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An analytical expression of the angular correlation function of a pair of Lyman-α photons in the photodis-
sociation of a hydrogen molecule is derived theoretically in a manner based on both atomic and molecular
physics and quantum optics. The angular correlation function turns out to be expressed in terms of cosine
(sine) functions of four angular variables of detectors with five coefficients. The angular correlation function
is expanded in terms of the spherical harmonics for investigating which terms are involved, and we discuss the
reason why they are involved. Interesting features are revealed in the expansion. We then search for a special
detector arrangement where the angular-dependent terms vanish in the angular correlation function expressed
in terms of the spherical harmonics. It turns out that no such detector arrangement in fact exists, but there is a
special pair of detector arrangements where the angular-dependent terms vanish in the summation of two values
of the angular correlation function expressed in terms of the spherical harmonics. We refer to such a pair of
detector arrangements as a magic pair.
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I. INTRODUCTION

Entanglement, one of the most profound features of quan-
tum mechanics [1], has been widely used as a resource for
quantum information processing [2,3], quantum metrology
[4], and quantum simulations [5–7]. The entanglement in
atoms (ions) [3,8–10] has been demonstrated with designing
and manipulating interactions between subsystems [3,8–10].
However, an idea has been proposed that entangled systems
of atoms are spontaneously produced through molecular dis-
sociation even without active control techniques [11,12]. The
entanglement in atomic systems would accordingly be ubiq-
uitous. We refer to the idea and the investigations inspired by
it in the next paragraph.

Miyagi et al. [11] and Jänkälä et al. [12] have predicted
that an entangled pair of H(2p) atoms is produced through
photodissociation of a hydrogen molecule, and they have
shown that the production of entangled atom pairs can be
substantiated by measuring the angular correlation function
(ACF) of a pair of Lyman-α photons emitted by the two H(2p)
atomic fragments. After the first measurements of the ACFs
[13–15], Torizuka et al. [16] recently measured the ACFs of
a pair of Lyman-α photons in photodissociation of H2 and D2

with two photon detectors rotating in a circle perpendicular
to the incident beam of the linearly polarized light, and they
identified the 2p atom-pair state by means of searching for
states that reproduce the experimental ACFs. It is remark-
able that the identified atom-pair state, a superposition of the
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Q2
1�u(1) state and the Q2

3�+
u (2) state at infinite internu-

clear distance, is entangled, and the entanglement originates
from the symmetry properties of the molecular electronic
states, the properties which are invariant during dissociation.

In the present study, we aim to theoretically derive a
general analytical expression of the ACF of a pair of Lyman-
α photons in the photodissociation of a hydrogen molecule
following the method described in Ref. [11], an expression
which is a function of four angles specifying an arrangement
of two detectors and involves a set of physical parameters
related to the atomic and photonic systems. The analytical
expression would be useful for measuring ACFs over the
entire spherical surface. The analytical expression of the ACF
is expanded in terms of the spherical harmonics so that we
can find out which terms contribute, and we investigate the
reason why they do. Interesting construction is revealed in the
expansion. We then search for a magic arrangement of two
photon detectors, at which arrangement the angular anisotropy
in the ACF vanishes and the ACF becomes equal to a constant
independent of the incident-photon energy. We are able to
measure the angle-integrated cross section for the emission of
a pair of Lyman-α photons against the incident-photon energy
with both detectors held fixed at the magic arrangement if
discovered. The magic arrangement of the two detectors is an
analogy to the magic arrangement of a single photon detector,
referred to as a magic angle, in the angular intensity distribu-
tion of a fluorescence photon emitted by an excited fragment
atom in photodissociation [17]. However, in contrast with the
emission of a single photon, it has turned out that a magic
arrangement of two detectors does not exist in the present
two-photon-emission process [see Eq. (1)], but a magic pair
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of detector arrangements does. By virtue of the magic ar-
rangement pair, we are able to measure the angle-integrated
cross section for the emission of two Lyman-α photons against
the incident-photon energy with only two coincidence mea-
surements between those two photons, i.e., one coincidence
measurement at one arrangement in the magic pair and the
other measurement at the other arrangement.

II. FORMULATION

A. The process to be investigated and the outline
of the formulation

In the present study, we calculate the ACF of a pair of
Lyman-α photons emitted in the photodissociation of a hy-
drogen molecule:

H2(X 1�+
g ) + γex → H∗∗

2 (doubly excited states) + vac

→ H(2p) + H(2p) + vac

→ H(1s) + H(1s) + γLy-α + γLy-α,

(1)

where γex is a linearly polarized incident photon, γLy-α

is a Lyman-α photon, and “vac” denotes the photon
field in the vacuum state (H2 may be replaced by D2

or HD). The internuclear distance in the H2(X 1�+
g ) and

H∗∗
2 (doubly excited states) is around the equilibrium one

in the ground electronic state, i.e., the X 1�+
g state, and

the H2(X 1�+
g ) is randomly oriented with respect to the

space-fixed frame introduced in Sec. II B, whose situations
are in accord with those in the experiments [13–16]. The
H∗∗

2 (doubly excited states) electronically autoionizes and may
dissociate into other fragment-pairs, e.g., H(2s) + H(2p) +
vac. Such processes, however, just decrease the branching
ratio of the dissociation into H(2p) + H(2p) + vac and does
not influence the ACF of two Lyman-α photons. The emission
of molecular fluorescence from the H∗∗

2 (doubly excited states)
is very unlikely during the dissociation because the fluores-
cent process is, in general, a process of nanosecond or longer
time-scale and cannot hence compete with the electronic
autoionization or dissociation. The molecular fluorescence,
if any, just decreases the branching ratio of the H(2p) +
H(2p) + vac channel to a very small extent and still does not
influence the ACF of two Lyman-α photons

We consider a system composed of a photon field and a pair
of hydrogen atoms for the present calculation, a system which
is referred to as a total system. As for each hydrogen atom
in a hydrogen molecule with infinite internuclear distance,
the infinite nuclear-mass approximation is used, and only the
electronic motion is considered in reference to a nucleus at
rest against the space-fixed frame introduced in Sec. II B. The
total system is hence composed of the electronic partial sys-
tem and the photonic partial system. The nuclear state is taken
into account through the distribution function of dissociation
direction with respect to the space-fixed frame as mentioned
in Sec. II D because the nuclear state at infinite internuclear
distance is expressed as a state with definite dissociation direc-
tion. The two nuclei (protons) are labeled a and b, and the two
electrons are labeled 1 and 2. Each electron is bound by either
the nucleus a or b. We do not consider the possibility that both
electrons are bound by either nucleus. As for atomic fluores-
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FIG. 1. (a) The space-fixed XY Z frame and the molecular xyz
frame used for calculating the angular correlation function of a pair
of Lyman-α photons in the photodissociation of hydrogen molecules.
ε̂, the unit polarization vector of the linearly polarized incident light;
k, the wave-number vector of the incident light. The green panel
shows the xz plane, which involves the Z axis. See Sec. II B for de-
tails. (b) An arrangement of the photon detectors c and d . A detector
arrangement is specified with a set of four angles (�c, �c, �d , �d ).
The blue panel shows the XY plane. See Sec. II D for details.

cence, only electric dipole photons are taken into account, and
the Weisskopf-Wigner theory (e.g., Sec. 6.3 in Ref. [18]) is
used for the spontaneous emission of fluorescence. In process
1, the step from H2(X 1�+

g ) + γex to H(2p) + H(2p) + vac is
much faster than the successive step from H(2p) + H(2p) +
vac to H(1s) + H(1s) + γLy-α + γLy-α [the lifetime of H(2p)
atoms is 1.6 ns (pp. 200–201 in Ref. [19])] and the origin of
time is taken at the point when a pair of fragment H(2p) atoms
is formed with the photon field being in the vacuum state.

We first calculate the ACF under the assumption that only
one doubly excited state, which does not need to be specified,
is involved in process 1 for a given energy of the incident
photon (the single-state case), and then we calculate the ACF
under the other assumption that many doubly excited states
are involved in process 1 for a given energy of the incident
photon (the many-state case). In fact, the same analytical form
has been obtained for the single-state case and the many-state
case. As for the spherical harmonics, we follow the definition
described in Sec. 2.5 in Ref. [19].

B. The frames of reference

As shown in Fig. 1(a), we first introduce a frame of ref-
erence held fixed to the incident light beam, a frame that
is referred to as the space-fixed frame. The origin O of the
space-fixed XY Z frame is taken on the incident light beam.
The positive direction of the Z axis points to the direction of
the unit polarization vector of the linearly polarized incident
light ε̂, and the positive direction of the X axis points to the
propagation direction of the incident light. The Y axis is taken
so that the space-fixed XY Z frame is a right-handed system.
As mentioned in Sec. II A, the nuclei a and b are held at rest
against the space-fixed XY Z frame and they are hence put on
the line passing through the origin O of the space-fixed XY Z
frame.

We then introduce one more frame of reference, called a
molecular frame, whose z axis points from the nucleus a to b
as shown in Fig. 1(a). The origin of the molecular xyz frame is
taken at the midpoint between the nucleus a and b, and is taken
to coincide with the origin of the space-fixed XY Z frame. The
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relative position vector of the two nuclei with respect to the
nucleus a is denoted by R as seen in Fig. 1(a). The molecular
xyz frame is specified with respect to the space-fixed XY Z
frame with the Euler angles (φ, θ , 0), where the azimuth angle
φ ranges from 0 to 2π and the polar angle θ ranges from 0 to
π . We label the molecular frame (MF) specified with the Euler
angles (φ, θ , 0) MF(θ , φ), which is held fixed with respect to
the space-fixed XY Z frame throughout the step from H(2p)
+ H(2p) + vac (the time t = 0) to H(1s) + H(1s) + γLy-α +
γLy-α (t → ∞) in process 1. The MF(θ , φ) implies that the
internuclear distance R → ∞. We consider the ensemble of
the total systems related to an MF(θ , φ), and the MF(θ , φ)
ranges with the probability-distribution function discussed in
Sec. II F.

