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A method for measuring small energy level shifts in a qubit by coherent amplification of their effect is
proposed. It is based on the repeated application of the same interaction pulse in two manners: with the same
phase of each subsequent pulse, and with an alternating phase shift of π (i.e., a minus sign) from pulse to pulse.
Two specific types of pulses are considered: a resonant π pulse and an adiabatic chirped pulse, both of which
produce population inversion with high fidelity. In the presence of a weak ambient external electric or magnetic
field, the ensuing Stark or Zeeman shift leads to an energy level shift and hence a static detuning. In both the
resonant and adiabatic approaches, a small level shift does not alter the transition probability very much; however,
it can significantly change the dynamical phases in the propagator. The repeated application of the same pulse
greatly amplifies the changes in the dynamical phases and maps them onto the populations. Hence the effect
of the level shift can be measured with good accuracy. It is found that sequences of pulses with alternating
phases deliver much greater error amplification and much steeper excitation profiles around resonance, thereby
providing much higher sensitivity to small energy level shifts. Explicit analytic estimates of the sensitivity are
derived using the well-known noncrossing Rosen-Zener and Rabi models and the level-crossing Demkov-Kunike
model. This recipe provides a simple tool for rapid and accurate sensing of weak electric and magnetic fields
by using the same pulse generating an inversion quantum gate, without sophisticated tomography or entangling
operations.
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I. INTRODUCTION

In scalable quantum computation [1], the quantum gates
in a quantum circuit have to be implemented with very high
fidelity, with the admissible error in the range of 10−3-10−4,
depending on the quantum error correction protocol [2]. The
current state of the art in trapped-ions experiments features
errors of 10−5 [3,4] and even 10−6 [5] for single-qubit gates,
and errors of the order of 10−3 [4,6] for two-qubit gates.
The detrimental cross talk to neighboring ion qubits has been
suppressed to values of 10−5 [7] and 10−6 [8], and the errors
in ion transport have been reduced below 10−5 too [9]. In su-
perconducting qubits, fidelities of 99.9% for single-qubit and
99.4% for two-qubit gates have been reported [10]. Various
steps in qubit readout and quantum gate tomography, e.g.,
population shelving [11–14], have to be implemented with
very high fidelity too.

Such tiny errors require very good control of the driving
field as well as the environment, e.g., compensation of am-
bient electric and magnetic fields to a very high degree. This
is crucial in a quantum circuit where the entire propagator of
the particular gate must be very well controlled, i.e., both the
probability and the propagator phases have to be very stable.
The phases, in particular, are very sensitive to a detuning shift,
which can emerge due to both fluctuating frequency of the
laser, microwave, or radio-frequency generator, and energy
level shifts caused by uncompensated magnetic or electric
fields.

In order to characterize such unwanted detuning shifts in
the course of the experiment it is very useful to have a simple,
fast and reliable method to detect and measure such shifts.
Measuring the populations after the application of a single
pulse, which generates the quantum gate, is not reliable be-
cause the populations are fairly insensitive to detuning shifts,
whereas the gate phases, which are prone to these shifts, are
invisible to such a measurement. Performing full quantum
tomography would reveal the changes in the gate phases but
such a tomography could be very time-consuming.

To this end, I propose in this paper a conceptually very
simple technique for sensing and measuring small detuning
shifts. It is based on the repeated application of the same
gate-generating pulse, which greatly amplifies the effect of
the detuning shift due to quantum interference and maps it
onto the populations. In this manner, one does not need any
change in the experimental apparatus (i.e., the pulse ampli-
tude, duration, shape, frequency, and possibly chirp), and
avoids the introduction of additional experimental parame-
ters beyond the gate-generating pulse. In this manner, the
proposed technique is simpler than other, more sophisticated
quantum sensing methods [15] and quantum gate tomography
[16]. I consider the implementation of this sensing method
by applying the pulses used in two major quantum control
techniques for population inversion: a resonant π pulse and
an adiabatic chirped pulse.

The paper is organized as follows. The concept of the sens-
ing method is introduced in Sec. II and the general features of
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FIG. 1. Pulse sequences used to measure a small detuning shift
�0 from resonance by repeating the single-pulse interaction, while
keeping its phase the same (top), or flipping it by π from pulse to
pulse (bottom).

the transition probability generating the two types of sensing
sequences are presented in Sec. III. Three exactly soluble
analytic models are presented in Secs. IV, V, and VI. The
last section, Sec. VII, wraps up the results and presents some
discussion on the limitations of the method and an outlook of
its possible extensions.

