (t ) = −
∫

BZ
[〈�k(t )| p̂|�k(t )〉]dk + A(t ), (6)

where the time-dependent wave functions |�k(t )〉 are ob-
tained by the Crank-Nicolson method [42]. The harmonic
spectrum I (ω) could be obtained as the modulus square of the
Fourier transform of the time-dependent current J (t ), which
consists of the intra- and interband currents and had been
clarified to be the dominated contribution from the interband
current [11,14]. Before the Fourier transform, we multiply
J (t ) by a Hanning window to increase the signal-to-noise
ratio.

III. RESULTS AND DISCUSSIONS

First, to prove the reliability of treating quantum deco-
herence with an imaginary potential, we obtain the high-
harmonic spectrum by solving the above-mentioned TDSE,
which can include the phase-breaking process of the quan-
tum wave-packet dynamics. As shown by the red dash-dotted
curve in Fig. 2, the high-harmonic spectrum with the bad
signal-to-noise ratio just displays the plateau structure in
which the harmonic peaks are obscure. However, for the case
of considering the dephasing introduced in Eq. (3), one can
further observe that the high-harmonic spectrum shown by
the blue solid curve presents a good signal-to-noise ratio

and clear peak structure of the harmonics, which can also
be acquired in SBE simulations with appropriate dephasing
times [37].

To clarify the role of quantum decoherence in the HHG
from solids driven by the intense laser pulses, we then make
a classical-trajectory analysis on the HHG, shown in Fig. 2.
According to the three-step model of the atomic system, an
electron ionized at the certain moments t ′ usually can recom-
bine and emit the same photon energy of the harmonic at
several moments t . Excursion time, a characteristic parameter
describing the trajectory of the electron-hole pair, is defined
as τ = t − t ′. The trajectories of possessing an excursion
time greater than one optical cycle are the so-called higher-
order recollision trajectories. Thus the drifting electron wave
packet with higher-order recollision trajectories experiences
the longer excursion times τ , which leads to the fact that
the contributions of high-order recollision trajectories in solid
HHG are greatly suppressed at the decay rate e−τ/T2 . When the
dephasing time T2 is shorter than one-half of an optical cycle,
the contributions from the multiple recollision trajectories will
be negligible. Thus, only the first-recollision short and long
trajectories whose excursion times are less than an optical
cycle dominate the signals of HHG.

Considering the larger excursion time τ of the long tra-
jectory resulting in the rapid decay rate term e−τ/T2 , the
contribution from the long trajectory further becomes negligi-
ble. When the dephasing time is comparable with one-quarter
of the optical cycle, only the short trajectory dominates the
harmonic emissions in each half optical cycle, which results
in the fact that the peaks of the odd harmonics get cleaner,
as shown by the blue solid line in Fig. 2. Thus, the high-
harmonic spectrum is elaborately dependent on the dephasing
time.

In the present experimental setup, the role of quantum
decoherence in solid HHG can be observed by the tunable pa-
rameters of laser pulses. Employing the methodology in which
we have introduced quantum decoherence in the TDSE simu-
lation, we show the high-order harmonic spectra as a function
of the laser intensity and wavelength, as shown in Figs. 3(a)
and 3(c), respectively. In Figs. 3(b) and 3(d), we obtain their
corresponding yields by the integral in the first HHG plateau,
as depicted by the blue solid curves. To compare with the
case excluding decoherence, we further present their integral
yields with the red dotted curves in Figs. 3(b) and 3(d). One
can observe that the harmonic yields excluding decoherence
are obviously modulated by laser intensity and wavelength,
which has been attributed to the subcycle interference within
an optical cycle and discussed in Ref. [27]. The blue solid
curves in Figs. 3(b) and 3(d) uncover the role of decoherence
on the suppression of subcycle interference, which reaches a
good agreement with the experimental observations [7,43–45]
and SBEs simulations [27]. Thus, the validity of our intro-
ducing a non-Hermitian Hamilton to include the wave-packet
decoherence is demonstrated. In addition, for the blue solid
line in Fig. 3(d), one can further observe that a slight yield
oscillation within the wavelength range of 2.0–3.25 μm ap-
pears by comparing it within the wavelength range of 3.25–4.5
μm. The change of the harmonic yield modulation provides a
way to retrieve the dephasing time of the Bloch electron wave
packets in condensed matter [46].
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FIG. 3. Yield modulations varying with the electric field and
wavelength of the laser pulses. The wavelength 2.0 μm and dephas-
ing time T2 = 1.2 fs are adopted in (a). For (c), the laser intensity
and dephasing time are 1.8 TW cm−2 and T2 = 1.7 fs, respectively.
The corresponding yields via the integral within the range of the first
plateau zone are shown in (b) and (d), in which the red dotted and
the blue solid curves denote the results without and with dephasing,
respectively.