C. The linear spaces, the ket vectors, and the density
operators involved

We first consider the total system at t = 0 based on an
MF(θ , φ) with (θ , φ) held fixed. To this end, a linear space
Si(θ, φ) spanned by an orthonormal basis set Ei(θ, φ) is intro-
duced:

Ei(θ, φ) = { ∣∣2pa
ma

(k) 2pb
mb

(�) ms(1) ns(2); θ, φ
〉
e
|vac〉p

∣∣
ma = −1, 0, 1, and mb = −1, 0, 1, and

(k, �) = (1, 2), (2, 1), and

ms = ± 1
2 , and ns = ± 1

2

}
, (2)

where |· · ·〉e denotes a ket vector of the electronic partial sys-
tem and |· · ·〉p is a ket vector of the photonic partial system. A

ket vector of the total system is thus denoted by |· · ·〉 without
subscripts. If it is clear to which partial system a given ket
vector belongs, the subscripts e and p will be omitted. The
ket vector |vac〉p expresses the vacuum state of the photonic
partial system. As for ket vectors of the electronic partial
system, |2pa

m(k)〉 (m = −1, 0, 1), for example, means that
the electron k (k = 1, 2) is bound by the nucleus a and a
projection of the electron orbital angular momentum on the
z axis is m in the unit of h̄. The ket vector |2pa

m(k)〉 is hence
given through the translation of a ket vector |2pm(k)〉 along
the z axis by −(1/2)R, and the ket vector |2pb

m(k)〉 is given
through the translation of a ket vector |2pm(k)〉 along the z
axis by (1/2)R, where the ket vector |2pm(k)〉 is a 2p state at
the origin O in Fig. 1(a) with the projection quantum number
m onto the z axis. The translation of electronic ket vectors
along the z axis does not change the projection quantum
number m onto the z axis. The ket vectors |± 1

2 (k)〉
e

(k = 1, 2)
are spin eigenstates of the electron k with the projection of
the electron spin angular momentum on the z axis being ± 1

2
in the unit of h̄ (double-sign corresponds). It is a custom to
symbolically write | 1

2 (k)〉
e

and |− 1
2 (k)〉

e
as |α(k)〉 and |β(k)〉,

respectively. We note that the linear space Si(θ, φ) and the
basis set Ei(θ, φ) are based on the MF(θ, φ).

We assume that a doubly excited state “ex” alone is in-
volved in process 1 for a given energy of the incident photon
(the single-state case). Any state “α” of the total system at the
time t = 0 associated with the MF(θ , φ), |ex, α; θ, φ; t = 0〉,
belongs to the linear space Si(θ, φ) and is thus expanded in
terms of Ei(θ, φ) as

|ex, α; θ, φ; t = 0〉 =
∑

Cex,α (ma, mb, (k, �), ms, ns)
∣∣2pa

ma
(k) 2pb

mb
(�) ms(1) ns(2); θ, φ

〉
e
|vac〉p , (3)

where the summation is taken over all the possible values of the indices, i.e., ma, mb, (k, �), ms, and ns. The expansion
coefficients Cex,α (· · · ) are independent of (θ, φ) because in process 1 the processes proceed in the same manner irrespective
of the MF(θ, φ) after the photoexcitation to the doubly excited state “ex.” The state |ex, α; θ, φ; t = 0〉 is evolved in time as
follows [11]:

|ex, α; θ, φ; t = 0〉 → |ex, α; θ, φ; t → ∞〉 , (4a)

|ex, α; θ, φ; t → ∞〉 =
∑

Cex,α (ma, mb, (k, �), ms, ns) |(ma)a(mb)b; θ, φ〉p |1sa(k) 1sb(�) ms(1) ns(2); θ, φ〉e . (4b)

The electronic ket vectors, |1sa(k)〉 and |1sb(k)〉 (k = 1, 2),
are given through the translation of a ket vector |1s(k)〉 along
the z axis by −(1/2)R and (1/2)R, respectively, where the
ket vector |1s(k)〉 is the 1s state at the origin O in Fig. 1(a)
with the projection of the electron orbital angular momentum
on the z axis being zero in the unit of h̄. We again note
that the translation of the electronic ket vectors along the z
axis does not change the projection of the electron orbital
angular momentum on the z axis. The photonic ket vector
|(ma)a; θ, φ〉p, for example, is a state of a single photon
emitted by an electron bound by the nucleus a through the
2pa

ma
→ 1sa transition. It is convenient to symbolically write

|(ma)a; θ, φ〉p and |(mb)b; θ, φ〉p as [11]

|(1)a/b; θ, φ〉p = |γa/b; θ, φ〉p , (5a)

|(0)a/b; θ, φ〉p = |φa/b; θ, φ〉p , (5b)

|(−1)a/b; θ, φ〉p = |ρa/b; θ, φ〉p . (5c)

The Euler angles φ and θ in ket vectors are often omitted
for simplicity. It is a good approximation that the spin-orbit
coupling is neglected in the radiative transition in a hydrogen
atom, and the spin eigenstates of the electronic partial system
consequently remain unaltered. In the experiments [13–16],
the fine structure of the Lyman-α fluorescence was not re-
solved.

The density operator for the ensemble of the total systems
at the time t = 0, ρ̂ex(θ, φ; t = 0), is written as

ρ̂ex(θ, φ; t = 0)

=
∑

α

pex,α |ex, α; θ, φ; t = 0〉 〈ex, α; θ, φ; t = 0| , (6)

where the fractional population pex,α for the
|ex, α; θ, φ; t = 0〉 state is independent of the MF(θ, φ) such
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as the expansion coefficients Cex,α (ma, mb, (k, �), ms, ns) in
Eq. (3) because of the same reason as that for the coefficients.
The density operator ρ̂ex(θ, φ; t = 0) is an operator in the
linear space Si(θ, φ) and is evolved in time following the time
evolution of the |ex, α; θ, φ; t = 0〉 state shown in Eqs. (4):

ρ̂ex(θ, φ; t = 0) → ρ̂ex(θ, φ; t → ∞), (7a)

ρ̂ex(θ, φ; t → ∞) =
∑

α

pex,α |ex, α; θ, φ; t → ∞〉

〈ex, α; θ, φ; t → ∞| . (7b)

The fractional population pex,α is not changed as the time
evolves because the ensemble of the total systems is left
undisturbed.

We introduce one more linear space S f (θ, φ) spanned by an orthonormal basis set E f (θ, φ),

E f (θ, φ) = {|(i)a( j)b; θ, φ〉p |1sa(k) 1sb(�) ms(1) ns(2); θ, φ〉e |
i = γ , φ, ρ, and j = γ , φ, ρ, and (k, �) = (1, 2), (2, 1), and ms = α, β, and ns = α, β}, (8)

where photonic ket vectors and electron spin ket vectors
are symbolically written. The ket vector of the total sys-
tem |ex, α; θ, φ; t → ∞〉 shown in Eq. (4b) is an element of
the linear space S f (θ, φ), and the density operator for the
ensemble of the total systems ρ̂ex(θ, φ; t → ∞) shown in
Eq. (7b) is an operator in S f (θ, φ). This is the reason why
the linear space S f (θ, φ) is introduced in addition to the linear
space Si(θ, φ). Both the linear space S f (θ, φ) and the basis
set E f (θ, φ) are based on the MF(θ, φ) on which Si(θ, φ)
and Ei(θ, φ) are based too, and the MF(θ, φ) is held fixed
with respect to the space-fixed XY Z frame during the step
from H(2p) + H(2p) + vac (t = 0) to H(1s) + H(1s) +
γLy-α + γLy-α (t → ∞) in process 1 as mentioned at the end
of Sec. II B. The total system at t = 0 is described in the
linear space Si(θ, φ) and that at t → ∞ is described in the
linear space S f (θ, φ). In what follows, the state of the total
system |ex, α; θ, φ; t → ∞〉 and the density operator for the
ensemble of the total systems ρ̂ex(θ, φ; t → ∞) are simply
written as |ex, α; θ, φ〉 and ρ̂ex(θ, φ), respectively.

D. Photon-pair detection operator and the two-photon
correlation function

The outline of calculating the ACFs for the single-state
and many-state cases is as follows. We first calculate a two-
photon correlation function of a pair of Lyman-α photons for
the ensemble of the total systems specified by the density
operator ρ̂ex(θ, φ) with the angles θ and φ held fixed, i.e., we
first calculate a two-photon correlation function for pairs of
fragment hydrogen atoms held fixed against the space-fixed
XY Z frame with the internuclear distance R → ∞ [Eq. (10)].
As mentioned at the end of Sec. II B, the azimuth angle φ

ranges from 0 to 2π and the polar angle θ ranges from 0 to
π . Each two-photon correlation function for each ρ̂ex(θ, φ) is
then averaged with the weight of wex(θ, φ), the distribution
function of MF(θ, φ), so that we can obtain the two-photon
correlation function for the ensemble of the total systems
specified by both ρ̂ex(θ, φ) and wex(θ, φ) under the assump-
tion of the single-state case [Eq. (11)]. The ACF of a pair of
Lyman-α photons is derived from the two-photon correlation
function. The two-photon correlation function for the many-
state case is calculated from that for the single-state case as
mentioned in Sec. II G

In this subsection, we introduce the operator for detecting
a photon-pair and then the ensemble average of the operator,

referred to as the two-photon correlation function of a pair of
Lyman-α photons. The two-photon correlation function is a
generator of both the ACF of a pair of Lyman-α photons and
the angle-differential cross section for the emission of a pair
of Lyman-α photons.