II. CONCEPT

I consider two types of pulse sequences applied to a two-
state quantum system (see Fig. 1). In one of them, the same
pulse is applied N times [see Fig. 1 (top)], and then the
populations are measured. In the other, the same pulse is again
applied N times but the phase of every other pulse is shifted by
π , i.e., a minus sign is applied to the Rabi frequency of every
even-numbered pulse in the sequence [see Fig. 1 (bottom)].
The sequences may contain an odd or even number of pulses.
On exact resonance it is assumed that each pulse produces
complete (for resonant pulse) or almost complete (for adia-
batic chirped pulse) population inversion. This is achieved by
a π pulse in the former case and a chirped pulse with a pulse
area of a few π in the latter.

Because the excitation profile has its maximum value (and
hence a vanishing first-order derivative versus the detuning)
at resonance, a small detuning shift has very little effect on
the populations. However, such a detuning shift changes the
dynamic phases of the propagator much more significantly. If
one is restricted to measuring populations, as is assumed here,
these phase shifts are invisible in a single-pulse interaction;
however, they are mapped onto the populations by the inter-
ference generated by a train of pulses. These pulses are chosen
to be identical to the single π pulse, or the single chirped
adiabatic pulse, mentioned above, with the only difference
being the sign flip of the Rabi frequency in the sign-alternating
sequence. In this manner, no new parameters are introduced
in addition to the dynamic parameters of the single-pulse
propagator (the transition probability and the two dynamic
phases). This fact is important because, in the absence of other
uncertainties, the population changes are directly linked to the
detuning shift.

The rationale for the two pulse sequences considered here
is the following. It might appear at first sight that repeat-
ing the same pulse, without phase shifts, is the most natural

approach to coherent error amplification. Indeed, this case is
carefully analyzed here. However, it turns out that a sequence
of pulses with alternating Rabi frequency signs is a far better
approach as far as detuning shift sensing is concerned. When
considered more carefully, this is readily understood: a pair of
two resonant pulses with a π phase shift cancel each other’s
effect exactly because the propagator for the second pulse is
the Hermitean conjugate of the propagator of the first, thereby
resulting in the identity operation. In other words, a pair of
resonant pulses with Rabi frequencies � and −� will produce
no overall change and exactly zero transition probability. A
small detuning will break this symmetry and the cancellation
will not occur, giving rise to a nonzero transition probability.
When such a pair is repeated N times, the nonzero probability
is coherently amplified very quickly.

Furthermore, sequences of both even and odd number of
pulses N are used. With the transition probability for zero
static detuning being equal to 1, or almost 1, one should keep
in mind that the multipass transition probability for an odd N
is equal to 1, or almost 1, while it is zero, or almost zero, for
an even N . Hence the sensing feature around the zero static
detuning appears as a spike for odd N and a dip for even N . It
is the width of this feature and its slope, which are important
for the frequency shift sensing rather than whether it is a spike
or a dip.

In order to not only sense an energy level shift but ac-
curately measure it using the pulse sequence scenario, an
analytic relation between the single-pulse and N-pulse prob-
abilities is needed. Such a relation for an SU(2) propagator
is available [17] and it has been used recently for quantum
gate tomography [18,19]. Here it is used extensively, in com-
bination with explicit analytic formulas for the propagator
for three popular exactly soluble two-state models: the non-
crossing Rosen-Zener [20,21] and Rabi [22] models and the
level-crossing Demkov-Kunike model [23–26]. They allow
one to explicitly link the N-pulse transition probability to the
detuning shift.

III. MULTIPASS TRANSITION PROBABILITY

The Hamiltonian of a coherently driven two-state quantum
system, in the rotating-wave approximation [22], reads

H(t ) = h̄

2

[−�(t ) �(t )
�(t ) �(t )

]
, (1)

where �(t ) is the system-field frequency detuning and �(t )
is the Rabi frequency of the coupling between the two states.
The Rabi frequency is supposed to be pulse shaped and the
detuning may contain a static part �0 and a chirp,

�(t ) = �0 + β f (t ). (2)

In this paper, the objective is to measure a static error in the
detuning around zero, i.e., the static detuning �0 will be the
(unknown) quantity to be determined.

