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Polarizabilities of hydrogen molecules calculated without
using the Born-Oppenheimer approximation
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The static dipole polarizabilities of the first three lowest states of hydrogen molecules H2, HD, and D2

are calculated using variationally generated wave functions in Hylleraas coordinates without using the Born-
Oppenheimer approximation. Our results for H2 and HD are two orders of magnitude more accurate than the
best literature values. We also improve the previous best results for D2.
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I. INTRODUCTION

The electric dipole polarizability is an important parameter
for measuring the response of an atom or molecule to an
electric field. It has close relationships with many physical
quantities [1], such as the dielectric constant, refractive index,
van der Waals constant, and so on. The polarizabilities of var-
ious atoms and molecules have been measured or calculated
to some degree of accuracy [2,3]. Among them, the polariz-
abilities of atomic hydrogen, helium, and lithium, as well as
the hydrogen molecular ions have been evaluated to very high
precision [4–8]. Taking helium as an example, the nonrela-
tivistic polarizability has been calculated to an accuracy of
10−11 or better [9,10] together with relativistic and QED cor-
rections [5,10,11]. The polarizabilities of hydrogen molecular
ions have also been calculated to very high precision with-
out using the Born-Oppenheimer (BO) approximation [7,8].
However, for neutral hydrogen molecules, apart from the two
sets of inconsistent nonadiabatic values [12,13], there exist
only adiabatic results in the literature. After the pioneering
work of Ishiguro et al., in 1952 [14], Kolos and Wolniewicz
performed the most accurate adiabatic calculations in 1967
[15], which were further refined by Rychlewski in 1980 [16].
Until 2002, the first fully nonadiabatic calculations were car-
ried out by Cafiero and Adamowicz using the finite field
method [12]. Nevertheless, their nonadiabatic results deviate
significantly from the adiabatic values. Another nonadiabatic
calculation was performed for H2 recently by Tiihonen et al.,
using the path-integral Monte Carlo method [13]. Their re-
sults are consistent with the adiabatic values of Kolos and
Wolniewicz [15].

The purpose of this paper is to present a fully nonadiabatic
calculation for the electric dipole polarizabilities of the hydro-
gen molecules H2, HD, and D2 in their three lowest quantum
states by treating the four constituent particles of a molecule
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on the equal footing. This paper is organized as follows.
In Sec. II theoretical formalism is introduced, including the
construction of a variational wave function in Hylleraas coor-
dinates. Computational results and comparisons with previous
literature values are contained in Sec. III. Finally, Sec. IV is a
conclusion. Atomic units (a.u.) are used throughout.

II. THEORETICAL FORMALISM

When an atom or molecule is exposed to a weak external
uniform electric-field F , the energy of the system can be
expressed as [17]

E = E0 −
∑

α

μαFα − 1

2

∑
α,β

ααβFαFβ

− 1

6

∑
α,β,γ

βαβγ FαFβFγ − · · · , (1)

where E0 is the energy of the state of interest without the
external field, μα (α = x, y, z)’s are the Cartesian components
of the permanent electric dipole moment of the system, ααβ’s
are the polarizability tensor components, and βαβγ is the first
hyperpolarizability components. Comparing Eq. (1) with the
standard perturbation theory, one obtains

ααβ = 2
∑

n

〈0|dα|n〉〈n|dβ |0〉
En − E0

, (2)

where |0〉 is the energy eigenstate corresponding to the eigen-
value E0, En and |n〉 are for the intermediate states, and dα

is the αth component of the dipole moment operator. An
alternative expression for the polarizability tensor is

ααβ = − ∂2E

∂Fα∂Fβ

∣∣∣∣
F=0

, (3)

according to Eq. (1). The direct calculation based on the above
equation, the so-called finite field method [12,18], involves an
extrapolation procedure to the zero field that may introduce
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further errors. In this paper, we perform our calculation of
the dipole polarizability using Eq. (2) where the complete
set of intermediate states is generated by diagonalizing the
Hamiltonian in a fully correlated basis in Hylleraas coor-
dinates. Our molecular wave functions are constructed in a
fully nonadiabatic way without using the Born-Oppenheimer
approximation; in other words, the two electrons and two
protons in H2, for example, are treated on the same footing.