Suppose that a photon is detected at the time tc by the
detector c at the position rc and the other photon is detected
at the time td by the detector d at the position rd . Those de-
tectors are arranged as shown in Fig. 1(b), and their directions
are specified by the Euler angles (�c/d , �c/d , �c/d = 0) in
reference to the space-fixed XY Z frame, provided that those
detectors are originally on the +Z axis. The detection of
a photon-pair is expressed by the operator Ê (2)(rc, tc, rd , td )
defined as (see p. 33 in Ref. [18])

Ê (2)(rc, tc, rd , td )

= [E (−)(rc, tc)E (−)(rd , td )E (+)(rd , td )E (+)(rc, tc)] ⊗ Îe

= Ê (2)(rc, tc, rd , td ) ⊗ Îe, (9)

where E (+) and E (−) are the positive and negative frequency
parts of the electric-field operator, respectively, and line up
in the normal order. The operator Îe in Eq. (9) is the identity
operator in the space for the electronic partial system. The
expectation value or the ensemble average of the photon-pair
detection operator Ê (2)(rc, tc, rd , td ) is referred to as the two-
photon correlation function (p. 33 in Ref. [18]), which is
proportional to the probability density of detecting a photon
pair at (rc, tc, rd , td ) (Secs. 4.2 and 4.3 in Ref. [18]).

The ensemble average of Ê (2)(rc, tc, rd , td ) for the ensem-
ble of the total systems specified by the density operator
ρ̂ex(θ, φ) is written as

[Ê (2)](rc, tc, rd , td ; θ, φ)

= Tr[ρ̃ex(θ, φ)Ẽ (2)(rc, tc, rd , td ; θ, φ)], (10)

where ρ̃ex(θ, φ) and Ẽ (2)(rc, tc, rd , td ; θ, φ) are representa-
tion matrices of the density operator ρ̂ex(θ, φ) and the
photon-pair detection operator Ê (2)(rc, tc, rd , td ) in terms of
E f (θ, φ) defined in Eq. (8), respectively, and both of them
are hence 72 × 72 matrices. Symbols with˜express represen-
tation matrices in the present paper. The ensemble average
[Ê (2)](rc, tc, rd , td ; θ, φ) is based on the MF(θ, φ), and it is
again averaged with the weight of wex(θ, φ), the distribution
function of MF(θ, φ) in reference to the space-fixed XY Z
frame, so that we can obtain G(2)

ex (rc, tc, rd , td ), the two-photon
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correlation function of a pair of Lyman-α photons in process
1 for the single-state case,

G(2)
ex (rc, tc, rd , td )

=
∫

Tr[ρ̃ex(θ, φ)Ẽ (2)(rc, tc, rd , td ; θ, φ)]

× wex(θ, φ) sinθ dθ dφ. (11)

We use the function wex(θ, φ) which takes account of the
random orientation of the H2(X 1�+

g ) with respect to the
space-fixed frame in process 1.

As will be mentioned in Eq. (51), the two-photon corre-
lation function G(2)

ex (rc, tc, rd , td ) is separated into a temporal
part and a spatial part as

G(2)
ex (rc, tc, rd , td ) = g(tc, td )Fex(r̂c, r̂d ), (12a)

g(tc, td ) =
(

ω2 p

4πε0c2

)4( 1

R4
0

)

× e−�(tc− R0
c )e−�(td − R0

c )

×�

(
tc − R0

c

)
�

(
td − R0

c

)
, (12b)

where c is the light velocity in vacuum, ε0 is the per-
mittivity of free space, ω is the angular frequency of the
Lyman-α fluorescence in vacuum, and � is the recipro-
cal of the lifetime of H(2p) atoms, i.e., �−1 = 1.6 ns
(pp. 200–201 in Ref. [19]). In Eqs. (12), R0 = |rc| = |rd |,
which is a constant independent of rc and rd because
we put the detectors on a spherical surface of the radius
R0, r̂c = rc/R0, r̂d = rd/R0, and p = | 〈1s| (−er) |2pm=1〉 | =
| 〈1s| (−er) |2pm=0〉 | = | 〈1s| (−er) |2pm=−1〉 |, where e is the
elementary charge (e > 0), |2pm〉 (|1s〉) is a 2p state (1s state)
at the origin O in Fig. 1(a) with the projection of the electron
orbital angular momentum on the z axis being m (for the
|1s〉 state, m = 0), and r is the position of the electron in
reference to the nucleus at the origin O. The projection of
the electron orbital angular momentum m is associated with
the z axis as mentioned in Sec. II C. �(· · · ) is the step func-
tion representing the causality. The two-photon correlation
function G(2)

ex (rc, tc, rd , td ), from the definition, should have
the dimensions of an (electric field)4, and the temporal part,
g(tc, td ), turns out to have the same dimensions. The spatial
part, Fex(r̂c, r̂d ), is hence dimensionless.

We deduce two quantities from Fex(r̂c, r̂d ), the spatial part
of the two-photon correlation function, as shown below. The
function cexFex(r̂c, r̂d ), where cex is a constant independent of
(r̂c, r̂d ), gives the ACF of a pair of Lyman-α photons if cex is
determined such that∫

cexFex(r̂c, r̂d )d�cd�d = 1, (13)

where d�c/d = sin�c/d d�c/d d�c/d . The product of
cexFex(r̂c, r̂d ) and σ LαLα

ex , the angle-integrated cross section
for emitting a pair of Lyman-α photons, yields the
angle-differential cross section for emitting the photon

pair d2σ LαLα
ex

d�cd�d
:

d2σ LαLα
ex

d�cd�d
= σ LαLα

ex (cexFex(r̂c, r̂d )). (14)

E. The method for calculating the two-photon
correlation function

In this subsection, we show that Eq. (11) is rewritten in
terms of 9 × 9 matrices [ρ̃ex(θ, φ) and Ẽ (2)(rc, tc, rd , td ; θ, φ)
are 72 × 72 ones]. To this end, we first derive useful properties
of the matrix Ẽ (2)(rc, tc, rd , td ; θ, φ) and ρ̃ex(θ, φ).

We rewrite an element of E f (θ, φ) in Eq. (8) in a simpler
form,

|I; θ, φ〉p |K ; θ, φ〉e

= |(i)a( j)b; θ, φ〉p |1sa(k) 1sb(�) ms(1) ns(2); θ, φ〉e , (15)

where an index I collectively stands for (i, j) and an index K
collectively stands for ((k, �), ms, ns). The ((I ′, K ′), (I ′′, K ′′))
element of the matrix Ẽ (2)(rc, tc, rd , td ; θ, φ) is simplified as

p 〈I ′; θ, φ|e 〈K ′; θ, φ| Ê (2)(rc, tc, rd , td ) |I ′′; θ, φ〉p |K ′′; θ, φ〉e

= δK ′K ′′ p 〈I ′; θ, φ| Ê (2)(rc, tc, rd , td ) |I ′′; θ, φ〉p , (16)

because of the orthonormality of the set {|K ; θ, φ〉e}. We note
that δK ′K ′′ = δ(k′,�′ )(k′′,�′′ )δm′

sm
′′
s
δn′

sn
′′
s
. Equation (16) is useful for

simplifying Eq. (11) as shown later.
We then show that the matrix ρ̃ex(θ, φ) is in fact inde-

pendent of (θ, φ). As mentioned in Sec. II C, the expansion
coefficients in Eq. (4b), Cex,α (ma, mb, (k, �), ms, ns), are in-
dependent of (θ, φ) and the fractional population pex,α in
Eq. (7b) is also independent of (θ, φ). The matrix elements
of ρ̃ex(θ, φ) are determined by only a set of those expansion
coefficients and the fractional populations, and ρ̃ex(θ, φ) is
consequently independent of (θ, φ).

Equation (16) and the (θ, φ) independence of ρ̃ex(θ, φ)
being used, Eq. (11) is simplified as

G(2)
ex (rc, tc, rd , td )

=
∑

I ′

[∑
I ′′

{(
p 〈I ′; θ, φ| ρ̂ph

ex (θ, φ) |I ′′; θ, φ〉p

)

×
(∫

sinθ dθ dφ wex(θ, φ)

×p 〈I ′′; θ, φ| Ê (2)(rc, tc, rd , td ) |I ′; θ, φ〉p

)}]
, (17)

where ρ̂
ph
ex (θ, φ) is defined as

ρ̂ph
ex (θ, φ) =

∑
K ′

e 〈K ′; θ, φ| ρ̂ex(θ, φ) |K ′; θ, φ〉e, (18)

and is the reduced density operator for the photonic partial
system.

