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We employ a relativistic coupled-cluster theory to compute the ground-state electric dipole polarizability
α and the electron correlation energy of the superheavy elements Cn, Nh+, and Og. To assess the electron
correlation trends with Z , we also compute the correlation energies of the three lighter homologs for each of
the elements. In the computations, we use the Dirac-Coulomb-Breit Hamiltonian and incorporate the quantum
electrodynamical corrections from the Uehling potential and the self-energy. The effects of triple excitations
are considered perturbatively in the theory. Our recommended values of α are in good agreement with previous
theoretical results. As expected, the dominant contribution is from the valence electrons. Except for Cn and
Og, the contribution from the Breit interaction decreases with Z . For the vacuum polarization and self-energy
corrections, the contributions increase with Z . To understand the correlation energy trends better, we also
compute the correlation energy with the relativistic many-body perturbation theory.
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I. INTRODUCTION

The study of superheavy elements (SHEs) is a multidisci-
plinary research area which provides a roadmap to investigate
and understand several properties related to physics and chem-
istry [1–6]. There is, however, a lack of experimental data on
atomic properties of SHEs due to various challenges, such as
low production rate, short half-lives of elements, and the lack
of a state-of-the-art one-atom-at-a-time experimental facility
associated with atomic experiments [1,7,8]. Moreover, the
properties of SHEs cannot be predicted based on lighter ho-
mologs, as they often differ due to relativistic effects in SHEs
[5]. In such cases, the theoretical investigations of physical
and chemical properties provide important insight into the
properties of SHEs. Moreover, the benchmark data on these
properties from accurate theoretical predications is impor-
tant for future experiments. Calculating accurate properties of
SHEs is, however, a difficult task. The reason for this could
be attributed to the competing nature of the relativistic and
correlation effects in these systems. For a reliable prediction
of the properties of SHEs, both of these effects should be
incorporated at the highest level of accuracy. In addition, large
basis sets should be used to obtain the converged properties’
results.

The electric dipole polarizability, α, of an atom or ion is a
key parameter used to probe several fundamental as well as
technologically relevant properties in atoms and ions [9–14].
The α for SHEs Cn and Og has been calculated in previous
works, Refs. [15–18] and [16,17,19,20], respectively. Though
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most of these results are using the CCSD(T), there is a large
variation in the reported values for both Cn and Og. For
example, the value of α reported in CCSD(T) calculation [20]
is ≈25% larger than a similar calculation [19]. The reason for
this can, perhaps, be attributed to the complex nature of the
electron correlation and relativistic effects in these systems.
The other point to be mentioned here is that the basis used in
these calculations is not large. Moreover, the inclusion of the
contributions from the Breit interaction and QED corrections
is crucial to obtain accurate and reliable values of α for SHEs.

In this paper, we employ a fully relativistic coupled cluster
(RCC) theory-based method to calculate the electric dipole
polarizability and the electron correlation energy of SHEs Cn,
Nh+, and Og. The superheavy element 294

118Og, synthesized in
2006 by heavy ion fusion reaction of 48Ca with 249Cf [21], is
the heaviest element in the periodic table [22]. It has a half-life
of 0.89+1.07

−0.31 ms [21], which poses challenges to the experi-
mental studies of physical and chemical properties [7,8]. Cn,
perhaps, is the most well-studied SHE. It was synthesized
at Darmstadt in 1996 [23] where an isotope 277

112Cn, with a
very short half-life of 240+430

−90 μs, was identified in the nuclear
fusion reaction of 70Zn with 208Pb. In subsequent experiments,
Refs. [24–27], some other isotopes were discovered and their
chemical properties were investigated. The experimental and
theoretical studies predict the properties of Cn to be different
from the lighter homologs [17,18,27]. The main reason for
this is attributed to the large contraction of ns orbitals due
to the poor screening of the nuclear charge. Nh is the first
SHE in the p block of the periodic table. It was discov-
ered at the RIKEN, Japan, in 2004 in the fusion reaction of
209Bi with 70Zn [28], where the produced isotope 287

113Nh is
reported to have a half-life of 0.34 ms. Like Cn, in terms of
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TABLE I. The α0 and β parameters of the even-tempered GTO basis used in our calculations.

s p d f

Atom α0 β α0 β α0 β α0 β

Cn 0.00545 1.870 0.00475 1.952 0.00105 1.970 0.00380 1.965
Og 0.00410 1.910 0.00396 1.963 0.00305 1.925 0.00271 1.830
Nh+ 0.05200 1.912 0.03650 1.655 0.05550 1.945 0.00455 1.945

properties, it is predicted to show different trends than lighter
homologs, due to the strong contraction and stabilization of
np1/2 orbitals. The large number of electrons in the SHEs
poses serious theoretical challenges to account for the electron
correlation effects accurately. This is on account of the expo-
nential increase in electron configurations with the number of
electrons. At the same time, the short lifetimes of the SHEs
limits experimental possibilities and, hence, there is a need for
reliable theoretical results. For this reason, to add to the the-
oretical understanding, we employ relativistic coupled-cluster
(CC) theory to compute the structure and properties of these
SHEs. In addition, this work establishes the applicability of
our closed-shell relativistic CC method to capture the electron
correlation effects in SHEs and, hence, gives reliable results
for structure and properties.

RCC is one of the most powerful many-body theories for
atomic structure calculations as it accounts for the electron
correlation to all orders of residual Coulomb interaction. We
have used this to calculate the many-electron wave function
and the electron correlation energy. The effect of the external
electric field, in the case of α, is accounted for using the
perturbed relativistic coupled-cluster (PRCC) theory [29–33].
One of the key merits of PRCC in the properties calculation is
that it does not employ the sum-over-state [34,35] approach to
incorporate the effects of a perturbation. The summation over
all the possible intermediate states is subsumed in the per-
turbed cluster operators. The leading order relativistic effects
are accounted for using the four-component Dirac-Coulomb-
Breit no-virtual-pair Hamiltonian [36]. And, the effects of
Breit, QED, and triple excitations in CCs are computed us-
ing the implementations in our previous works [29,31–33].
Considering the importance of α, it has been computed using
a variety of many-body methods in the literature. A recent

review article by Mitroy et al. [37] provides a summary of α

for several atoms and ions computed using different methods.
One reference, a tabulation of α for neutral atoms, which
we have found very useful is Schwerdtfeger’s updated table
[38]. The table provides an exhaustive list of references on
experimental and theoretical values of α for several neutral
atoms.

To assess the trend of various electron correlation effects
from lighter to SHEs, we also calculate the correlation energy
and the contributions from the Breit and QED corrections to
α for three lighter homologs in each SHE: Zn, Cd, and Hg
in group 12; Ga+, In+, and Tl+ in group 13; and Kr, Xe,
and Rn in group 18. Here, our main focus is to get deeper
insight into various correlation effects as a function of Z in
each of these SHEs. More precisely, we aimed to accurately
calculate the value of α and correlation energy of SHEs Cn,
Nh+, and Og using RCC and test the convergence of results
with a very large basis; study the electron correlation in α for
SHEs and assess the trend from lighter to SHEs; and examine
in detail the contributions from the Breit and QED corrections
to α for SHE elements and get a deeper insight to the trend of
contributions from lighter homologs to SHEs.