Next we set our sights on the comparisons between quan-
tum simulations and semiclassical trajectory predictions. To
intuitively understand the effect of dephasing time on the
HHG process, we present the time-frequency analyses shown
by the color diagrams of Figs. 4(a) and 4(b) [47]. One can find
that the contribution of the long trajectory is extremely sup-
pressed when the role of decoherence is included, as shown
in Fig. 4(b) compared to Fig. 4(a). In view of this physical
picture, the dephasing time can be understood as the time
interval between each of the two scattering events. A shorter
dephasing time will lead to the faster decay rate on the long
trajectory and give rise to the survival of short trajectories,
which guarantees the temporal coherence of emission events
between each half optical cycle.

In the reciprocal space, the quasiclassical model describes
the generation of high-order harmonics as follows [11–13]:
(i) the electrons near k0 = 0 with the minimal band gap are
pumped from the top of the valence band into the conduction
band and leave the holes in the valence band, (ii) the elec-
trons and holes oscillate in their respective bands and follow
their motion equation k(t ), (iii) electrons of the conduction
bands recombine with the holes left in the valence band and
emit high-order harmonics with band-gap energy εg[k(t )].
In Figs. 4(a) and 4(b), the quasiclassical prediction of HHG
is presented by the dark-gray dash-dotted curve. One could

FIG. 4. Time-frequency analyses of the high-harmonic spectrum
shown in Fig. 2 are presented by color scale in (a) and (b), respec-
tively. The dephasing times T2 adopted in (a) and (b) are ∞ and
T0/4 (1.7 fs), respectively. The gray solid curve and green solid
circles denote the predicted emission times by the closed-trajectory
and open-trajectory models, respectively. The dark-gray dash-dotted
curve is the emission times given by the quasiclassical model in k
space.

observe that the results of the quasiclassical prediction reach
a strong agreement with those of the quantum simulations.

In real space, to simplify the semiclassical trajectory anal-
ysis of solid HHG, the first-recollision trajectories, i.e., short
and long trajectories, are taken into account. Under the pic-
ture of HHG in real space, the electron-hole pair generated
at the moment t ′ possesses zero relative displacement. Then
electron and hole wave packets propagate with their respective
group velocities, vn = ∇kEn[k(t )] (n = c, v). Finally, the high
harmonics with photon energy εg[k(t )] are emitted when the
excited electron and corresponding hole recombine with each
other in real space. Here, the relative displacement between
the electron and hole is denoted as

�xe − �xh =
∫ t

t ′
vg[k(t ′′)]dt ′′, (7)

where �xe (�xh) represents the displacement of electrons
(holes) from t ′ to t and vg = vc − vv is their velocity differ-
ence. Note that the emission of HHG in atomic and molecular
systems must satisfy the condition of zero displacement in
the tunneling and recombination steps, i.e., the so-called
closed-trajectory model. The emission times predicted by the
closed-trajectory model in Fig. 4(a) are obviously inconsistent
with the results of the quantum simulation and quasiclassical
prediction, as shown by the gray solid curve compared with
the color diagram and dark-gray dash-dotted curve.