For arbitrary �(t ) and �(t ), the propagator corresponding
to the traceless Hamiltonian (1) is an SU(2) matrix, which
is expressed in terms of the complex-valued Cayley-Klein
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parameters a and b (|a|2 + |b|2 = 1) as

U =
[

a −b∗
b a∗

]
. (3)

If the system is initially in state |1〉, the probabilities for
remaining in state |1〉 and for transition to state |2〉 are

q = |a|2, p = |b|2. (4)

with p + q = 1. In the following sections, the connections
between �(t ) and �(t ) and the Cayley-Klein parameters will
be explicitly presented for three specific analytically soluble
models.

Instead of the two complex Cayley-Klein parameters a and
b, the propagator (3) can be expressed in terms of three real
parameters: the transition probability p and the dynamical
phases ξ and η (sometimes called Stückelberg phases),

U =
[

eiξ√1 − p −e−iη√p
eiη√p e−iξ√1 − p

]
, (5)

where a = eiξ√1 − p and b = eiη√p.

A. Sequence of pulses with the same phases

In order to determine the populations after N passes we
need to find the N-pass propagator UN = UN . It has been
proved [17] that the N th power of any SU(2) propagator,
parametrized as in Eq. (3), reads

UN =

⎡
⎢⎣cos Nθ + iai

sin Nθ

sin θ
−b∗ sin Nθ

sin θ

b
sin Nθ

sin θ
cos Nθ − iai

sin Nθ

sin θ

⎤
⎥⎦, (6)

where a = ar + iai and

θ = arccos(ar ) (0 � θ � π ). (7)

Therefore, the transition probability after N passes is

PN = p
sin2 Nθ

sin2 θ
. (8)

For N = 2, after simple algebra one finds

U�,�U�,� =
[

a2 − |b|2 −2b∗ar

2bar (a∗)2 − |b|2
]
. (9)

The double-pass transition probability is equal to
P2 = 4p(1 − p) cos2 ξ where Eq. (5) has been used.

B. Sequence of pulses with alternating phases

For the pulse sequence with alternating phases we need a
modification of the above result as follows. Consider a second
interaction with the same magnitudes of �(t ) and �(t ), but
with the opposite sign of �(t ) (see Fig. 1). The respective
propagator can be obtained from Eq. (3) by simple algebraic
operations [18,19,27] and, very importantly, can be expressed
with the same Cayley-Klein parameters a and b,

U−�,� =
[

a b∗
−b a∗

]
. (10)

The respective double-pass propagator reads

U−�,�U�,� =
[

a2 + |b|2 −2ib∗ai

−2ibai (a∗)2 + |b|2
]
, (11)

where U�,� is the same as U of Eq. (3). The double-pass tran-
sition probability is equal to P±

2 = 4p(1 − p) sin2 ξ , which is
different from the double-pass transition probability of P2 =
4p(1 − p) cos2 ξ in the case of the same phases due to the
Stückelberg phase ξ . This difference will be greatly amplified
in the N-pass probabilities.

For the sign-alternating sequence, we can use Eq. (11)
as the basic building block and derive the 2n-pass propa-
gator using the connection between Eqs. (3) and (6) above.
Obviously, the parameter a is now replaced by a2 + |b|2 =
1 − 2a2

i + 2iarai, the parameter b is replaced by −2ibai, and
the parameter θ is replaced by

	 = arccos
(
1 − 2a2

i

)
. (12)

Then the propagator for the sign-alternating sequence of 2n
pulses reads

U±
2n =

⎡
⎢⎣cos n	 + 2iarai

sin n	

sin 	
−2ib∗ai

sin n	

sin 	

−2ibai
sin n	

sin 	
cos n	 − 2iarai

sin n	

sin 	

⎤
⎥⎦.

(13)

The propagator for 2n + 1 pulses can be obtained by multi-
plying U±

2n by U of Eq. (3),

U±
2n+1 = UU±

2n =
[

aC + 2iaiS −b∗C
bC a∗C − 2iaiS

]
, (14)

with

C = cos
(
n + 1

2

)
	

cos 1
2	

, S = sin n	

sin 	
. (15)

Therefore, the transition probability after 2n and 2n + 1
pulses with alternating phases reads

P2n = p
sin2 n	

cos2 1
2	

, (16a)

P2n+1 = p
cos2

(
n + 1

2

)
	

cos2 1
2	

. (16b)

In the derivation of Eq. (16a), it is used that a2
i = sin2 1

2	,
which follows from Eq. (12).