The remaining part of the paper is organized into five sec-
tions. In Sec. II, we provide a brief description of the method
used in the polarizability calculation. In Sec. III, we provide
the calculational details such as the single-electron basis and
computational challenges associated with polarizability cal-
culation of SHEs. In Sec. IV, we analyze and discuss the
results from our calculations. The theoretical uncertainty in
our calculation is discussed in Sec. V. Unless stated otherwise,
all the results and equations presented in this paper are in
atomic units(h̄ = me = e = 1/4πε0 = 1).
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FIG. 1. (a) Number of cluster amplitudes, (b) number of four-particle Slater integrals, and (c) memory required to store four-particle Slater
integrals, as a function of Z for group-12 elements.
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FIG. 2. Convergence of second-order correlation energy (a), the RCC energy (b), and α (c) as function of the basis size.

II. METHOD OF CALCULATION

The ground-state wave function of an N-electron atom or
ion in RCC theory is

|�0〉 = eT (0) |�0〉, (1)

where |�0〉 is the Dirac-Fock (DF) reference wave function
and T (0) is the closed-shell CC excitation operator. It is
an eigenfunction of the Dirac-Coulomb-Breit no-virtual-pair
Hamiltonian,

HDCB =
N∑

i=1

[cαi · pi + (βi − 1)c2 − VN (ri )]

+
∑
i< j

[
1

ri j
+ gB(ri j )

]
, (2)

where α and β are the Dirac matrices, and VN (ri) is the
nuclear potential. The negative-energy continuum states of
the Hamiltonian are projected out by using the kinetically
balanced finite Gaussian-type orbital (GTO) basis sets [39,40]
and selecting only the positive energy states from the finite-
size basis set [41,42]. The last two terms, 1/ri j and gB(ri j ), are
the Coulomb and Breit interactions, respectively. For gB(ri j ),
we employ the expression [43]

gB(r12) = − 1

2r12

[
α1 · α2 + (α1 · r12)(α2 · r12)

r2
12

]
. (3)

The operators T (0) in Eq. (1) are the solutions of the coupled
nonlinear equations

〈
�p

a

∣∣HN + [HN , T (0)] + 1

2!
[[HN , T (0)], T (0)] + 1

3!
[[[HN , T (0)], T (0)], T (0)]|�0〉 = 0, (4a)

〈
�

pq
ab

∣∣HN + 1

2!
[[HN , T (0)], T (0)] + 1

3!
[[[HN , T (0)], T (0)], T (0)] + 1

4!
[[[[HN , T (0)], T (0)], T (0)], T (0)]|�0〉 = 0. (4b)

Here, the states |�p
a〉 and |�pq

ab〉 are the singly and
doubly excited determinants obtained by replac-
ing one and two electrons from the core orbitals
in |�0〉 with virtual orbitals, respectively. And
HN = HDCB − 〈�0|HDCB|�0〉 is the normal-ordered
Hamiltonian.

In the presence of an external electric field, Eext, the
ground-state wave function |�0〉 is modified due to interaction
between induced electric dipole moment D of the atom and
Eext. We call the modified wave function the perturbed wave
function, which in PRCC is defined as

|�̃0〉 = eT (0)
[1 + λT(1) · Eext]|�0〉, (5)

where T(1) is the perturbed CC operator and λ is a pertur-
bation parameter. The wave function |�̃0〉 is an eigenstate
of the modified Hamiltonian HTot = HDCB − λD · Eext. The
perturbed CC operators T(1) in Eq. (5) are the solutions of
the linearized PRCC equations [29–32,44,45]:

〈
�p

a

∣∣HN + [HN , T(1)]|�0〉 = 〈
�p

a

∣∣[D, T (0)]|�0〉, (6a)

〈
�

pq
ab

∣∣HN + [HN , T(1)]|�0〉 = 〈
�

pq
ab

∣∣[D, T (0)]|�0〉. (6b)

The single and double excitations in the couple-cluster theory
capture most of the correlation effects and, hence, the oper-
ators T (0) and T(1) are approximated as T (0) = T (0)

1 + T (0)
2

and T(1) = T(1)
1 + T(1)

2 , respectively. This is referred to as
the coupled-cluster single and double (CCSD) approximation
[46]. In the present paper we, however, also incorporate the
triple excitations perturbatively [29].

The perturbed wave function from Eq. (5) is used to calcu-
late the ground-state polarizability. In PRCC,

α = −〈�̃0|D|�̃0〉
〈�̃0|�̃0〉

. (7)

Using the expression of |�̃0〉 from Eq. (5), we can write

α = −〈�0|T(1)†D̄ + D̄T(1)|�0〉
〈�0|�0〉 , (8)

where D̄ = eT (0)†
DeT (0)

and, in the denominator, 〈�0|�0〉
is the normalization factor. Considering the computational
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TABLE II. Electron correlation and total energies in atomic units
for group-12, group-13, and group-18 elements. Listed RCC energies
also include the contributions from the Breit and QED corrections.

Basis 	EDC Etotal 	Eothers

MBPT RCC MBPT RCC

Group 12

Zn 336 206 −1.6769 −1.5690 −1796.1812 −1.6975a,

−1.6611d

−1.6206f

Cd 461 223 −2.7278 −2.6216 −5595.9393 −2.7253b,

−2.6540d

−2.6500f

Hg 413 227 −5.4681 −5.1164 −19653.9388 −5.4508b,

−5.2895d

−5.1760f

Cn 439 289 −8.4393 −7.7981 −47335.9752

Group 13

Ga+ 411 227 −1.669 −1.58077 −1943.9435

In+ 447 235 −2.744 −2.64147 −5882.8838

Tl+ 409 220 −5.499 −5.15772 −20279.7851
Nh+ 453 304 −8.4743 7.8439 −48517.6211

Group 18

Kr 413 255 −1.8532 −1.7900 −2790.3898 −1.8907c,

−1.8468d

−1.8466e

−1.8496f

Xe 419 255 −3.0314 −2.9075 −7448.6635 −3.0877c,

−2.9587d

−2.9979e

−3.0002f

Rn 372 245 −5.6195 −5.2945 −23601.3243 −5.7738c,

−5.5874d

−5.5250f

Og 492 313 −8.9109 −8.3047 −54815.0764

aRef. [57] [MP2]; bRef. [58] [MP2]; cRef. [59] [MP2]; dRef. [60]
[MP2]; eRef. [61] [RCC]; fRef. [62] [RCC].

complexity, we truncate D̄ and the normalization factor to
second order in the cluster operators T (0). From our previ-
ous study [47], using an iteration scheme, we found that the
terms with third and higher orders contribute much less to
the properties.