For a general four-body Coulombic system, the Hamilto-
nian of the system in the laboratory frame is

H = −
3∑

i=0

1

2mi
∇2

Ri
+

3∑
0�i< j

qiq j

|Ri − R j | , (4)

where mi, qi, and Ri denote the mass, charge, and position
vector of the ith particle, respectively. The dipole moment
operator of the system is

d =
3∑

i=0

qiRi. (5)

By introducing the center-of-mass coordinates and the coor-
dinates relative to one of the nuclei located at R0,

X = 1

MT

3∑
i=0

miRi, (6)

ri = Ri − R0, i = 1–3, (7)

where MT = ∑3
i=0 mi is the total mass of the system, and

by separating out the center-of-mass motion, the Hamiltonian
describing the internal motion of the system becomes the
following quasi-three-body one,

H = −
3∑

i=1

1

2μi
∇2

ri
− 1

m0

3∑
1�i< j

∇ri · ∇r j

+
3∑

i=1

q0qi

ri
+

3∑
1�i< j

qiq j

|ri − r j | , (8)

where μi = mim0/(mi + m0). The dipole moment operator of
the system in the new coordinates becomes

d =
3∑

i=0

qiri +
(

3∑
i=0

qi

)
R0 =

3∑
i=0

qiri (9)

for an electric neutral system.
The wave functions for the states of interest and for the

intermediate states are all expanded in terms of the following
Hylleraas-type basis functions:

r j1
1 r j2

2 r j3
3 r j12

12 r j23
23 r j31

31 e−αr1−βr2−γ r3

×YLM
(�1�2 )�12,�3

(r1, r2, r3)χ (1, 2) − (1 ↔ 2) , (10)

where

YLM
(�1�2 )�12,�3

(r1, r2, r3)

= r�1
1 r�2

2 r�3
3

∑
mi

〈�1m1; �2m2|�1�2; �12m12〉

×〈�12m12; �3m3|�12�3; LM〉Y�1m1 (r1)

×Y�2m2 (r2)Y�3m3 (r3) (11)

is the vector-coupled product of spherical harmonics for the
three particles to form a state of total angular momentum L
and z-component M, χ (1, 2) is the two-electron spin-wave
function,

χ (1, 2) = α(1)β(2) − β(1)α(2), (12)

and (1 ↔ 2) denotes the two-electron exchange term. As dis-
cussed by Yan et al. [8], it is not necessary to impose explicit
symmetrization for the two identical nuclei in basis functions,
which will be automatically built in progressively as the size
of basis set increases due the variational principle. Also see
Ref. [19] for a similar discussion.

The Hylleraas basis functions described by Eq. (10) have
been recently applied to fully nonadiabatic calculations of
energy levels of the hydrogen molecules by Wang and Yan
[20,21] where the nonrelativistic energy of the ground state
of H2 has been calculated to an accuracy of 10−12. These
calculations laid the foundation for the current paper on the
polarizabilities of these systems.

According to Eq. (3), the dipole polarizability of an atom
or molecule is generally a second-rank tensor. Following the
work of Tang et al. [22] and assuming that the external field is
along the z direction, we can rewrite the second-order energy
correction as

�E2 = − 1
2

[
α1 + αT

1 g2(L, M )
]
F 2, (13)

where α1 and αT
1 are the scalar and tensor polarizabilities,

respectively, and

g2(L, M ) =
{

0 , L = 0,
3M2−L(L+1)

L(2L−1) , otherwise,
(14)

with L and M being the total angular momentum and its z
component, respectively. The scalar and tensor polarizabilities
α1 and αT

1 can further be expressed in terms of the reduced
matrix elements of the dipole operator T1,

α1 =
∑

La

α1(La), (15)

αT
1 =

∑
La

W (L, La)α1(La), (16)

where La denotes the total angular moment of the intermediate
states, and

W (L, La)= (−1)L+La

√
30(2L + 1)L(2L − 1)

(2L + 3)(L + 1)

{
1 1 2
L L La

}
,

(17)

α1(La) = 8π

9(2L + 1)

∑
n

|〈n0L||T1||nLa〉|2
En(La) − En0 (L)

, (18)

with

T1 =
3∑

i=1

qiriY10(ri ). (19)

In particular, for L = 0,

α1 = α1(P), (20)

αT
1 = 0, (21)

062813-2



POLARIZABILITIES OF HYDROGEN MOLECULES … PHYSICAL REVIEW A 103, 062813 (2021)

TABLE I. Scalar polarizabilities of the ground states (ν = 0, J = 0) of H2, HD, and D2. N denotes the size of the basis set for the
intermediate states.