To understand the discrepancy between the closed-
trajectory predictions and quantum simulations, we introduce
an open-trajectory model by relaxing two conditions. As
shown in Fig. 5, the open-trajectory model can be described as
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FIG. 5. Schematics of the open-trajectory model in the coordi-
nate space. The corrections in which there are nonzero displacements
in the tunneling and recombination steps and the wave-packet diffu-
sion in the propagation process are considered here. d0 and D denote
the nonzero displacements in the tunneling and recombination steps,
respectively. Change of the width of the electron and hole wave
packets denotes the diffusion induced by propagation and many-body
scatterings. Here the propagation and recollision can be understood
as the intra- and interband transition dynamics in the reciprocal
space, respectively.

follows: (i) There is a spatial displacement between the elec-
tron and hole in the tunneling step [48], which is similar to the
classical tunnel exit [49] for atomic and molecular systems.
Thus one can relax the zero displacement in the generation
step of the electron-hole pair. (ii) The electron and hole wave
packets propagate and diffuse in real space. (iii) Considering
the delocalization of wave packets and their quantum coherent
overlap, one can further adjust the recollision condition with
a nonzero displacement [46,50,51].

Under the conservation of energy, we can obtain a spatial
displacement d0 of the electrons by d0 = −εg/F in the laser-
assisted tunneling step [49]. Here the value of d0 is adopted
as 2a0, and the direction of d0 is opposite to the polarized
direction of the electric fields. Another parameter, a coherent-
overlap length (D) for the recollision step, is determined
by the extent of the wave-packet diffusion, which is usually
characterized by the dephasing time and driven laser pulse
parameters and described as the relation D = 4Up

A0�
∝ FλT2,

which is substantiated in the Appendix. Up, λ, and A0 are
the ponderomotive energy, driven-laser wavelength, and maxi-
mum momentum obtained from the driving field, respectively.
Here the nonzero distances of recollision D are about 2a0. As
a consequence, Eq. (7) can be rewritten as

�xe − �xh = D − d0. (8)

Taking account of the polarization energies induced by
the two nonzero displacements of the electron-hole pair at
ionization and recollision steps, the photon energy 
 is
modified as


 = εg[k(t )] + F (t )D − F (t ′)d0. (9)

FIG. 6. The emission times of the short trajectory obtained from
the quantum simulations vary with the dephasing times (T2) of chang-
ing from ∞ to 0.25 T0, where T0 is the laser optical cycle. The laser
parameters adopted here are the same as Fig. 2. The black solid line
is the emission time predicted by the closed-trajectory model.

One can find that the emission times (green solid circles)
predicted by this open-trajectory model reach a strong agree-
ment with the results of the time-frequency analyses and
quasiclassical model, as shown in Figs. 4(a) and 4(b). The
open-trajectory model provides an essential route to under-
stand the quantum coherence between wave packets in solids
driven by the laser pulses.