III. CALCULATIONAL DETAIL

A. Single-electron basis

In the RCC and PRCC calculations, it is crucial to use
an orbital basis set which provides a good description of the
single-electron wave functions and energies. In the present
paper, we use GTOs [39] as the basis. We optimize the or-
bitals as well as the self-consistent-field energies of GTOs to
match the GRASP2K [48] results. In Table I, we provide the

values of the exponents α0 and β [39] of the occupied orbital
symmetries for Cn, Nh+, and Og. For further improvement,
we incorporate the effects of Breit interaction, vacuum polar-
ization, and self-energy corrections. This is crucial to obtain
the value of the dipole polarizability of SHEs accurately,
where the relativistic effects are larger due to higher Z . To
compute the corrections from the vacuum polarization to the
single-electron energies, we used Uehling potential [49], with
the modification to incorporate the finite-size effect of nuclear
charge distribution [50,51]:

VUe(r) = −2α

3r

∫ ∞

0
dx xρ(x)

∫ ∞

1
dt

√
t2 − 1

(
1

t3
+ 1

2t5

)
×(e−2ct |(r−x)| − e−2ct (r+x) ). (9)

Here, α is the fine structure constant and should not be con-
fused with dipole polarizability, and ρ(x) is the finite-size
Fermi density distribution of the nuclear charge, expressed as

ρnuc(r) = ρ0

1 + e(r−c)/a
, (10)

with a = t4 ln(3). The parameter c is the half-charge radius
such that ρnuc(c) = ρ0/2, and t is the skin thickness. The
corrections from the self-energy to single-electron energies
are considered through the model Lamb-shift operator intro-
duced by Shabaev et al. [52], using the code QEDMOD [53]
developed by the same authors.

In the Appendixes, we compare the orbital energies of Cn
(Table IX), Nh+ (Table X), and Og (Table XI) with GRASP2K
[48] and B-spline [54] data. As seen from the tables, the
GTO orbital energies are in excellent agreement with the
numerical values from GRASP2K. The largest differences
are 3.4 × 10−4, 4.8 × 10−4, and 9.2 × 10−4 Hartree in the
case of 4 f5/2, 1s1/2 and 2p1/2 orbitals of Cn, Nh+, and Og,
respectively. The corrections from the vacuum polarization,
	εUe, and the self-energy, 	εSE, to the orbital energies are
provided in Table XII. Our results match well with the previ-
ous calculation [55] for Cn and Og.

B. Computational challenges with SHEs

The calculation of α for SHEs is a computationally
challenging task. This is due to the large number of core
electrons and the need for a larger basis size to ob-
tain converged properties results. The latter pose three
main hurdles in the calculations. First, the number of
cluster amplitudes is very large, and solving the cluster
equations requires long compute times. To give an example,
as shown in Fig. 1, in the case of Cn, using a converge basis of
200 orbitals leads to more than 31 000 000 cluster amplitudes.
This is about 2.3 times larger than the lighter atom Rn. Sec-
ond, convergence of α with basis size is slow. This is in stark
contrast to the convergence trends of α for lighter atoms and
ions reported in our previous works [29,30,33]. For the lighter
atoms and ions, convergence is achieved with a basis of 160
or less orbitals. However, for SHEs, convergence of α requires
≈200 orbitals. Third, storing the two-electron integrals for
efficient computation requires large memory. Foratt instance,
the number of four-particle two-electron integrals in the case
of Cn is more than 427 000 000. This is about 1.3 times larger
than the case of Rn. Moreover, in general parallelization,
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solving the cluster equations requires storing the same set
of integrals stored across all nodes. This leads to replication
of data across compute nodes and puts severe restrictions on
basis size in the PRCC calculations. To mitigate this problem,
we have implemented a memory-parallel-storage algorithm
[56] which avoids the storage replication of the integrals
across different nodes. This allows efficient memory usage
and uses a large orbital basis in the PRCC computations.
The inclusion of perturbative triples to the computation of α

enhances the computational complexity further. This is due to
the evaluation of numerous additional polarizability diagrams
arising from the perturbative triples. To illustrate the compute
time, the computation of α for Cn using a basis of 200 orbitals
without triples takes 120 h with 144 threads. Whereas, with
partial triples included, it requires 280 h with 200 threads.
Thus, the runtime more than doubled.

IV. RESULTS AND DISCUSSION

A. Convergence of α and correlation energy

The GTO basis, by definition, is mathematically incom-
plete [42]. Hence, it is essential to check the convergence
of α and the correlation energy with basis size. Accordingly,
the convergence trends of these quantities are shown in the
Fig. 2. For efficiency, the computations are done with the
Dirac-Coulomb Hamiltonian, as it is computationally less
expensive than using the DCB Hamiltonian. To determine

the converged basis set, we start with a moderate basis size
and add orbitals in each symmetry systematically. This is
continued till the change in α and correlation energy is
�10−3. For example, as discernible from Table VIII in the
Appendixes, the change in α for Cn is 4.0 × 10−3 a.u. when
the basis set is augmented from 191 to 200. So, to opti-
mize the compute time, we consider the basis set with 191
orbitals as the optimal one for α. Once the optimal basis
set is selected, in the further computations we incorporate
the Breit interaction and QED corrections. As seen from
Figs. 2(a) and 2(b), the convergence of the correlation energies
requires a much larger basis. For example, for Cn, the con-
verged second-order energy is obtained with the basis size of
439 (31s27p26d24 f 22g21h21i21 j21k21l) orbitals. A similar
trend is also observed for the other two SHEs and all the
lighter homologs considered in this paper.

B. Correlation energy

The electron correlation energy in RCC is expressed as

	E = 〈�0|H̄N|�0〉, (11)

where H̄N = e−T (0)
HNeT (0)

is the similarity transformed
Hamiltonian. In Table II, we list 	E for SHEs and three
lighter elements in each group. Since the correlation energies
converge with very large basis sizes, it is not practical to use
such large bases in the RCC calculations due to computa-
tional limitations. Some of the limitations are as mentioned
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TABLE III. Final value of α (a.u.) from PRCC calculations com-
pared with other theoretical data in the literature.