N H2 HD D2

686 5.401 238 94 5.370 909 61 5.331 430 67
1394 5.415 592 31 5.384 097 49 5.345 702 11
1600 5.417 186 52 5.385 758 19 5.348 203 78
4500 5.417 436 04 5.385 951 63 5.348 409 77
7387 5.417 473 02 5.385 982 25 5.348 502 38
11550 5.417 480 18 5.385 990 71 5.348 532 20
17400 5.417 482 06 5.385 992 56 5.348 543 33
Extrapolation 5.417 483(2) 5.385 993(3) 5.348 550(7)

Sum rule

686 2.004 293 80 2.003 948 01 2.003 682 3
1394 2.001 397 75 2.001 146 79 2.001 021 7
1600 2.001 232 45 2.000 936 68 2.000 713 7
4500 2.001 111 58 2.000 838 66 2.000 617 7
7387 2.001 096 92 2.000 825 35 2.000 580 2
11550 2.001 091 58 2.000 820 27 2.000 566 4
Extrapolation 2.001 088(3) 2.000 817(3) 2.000 558(8)
Exact 2.001 089 234 2.000 817 060 2.000 544 887

for L = 1,

α1 = α1(S) + α1(P) + α1(D), (22)

αT
1 = −α1(S) + 1

2α1(P) − 1
10α1(D), (23)

and for L = 2,

α1 = α1(P) + α1(D) + α1(F ), (24)

αT
1 = −α1(P) + α1(D) − 2

7α1(F ). (25)

The nuclear masses used in this paper are
mp = 1836.152 673 89(17) a.u. and md = 3670.482
967 85(13) a.u. [23].

III. RESULTS AND DISCUSSION

We consider the three lowest molecular states (ν = 0, J =
1–3) of H2, HD, and D2, where ν is the vibrational quantum
number, and J is the rotational quantum number that is equal
to L. The ground-state wave functions are expanded using
9456 basis functions. Table I shows a convergence study of

TABLE II. Scalar polarizabilities of the lowest P states (ν = 0, J = 1) of H2, HD, and D2. The three numbers in the first column are the
sizes of basis sets for the intermediate states of the S, P, and D symmetries, respectively.

N H2 HD D2

α1

560,401,438 5.407 242 60 5.371 663 99 5.336 285 51
1088,874,953 5.424 724 57 5.390 396 58 5.349 510 45
1968,1722,1864 5.426 747 58 5.392 695 20 5.352 883 41
3328,3102,3348 5.427 057 15 5.392 947 02 5.353 163 06
5368,5262,5652 5.427 099 85 5.392 984 91 5.353 272 34
8288,8457,9057 5.427 107 17 5.392 993 78 5.353 303 28
12370,13057,13932 5.427 108 88 5.392 995 71 5.353 314 18
Extrapolation 5.427 110(2) 5.392 997(4) 5.353 32(3)

Sum rule

560,401,438 2.004 626 74 2.004 622 11 2.004 388 89
1088,874,953 2.001 525 26 2.001 349 11 2.001 240 91
1968,1722,1864 2.001 235 99 2.000 943 07 2.000 721 76
3328,3102,3348 2.001 107 10 2.000 837 93 2.000 619 52
5368,5262,5652 2.001 094 07 2.000 826 85 2.000 578 82
8288,8457,9057 2.001 090 51 2.000 823 66 2.000 568 43
12370,13057,13932 2.001 089 73 2.000 822 81 2.000 561 78
Extrapolation 2.001 089 5(3) 2.000 822(3) 2.000 55(1)
Exact 2.001 089 234 2.000 817 060 2.000 544 887
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TABLE III. Scalar polarizabilities of the lowest D states (ν = 0, J = 2) of H2, HD, and D2. The three numbers in the first column are the
sizes of basis sets for the intermediate states of the P, D, and F symmetries, respectively.

N H2 HD D2

α1

686,251,541 5.420 463 66 5.380 769 78 5.332 201 19
1394,616,1145 5.442 639 51 5.403 419 20 5.357 317 89
2600,1302,2209 5.445 776 20 5.406 843 46 5.362 020 96
4500,2478,3928 5.446 238 86 5.407 252 44 5.362 419 10
7387,4362,6596 5.446 312 93 5.407 328 43 5.362 673 69
11550,7227,10526 5.446 325 42 5.407 341 72 5.362 726 65
17400,11407,16156 5.446 328 02 5.407 345 15 5.362 748 59
Extrapolation 5.446 329(2) 5.407 346(4) 5.362 76(3)

Sum rule

686,251,541 2.005 293 07 2.005 163 95 2.004 993 93
1394,616,1145 2.001 765 58 2.001 544 17 2.001 517 05
2600,1302,2209 2.001 330 54 2.001 033 42 2.000 961 24
4500,2478,3928 2.001 122 26 2.000 856 22 2.000 858 24
7387,4362,6596 2.001 100 47 2.000 834 66 2.000 792 95
11550,7227,10526 2.001 096 00 2.000 830 91 2.000 794 18
Extrapolation 2.001 094(4) 2.000 830(3) 2.000 79(9)
Exact 2.001 089 234 2.000 817 060 2.000 544 887

the polarizability as the size of basis set of the intermediate
states of P symmetry is enlarged progressively from 686 to
17 400. From the table one can see that a convergence to the
level of 10−6–10−7 has been achieved.