We introduce two 9 × 9 matrices to rewrite Eq. (17) with
the trace of the product of them. One is ρ̃

ph
ex , the representation

matrix of the reduced density operator ρ̂
ph
ex (θ, φ) in terms of

the orthonormal basis set Ep(θ, φ),

Ep(θ, φ) = {|(i)a( j)b; θ, φ〉p |i = γ , φ, ρ and j = γ , φ, ρ}
= {|I; θ, φ〉p}. (19)

The reason why the representation matrix is denoted
not by ρ̃

ph
ex (θ, φ) but by ρ̃

ph
ex is that the matrix element
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p 〈I ′; θ, φ| ρ̂ph
ex (θ, φ) |I ′′; θ, φ〉p is a sum of some elements of

ρ̃ex(θ, φ) and the elements of ρ̃ex(θ, φ) are independent of
(θ, φ) as mentioned just above. The explicit expression of the
((i′, j′), (i′′, j′′)) element of ρ̃

ph
ex is(

ρ̃ph
ex

)
(i′, j′ )(i′′, j′′ )

=p 〈(i′)a( j′)b; θ, φ| ρ̂ph
ex (θ, φ) |(i′′)a( j′′)b; θ, φ〉p . (20)

The other 9 × 9 matrix is [Ẽ (2)]
b
(rc, tc, rd , td ), the wex(θ, φ)-

averaged representation matrix of Ê (2)(rc, tc, rd , td ) in terms
of Ep(θ, φ) defined in Eq. (19). The ((i′, j′), (i′′, j′′)) element

of [Ẽ (2)]
b
(rc, tc, rd , td ) is explicitly written as

[Ẽ (2)]b
(i′, j′ )(i′′, j′′ )(rc, tc, rd , td )

=
∫

sinθ dθ dφ wex(θ, φ)

×p 〈(i′)a( j′)b; θ, φ| Ê (2)(rc, tc, rd , td ) |(i′′)a( j′′)b; θ, φ〉p .

(21)

The parameter “b” comes from Eq. (31), the analytical
expression of wex(θ, φ). The two 9 × 9 matrices ρ̃

ph
ex and

[Ẽ (2)]
b
(rc, tc, rd , td ) being used, Eq. (17) is simplified in ma-

trix form as

G(2)
ex (rc, tc, rd , td ) = Tr

[
ρ̃ph

ex [Ẽ (2)]b(rc, tc, rd , td )
]
. (22)

We note that ρ̃
ph
ex , the reduced density matrix for the photonic

partial system, is independent of the detector arrangement
(rc, rd ) and independent of the detection time (tc, td ) as well.
Detecting a pair of photons is involved in [Ẽ (2)]

b
(rc, tc, rd , td ).

In the end, we have reached Eq. (22), which is much simpler

than the equivalent equation, Eq. (11), since the former equa-
tion is written in terms of the 9 × 9 matrices and the latter one
is in terms of the 72 × 72 matrices. Following Eq. (22), we
calculate the two-photon correlation function, a generator of
the ACF.

For the discussion in Sec. II F, we introduce
one more 9 × 9 matrix, a generator of the matrix
[Ẽ (2)]

b
(rc, tc, rd , td ). On the right-hand side of Eq. (21),

a part p 〈(i′)a( j′)b; θ, φ| Ê (2)(rc, tc, rd , td ) |(i′′)a( j′′)b; θ, φ〉p
is the ((i′, j′), (i′′, j′′)) element of the representation matrix
for the operator Ê (2)(rc, tc, rd , td ) in terms of the basis set
Ep(θ, φ) defined in Eq. (19), the matrix which is denoted by
Ẽ (2)(rc, tc, rd , td ; θ, φ).

F. Matrix representation of the photon-pair detection operator

In this subsection, two matrix representations are
shown of the photon-pair detection operator. They are
Ẽ (2)(rc, tc, rd , td ; θ, φ) and [Ẽ (2)]

b
(rc, tc, rd , td ), both of which

have been defined in Sec. II E. Once the former matrix has
been obtained, the latter matrix is calculated on the basis of
Eq. (21) and the latter one yields the two-photon correlation
function G(2)

ex (rc, tc, rd , td ) according to Eq. (22).
Following Ref. [11], we have calculated the matrix

Ẽ (2)(rc, tc, rd , td ; θ, φ) to find out that the ((i′, j′), (i′′, j′′))
element is separated into a temporal part and spatial part as

p 〈(i′)a( j′)b; θ, φ| Ê (2)(rc, tc, rd , td ) |(i′′)a( j′′)b; θ, φ〉p

= g(tc, td ) f(i′, j′ )(i′′, j′′ )(r̂c, r̂d ; θ, φ), (23)

where i′ = γ , φ, ρ, j′ = γ , φ, ρ, i′′ = γ , φ, ρ, and
j′′ = γ , φ, ρ. The temporal part g(tc, td ) has been
defined in Eq. (12b). The dimensionless functions
f(i′, j′ )(i′′, j′′ )(r̂c, r̂d ; θ, φ) are arranged in matrix form as

|γ γ 〉 |ρρ〉 |γ ρ〉 |ργ 〉 |γφ〉 |φγ 〉 |ρφ〉 |φρ〉 |φφ〉
〈γ γ |
〈ρρ|
〈γ ρ|
〈ργ |
〈γφ|
〈φγ |
〈ρφ|
〈φρ|
〈φφ|

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

fD1 f2 f1 f1

f ∗
2 fD1 f ∗

1 f ∗
1

f ∗
1 f1 fD1 f3

f ∗
1 f1 f3 fD1

f6 f6 f4 f4

− f ∗
4 − f ∗

4 − f ∗
6 − f ∗

6

− f ∗
6 f ∗

5 − f5 f6

f ∗
5 − f ∗

6 f6 − f5

− f7

− f ∗
7

− f8

− f8

f ∗
6 − f4 − f6 f5

f ∗
6 − f4 f5 − f6

f ∗
4 − f6 − f ∗

5 f ∗
6

f ∗
4 − f6 f ∗

6 − f ∗
5

fD2 f8 f9 f7

f8 fD2 f7 f9

f ∗
9 f ∗

7 fD2 f8

f ∗
7 f ∗

9 f8 fD2

f10

f10

− f ∗
10

− f ∗
10

− f ∗
7 − f7 − f8 − f8 f ∗

10 f ∗
10 − f10 − f10 fD3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where the ket vector |γ ρ〉 and the bra vector 〈γ ρ|, for example, stand for |γaρb; θ, φ〉p and p〈γaρb; θ, φ|, respectively. The matrix
is composed of three diagonal elements fD1– fD3 and ten off-diagonal elements f1– f10, which are explicitly written as

fD1 = 2|r̂c × p̂γ |2|r̂d × p̂γ |2, (25a)

fD2 = |r̂c × p̂γ |2|r̂d × p̂φ|2 + |r̂c × p̂φ|2|r̂d × p̂γ |2, (25b)

fD3 = 2|r̂c × p̂φ|2|r̂d × p̂φ|2, (25c)

f1 = −|r̂c × p̂γ |2(r̂d × p̂∗
γ )2 − (r̂c × p̂∗

γ )2|r̂d × p̂γ |2, (25d)

f2 = 2(r̂c × p̂∗
γ )2(r̂d × p̂∗

γ )2, (25e)
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f3 = (r̂c × p̂∗
γ )2(r̂d × p̂γ )2 + (r̂c × p̂γ )2(r̂d × p̂∗

γ )2, (25f)

f4 = −{(r̂c × p̂∗
γ ) · (r̂c × p̂φ )}(r̂d × p̂∗

γ )2 − (r̂c × p̂∗
γ )2{(r̂d × p̂∗

γ ) · (r̂d × p̂φ )}, (25g)

f5 = −(r̂c × p̂∗
γ )2{(r̂d × p̂γ ) · (r̂d × p̂φ )} − {(r̂c × p̂γ ) · (r̂c × p̂φ )}(r̂d × p̂∗

γ )2, (25h)

f6 = |r̂c × p̂γ |2{(r̂d × p̂∗
γ ) · (r̂d × p̂φ )} + {(r̂c × p̂∗

γ ) · (r̂c × p̂φ )}|r̂d × p̂γ |2, (25i)

f7 = −2{(r̂c × p̂∗
γ ) · (r̂c × p̂φ )}{(r̂d × p̂∗

γ ) · (r̂d × p̂φ )}, (25j)

f8 = {(r̂c × p̂∗
γ ) · (r̂c × p̂φ )}{(r̂d × p̂γ ) · (r̂d × p̂φ )} + {(r̂c × p̂γ ) · (r̂c × p̂φ )}{(r̂d × p̂∗

γ ) · (r̂d × p̂φ )}, (25k)

f9 = −(r̂c × p̂∗
γ )2|r̂d × p̂φ|2 − |r̂c × p̂φ|2(r̂d × p̂∗

γ )2, (25l)

f10 = {(r̂c × p̂∗
γ ) · (r̂c × p̂φ )}|r̂d × p̂φ|2 + |r̂c × p̂φ|2{(r̂d × p̂∗

γ ) · (r̂d × p̂φ )}, (25m)

where the unit position vectors r̂c and r̂d express the detector angular coordinate (�c,�c) and (�d ,�d ), respectively, as seen in
Fig. 1(b), but are not dependent on the other angular coordinate (θ, φ) specifying the molecular xyz frame. Here, pγ , pφ , and pρ

are transition electric dipole moments defined as

pγ = 〈1s|(−er)|2pm=1〉, (26a)

pφ = 〈1s|(−er)|2pm=0〉, (26b)

pρ = 〈1s|(−er)|2pm=−1〉, (26c)

which have been introduced in Sec. II D: e is the elementary charge (e > 0), |2pm〉 (|1s〉) is a 2p state (1s state) at the origin O
in Fig. 1(a) with the projection of the electron orbital angular momentum on the z axis being m (for the |1s〉 state, m = 0), and
r is the position of the electron in reference to the nucleus at the origin O. The transition electric dipole moment is not altered
under the translation of the nucleus along the z axis. The unit vector p̂γ , for example, is defined as p̂γ = pγ /p. Those unit
vectors are dependent on MF(θ, φ) with respect to the space-fixed XY Z frame since the projection of the electron orbital angular
momentum m is associated with the z axis. However, they are not dependent on (r̂c, r̂d ) = (�c,�c, �d ,�d ). The unit vectors
p̂γ , p̂φ , and p̂ρ are explicitly written as a function of (θ, φ) as follows:

p̂γ = 1√
2

⎛
⎜⎝

1

i

0

⎞
⎟⎠

xyz

= 1√
2

⎛
⎜⎝

cosφ cosθ − i sinφ

sinφ cosθ + i cosφ

−sinθ

⎞
⎟⎠

XY Z

, (27a)

p̂φ = −

⎛
⎜⎝

0

0

1

⎞
⎟⎠

xyz

= −

⎛
⎜⎝

cosφ sinθ

sinφ sinθ

cosθ

⎞
⎟⎠

XY Z

, (27b)

p̂ρ = 1√
2

⎛
⎜⎝

−1

i

0

⎞
⎟⎠

xyz

= 1√
2

⎛
⎜⎝

−cosφ cosθ − i sinφ

−sinφ cosθ + i cosφ

sinθ

⎞
⎟⎠

XY Z

, (27c)

where the x, y, and z components (the X , Y , and Z components) are arranged from the top to the bottom in the column vectors.
Because of the relation p̂ρ = −p̂γ