In the limit of nearly complete population transfer by a
single pulse, which is concerned here, we have |b| ≈ 1 and
|a| � 1. Then |ar | � 1 and |ai| � 1 and hence θ ≈ π/2 and
	 � 1. More accurately, we have

θ ≈ 1
2π − ar − 1

6 a3
r + · · · , (17a)

	 ≈ 2|ai| + 1
3 |ai|3 + · · · . (17b)

Therefore, for sequences of pulses of the same phase,

P2n ≈ (2n)2a2
r , (18a)

P2n+1 ≈ 1 − a2
i − (2n + 1)2a2

r , (18b)
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while for sequences of pulses of alternating phases,

P±
2n ≈ (2n)2a2

i , (19a)

P±
2n+1 ≈ 1 − (2n + 1)2a2

i , (19b)

where the relation p = 1 − a2
r − a2

i has been accounted for.
While retaining the dominant asymptotic terms, especially
in Eq. (18b), it has been also used that ai is of order O(δ)
and ar is of order O(δ2). Obviously, the difference between
the two types of sequences is that for a sequence of pulses
with the same phases, the N-pulse transition probability (8)
is controlled by the real part ar of the diagonal Cayley-Klein
parameter a, while for a sequence of pulses with alternating
phases, the N-pulse transition probability is controlled by the
imaginary part ai of a. As we will see, this is an important
difference and these observations show the significance of the
properties of the parameter a.

C. Case studies

In order to examine the performance of the general for-
mulas (18) and (19) in regard to sensing, we consider three
analytically soluble models, which provide explicit analytic
expressions for the parameters ar and ai, from which one
can find out the dependence of the populations on the static
detuning shift �0. The first model is the Rosen-Zener model,
which assumes a bell-shaped hyperbolic-secant pulse shape
and a static detuning. It is suitable for studying the sensitivity
of a population inverting resonant π pulse to a small detuning
shift. The second model is the Rabi model, which assumes
a rectangular pulse shape and a constant detuning. It is of
the same type as, and simpler than the Rosen-Zener model.
The comparison of the two models reveals the effects of the
sharp pulse edges in the Rabi model. The third model is the
Demkov-Kunike model, which assumes the same hyperbolic-
secant pulse shape as the Rosen-Zener model but the detuning
is a sum of a hyperbolic-tangent-shaped detuning and a static
detuning. It is suitable for modeling adiabatic passage via a
level crossing in the presence of a small detuning shift.

IV. RESONANT π PULSES: ROSEN-ZENER MODEL

The noncrossing Rosen-Zener model is defined as [20]

�(t ) = �0 sech (t/T ), �(t ) = �0. (20)

The Cayley-Klein parameters of the Rosen-Zener propagator
are [20,21,28]

a = �(ν)�(ν − λ − μ)

�(ν − λ)�(ν − μ)
, (21a)

b = −i
sin(πα/2)

cosh(πδ/2)
, (21b)

where �(z) is Euler’s gamma function [29] and

λ = α/2, μ = −α/2, ν = (1 + iδ)/2, (22)

with α = �0T and δ = �0T . For �0 = 0, the Rosen-Zener
model describes a resonant pulse of pulse area π�0T = πα.
Therefore, a resonant π pulse is realized with α = 1. The
presence of the static detuning �0 allows one to simulate the
effect of a detuning shift on resonant excitation.
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FIG. 2. Transition probability vs the static detuning shift �0

for sequences of N = 2, 4, 8, and 16 identical pulses. The pulse
shape is hyperbolic secant, with a pulse area of π and width T ,
and the detuning is constant (Rosen-Zener model). In each frame,
the transition probability is plotted for a sequence of pulses with
the same phase (thin blue solid curve), and a sequence of pulses
with alternating phases (thick red solid curve). The dashed curve
shows the no-transition probability for a single pulse and serves as
a reference.