Present paper

Element Method α Other calculations

Cn DF 35.234 25.82a, 28.68b,
PRCC 26.944 27.40d, 28 ± 4c

PRCC(T) 27.457
PRCC(T)+Breit 27.537

PRCC(T)+Breit+QED 27.588
Estimated 27.442

Recommended 27.44(88)
Hg PRCC(T)+Breit+QED 33.69(34) 31.32g, 33.30h,

33.44i, 31.82j,
34.42k,34.15l,
33.6m, 34.27n,
33.75o, 33.91(34)p

32.9q, 39.1c

34.73(52)r, 34.2(5)s

34.5(8)t

Nh+ DF 23.182
PRCC 17.056

PRCC(T) 17.063
PRCC(T)+Breit 17.100

PRCC(T)+Breit+QED 17.135
Estimated 17.123

Recommended 17.12(55)
Tl+ PRCC(T)+Breit+QED 20.13(12) 19.60u

12.7(12)v

Og DF 56.197 52.43b, 46.33e,
PRCC 55.941 57.98f, 57 ± 3c

PRCC(T) 56.203
PRCC(T)+Breit 56.250

PRCC(T)+Breit+QED 56.545
Estimated 56.536

Recommended 56.54(181)
Rn PRCC(T)+Breit+QED 35.53(36) 33.18w, 34.43x

28.6b, 32.6y

34.2c, 35.47z

35.87α , 34.89β

34.60γ , 35.04(1.80)e

aRef. [15] [CCSD(T)]; bRef. [16] [CCSD(T)]; cRef. [17] [RRPA];
dRef. [18] [DC-CCSD(T)]; eRef. [19] [R, DC-CCSD(T)]; fRef.
[20] [R, Dirac+Gaunt, CCSD(T)]; gRef. [63] [CICP]; hRef. [64]
[CASPT2]; iRef. [65] [QCISD(T)]; jRef. [66] [CCSD(T)]; kRef. [15]
[CCSD(T)]; lRef. [18] [CCSD(T)]; mRef. [67] [CCSD(T)]; nRef.
[68] [CCSDT + QED]; oRef. [69] [Expt.]; pRef. [70] [Expt.]; qRef.
[71] [semi-emp.]; rRef. [72] [CCSD(T)]; sRef. [73] [CCSD(T) +
Breit]; tRef. [74] [CCSD(T)]; uRef. [75] [CI+All-order]; vRef. [76]
[Sum-rule]; wRef. [77] [MBPT]; xRef. [78] [CCSDT]; yRef. [79]
[DK, CASPT2]; zRef. [80] [CCSD, ECP]; αRef. [81] [R, DFT, DC,
PBE38]; βRef. [82] [R, DKH2, B3LYP, SARC]; γ Ref. [83] [SOPP,
CCSD(T) + MP2]; ζ Ref. [19] [CCSD(T)].

in the previous section. To mitigate this, and to account for
correlation energy from the virtual orbitals excluded in the
RCC calculations, we resort to the second-order MBPT
method. The RCC results of the 	E listed in Table II are
calculated using the expression

	ERCC ≈ 	Enconv
RCC + (

	E conv,2
MBPT − 	Enconv,2

MBPT

)
, (12)

TABLE IV. Contributions to α (in a.u.) from different terms in
PRCC theory.

Terms + H.c. Cn Nh+ Og

T(1)†
1 D 34.5267 21.3767 68.9516

T1
(1)†DT (0)

2 −3.0095 −1.7444 −4.0179
T2

(1)†DT (0)
2 1.7485 0.7622 3.1900

T1
(1)†DT (0)

1 −0.0389 −0.0809 −1.5258
T2

(1)†DT (0)
1 −0.1087 −0.0247 0.2319

Normalization 1.2292 1.1898 1.1946
Total 26.9435 17.0524 55.9432

where 	Enconv
RCC is the correlation energy computed using RCC

with orbitals up to j symmetry, and 	Enconv,2
MBPT and 	E conv,2

MBPT
are the second-order energies calculated using RCC basis and
a converged basis which includes orbitals up to l symmetry,
respectively.

For all the elements listed in Table II, we observe an
important trend in the correlation energy. The RCC corre-
lation energy is smaller in magnitude than the second-order
correlation energy. A similar trend was also observed in a
previous work [62]. Based on our computations, this is due
to the cancellations from higher order corrections subsumed
in RCC. This is discernible for the group-12 elements in
Fig. 3(a), where we have plotted the higher order contribu-
tions. These oscillate in sign and, hence, cancellations occur.
As a result, the correlation energy oscillates initially before
converging to the RCC value. This trend is visible in the plots
of the cumulative contributions shown in Fig. 3(b). For the
lighter elements, our RCC correlation energies are in good
agreement with the previous RCC results [61,62]. The small
difference could be attributed to the contributions from the
Breit interaction and QED corrections included in the present
work. For second-order correlation energies, there are four
results from previous studies [57–60]. Our results match very
well for all the elements.

Examining the symmetrywise contributions from virtual
orbitals, we find that all three SHEs exhibit similar trends.
This is not surprising as all are closed-shell systems. As
discernible from the histograms in Fig. 3, contribution to the
correlation energy increases initially as a function of orbital
symmetry and then decreases. The first two dominant contri-
butions, ≈35% and 26% of the total correlation energy, arise
from the g and f orbitals. The next two are from the d and
h symmetries—their contributions are ≈12% each for all the
SHEs. The contribution from the virtuals with l symmetry is
about 0.8%. This non-negligible contribution from the l sym-
metry orbitals indicates that the inclusion of the orbitals from
higher symmetries is essential to obtain accurate energies for
SHEs.

C. Polarizability

The values of α for SHEs with different methods subsumed
in the PRCC theory are listed in Table III. The DF contri-
bution is computed using Eq. (8) with T(1) and D̄ replaced
by the bare dipole operator D, and is expected to have the
dominant contribution. The PRCC values are the converged
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FIG. 5. Five largest percentage contributions from core orbitals to LO term {T(1)†
1 D + H.c.}.

values from Table VIII, calculated using the DC Hamiltonian
with a basis up to h symmetry. The values listed as estimated
include the estimated contribution from the orbitals of i, j,
and k symmetries. For this, we use a basis set of moderate
size from Table VIII and then augment it with orbitals from i,
j, and k symmetries to calculate percentage contribution; this
is added to the PRCC value. To the best of our knowledge,
there are no experimental data on α for SHEs considered in
the present paper. However, to understand the trend of electron
correlation effects, we compare our results with previous the-
oretical results. One important and crucial difference between
previous studies and the present paper is the absence of QED
corrections in previous works. Though the Breit interaction is
included in previous work [15] for Cn, the contribution is not
given explicitly. These corrections are, however, important to
obtain the accurate and reliable values of α for SHEs. From
our calculations, we find that the combined Breit + QED con-
tributions are ≈0.5%, 0.4%, and 0.6%, respectively, for Cn,
Nh+, and Og. Considering the important prospects associated
with accurate data on α for SHEs, these are significant contri-
butions and cannot be neglected.

For Cn, three of the previous studies, similar to the present
paper, use CCSD(T). There are, however, important differ-
ences in terms of the basis used in these calculations. This
could account for the difference in the values of α reported in
these works. In Ref. [15], a relativistic basis with 11s8p8d4 f
orbitals optimized using pseudopotential Hartree-Fock en-
ergy is used and reports the smallest value 25.82. The other
CCSD(T) result 27.40 from Ref. [18] uses a relatively larger

basis of 26s24p18d13 f 5g2h. In terms of methodology and
basis, Ref. [18] is the closest to the present work. Our recom-
mended value 27.44(88) is close to this. The other CCSD(T)
result of 28.68 is from the Ref. [16], which is obtained using
an uncontracted Cartesian basis. The is the highest theoretical
value reported in the literature. The other value 28 ± 4 is ob-
tained using the RRPA [17] and this is close to our result. This
is to be expected as both RRPA and PRCC account for core
polarization, which is the dominant contribution to α after the
DF. For the triple contribution to α, there is no clear trend in
the previous RCC results. In Refs. [15,18], the contribution
from triples reported as −0.08 and −0.07% of the CCSD
value, respectively, and decrease the value of α. However, a
positive contribution of ≈0.25% is reported in Ref. [16]. In
the present paper, we obtain a positive contribution of ≈1.9%,
which increases the value of α further.