∗, p̂ρ does not appear in Eqs. (25). In calculating the matrix elements in Eqs. (25), the following
terms appear:

e±i( ω
c )(rca−rcb+rdb−rda ), (28)

where rca, for example, is the distance between the detector c and the nucleus a. The width of the range of ( ω
c )(rca − rcb + rdb −

rda) seems much larger than 2π as r̂c and r̂d are changed because the typical distance between the nuclei a and b is 93 μm
when a pair of Lyman-α photons is emitted [16] and ω

c is (19 nm)−1 [11]. The terms in Eq. (28) hence oscillate rapidly while
the detector positions are changed. Considering that measured is the ACF averaged over the observation volume and the solid
angles subtended by the detectors in the experiment [13–16], we may set the terms equal to zero as a result. Although we use
the approximation mentioned above as well as some other ones, the matrix in Eq. (24) is held Hermitian: the diagonal elements
fD1– fD3 are real numbers and the off-diagonal elements f3 and f8 are real numbers, too. Interestingly, integrating the matrix
elements f�(r̂c, r̂d ; θ, φ) (� = D1, D2, D3, 1 − 10) over the entire range of the solid angles for the detectors c and d results in∫

f�(�c,�c,�d ,�d ; θ, φ)d�cd�d =
{ 8

9 (4π )2 for � = D1, D2, D3,

0 for � = 1 − 10,

(29a)

(29b)

irrespective of (θ, φ).
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Following Eq. (21), we have calculated the matrix [Ẽ (2)]
b
(rc, tc, rd , td ) as well. Substituting Eq. (23) into Eq. (21), we obtain

[Ẽ (2)]b
(i′, j′ )(i′′, j′′ )(rc, tc, rd , td ) = g(tc, td )

∫
sinθ dθ dφ wex(θ, φ) f(i′, j′ )(i′′, j′′ )(r̂c, r̂d ; θ, φ) = g(tc, td )[ f ]b

(i′, j′ )(i′′, j′′ )(r̂c, r̂d ). (30)

The distribution function of MF(θ, φ), wex(θ, φ), is expressed with the dipolar form

wex(θ, φ) = 1

4π
[1 + bP2(cosθ )], (31)

where the asymmetry parameter b, determined by the doubly excited state “ex,” ranges from −1 to 2 and P2(x) is the Legendre
polynomial of degree 2. The wex(θ, φ)-averaged f(i′, j′ )(i′′, j′′ )(r̂c, r̂d ; θ, φ) is thus characterized by the parameter b as explicitly
shown in Eq. (30). The dipolar form was derived as the angular distribution of photofragments in photoexcitation of a diatomic
molecule [20] and is applicable to the distribution of MF(θ, φ). The dimensionless functions [ f ]b

(i′, j′ )(i′′, j′′ )(r̂c, r̂d ) are arranged in
the same matrix form as in Eq. (24),

|γ γ 〉 |ρρ〉 |γ ρ〉 |ργ 〉 |γφ〉 |φγ 〉 |ρφ〉 |φρ〉 |φφ〉
〈γ γ |
〈ρρ|
〈γ ρ|
〈ργ |
〈γφ|
〈φγ |
〈ρφ|
〈φρ|
〈φφ|

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[ f ]b
D1 [ f ]b

2 [ f ]b
1 [ f ]b

1

[ f ]b
2 [ f ]b

D1 [ f ]b
1 [ f ]b

1

[ f ]b
1 [ f ]b

1 [ f ]b
D1 [ f ]b

3

[ f ]b
1 [ f ]b

1 [ f ]b
3 [ f ]b

D1

0

−[ f ]b
7

−[ f ]b
7

−[ f ]b
8

−[ f ]b
8

0

[ f ]b
D2 [ f ]b

8 [ f ]b
9 [ f ]b

7

[ f ]b
8 [ f ]b

D2 [ f ]b
7 [ f ]b

9

[ f ]b
9 [ f ]b

7 [ f ]b
D2 [ f ]b

8

[ f ]b
7 [ f ]b

9 [ f ]b
8 [ f ]b

D2

0

−[ f ]b
7 −[ f ]b

7 −[ f ]b
8 −[ f ]b

8 0 [ f ]b
D3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

and the matrix is denoted by [ f̃ ]b(r̂c, r̂d ). We thus obtain from Eq. (30)

[Ẽ (2)]b(rc, tc, rd , td ) = g(tc, td )[ f̃ ]b(r̂c, r̂d ). (33)

The matrix [ f̃ ]b(r̂c, r̂d ) is a Hermitian matrix since the matrix in Eq. (24) is Hermitian and the value of the distribution function
wex(θ, φ) is a real number. All the dimensionless elements in Eq. (32), [ f ]b

� (� = D1, D2, D3, 1−10), are expressed as the same
function of (r̂c, r̂d ) = (�c,�c,�d ,�d ) with five coefficients kb

�,1–kb
�,5 as shown below,

[ f ]b
�(�c,�c,�d ,�d ) = kb

�,1 + kb
�,2(cos2�c + cos2�d ) + kb

�,3[cos2(�c − �d ) + cos2(�c + �d )]

+ 2kb
�,4 cos(�c − �d )[cos2(�c − �d ) − cos2(�c + �d )] + 2kb

�,5 cos 2(�c − �d )

× [2 − 2 cos2�c − 2 cos2�d + cos2(�c − �d ) + cos2(�c + �d )]. (34)

Those coefficients kb
�,1–kb

�,5, which are dimensionless, are
summarized in Table I for b = 2 [wex(θ, φ) = ( 3

4π
)cos2θ ] in

(a) and b = −1 [wex(θ, φ) = ( 3
8π

)sin2θ ] in (b). We can ob-
tain the coefficients kb

�,1–kb
�,5 (� = D1, D2, D3, 1−10) for any

value of b from those for b = 2 and b = −1, following

kb
�,i = 1 + b

3
kb=2
�,i + 2 − b

3
kb=−1
�,i (i = 1−5). (35)

The matrix [ f̃ ]b(r̂c, r̂d ) is thereby obtained for any value
of b and the matrix elements turn out to be real num-
bers. It is interesting that integrating the matrix elements
[ f ]b

�(�c,�c,�d ,�d ) over the entire range of the solid angles
for the detectors c and d results in∫

[ f ]b
�(�c,�c,�d ,�d )d�cd�d

=
{

8
9 (4π )2 for � = D1, D2, D3, (36a)
0 for � = 1−10 (36b)

for any value of b(−1 � b � 2). Equations (36) originate
from Eqs. (29), and Eqs. (36) in fact hold even for any distri-
bution function wex(θ, φ). Substituting Eq. (33) into Eq. (22),
we eventually obtain a useful equation,

G(2)
ex (rc, tc, rd , td ) = g(tc, td )Tr

[
ρ̃ph

ex [ f̃ ]b(r̂c, r̂d )
]
, (37)

with the matrix [ f̃ ]b(r̂c, r̂d ) now being known. Using Eq. (37),
we can derive the two-photon correlation function of a pair
of Lyman-α photons in process 1 for the single-state case.
The properties of the doubly excited state “ex” involved in
process 1 are copied to the reduced density matrix ρ̃

ph
ex for the

photonic partial system and the value of b characterizing the
distribution function of MF(θ, φ).

G. The extension to the many-state case

Equation (37) yields the analytical expression of the two-
photon correlation function G(2)

ex (rc, tc, rd , td ) originating from
the doubly excited state “ex” involved in process 1. In this
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TABLE I. Coefficients in Eq. (34). (a) Those for b = 2, i.e.,
wex(θ, φ) = ( 3

4π
)cos2θ , (b) those for b = −1, i.e., wex(θ, φ) =

( 3
8π

)sin2θ . Note that the coefficients multiplied by 2240 are shown.