Of particular interest in the present context is the behavior
of the parameter a for small detuning. For a π pulse (α = 1)
we have

a ≈ i
πδ

2
+ πδ2 ln 2 − iπδ3

[
π2

24
+ (ln 2)2

]
+ O(δ4). (23)

From here, it follows that

θ ≈ π

2
− πδ2 ln 2 + O(δ4), (24a)

	 ≈ πδ + O(δ3). (24b)

Figure 2 shows the transition probability vs the static
detuning shift �0 for sequences of an even number of
hyperbolic-secant pulses, each with a pulse area of π , and
Fig. 3 shows the transition probability for sequences of an
odd number of pulses. The probabilities are calculated from
Eqs. (8) and (16). Around resonance, a narrow feature forms
which gets more narrow as the number of pulses N increases.
For an even number of pulses, the feature shows up as a dip
(Fig. 2), and for an odd number of pulses, it appears as a
spike (Fig. 3). This feature is much more narrow for sequences
of alternating phases (thick curves) than for sequences of the
same phases (thin curves).

Using Eqs. (18), (19), and (23), it is easy to
derive the behavior of the transition probability for
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FIG. 3. The same as Fig. 2 but for an odd number of pulses,
N = 3, 5, 9, and 15. Here the dashed curve shows the transition
probability for a single pulse and serves as a reference.

|δ| � 1. For a sequence of pulses with the same phases, the
approximation is

P2n ≈ (2nπ ln 2)2δ4, (25a)

P2n+1 ≈ 1 − 1
4π2δ2 + [

1
24π2 − 4n(n + 1)(ln 2)2

]
π2δ4.

(25b)

For a sequence of pulses of alternating phases, it reads

P2n ≈ n2π2δ2, (26a)

P2n+1 ≈ 1 − (
n + 1

2

)2
π2δ2. (26b)

The four approximate formulas (25a)–(26b) are plotted in
Fig. 4 and compared to the exact values. A very good agree-
ment between exact and approximate values is observed for
|δ| � 1, as should be the case.

For a sequence of pulses with alternating phases, the de-
pendence on N and δ near resonance is the same for an even
and odd number of pulses, albeit inverted [see Eqs. (26a) and
(26b)]: the transition probability departs as ∝ N2δ2 from its
resonant value. This means that the excitation profile can be
squeezed as much as desired by merely increasing the number
of pulses N .

The behavior of the transition probability for a sequence
of pulses with the same phases is rather different: the tran-
sition probability departs as ∝N2δ4 from zero for an even
number of pulses [Eq. (25a)], while for an odd number of
pulses, its departure from unity is described by a sum of an
N-independent term ∝δ2 and a term ∝N2δ4 [Eq. (25b)]. Con-
sequently, the transition probability is much flatter in the range
near resonance than for sequences of pulses with alternating
phases. Moreover, the presence of the N-independent term
∝δ2 for odd N impedes the squeezing of the excitation profile
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FIG. 4. Transition probability vs the static detuning shift �0 for
sequences of N = 8 and 9 identical pulses for sech pulses with a
pulse area of π and width T (Rosen-Zener model). The two frames
are zoomed-in and modified versions of the corresponding frames in
Figs. 2 and 3. In each frame, the transition probability is plotted for
a sequence of pulses with the same phase (thin blue solid curve), and
a sequence of pulses with alternating phases (thick red solid curve).
The dashed curves show the approximations for |δ| � 1: Eqs. (25a)
and (26a) for N = 8 pulses, and Eqs. (25b) and (26b) for N = 9
pulses.

by increasing N . In either case, due to the different departure
law from resonance, the profile is much broader than for
alternating-phase sequences, as indeed seen in Figs. 2–4.

The conclusion is that, as far as squeezing of the excitation
profile near resonance is concerned, the sequences of pulses
with alternating phases outperform the sequences of pulses
with equal phases and therefore, are much more efficient for
sensing of small detuning shifts. Moreover, the simple and
accurate approximate formulas, Eqs. (25a)–(26b), allow one
to not only sense a detuning shift but to also measure it
by measuring populations. Any ambiguity, which may arise
for a larger detuning shift due to the multiple oscillations
for large N , can be resolved by making measurements for
different N .

In order to estimate the sensitivity of this technique, con-
sider the sequences with alternating phases, for which the
deviation from the resonant value is, in the lowest order,
(Nπδ/2)2 [see Eqs. (26)]. By setting this deviation to 1

2 and
recalling that δ = �0T , we find that the half width at half
maximum of the spike or the dip is

�1/2 =
√

2

NπT
≈ 0.45

NT
. (27)
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Therefore, the sensitivity can be increased by increasing T
(which is the well-known Fourier bandwidth argument) or
by increasing N . For example, a sequence of ten π pulses
with alternating phases, each of duration 10 μs, allows one
to sense and measure a detuning shift of 4.5 kHz. If, instead
of a deviation of 1

2 , we can measure a population deviation of
1

10 , then the sensitivity of the same arrangement improves to
2 kHz.