For Nh+, there are no previous theoretical results. The
present paper reports the theoretical result of α, using PRCC
theory. As we observed from Table III, though it has the same
electronic structure as Cn, the value of α is smaller. This is
attributed to the relativistic contraction of the 7s1/2 orbital
due to increased nuclear potential. Like the case of Cn, the
inclusion of partial triples increases the value of α further.

For Og, there are three previous results based on calcu-
lations using CCSD(T). Though the same methods are used,
there is a large difference in the values of α reported in these
works. For instance, the CCSD(T) value 57.98 reported in
Ref. [20] is ≈25% larger than the result in Ref. [19]. The
reason for this could be attributed to the different types of
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FIG. 6. In percentage, five dominant dipolar mixing of cores with virtuals.
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TABLE V. Five leading contributions to NLO term
{T(1)†

1 DT(0)
2 + H.c.} (in a.u.) for α from core-core orbital pairs. This

includes the pair-correlation contributions.

Cn Nh+

−0.618(7s1/2, 6d5/2 ) −0.420(7s1/2, 6d5/2)
−0.479(7s1/2, 7s1/2) −0.243(7s1/2, 7s1/2)
−0.405(6d5/2, 6d5/2) −0.235(7s1/2, 6d3/2)
−0.337(6d5/2, 7s1/2) −0.204(6d5/2, 6d5/2)
−0.327(7s1/2, 6d3/2 ) −0.171(6d5/2, 7s1/2)

Og

−2.805(7p3/2, 7p3/2)
−0.446(7p3/2, 7p1/2)
−0.365(7p3/2, 6d5/2)
−0.167(7p3/2, 6d3/2)
−0.114(7p1/2, 7p3/2)

bases used. In Ref. [19], the computations used the Faegri
basis with 26s24p18d13 f 5g2h orbitals, however, in Ref. [20],
an uncontracted relativistic quadrupole-zeta basis is used.
The other CCSD(T) result 52.43 from Ref. [16] lies between
the other two results. Our recommended value 56.54(181) is
closer to the RRPA value 57(3) from Ref. [17] and CCSD(T)
value, 57.98, from Ref. [20]. As mentioned in the case of Cn,
this is due to the core-polarization effect accounting for all
orders in both CCSD and RRPA. The obtained contribution
from partial triples 0.47% is consistent with the contribution
0.66% reported in Ref. [19].

The value of α for lighter homologs for each of these SHEs
using PRCC are reported in our previous works, Ref. [31] for
group-12, Ref. [29] for group-13, and Ref. [30] for group-18
elements. In these references, we have presented compre-
hensive analyses on α in terms of electron correlations and
detailed comparisons with previous theoretical and exper-
imental results. We have also provided the details of the
associated theoretical uncertainties. In the present paper, to
illustrate the numerical quality of the computed α for SHEs,
we list α for the adjacent lighter homolog for each of the
SHEs–Hg for Cn, Tl+ for Nh+, and Rn for Og–in Table III.
Among the three, Hg is both theoretically and experimentally
well studied. For Nh+ and Rn, to the best of our knowl-
edge, there are no experimental data for comparison. As
evident from the table, our PRCC(T) + Breit + QED results

TABLE VI. Five leading contributions to {T(1)†
1 D + H.c.} (in

a.u.) for α from core orbitals. This includes the DF and core-
polarization contributions.

Cn Nh+ Og

17.468(7s1/2) 11.440(7s1/2) 65.874(7p3/2)
12.374(6d5/2 ) 6.534(6d5/2 ) 2.392(7p1/2)
4.776(6d3/2 ) 3.308(6d3/2 ) 0.562(6d5/2)
0.052(6p3/2) 0.224(6p3/2) 0.264(6d3/2)
0.015(5 f7/2 ) 0.002(5 f7/2 ) 0.042(7s1/2)

are in good agreement with the previous results for all three
elements.

V. ELECTRON CORRELATION, BREIT, AND
QED CORRECTIONS

In this section, we analyze and present the trends of
electron correlation effects from the residual Coulomb inter-
action, Breit interaction, and QED corrections to α as function
of Z .

A. Residual Coulomb interaction

To assess the correlation effects from residual Coulomb
interaction, we define relative-DF-contribution (RDFC) as

RDFC = αPRCC − αDF

αDF
,

plotted in Fig. 4. As seen in the figure, the group-12 and
group-13 elements show similar trends. For these groups,
the RDFC is positive initially and then changes to negative.
This is due to the changes in the core polarization effects
as a function of Z , and can be attributed to the differences
in the screening of nuclear potential. In each group, the core
polarization contribution is positive for the first two elements
and negative for the last two. The negative contribution makes
the PRCC value of α lower than the DF value. A similar
trend is also reported in previous works [15,16,18], where
the DF value for Cn is higher than the CCSD value. For the
group-18 elements, the RDFC shows a different trend. Except
for Kr, it is negative for all other elements. In addition, the
magnitude decreases from Xe to Og. This could be attributed
to the negative and decreasing core polarization contributions
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FIG. 7. Five largest percentage contributions from core-core orbital pairs to NLO term.
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FIG. 8. Percentage contribution from Breit interaction to group-12, group-13, and group-18 elements.

from Xe to Og. Our DF result, 56.20, for Og is consistent with
the previous results in Refs. [16,19]. These works reported DF
values of 54.46 and 50.01, respectively, larger than the CCSD
values. The difference in the DF values could be due to the
different bases used in these calculations, and this can also be
cause for the difference in the α values with the correlation
effects.

To gain further insights into the electron correlations
effects subsumed in the PRCC theory, we examine the contri-
butions from different terms. These are listed in the Table IV.
As seen from the table, for all SHEs, the LO contribution is
from the term {T(1)†

1 D + H.c.}. This is to be expected, as it
subsumes the contributions from DF and RPA. The contribu-
tions are larger than PRCC by ≈28%, 25%, and 23% for Cn,
Nh+, and Og, respectively. The contribution from the NLO
term {T1

(1)†DT (0)
2 } is small and opposite in phase to the LO

term. It accounts for ≈−11%, −10%, and −7% of the PRCC
values for Cn, Nh+, and Og, respectively. The next to NLO
(NNLO) term is T2

(1)†DT (0)
2 and contributes ≈6%, 4%, and

6% of the PRCC value. The contributions from the other terms
are small, and the reason is the smaller magnitude of the T (0)

1
CC operators.

To examine in more detail, we assess the contributions
from the core-polarization and pair-correlation effects, con-

TABLE VII. Contributions to α from Breit interaction, vacuum
polarization, and the self-energy corrections in atomic units.