(a) kb=2
1 kb=2

2 kb=2
3 kb=2

4 kb=2
5

[ f ]b
D1 2200 328 44 24 2

[ f ]b
D2 1872 −208 −88 −48 −4

[ f ]b
D3 1632 −480 176 96 8

[ f ]b
1 152 232 12 −24 5

[ f ]b
2 16 48 72 −32 2

[ f ]b
3 16 48 72 80 44

[ f ]b
4 0 0 0 0 0

[ f ]b
5 0 0 0 0 0

[ f ]b
6 0 0 0 0 0

[ f ]b
7 −24 −72 −108 20 4

[ f ]b
8 24 72 108 64 10

[ f ]b
9 144 208 −24 48 −10

[ f ]b
10 0 0 0 0 0

(b) kb=−1
1 kb=−1

2 kb=−1
3 kb=−1

4 kb=−1
5

[ f ]b
D1 1896 −136 20 16 6

[ f ]b
D2 2032 48 −40 −32 −12

[ f ]b
D3 2208 352 80 64 24

[ f ]b
1 288 416 −48 −16 8

[ f ]b
2 48 144 216 −96 6

[ f ]b
3 48 144 216 128 20

[ f ]b
4 0 0 0 0 0

[ f ]b
5 0 0 0 0 0

[ f ]b
6 0 0 0 0 0

[ f ]b
7 −16 −48 −72 −24 12

[ f ]b
8 16 48 72 52 16

[ f ]b
9 320 512 96 32 −16

[ f ]b
10 0 0 0 0 0

subsection, we derive the equation that relates the overall two-
photon correlation function G(2)

OA(rc, tc, rd , td ) for the many-
state case to G(2)

ex (rc, tc, rd , td ).
The overall density operator for the ensemble of the total

systems at t → ∞, ρ̂OA(θ, φ), is written for the many-state
case in terms of ρ̂ex(θ, φ) as

ρ̂OA(θ, φ) =
∑

ex

ξex(θ, φ)ρ̂ex(θ, φ). (38)

Here, the fractional population ξex(θ, φ) is written as

ξex(θ, φ) = qLαLα
ex (θ, φ)

qLαLα

OA (θ, φ)
, (39)

qLαLα

OA (θ, φ) =
∑
ex′

qLαLα

ex′ (θ, φ), (40)

where qLαLα
ex (θ, φ) is the (θ, φ)-differential cross section for

the emission of Lyman-α photons originating from the dou-
bly excited state “ex.” It is noted that qLαLα

ex (θ, φ) is the
cross-section integral over all the directions of the emis-
sion of the two photons, i.e., integral over all the range of
(�c,�c,�d ,�d ). It is obvious that the fractional population
ξex(θ, φ) satisfies the normalization condition∑

ex

ξex(θ, φ) = 1. (41)

The cross section qLαLα
ex (θ, φ) is related to the cross section

σ LαLα
ex in Eq. (14) as

σ LαLα

ex =
∫

qLαLα

ex (θ, φ) sin θ dθ dφ. (42)

The quantity σ LαLα
ex is the cross section for emitting a pair of

Lyman-α photons, and is the cross-section integral over all the
directions of the emission of the two photons and over all the
directions of the MF(θ, φ). We introduce another cross section
σ

LαLα

OA defined as

σ
LαLα

OA =
∫

qLαLα

OA (θ, φ) sin θ dθ dφ. (43)

It hence follows from Eqs. (40), (42), and (43) that

σ
LαLα

OA =
∑

ex

σ LαLα

ex . (44)

It turns out from Eq. (38) that ρ̃OA(θ, φ), the representation
matrix of ρ̂OA(θ, φ) in terms of E f (θ, φ) defined in Eq. (8), is
written as

ρ̃OA(θ, φ) =
∑

ex

ξex(θ, φ)ρ̃ex. (45)

As mentioned in Sec. II E, the representation matrix ρ̃ex is
independent of (θ, φ) and it is hence not written as ρ̃ex(θ, φ)
but as just ρ̃ex in contrast with that in Eqs. (10) and (11). The
overall two-photon correlation function G(2)

OA(rc, tc, rd , td ) is
given by, from Eq. (11),

G(2)
OA(rc, tc, rd , td )

=
∫

Tr[ρ̃OA(θ, φ)Ẽ (2)(rc, tc, rd , td ; θ, φ)]

× wOA(θ, φ) sinθ dθ dφ, (46)

where wOA(θ, φ) is the overall distribution func-
tion of MF(θ, φ), and the matrices ρ̃OA(θ, φ) and
Ẽ (2)(rc, tc, rd , td ; θ, φ) are 72 × 72 ones. The line used
for obtaining Eq. (11) is available for the many-state case as
well. It follows, on substituting Eq. (45) into Eq. (46), that

G(2)
OA(rc, tc, rd , td )

=
∑

ex

∫
Tr[ρ̃exẼ

(2)(rc, tc, rd , td ; θ, φ)]

× ξex(θ, φ)wOA(θ, φ)sinθ dθ dφ. (47)

The distribution functions wOA/ex(θ, φ) are related to the cross
sections σ

LαLα

OA/ex and qLαLα

OA/ex(θ, φ) as

wOA/ex(θ, φ) = 1

σ
LαLα

OA/ex

qLαLα

OA/ex(θ, φ). (48)

Substituting Eqs. (39) and (48) into (47), we obtain

G(2)
OA(rc, tc, rd , td )

=
∑

ex

(
σ LαLα

ex

σ
LαLα

OA

) ∫
Tr[ρ̃exẼ

(2)(rc, tc, rd , td ; θ, φ)]

× wex(θ, φ) sinθ dθ dφ. (49)
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Considering Eq. (11), we eventually derive a reasonable rela-
tion,

G(2)
OA(rc, tc, rd , td ) =

∑
ex

(
σ LαLα

ex

σ
LαLα

OA

)
G(2)

ex (rc, tc, rd , td ). (50)

III. RESULTS

Two-photon correlation functions, angular correlation
functions, and angle-differential cross sections

We are ready to derive the two-photon correlation function
of a pair of Lyman-α photons in process 1 for the single-
state case based on Eq. (37). As mentioned in Sec. II F,
all the elements of the matrix [ f̃ ]b(r̂c, r̂d ) are expressed as
the same function of (�c,�c,�d ,�d ) with five coefficients
[see Eq. (34)], and the two-photon correlation function for
the single-state case G(2)

ex (rc, tc, rd , td ) is also written with
the same function of (�c,�c,�d ,�d ) as the elements of
[ f̃ ]b(r̂c, r̂d ) as a result,

G(2)
ex (rc, tc, rd , td )

= g(tc, td )
{
kex

1 + kex
2 (cos2�c + cos2�d )

+ kex
3 [cos2(�c − �d ) + cos2(�c + �d )]

+ 2kex
4 cos(�c − �d )[cos2(�c−�d )−cos2(�c+�d )]

+ 2kex
5 cos 2(�c − �d )

× [2 − 2 cos2�c − 2 cos2�d

+ cos2(�c − �d ) + cos2(�c + �d )]
}

= g(tc, td )Fex(r̂c, r̂d ), (51)

where the dimensionless coefficients kex
1 –kex

5 are determined
by the elements of ρ̃

ph
ex , the reduced density matrix of the

photonic partial system, and the coefficients kb
�,1–kb

�,5 (� =
D1, D2, D3, 1−10). For example, kex

2 is determined by ρ̃
ph
ex

and kb
�,2 (� = D1, D2, D3, 1−10). It has turned out from the

hermiticity of ρ̃
ph
ex and [ f̃ ]b(r̂c, r̂d ) in Eq. (37) that the coef-

ficients kex
1 –kex

5 are real numbers. The two-photon correlation
function G(2)

ex (rc, tc, rd , td ) is separated into the temporal part
and the angular part as seen in Eq. (51), and the latter part
is denoted by Fex(r̂c, r̂d ). Equation (51) is the analytical ex-
pression of the two-photon correlation function of a pair of
Lyman-α photons for the case that a single doubly excited
state “ex” is involved in process 1 (the single-state case). We
then integrate Fex(r̂c, r̂d ) over the entire range of the solid
angles for the detectors c and d based on Eqs. (36) and the fact
that Fex(r̂c, r̂d ) = Tr[ρ̃ph

ex [ f̃ ]b(r̂c, r̂d )][see Eqs. (37) and (51)]
to find that∫

Fex(r̂c, r̂d )d�cd�d = (ρ11 + ρ22 + · · · + ρ99)
8

9
(4π )2

= 8

9
(4π )2 (52)

irrespective of the doubly excited state “ex,” where ρi j is the
(i, j) element of the 9 × 9 matrix ρ̃

ph
ex . The reduced density

matrix for the photonic partial system ρ̃
ph
ex satisfies the nor-

malization condition, Tr(ρ̃ph
ex ) = 1, which is used for obtaining

Eq. (52). As mentioned in Sec. II E, the matrix ρ̃
ph
ex is indepen-

dent of the detector arrangement (r̂c, r̂d ).
According to Eq. (50), even if many doubly excited states

are involved in process 1 at a given energy of the incident pho-
ton (the many-state case), the two-photon correlation function
G(2)

OA(rc, tc, rd , td ) again turns out to be written in the same
form as in Eq. (51),

G(2)
OA(rc, tc, rd , td )

= g(tc, td ){k1 + k2(cos2�c + cos2�d )

+ k3[cos2(�c − �d ) + cos2(�c + �d )]

+ 2k4 cos(�c−�d )[cos2(�c − �d ) − cos2(�c + �d )]

+ 2k5 cos 2(�c − �d )

× [2 − 2 cos2�c − 2 cos2�d

+ cos2(�c − �d ) + cos2(�c + �d )]}
= g(tc, td )FOA(r̂c, r̂d ). (53)

The dimensionless coefficients ki (i = 1−5) are state-
averaged values of kex

i (i = 1−5) in Eq. (51), respectively,

ki =
∑

ex

(
σ LαLα

ex

σ
LαLα

OA

)
kex

i (i = 1−5), (54)

and FOA(r̂c, r̂d ) is likewise a state-averaged function of
Fex(r̂c, r̂d ) in Eq. (51) as