As is clear from the approximations (25a) and (25b), the
excitation profile can be squeezed by sequences of pulses
with the same phases too. However, the scaling is much less
efficient, �1/2 ∝ 1/N1/2, rather than 1/N . By setting the devi-
ation to 1

2 , we find from Eq. (25a) that

�1/2 = 1√
Nπ

√
2 ln 2 T

≈ 0.57√
N T

. (28)

Hence a sequence of ten π pulses with the same phases, each
of duration 10 μs, allows one to sense and measure a detuning
shift of 18 kHz, a factor of 4 larger than for sequences of
alternating phases. Therefore, by merely flipping the phase
of every other pulse in the sequence, one can achieve much
stronger (quadratically enhanced) squeezing and hence much
better sensitivity.

V. RECTANGULAR PULSES: RABI MODEL

One can apply the same approach using pulses of rectan-
gular shape, which is the so-called Rabi model,

�(t ) =
{
�0, |t | � T/2
0, |t | > T/2 , �(t ) = �0. (29)

The Cayley-Klein parameters of the Rabi propagator are far
simpler than for the Rosen-Zener model [22],

a = cos
(

1
2

√
α2 + δ2

)
+ iδ sin

(
1
2

√
α2 + δ2

)
√

α2 + δ2
, (30a)

b = − iα sin
(

1
2

√
α2 + δ2

)
√

α2 + δ2
, (30b)

with α = �0T and δ = �0T . Note that the pulse area is equal
to α; therefore, a resonant π pulse is realized with α = π .
For such a π pulse, the Taylor expansion of the Cayley-Klein
parameter a reads

a ≈ i
δ

π
− δ2

4π
− i

δ3

2π3
+ δ4

16π3
+ O(δ5). (31)

Hence to the lowest order in δ we have ar = −δ2/(4π ) and
ai = δ/π . The transition probability for the pulse sequences
with alternating phases can be calculated from Eqs. (16). For
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FIG. 5. Comparison of the Rosen-Zener and Rabi models for
sequences of ten pulses with alternating phases. The sech and rect-
angular pulse have the same peak amplitude and the same area π .

small δ we find from Eqs. (19)

P±
2n ≈ (2n)2 δ2

π2
, (32a)

P±
2n+1 ≈ 1 − (2n + 1)2 δ2

π2
. (32b)

By setting the transition probability to 1
2 and recalling that

δ = �0T , we find for both odd and even N

�1/2 ≈ π√
2 NT

≈ 2.22

NT
. (33)

This value is a factor of about 5 larger than that for the Rosen-
Zener model, Eq. (27).

Figure 5 compares the excitation profiles for the Rabi
and Rosen-Zener models generated by sequences of ten π

pulses of alternating phases. The pulse area of each pulse is
π and the peak Rabi frequency is the same for each model.
Obviously, the feature near resonance is much more narrow
for the Rosen-Zener model (a factor of about 5, as noted
above). The physical reason is that the rectangular pulses
in the Rabi model exhibit typical power broadening, due to
its sharp edges, while the smooth pulse in the Rosen-Zener
model has no power broadening at all [30–32]. Note that some
pulse shapes, with wings vanishing as t−n exhibit even power
narrowing [32], and they might provide even better sensitivity
than sech pulses.

VI. ADIABATIC CHIRPED PULSES:
DEMKOV-KUNIKE MODEL

The level-crossing Demkov-Kunike model is defined
as [23]

�(t ) = �0 sech (t/T ), �(t ) = �0 + B tanh(t/T ). (34)

For �0 = 0, the Demkov-Kunike model reduces to the Allen-
Eberly-Hioe model [33–35], also known as the complex-sech
pulse in NMR. It is the most beautiful example of chirped
adiabatic passage involving a level crossing. The addition of
the static detuning �0 allows one to simulate a detuning shift
in this model. For B = 0, the Demkov-Kunike model reduces
to the Rosen-Zener model. For B = �0, the Demkov-Kunike
model turns into the Bambini-Berman model [36].
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FIG. 6. Transition probability in the Demkov-Kunike model vs
the static detuning shift �0 for sequences of N identical pulses. The
pulse shape is hyperbolic secant, with a pulse area of 2π and width
T , and the detuning is given by a hyperbolic-tangent chirp (with β =
2/T ) and a constant term �0. In each frame, the transition probability
is plotted for a single pulse (dashed curve), a sequence of pulses with
the same phase (thin blue solid curve), and a sequence of pulses with
alternating phases (thick red solid curve). The dotted curves illustrate
the approximations (39a) for even N and (39b) for odd N .