Elements Z Breit interactions Self-eneergy Vacuum polarization

Group 12

Zn 30 −0.0928 0.0221 −0.0038
Cd 48 −0.0953 0.0648 −0.0159
Hg 80 0.0519 0.0933 −0.0358
Cn 112 0.0802 0.1072 −0.0557

Group 13

Ga+ 31 −0.3006 0.0090 −0.0018
In+ 49 −0.3647 0.0249 −0.0070
Tl+ 81 −0.1283 0.0526 −0.0274
Nh+ 113 0.0366 0.0794 −0.0440

Group 18

Kr 36 0.0179 0.0011 0.0009
Xe 54 0.0213 0.0042 0.0031
Rn 86 0.0226 0.0239 0.0181
Og 118 0.0472 0.1162 0.1769

tributions are shown in the Tables V and VI, respectively. For
the core polarization, we identify five dominant contributions
to the LO term and these are listed in Table VI. Since Cn and
Nh+ have the same ground-state electronic configuration, both
show similar correlation trends. For both, the most dominant
contribution is from the valence orbital 7s1/2 and this is due
to its larger radial extent. As shown in Fig. 5, the contribution
from 7s1/2 is ≈50% and 53% of the LO value for Cn and Nh+,
respectively. For Cn, we find that more than 60% of the 7s1/2

contributions arise from T1
(1) involving the 8p1/2, 10p3/2, and

9p3/2 orbitals. Whereas for Nh+, the 7p1/2 and 7p3/2 together
contribute more than 87% of the total contribution. The next

TABLE VIII. Convergence trend of α calculated using the Dirac-
Coulomb Hamiltonian as a function of basis size.

Basis Orbitals α

Cn

90 14s, 11p, 10d , 8 f , 6g, 3h 32.772
112 16s, 13p, 12d , 10 f , 8g, 5h 28.884
132 18s, 15p, 14d , 12 f , 9g, 7h 28.094
152 20s, 17p, 16d , 14 f , 11g, 8h 27.418
172 22s, 19p, 18d , 16 f , 13g, 9h 27.116
181 23s, 20p, 19d , 17 f , 14g, 9h 27.078
191 25s, 21p, 20d , 18 f , 15g, 9h 26.948
200 26s, 22p, 21d , 19 f , 16g, 9h 26.944

Nh+

101 15s, 13p, 12d , 8 f , 5g, 5h 19.493
123 17s, 15p, 14d , 10 f , 7g, 7h 18.009
145 19s, 17p, 16d , 12 f , 9g, 9h 17.889
167 21s, 19p, 18d , 14 f , 11g, 11h 17.330
176 22s, 20p, 19d , 15 f , 12g, 11h 17.155
185 23s, 21p, 20d , 16 f , 13g, 11h 17.082
194 24s, 22p, 21d , 17 f , 14g, 11h 17.053
201 25s, 23p, 22d , 18 f , 14g, 11h 17.053

Og

86 14s, 12p, 9d , 7 f , 5g, 3h 67.613
108 16s, 14p, 11d , 9 f , 7g, 5h 65.556
130 18s, 16p, 13d , 11 f , 9g, 7h 60.134
152 20s, 18p, 15d , 13 f , 11g, 9h 57.149
170 22s, 20p, 17d , 15 f , 12g, 10h 56.170
179 23s, 21p, 18d , 16 f , 13g, 10h 55.943
189 25s, 22p, 19d , 17 f , 14g, 10h 55.941
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FIG. 9. Percentage contribution from vacuum polarization to group-12, group-13, and group-18 elements.

two important contributions are from the core orbitals 6d5/2

and 6d3/2. The contribution from the former is almost double
the latter. In particular, for Cn and Nh+, the contributions from
6d5/2 is 35% and 30%, respectively, whereas, the contribution
from 6d3/2 is ≈14% and 15%, respectively. The larger con-
tribution from 6d5/2 could be attributed to the strong dipolar
mixing with 10p3/2 and 9p3/2 for Cn, and 7p3/2 and 11 f7/2 for
Nh+ (see Fig. 6).

For Og, compared to Cn and Nh+, we observe a different
trend of core-polarization effect. More than 95% of the con-
tribution from the LO term arises from valence orbital 7p3/2.
The other valence and core orbitals contribute less than 5%
and 7p1/2 contributes only ≈3% of the LO term. The reason
for this could be the larger radial extent of the 7p3/2 orbital
as 7p1/2 orbital contracts due to relativistic effects. The five
dominant contributions arise from the dipolar mixing of 7p3/2

with 10d5/2, 9d5/2, 10s1/2, 9s1/2, and 11s1/2 orbitals. These
orbitals together contribute ≈73% of the total contribution
(see Fig. 6).

To assess the contribution from pair-correlation effects, we
consider the NLO term and identify the dominant contribu-
tions to it. These are listed in Table V in terms of the pairs of
core orbitals and these correspond to the T (0)

2 with dominant
contributions. This is an appropriate approach as the most
dominant term involving doubly excited cluster operators is
the NLO term. For better illustration, the percentage contri-
butions to those listed in Table V are plotted in the Fig. 7.
For both Cn and Nh+, the first two dominant contributions
are from the (7s1/2, 6d5/2) and (7s1/2, 7s1/2) core-orbital pairs.
In percentage, these are ≈−20% and −16% for Cn, whereas
≈−24% and −14% for Nh+. Though the next three contri-

butions are from the same core-orbital pairs, (6d5/2, 6d5/2),
(6d5/2, 7s1/2), and (7s1/2, 6d3/2), in both elements there are
differences in terms of the order in which they contribute. Like
in the core-polarization effect, we observe a different trend
for Og. About 70% of the total contribution is from only the
(7p3/2, 7p3/2) orbital pair.

B. Breit and QED corrections

To analyze the trend of correlation effects arising from
the Breit interaction, vacuum polarization and the self-energy
corrections as a function of Z , we separate the contributions
from these interactions. These are listed in Table VII. In ad-
dition, for comparison and to show the trends in the group,
the percentage contributions from the corresponding groups
in the periodic table of the SHEs are shown in Figs. 8–10,
respectively. For the Breit interaction, as we see from Fig. 8,
except for Cn and Og, we observe a trend of decreasing
contributions with increasing Z within the groups. One feature
common to all SHEs is that the contributions have the same
phase as PRCC and hence increase the value of α. For lighter
elements, however, there is no clear trend.

For the corrections from the vacuum polarization and self-
energy, from Figs. 9 and 10 we see that the contribution from
both the vacuum polarization and self-energy increases with
Z for all three groups. This is as expected. For the vacuum
polarization, the effect is larger due to higher nuclear charge
Z . for the self-energy, the correction depends on the energy
of the orbital, which again depends on the nuclear charge. In
terms of the phase of the contributions from vacuum polar-
ization, these are opposite to PRCC value for all the elements
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FIG. 10. Percentage contributions from self-energy correction to group-12, group-13, and group-18 elements.
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TABLE IX. Orbital energies for core orbitals (in Hartree) from
GTO is compared with the GRASP2K and B-spline energies for Cn.
Here [x] represents multiplication by 10x .