FOA(r̂c, r̂d ) =
∑

ex

(
σ LαLα

ex

σ
LαLα

OA

)
Fex(r̂c, r̂d ). (55)

As for the analytical form of the two-photon correlation
function, there is no difference between the single-state case
[Eq. (51)] and the many-state case [Eq. (53)]. Equation (53)
results in Eq. (51) in the special case that only one doubly
excited state is involved in process 1 [see Eq. (50) as well]
and it is hence sufficient to simply discuss the many-state case
alone. It follows from Eqs. (52) and (55) that∫

FOA(r̂c, r̂d )d�cd�d = 8

9
(4π )2, (56)

which is apparently the same as Eq. (52). Substituting
FOA(r̂c, r̂d ) in Eq. (53) into (56), we obtain a useful relation
among k1, k2, and k3,

k1 − 2
3 k2 + 2

9 k3 = 8
9 . (57)

Following the procedure mentioned in the last paragraph
of Sec. II D (the procedure is mentioned for the single-state
case in Sec. II D, but it refers to the many-state case as well),

we obtain two quantities from FOA(r̂c, r̂d ): one is d2PLαLα
OA

d�cd�d
,

the ACF of a pair of Lyman-α photons, and the other is
d2σ

LαLα
OA

d�cd�d
, the angle-differential cross section for the emission

of a pair of Lyman-α photons. The ACF, d2PLαLα
OA

d�cd�d
, is explicitly

written as

d2PLαLα

OA

d�cd�d
(�c,�c,�d ,�d )

= 9

8(4π )2
{k1 + k2(cos2�c + cos2�d )

+ k3[cos2(�c − �d ) + cos2(�c + �d )]
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+ 2k4 cos(�c − �d )[cos2(�c − �d ) − cos2(�c + �d )]

+ 2k5 cos 2(�c − �d )

× [2 − 2 cos2�c − 2 cos2�d

+ cos2(�c − �d ) + cos2(�c + �d )]}. (58)

The angle-differential cross section, d2σ
LαLα
OA

d�cd�d
, is related to

d2PLαLα
OA

d�cd�d
as

d2σ
LαLα

OA

d�cd�d
= σ

LαLα

OA

(
d2PLαLα

OA

d�cd�d

)
, (59)

and d2σ
LαLα
OA

d�cd�d
is expressed with a trivial function of

(�c,�c,�d ,�d ). Equations (58) and (59) give the general
analytical expressions of the ACF of a pair of Lyman-α pho-
tons and the angle-differential cross section for the emission
of a pair of Lyman-α photons, respectively, under the relation
of Eq. (57).

IV. DISCUSSION

A. General remarks

The ACF in Eq. (58) should have the following two prop-
erties:

(i) d2PLαLα
OA

d�cd�d
(�c,�c,�d ,�d ) is invariant under the exchange

of the detectors c and d .
(ii) It is invariant under the rotation around the Z axis by

any angle, the axis which points to the direction of ε̂ as seen
in Fig. 1(a).

Property (i) originates from the fact that the detectors are
identical and that either one or the other detector may hence
be labeled c (d ) [the remaining one is then labeled d (c)]. It
is obvious that the ACF in Eq. (58) has property (i). Property
(ii) originates from the fact that we take account of randomly
oriented H2(X 1�+

g ) molecules with respect to the space-fixed
frame in process 1, as mentioned in Sec. II A, and only ε̂(//the
Z axis) brings the space anisotropy because the photoexci-
tation in H2(X 1�+

g ) molecules in process 1 is dominated
by the electric dipole transition [see Fig. 1(a)]. The azimuth
angles �c and �d are involved in the ACF in Eq. (58) in
the form of (�c − �d ), and the ACF consequently possesses
the rotational invariance around the Z axis [property (ii)]. We
note that the ACF in Eq. (58) remains unaltered even if we
rotate the direction of the incident light beam around the Z
axis because of the rotational invariance of the ACF.

B. The expansion of the angular correlation function
in terms of the spherical harmonics

In this subsection, we expand the ACF in Eq. (58)
in terms of the spherical harmonics, i.e., in terms of
{Y�cmc (�c,�c)Y�d md (�d ,�d )}, to find out which terms con-
tribute and to investigate the reason why they do. The result
of the expansion is

d2PLαLα

OA

d�cd�d
(�c,�c,�d ,�d )

=
(

1

4π

)
Y00(�c,�c)Y00(�d ,�d )

+ 9

8(4π )2

{(
16π√

45

)(
k2 − 2

3
k3

)

× [Y20(�c,�c)Y00(�d ,�d )+Y00(�c,�c)Y20(�d ,�d )]

+
(

128π

45

)
k3 Y20(�c,�c)Y20(�d ,�d )

−
(

64π

15

)
k4[Y21(�c,�c)Y2,−1(�d ,�d )

+ Y2,−1(�c,�c)Y21(�d ,�d )]

+
(

256π

15

)
k5[Y22(�c,�c)Y2,−2(�d ,�d )

+ Y2,−2(�c,�c)Y22(�d ,�d )]

}
, (60)

where (p. 94 in Ref. [19])

Y00(�,�) = 1

(4π )
1
2

, (61a)

Y20(�,�) =
(

5

16π

) 1
2

(3cos2� − 1), (61b)

Y2,±1(�,�) = ∓
(

15

8π

) 1
2

sin� cos� e±i�, (61c)

Y2,±2(�,�) =
(

15

32π

) 1
2

sin2� e±2i�. (61d)

The coefficient k1 disappears in Eq. (60) because of Eq. (57).
It is remarkable that the ACF in Eq. (60) is composed of the
term

Y�m(�c,�c)Y�′m′ (�d ,�d ) + Y�′m′ (�c,�c)Y�m(�d ,�d )

for (�, m) �= (�′, m′) (62)

and

Y�m(�c,�c)Y�m(�d ,�d ). (63)

Because of this composition, the ACF in Eq. (60) is invariant
under the exchange of the detectors [property (i) mentioned
in Sec. IV A]. The manner in Eq. (62) for generating an in-
variant function under the exchange of the identical detectors
is the same as the one used for generating symmetric wave
functions of two identical particles under the permutation of
those particles. The relation

m = −m′ (64)

should be satisfied in Eq. (62), and the relation

m = 0 (65)

should be satisfied in Eq. (63) so that the ACF in Eq. (60)
comes to possess the rotational invariance around the Z axis
[property (ii) mentioned in Sec. IV A]. The ACF in Eq. (60) is
in fact composed of the term [Y�m(�c,�c)Y�′,−m(�d ,�d ) +
Y�′,−m(�c,�c)Y�m(�d ,�d )](� �= �′) and the term
Y�0(�c,�c)Y�0(�d ,�d ). No other term is involved in
Eq. (60).
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It is also remarkable that the spherical harmonics of degree
� = 0 and 2 alone contribute to Eq. (60). The theory of angular
correlation of two photons has been well established in cas-
cade emission of two photons from atoms or nuclei in angular
momentum eigenstates (pp. 165–176 in Ref. [21], pp. 220–
225 in Ref. [22]), and we refer to the theory for discussing
the origin of the remarkable point. The ACF of a pair of fluo-
rescence photons in cascade transitions is expressed as a linear
combination of P�(cos�) (� = 0, 2, 4, . . . ), where P�(x) is the
Legendre polynomial of degree � and � is the angle between
r̂c and r̂d (pp. 165–176 in Ref. [21], pp. 220–225 in Ref. [22]).
We consider the case in which the fluorescence photons are
emitted through electric dipole transitions. An electric dipole
photon has the intrinsic angular momentum 1 (pp. 220–225 in
Ref. [22]), and the Legendre polynomials of degree � = 2 and
0 alone are involved in the linear combination of P�(cos�) as
a result [we consider only the restriction due to the photon
field in regard to which P�(cos�) contributes (pp. 165–176 in
Ref. [21], pp. 220–225 in Ref. [22])]. With the phase conven-
tion of the spherical harmonics in Eqs. (61) being considered,
the addition theorem of the spherical harmonics (p. 95 in
Ref. [22]) is written as

P�(cos�) = 4π

2� + 1

�∑
m=−�

(−1)mY�,−m(�c,�c)Y�m(�d ,�d ).

(66)

The contribution of Y2m(�,�) and Y00(�,�) alone in
Eq. (60) hence seems to be attributed to the fact that a pair of
electric-dipole photons is emitted in process 1. The difference
between Eq. (60) and the ACF of two electric-dipole photons
emitted in the cascade transitions shown in pp. 220–225 in
Ref. [22] is reasonable because the present process is similar
to but not equal to the cascade emission of two electric-dipole
photons.

It turns out that the relation

d2PLαLα

OA

d�cd�d
(r̂c, r̂d ) = d2PLαLα

OA

d�cd�d
(−r̂c, r̂d )

= d2PLαLα

OA

d�cd�d
(r̂c,−r̂d )

= d2PLαLα

OA

d�cd�d
(−r̂c,−r̂d ) (67)

holds because only spherical harmonics of even degree are
involved in Eq. (60).