The Cayley-Klein parameters for this model are [23,28]

a = �(ν)�(ν − λ − μ)

�(ν − λ)�(ν − μ)
, (35a)

b = − iα�(1 − ν)�(ν − λ − μ)

2�(1 − λ)�(1 − μ)
, (35b)

where

λ = (
√

α2 − β2 − iβ )/2, (36a)

μ = −(
√

α2 + β2 + iβ )/2, (36b)

ν = (1 + iδ − iβ )/2, (36c)

with α = �0T , β = BT , and δ = �0T .
In the Demkov-Kunike model, we have for α = β = 2

(corresponding to pulse area of 2π and chirp rate of B = 2/T )

a ≈ 0.086 + 0.165iδ − 0.052δ2 + 0.036iδ3 + O(δ4), (37)

from where we find

θ ≈ 1.484 + 0.052δ2 + O(δ4), (38a)

	 ≈ 0.33δ + O(δ3). (38b)

The transition probability for the Demkov-Kunike model
can be calculated from Eqs. (8) and (16) and it is plotted in
Fig. 6. We are interested again in the feature near zero static
detuning which emerges as a spike (for odd N) or a dip (for
even N). Once again, the features produced by the sequences

with alternating phases are much more narrow than the fea-
tures produced by both the single pulse and the sequences
of pulses with the same phases. The single-pulse profile is
much broader near zero detuning compared to the single-pulse
profile of the Rosen-Zener model in Figs. 2 and 3, which
manifests the robustness characteristic of adiabatic passage
methods. Consequently, it is more difficult to squeeze the
excitation profile with a small number of pulses (the frames
with two and three pulses), but for longer pulse sequences the
desired squeezing still occurs, especially for pulse sequences
with alternating phases. As for resonant pulses, it is possible
to sense a detuning shift by using the same chirped pulse used
for population inversion, without changing anything except
for the sign of the Rabi frequency.

One can derive the behavior of the transition probability
for small δ using Eqs. (18), (19), and (37). For a sequence of
pulses with the same phases, the picture is rather messy (see
Fig. 6) and the approximation is not very meaningful. For a
sequence of pulses of alternating phases, Eqs. (19) and (37)
give the asymptotics (|δ| � 1)

P2n ≈ (0.33n)2δ2(1 + 0.438δ2), (39a)

P2n+1 ≈ 1 − [
0.33

(
n + 1

2

)]2
δ2(1 + 0.438δ2), (39b)

where higher terms in δ are retained for better accuracy. These
approximations are plotted in Fig. 6 by dashed curves. They
allow one, as in the Rosen-Zener model, to estimate the sen-
sitivity of this technique. By setting the transition probability
to 1

2 and recalling that δ = �0T , we find for both odd and
even N

�1/2 ≈ 4.3

NT
. (40)

For example, a sequence of ten π pulses with alternating
phases, each of duration 10 μs, allows one to sense and
measure a detuning shift of 43 kHz. This is almost a factor of
10 larger than for resonant π pulses in the Rosen-Zener model
[cf. Eq. (27) versus Eq. (40)]. This is not surprising because
the adiabatic passage techniques, as described here by the
Demkov-Kunike model, are resilient to parameter variations,
including the detuning. For larger values of the pulse area and
the chirp, the transition probability becomes even more robust
to parameter errors and the sensitivity decreases even more.