Orbital GRASP2K B spline GTO

1s1/2 7070.83320 7071.11186 7070.83326

2s1/2 1444.87110 1444.92899 1444.87138

3s1/2 390.81374 390.82783 390.81406

4s1/2 113.44660 113.45069 113.44692

5s1/2 30.05645 30.05764 30.05670

6s1/2 5.68070 5.68099 5.68070

7s1/2 0.45115 0.45119 0.45114

2p1/2 1405.71950 1405.72953 1405.71920

3p1/2 371.98098 371.98361 371.98109

4p1/2 104.23703 104.23780 104.23723

5p1/2 25.88719 25.88738 25.88726

6p1/2 4.12316 4.12320 4.12312

2p3/2 1007.09780 1007.09651 1007.09804

3p3/2 274.99360 274.99302 274.99388

4p3/2 76.37753 76.37735 76.37776

5p3/2 17.99726 17.99719 17.99718

6p3/2 2.41564 2.41562 2.41564

3d3/2 245.88774 245.88719 245.88802

4d3/2 62.08615 62.08599 62.08641

5d3/2 11.85266 11.85260 11.85259

6d3/2 0.56273 0.56271 0.56273

3d5/2 229.40040 229.39991 229.40069

4d5/2 57.56171 57.56155 57.56196

5d5/2 10.70702 10.70697 10.70692

6d5/2 0.44208 0.44207 0.44208

4 f5/2 38.82989 38.82975 38.83023

5 f5/2 3.33495 3.33492 3.33493

4 f7/2 37.51594 37.51581 37.51628

5 f7/2 3.09251 3.09247 3.09248

of group 12 and group 13, and hence lowers the value of α.
For group 18, however, we observe the contributions of the
same phase as PRCC. In terms of magnitude, the contributions
are ≈0.21%, 0.26%, and 0.31% of the PRCC value for Cn,
Nh+, and Og, respectively. For the self-energy, one prominent
feature of the contributions we observe is that it is positive
for all elements in all three groups and therefore increases the
value of α. The contributions in the case of Cn, Nh+, and Og
are ≈0.4%, 0.5%, and 0.2% of the PRCC values, respectively.

C. Theoretical uncertainty

In this section, we discuss the theoretical uncertainty asso-
ciated with our results for α. For this, we have identified four
sources. The first source of uncertainty is the truncation of the
basis set used in the computations. The recommended values
of α in Table III are based on the results with an optimal basis
up to the h symmetry (see the convergence Table VIII) and
the estimated contribution from the i, j, and k symmetries.
The combined contribution from i, j, and k symmetries are

TABLE X. Orbital energies for core orbitals (in Hartree) from
GTO is compared with the GRASP2K and B-spline energies for
Nh+. Here [x] represents multiplication by 10x .

Orbital GRASP2K B spline GTO

1s1/2 7245.8727391 7246.182976 7245.873218

2s1/2 1487.4479289 1487.512728 1487.448327

3s1/2 403.5128636 403.529178 403.513164

4s1/2 117.9615376 117.966271 117.961704

5s1/2 31.8304473 31.831827 31.830498

6s1/2 6.4543326 6.454659 6.454278

7s1/2 0.8293919 0.829453 0.829389

2p1/2 1448.2662707 1448.277353 1448.266677

3p1/2 384.4936370 384.497093 384.493911

4p1/2 108.6076330 108.608617 108.607744

5p1/2 27.5681904 27.568442 27.568231

6p1/2 4.8384890 4.838538 4.838465

2p3/2 1028.6629340 1028.661537 1028.663316

3p3/2 282.2280516 282.227605 282.228310

4p3/2 79.1393402 79.139197 79.139459

5p3/2 19.1605082 19.160449 19.160489

6p3/2 2.9774011 2.977385 2.977406

3d3/2 252.7000748 252.699678 252.700378

4d3/2 64.6075721 64.607451 64.607745

5d3/2 12.8763169 12.876269 12.876364

6d3/2 1.0204591 1.020450 1.020479

3d5/2 235.5220171 235.521671 235.522311

4d5/2 59.8711971 59.871089 59.871368

5d5/2 11.6644138 11.664335 11.664411

6d5/2 0.8811957 0.881171 0.881195

4 f5/2 40.8372335 40.837027 40.837249

5 f5/2 4.0945793 4.094568 4.094589

4 f7/2 39.4570885 39.456886 39.457103

5 f7/2 3.8335434 3.833539 3.833556

≈0.5%, 0.07%, and 0.02%, respectively, for Cn, Nh+, and Og.
Although the contributions from the virtuals of symmetries
higher than k are expected to be much smaller, we consider
the highest contribution of 0.5% in the case of Cn as an upper
bound from this source of uncertainty. The second source is
the truncation of the dressed operator D̄ in the Eq. (8) to
second order in T (0). In our previous work [47], we showed
that the contribution from the remaining higher order terms is
less than 0.1%. So, we consider this as the upper bound. The
third source is the partial inclusion of the triple excitations in
the PRCC theory. The partial triples contributions are ≈1.9%,
0.04%, and 0.5% of the PRCC values for Cn, Nh+, and
Og, respectively. Since the perturbative triples subsumes the
dominant contribution from triple excitations, we consider the
highest contribution of 1.9% in the case Cn as an upper bound
and the last source of theoretical uncertainty is associated
with the frequency-dependent Breit interaction which is not
included in the present paper. To estimate an upper bound
of this source, we use the results in our previous work [33],
where, using GRASP2K, we estimated an upper bound of
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0.13% for Ra. Combining this with the Breit contributions,
we determine ≈0.62%, 0.45%, and 0.18% as the contributions
to Cn, Nh+ and Og, respectively. Among these, we select
the highest contribution of 0.62% from the case of Cn and
take this as an upper bound. There could be other sources
of theoretical uncertainties, such as the higher order coupled
perturbation of vacuum polarization and self-energy terms,
quadruply and higher excited cluster operators, etc. These,
however, have much smaller contributions and their combined
uncertainty could be below 0.1%. Finally, combining the up-
per bounds of all four sources of uncertainties, we estimate
a theoretical uncertainty of 3.2% in the recommended values
of α.

VI. CONCLUSION

We have employed a fully RCC theory to compute the
ground state electric dipole polarizability and electron cor-
relation energy of SHEs Cn, Nh+ and Og. In addition, to
understand the trend of electron correlation as function of Z ,
we have calculated the correlation energies of three lighter ho-
mologs for each SHEs. To improve the accuracy of our results,
contributions from the Breit interaction, QED corrections and
partial triple excitations are also included. Moreover, in all
calculations, very large bases up to l-symmetry are used to
check the convergence of the results.

Our recommended values of α for SHEs lie between the
previous results, closer to the values from CCSD(T) [18,20]
and RPA [17] calculations. From our calculations we find
that the dominant contribution to α comes from the valence
electrons, viz, 7s1/2 for both Cn and Nh+, and 7p3/2 for Og.
While 7s1/2 contributes more than 50% of the total value for
Cn and Nh+, the contribution from 7p3/2 orbital to Og is more
than 95%. This could be attributed to the larger radial extent
of these orbitals.