C. Searching for magic pairs of detector arrangements

Suppose that we measure σ
LαLα

OA (= ∫
( d2σ

LαLα
OA

d�cd�d
) d�cd�d ) in

Eq. (59), the angle-integrated cross section for the emission
of a pair of Lyman-α photons in process 1, with chang-
ing the energy of the incident photon. To this end, we
search for a special arrangement of the detectors c and d ,
(�M

c ,�M
c ,�M

d ,�M
d ), at which arrangement all the angular-

dependent terms vanish in the ACF in Eq. (60) and only the
first term (= 1

(4π )2 ) remains. If such an arrangement exists,

we can measure the angle-integrated cross section σ
LαLα

OA as

a function of the incident-photon energy with the two detec-
tors held fixed there, and we refer to the arrangement as the
magic arrangement of the detectors. It is an analogy to the
well-known magic angle θM in the dipolar form in Eq. (31),
in which form only the term 1

4π
remains at cos2θM = 1

3 on
the right-hand side. We note that the dipolar form refers to the
angular intensity distribution of a fluorescence photon emitted
by an excited fragment atom in the photodissociation of a
diatomic molecule as well [17].

The definition of the magic arrangement yields the follow-
ing coupled equations:

Y20
(
�M

c ,�M
c

)
Y00

(
�M

d ,�M
d

)
+Y00

(
�M

c ,�M
c

)
Y20

(
�M

d ,�M
d

) = 0, (68a)

Y20
(
�M

c ,�M
c

)
Y20

(
�M

d ,�M
d

) = 0, (68b)

Y21
(
�M

c ,�M
c

)
Y2,−1

(
�M

d ,�M
d

)
+Y2,−1

(
�M

c ,�M
c

)
Y21

(
�M

d ,�M
d

) = 0, (68c)

Y22
(
�M

c ,�M
c

)
Y2,−2

(
�M

d ,�M
d

)
+Y2,−2

(
�M

c ,�M
c

)
Y22

(
�M

d ,�M
d

) = 0. (68d)

Equations (68a) and (68b) result in

cos2�M
c = cos2�M

d = 1
3 . (69)

Substituting Eq. (69) into Eqs. (68c) and (68d), we obtain

cos
(
�M

c − �M
d

) = 0 and cos2
(
�M

c − �M
d

) = 1
2 , (70)

respectively. It is obvious that the coupled equations (70)
have no solution, and the magic arrangement of the detec-
tors consequently does not exist. The reason is that there are
four equations [Eqs. (68)] for three unknown numbers, i.e.,
�M

c ,�M
d ,�M

c − �M
d . However, there exists a pseudo-magic-

arrangement in a limited case as mentioned below. We set
�c and �d so that they satisfy Eq. (69), e.g., they are set
as 54.7◦ or 125.3◦. If, for some pair of azimuth angles (�′

c,
�′

d ), the terms involving Y2m(54.7◦,�′) (m �= 0) in Eq. (60),
i.e., the fourth and fifth terms, are much smaller than 1

(4π )2

[the first term in Eq. (60)], the arrangement (�c = 54.7◦, �′
c,

�d = 54.7◦, �′
d ) is practically the magic arrangement and

is referred to as the pseudo-magic-arrangement. In brief, the
pseudo-magic-arrangement is likely to exist when k4, k5 <<

k1, k2, k3 [see Eq. (58) as well].
Considering the reason why the magic arrangement of

the detectors does not exist, we then search for a spe-
cial pair of the detector arrangements, {(�M

c ,�M
c ,�M

d ,�M
d ),

(�M
c ,�M ′

c ,�M
d ,�M ′

d )}, at which pair all the angular-
dependent terms vanish in the summation of the ACF at
(�M

c ,�M
c ,�M

d ,�M
d ) and that at (�M

c ,�M ′
c ,�M

d ,�M ′
d ) and only

the term 2
(4π )2 remains. The summation is written in terms of
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spherical harmonics as

d2PLαLα

OA

d�cd�d

(
�M

c ,�M
c ,�M

d ,�M
d

) + d2PLαLα

OA

d�cd�d

(
�M

c ,�M ′
c ,�M

d ,�M ′
d

)

= 2

(4π )2
+ 9

8(4π )2

{(
16π√

45

)(
k2 − 2

3
k3

)[
Y20

(
�M

c ,�M
c

)
Y00

(
�M

d ,�M
d

) + Y00
(
�M

c ,�M
c

)
Y20

(
�M

d ,�M
d

)

+ Y20
(
�M

c ,�M ′
c

)
Y00

(
�M

d ,�M ′
d

) + Y00
(
�M

c ,�M ′
c

)
Y20

(
�M

d ,�M ′
d

)] +
(

128π

45

)
k3

[
Y20

(
�M

c ,�M
c

)
Y20

(
�M

d ,�M
d

)

+ Y20
(
�M

c ,�M ′
c

)
Y20

(
�M

d ,�M ′
d

)] −
(

64π

15

)
k4

[
Y21

(
�M

c ,�M
c

)
Y2,−1

(
�M

d ,�M
d

) + Y2,−1
(
�M

c ,�M
c

)
Y21

(
�M

d ,�M
d

)

+ Y21
(
�M

c ,�M ′
c

)
Y2,−1

(
�M

d ,�M ′
d

) + Y2,−1
(
�M

c ,�M ′
c

)
Y21

(
�M

d ,�M ′
d

)] +
(

256π

15

)
k5

[
Y22

(
�M

c ,�M
c

)
Y2,−2

(
�M

d ,�M
d

)

+ Y2,−2
(
�M

c ,�M
c

)
Y22

(
�M

d ,�M
d

) + Y22
(
�M

c ,�M ′
c

)
Y2,−2

(
�M

d ,�M ′
d

) + Y2,−2
(
�M

c ,�M ′
c

)
Y22

(
�M

d ,�M ′
d

)]}
. (71)

If such a special pair of the detector arrangements exists, we can measure the angle-integrated cross section σ
LαLα

OA as a function
of the incident-photon energy with only two coincidence measurements at (�M

c ,�M
c ,�M

d ,�M
d ) and at (�M

c ,�M ′
c ,�M

d ,�M ′
d ). We

refer to the special pair of the detector arrangements as the magic pair of them.
The definition of the magic pair of the detector arrangements yields the following coupled equations:

Y20
(
�M

c ,�M
c

)
Y00

(
�M

d ,�M
d

) + Y00
(
�M

c ,�M
c

)
Y20

(
�M

d ,�M
d

) + (
�M

c → �M ′
c and �M

d → �M ′
d

) = 0, (72a)

Y20
(
�M

c ,�M
c

)
Y20

(
�M

d ,�M
d

) + Y20
(
�M

c ,�M ′
c

)
Y20

(
�M

d ,�M ′
d

) = 0, (72b)

Y21
(
�M

c ,�M
c

)
Y2,−1

(
�M

d ,�M
d

) + Y2,−1
(
�M

c ,�M
c

)
Y21

(
�M

d ,�M
d

) + (
�M

c → �M ′
c and �M

d → �M ′
d

) = 0, (72c)

Y22
(
�M

c ,�M
c

)
Y2,−2

(
�M

d ,�M
d

) + Y2,−2
(
�M

c ,�M
c

)
Y22

(
�M

d ,�M
d

) + (
�M

c → �M ′
c and �M

d → �M ′
d

) = 0. (72d)

Equations (72a) and (72b) result in

cos2�M
c = cos2�M

d = 1
3 , (73)

which is the same as Eq. (69). Substituting Eq. (73) into
Eqs. (72c) and (72d), we obtain

cos
(
�M

c − �M
d

) + cos
(
�M ′

c − �M ′
d

) = 0, (74a)

cos2
(
�M

c − �M
d

) + cos2
(
�M ′

c − �M ′
d

) = 1, (74b)

respectively, which correspond with Eq. (70). In contrast with
Eq. (70), however, the coupled equations (74) have the follow-
ing solutions:

cos
(
�M

c − �M
d

) = ± 1√
2

and cos
(
�M ′

c − �M ′
d

) = ∓ 1√
2

(double-sign corresponds). (75)

We have thereby substantiated that there exist magic pairs
of the detector arrangements. One possible pair from an
experimental point of view is, for example, {(�M

c = 54.7◦,
�M

c = 0◦, �M
d = 125.3◦, �M

d = 45◦), (�M
c = 54.7◦, �M ′

c =
0◦, �M

d = 125.3◦, �M ′
d = 135◦) }. Lastly, we note that there

may be other kinds of magic pairs of detector arrangements

because those pairs have not been searched for within the
general range {(�M

c , �M
c , �M

d , �M
d ), (�M ′

c , �M ′
c , �M ′

d , �M ′
d )}

but they have been searched for within the limited range {(�M
c ,

�M
c , �M

d , �M
d ), (�M

c , �M ′
c , �M

d , �M ′
d ) } alone.

V. CONCLUSION

We have theoretically obtained a general analytical ex-
pression of the two-photon correlation function for a pair
of Lyman-α photons in the photodissociation of hydrogen
molecules in process 1 with a manner based on both atomic
and molecular physics and quantum optics. We have derived
from this function the angular correlation function of the
photon pair and the angle-differential cross section for the
emission of the photon pair. The angular correlation function,
depending on four angular variables specifying a detector
arrangement, has turned out to be expressed in terms of cosine
(sine) functions with five coefficients. The angular correlation
function has been expanded in terms of the spherical har-
monics so that we investigate which terms are involved and
the reason why they are involved. Some interesting features
have been revealed in the expansion. We have discovered
magic pairs of detector arrangements in the angular corre-
lation function, while it has turned out that there exists no
magic arrangement in contrast with the well-known magic ar-
rangement of a single detector in the single-photon-emission
process. By virtue of the magic pair of detector arrangements,
we can measure the angle-integrated cross section for emit-
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ting two Lyman-α photons σ
LαLα

OA against the incident-photon
energy without measuring angle-differential cross sections for

emitting those photons d2σ
LαLα
OA

d�cd�d
on the spherical surface at each

photon energy.
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