VII. CONCLUSIONS

This paper presented a method for detection and mea-
surement of small detuning shifts generated, e.g., by weak
external electric or magnetic fields. The method uses coher-
ent amplification of transition probability errors by a train
of identical pulses in two setups: with the same phase of
each subsequent pulse, and with an alternating phase shift
of π from pulse to pulse. Two kinds of pulses were consid-
ered: a resonant π pulse and an adiabatic chirped pulse, both
of which are standard quantum control tools for complete
population inversion. In either case, small detuning shifts
do not change the transition probability very much; how-
ever, they modify the dynamical phases in the propagator
much more significantly, which are amplified and mapped
onto the populations by the repeated application of the same
pulse.
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Explicit analytic estimates were derived using the well-
known noncrossing Rosen-Zener and Rabi models and the
level-crossing Demkov-Kunike model. Based on the analyt-
ical results and numerical simulations, it was concluded that
sequences of pulses with alternating phases outperform those
with the same phases, as far as sensing is concerned: they
generate much steeper, and hence much narrower, excitation
profiles around resonance, thereby providing much higher
sensitivity to detuning shifts. Smooth resonant π pulses, ex-
emplified by the Rosen-Zener model, are by far the best
performer, with the greatest sensitivity. Alternatively, Gaus-
sian pulses, for which analytic results (albeit not so simple)
are also available [37], deliver similar performance. It is worth
considering also pulses of Lorentzian-type shapes (with wings
vanishing as ∝ t−n), which exhibit power narrowing [32] and
may deliver even better sensitivity than sech pulses. Rectan-
gular pulses, represented by the Rabi model, exhibit broader
profiles (by a factor of 5) than the Rosen-Zener model due
to power broadening generated by the sharp edges of the
pulse. Chirped adiabatic pulses, exemplified by the Demkov-
Kunike model considered here, are far less suitable for sensing
than resonant pulses because of the inherent robustness of
adiabatic techniques to parameter variations. Similar results
can be obtained for linearly chirped Gaussian pulses for
which analytical results are available [38]. Furthermore, us-
ing rectangular pulses with a linear chirp, as in the popular
Landau-Zener-Stückelberg-Majorana model [39–42] in its fi-
nite version [43], is an inappropriate option for sensing either
because it features both adiabaticity and sharp pulse edges.
Therefore, sequences of smooth resonant π pulses with alter-
nating phases are identified as the most suitable for sensing of
small detuning shifts.

It is worth emphasizing that the proposed sensing method
uses identical pulses (except for the possible π phase shift
from pulse to pulse). In this manner, no additional uncertain-
ties and errors are introduced which might mask the effects of
small level shifts. The proposed technique is very convenient
for practical use because the same pulse used as a NOT gate in
a quantum circuit can be used to detect detuning shifts. Hence
this simple recipe provides an efficient tool for rapid sensing
of weak electric and magnetic fields, without sophisticated
tomography setups or entangling operations. It is applicable to
all kinds of experimental platforms wherein the environment
causes energy level shifts. Particularly promising are Rydberg
atoms and ions [44–47] due to their increased sensitivity to
electric field variations.

The present idea is basically the opposite of the idea
that the NMR community is pursuing for many years, that
is, alternating pulse phases such that the detuning effects
are suppressed, termed dynamical rephasing or dynamical
decoupling (DD). The simplest such sequence is the Carr-
Purcell-Meiboom-Gill (CPMG) two-pulse sequence [48,49].
An important development is the XY-4 sequence [50,51],
which uses four phase-shifted pulses. The XY-4 sequence is
used as a building block for periodic DD, in which it is applied
sequentially [52], and concatenated DD (CDD) sequences,
which concatenate lower-order CDDs recursively, starting
from XY-4 [53–55]. Another important development is the
concept of robust DD sequences [56,57], which are resilient to
various pulse errors. Yet another development is the extension
to quantum systems with more than two states [58]. Further
details can be found in a comprehensive review [59].

It is likely that, taking inspiration from the vast DD lit-
erature, the straightforward flips in the pulse phase in the
sensing method proposed here could be optimized further, by
letting the relative phases from pulse to pulse be free control
parameters. However, this task is well beyond the scope of the
present work.

It should be clear that the sensing method presented here
is based upon quantum interference. Therefore, the measure-
ment should be fast enough in order to avoid noise and hence
dephasing.

Finally, in this work only detuning errors have been con-
sidered. In a real experiment, Rabi frequency errors might
occur too, which would turn the parameter estimation problem
into a multiparameter one. Therefore, the method is strictly
applicable in the absence of such errors. However, the un-
derlying assumption is that the π pulse used in the sensing
sequence is of very high fidelity because it is used in some
quantum circuit, which would be the main experiment, i.e.,
the loss of probability does not come from it but from the
external ambient fields. The present method allows one to
quickly measure, once in a while, whether the external field
has changed. More importantly, a closer inspection shows that
small Rabi frequency errors do not affect the method as far as
detuning sensing is concerned. It is only important that the
Rabi frequency does not change during the sensing sequence,
even if it is slightly different from its nominal π pulse value.
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