From the analysis of electron correlation effects, the core
polarization effects decrease as a function of Z for the lighter
homologs. For the SHEs, however, we observe an increased
contribution. The corrections from the Breit interaction, ex-
cept for Cn and Og, decrease as a function of Z . On the
contrary, the Uehling potential and the self-energy correc-
tions have increasing contributions from lighter homologs to
SHEs. The largest contributions from the Uehling potential
are ≈0.2%, 0.3% and 0.3% of the PRCC value for Cn, Nh+

and Og, respectively. And, the same from the self-energy
corrections are ≈0.4%, 0.2% and 0.1%, respectively. The
combined Breit + QED corrections to α are observed to be
≈0.5%, 0.4% and 0.6% for Cn, Nh+ and Og, respectively.
Considering the importance of accurate properties of the
SHEs, these are significant contributions, and can not be
neglected.
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APPENDIX A: CONVERGENCE TABLE FOR α

In Table VIII, we provide the convergence trend of α as
function of basis size. As is evident from the table, the value
of α converges to 10−3 a.u. for all three SHEs.

APPENDIX B: SINGLE-ELECTRON ENERGIES

The single-electron energies of GTOs for SHEs Cn, Nh+,
and Og are listed in the Tables IX–XI, respectively, and
compared with the numerical data from GRASP2K [48] and
the energies from the B-spline [54] basis. In Table XII, we
list the contributions from the Breit interaction, Uehling po-
tential, and the self-energy corrections to the single-electron
energies.

TABLE XI. Orbital energies for core orbitals (in Hartree) from
GTO compared with the GRASP2K and B-spline energies for Og.
Here [x] represents multiplication by 10x .

Orbital GRASP2K B spline GTO

1s1/2 8185.36230 8185.93230 8185.36258

2s1/2 1718.80780 1718.93698 1718.80803

3s1/2 471.19401 471.22553 471.19411

4s1/2 140.97641 140.98548 140.97632

5s1/2 39.88519 39.88767 39.88495

6s1/2 8.98686 8.98760 8.98678

7s1/2 1.29699 1.29711 1.29696

2p1/2 1681.71710 1681.74523 1681.71618

3p1/2 451.72699 451.73439 451.72665

4p1/2 131.02105 131.02303 131.02069

5p1/2 35.18375 35.18404 35.18340

6p1/2 7.07694 7.07713 7.07689

7p1/2 0.73956 0.73948 0.73944

2p3/2 113.85447 1138.54073 1138.54500

3p3/2 318.33517 318.33345 318.33518

4p3/2 92.02425 92.02349 92.02406

5p3/2 23.66280 23.66234 23.66242

6p3/2 4.21643 4.21630 4.21633

7p3/2 0.30564 0.30564 0.30565

3d3/2 286.65027 286.64895 286.65036

4d3/2 76.26542 76.26467 76.26535

5d3/2 16.66319 16.66277 16.66297

6d3/2 1.76398 1.76387 1.76394

3d5/2 265.67617 265.67496 265.67625

4d5/2 70.35026 70.34956 70.35019

5d5/2 15.07066 15.07028 15.07044

6d5/2 1.49296 1.49285 1.49291

4 f5/2 49.79167 49.79139 49.79205

5 f5/2 6.51102 6.51097 6.51114

4 f7/2 48.04247 48.04220 48.04286

5 f7/2 6.14074 6.14070 6.14086
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TABLE XII. The orbital energies for core orbitals from vacuum polarization and self-energy correction for Cn, Nh+, and Og.

Cn Nh+ Og

	εUe 	εSE 	εUe 	εSE 	εUe 	εSE

Orbital Ours Ref. [55] Ours Ref. [55] Ours Ours Ours Ref. [55] Ours Ref. [55]

1s1/2 −11.1193 −11.4416 30.6243 30.5752 −11.8402 31.9902 −16.2622 −16.7082 39.9045 39.7825

2s1/2 −2.1505 −2.2283 5.9196 5.7672 −2.3160 6.2339 −3.3693 −3.4810 8.1051 7.7743

3s1/2 −0.5193 −0.5410 1.4424 1.5061 −0.5597 1.5198 −0.8134 −0.8487 1.9781 2.1609

4s1/2 −0.1494 −0.1560 0.4165 0.4375 −0.1614 0.4400 −0.2377 −0.2482 0.5795 0.6369

5s1/2 −0.0436 0.1214 −0.0474 0.1291 −0.0718 0.1783

6s1/2 −0.0108 0.0297 −0.0119 0.0322 −0.0197 0.0500

7s1/2 −0.0015 0.0037 −0.0019 0.0047 −0.0040 0.0098

2p1/2 −0.5505 −0.6632 1.6011 1.6611 −0.6457 1.7455 −1.0858 −1.2661 2.7124 2.7853

3p1/2 −0.1486 −0.1801 0.4445 0.5091 −0.1662 0.4835 −0.2926 −0.3430 0.7399 0.8812

4p1/2 −0.0422 −0.0523 0.1278 0.1551 −0.0473 0.1394 −0.0845 −0.1010 0.2156 0.2712

5p1/2 −0.0115 0.0359 −0.0130 0.0395 −0.0242 0.0674

6p1/2 −0.0024 0.0080 −0.0028 0.0090 −0.0059 0.0177

7p1/2 −0.0010 0.0027

2p3/2 0.0554 −0.0122 0.6914 0.6997 0.0594 0.7207 0.0848 −0.0169 0.8799 0.9013

3p3/2 0.0183 −0.0038 0.1896 0.2002 0.0197 0.1983 0.0287 −0.0054 0.2476 0.2644

4p3/2 0.0068 −0.0011 0.0565 0.0613 0.0074 0.0594 0.0110 −0.0017 0.0774 0.0827

5p3/2 0.0026 0.0157 0.0028 0.0167 0.0043 0.0224

6p3/2 0.0009 0.0029 0.0010 0.0032 0.0016 0.0046

7p3/2 0.0003 0.0005 0.0445

3d3/2 0.0205 −0.0001 −0.0015 −0.0014 0.0221 −0.0012 0.0316 −0.0002 0.0012 0.0012

4d3/2 0.0070 0 −0.0005 0.0009 0.0076 −0.0004 0.0112 −0.0001 0.0004 0.0023

5d3/2 0.0024 −0.0001 0.0026 −0.0001 0.0040 0.0001

6d3/2 0.0007 0 0.0007 0 0.0011 0

3d5/2 0.0185 0 0.0253 0.0231 0.0199 0.0265 0.0282 0 0.0333 0.0304

4d5/2 0.0064 0 0.0084 0.0064 0.0069 0.0089 0.0102 0 0.0115 0.0086

5d5/2 0.0022 0.0024 0.0024 0.0023 0.0036 0.0031

6d5/2 0.0006 0.0002 0.0006 0.0003 0.0010 0.0005

4 f5/2 0.0055 0.0059 0.0088

5 f5/2 0.0015 0.0017 0.0027

4 f7/2 0.0053 0.0057 0.0084

5 f7/2 0.0015 0.0016 0.0026
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