From Eq. (2) one can see that the accuracy of the polariz-
ability depends not only on the accuracy of the eigenenergy
and eigenwave function of the initial state, but also on the
degree of completeness of the intermediate states. In fact, the
accuracy of the calculated polarizability is usually determined
by the latter. Zhou et al. derived the generalized Thomas-
Reiche-Kuhn (GTRK) sum rule for a general Coulombic
system [24], which can be used here to check the complete-
ness of our intermediate states. According to Ref. [24], the
GTRK sum rule reads

2

3

∑
n

ωn0|〈0|d|n〉|2 =
3∑

i=0

q2
i

mi
− Q2

T

MT
, (26)

where QT = ∑3
i=0 qi is the total charge of the system that is

zero here and ωn0 = En − E0. It is noted that the right-hand
side of Eq. (26) only depends on the charges and masses of
the system so it can be calculated exactly. Table I also lists
a convergence study for the left-hand side of Eq. (26) and
compares to the right. One can see that a similar accuracy of
10−6–10−7 has been obtained.

TABLE IV. Tensor polarizabilities for the (ν = 0, J = 1) and
(ν = 0, J = 2) states of H2, HD, and D2.

System αT
1 (0, 1) αT

1 (0, 2)

H2 −0.271 425 1(1) −0.390 740 8(2)
HD −0.267 167 1(1) −0.383 926(1)
D2 −0.262 329(1) −0.376 187(1)

Next, we consider the two lowest excited states (ν =
0, J = 1) and (ν = 0, J = 2). For J = 1, we should include
the contributions from the intermediate states of S, P, and
D symmetries, where the P-symmetric configuration has an
unnatural parity. For J = 2, we should include the P, D, and
F symmetries, where the D-symmetric configuration has also
an unnatural parity. Tables II and III are the convergence
studies for the scalar polarizabilities and the corresponding
verifications of the GTRK sum rule, and Table IV lists the
tensor polarizabilities. From these tables one can see that a
nice convergence has been achieved for these excited states.

Table V is a comparison of our results of the scalar polar-
izabilities with other theoretical values in the literature. It is
seen that our results are consistent with the adiabatic values
of Kolos and Wolniewicz [15] and Rychlewski [16] as well
as with the nonadiabatic result of Tiihonen et al. [13] for
the ground state of H2 using the path-integral Monte Carlo
method. However, the first fully nonadiabatic results of the
ground-state polarizabilities by Cafiero and Adamowicz [12],
using the finite field method, significantly disagree with all
the results listed in the table. For example, their ground-state
polarizability of H2 is 6.74, which is close only to the par-
allel component of the polarizability in the BO model α‖ =
6.711 562 at the internuclear distance R = 1.45 by Kolos and
Wolniewicz [15].

IV. CONCLUSION

In conclusion, precise values of static dipole polarizabil-
ities of the first three lowest states of hydrogen molecules
H2, HD, and D2 have been determined without using the
Born-Oppenheimer approximation. Our results can be used
as a benchmark for other theoretical methods. It would be
interesting to include leading-order relativistic and quantum
electrodynamic effects in the calculation of polarizabilities.

062813-4



POLARIZABILITIES OF HYDROGEN MOLECULES … PHYSICAL REVIEW A 103, 062813 (2021)

TABLE V. Comparison of the scalar polarizabilities (nonrelativistic) for the (ν = 0, J = 0–2) states of H2, HD, and D2. In the table, BO
stands for the Born-Oppenheimer approximation.

Reference Method α1(0, 0) α1(0, 1) α1(0, 2)

H2

Kolos and Wolniewicz [15] BO 5.413 9 5.423 5 5.442 7
Rychlewski [16] BO 5.417 04 5.426 66 5.445 86
Tiihonen et al. [13] Non-BO 5.417(37)
Cafiero and Adamowicz [12] Non-BO 6.74
This paper Non-BO 5.417 483(2) 5.427 110(2) 5.446 329(2)

HD

Kolos and Wolniewicz [15] BO 5.382 4 5.389 6 5.403 9
Rychlewski [16] BO 5.386 71 5.393 88 5.408 20
Cafiero and Adamowicz [12] Non-BO 6.67
This paper Non-BO 5.385 993(3) 5.392 997(4) 5.407 346(4)

D2

Kolos and Wolniewicz [15] BO 5.345 3 5.350 0 5.359 5
Rychlewski [16] BO 5.348 34 5.353 11 5.362 63
Cafiero and Adamowicz [12] Non-BO 6.59
This paper Non-BO 5.348 550(7) 5.353 32(3) 5.362 76(3)
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