In addition to the above-mentioned spectroscopic char-
acteristics of HHG, one can further delicately observe the
change on the chirp of the short trajectory in Fig. 4(b) com-
pared with Fig. 4(a). For the high harmonics contributed by
the short trajectory, the difference of their emission times be-
comes smaller with the decrease of dephasing time. Here we
provide a qualitative theoretical analysis to explain this phe-
nomenon based on the perspective of quantum wave-packet
propagation and diffusion. In the framework of wave-function
representation, an excited wave packet will spontaneously
spread during its propagation in periodic potentials. In this
process, the quantum wave packets will undergo the transition
from localization to the relatively spatial delocalization, as
shown in Fig. 5. In the absence of dephasing, there is enough
time for quantum wave packets to realize the spatial spread,
which means that the coherent overlap (recombination) be-
tween the electron and hole wave packets is considerable,
and then the open trajectories will appear. As a characteristic
parameter controlling the coherent length between the elec-
tron and hole wave packets, the dephasing time determines
the diffusion and survival of quantum trajectories. When a
small dephasing time is employed, the quantum wave packet
possesses a short coherent length in the recombination process
of the electron-hole pairs. Thus the electron and hole will
act as a “particle,” and their paths of motion are closer to
the results of the closed-trajectory model. As further demon-
strated by Fig. 6, the emission times of the short trajectory are
closer to the prediction of the closed-trajectory model when
the dephasing time decreases. Based on the physical origin
of dephasing, it is feasible to control the dephasing time via
changing the degree of disorder, carrier concentration, thick-
ness, and temperature in the solid materials. Optimization of
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the dephasing time provides a route to control the emission
times of HHG and further generates shorter attosecond pulses
from solid HHG.

IV. CONCLUSION

In conclusion, we propose a methodology employing a
non-Hermitian Hamiltonian to describe the dephasing pro-
cess in high-harmonic generation from solids. The validity
of this non-Hermitian Hamiltonian has been verified by the
laser intensity- and wavelength-dependent HHG spectra via
comparing it with the results of experiment and SBEs. To
understand the discrepancy of emission times predicted by
the closed-trajectory model and quantum simulation, we in-
troduce an open-trajectory model and provide insight into the
role of dephasing in the dynamics of quantum wave packets.
Quantum decoherence controls the survival of quantum trajec-
tories and modulates the diffusion of quantum wave packets in
real space. In addition, the dephasing makes an impact on the
coherent overlap between the electron and hole wave packets,
which adjusts the chirp of the short trajectory, and paves a way
to retrieve the coherent time in condensed matter and generate
the isolated attosecond pulse.
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APPENDIX: WAVE-PACKET DIFFUSION INDUCED
BY DEPHASING

The electron-hole pair wave function can be denoted as

P(k, t ) = −
∫ ∞

0
dτ eiS(k,t,τ )−iωtζ , (A1)

with the classical action given by

S(k, t, τ ) = −
∫ t

t−τ

dt ′ �E (k, t ′) + i�τ + ωt

= −
∫ t

t−τ

dt ′ {2Up[
k

A0
− sin(ωt ′)]2} + i�τ + ωt .

(A2)

Here, ζ is the Rabi frequency of multiplying the electric
field amplitude and transition dipole moment, �E = k2

2mR
is

the energy dispersion of the electron-hole pair under the
excitation resonant and parabolic approximations, and mR

is the electron-hole reduced mass. k(t ) = k0 − A0 sin(ωt )
is the canonical momentum of the electron-hole pair, and
Up = A2

0/4mR is the ponderomotive energy. We first expand
Eq. (A2) and neglect the indirect driving term with the 2ω fre-
quency component. Then we obtain the saddle-point equation
by the first derivative of classical action S with respect to the
recollision time t , which can be written as

ωs = 2Up{sin[ω(t − τ )] − sin(ωt )}2. (A3)
Finally, the highest energy can be obtained at the condition
for ωt = 3π/2 and ωτ = π . To obtain an estimate of the
wave-function diffusion width, we expand the trigonometric
functions to the first order in t − τ , where only the points of
highest-energy electron-hole pair trajectories in Eq. (A3) are
included. Evaluating the excursion time τ integral in Eq. (A1)
approximatively gives rise to the wave-function distribution in
momentum space, which can be denoted as

P(k, t ) ≈ eiS(k,t )−iωtζ

2Up( k2

A2
0
+ 2 k

A0
) − i�

. (A4)

Hence the half maximum of the wave function in the BZ ap-
pears at k1/2 = −A0(1 ± √

1 + �/2Up) and then one achieves
a full half maximum of �kFWHM = A0�/2Up. The wave func-
tion width D can be given as 2/�kFWHM.
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