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Quantum tomography is a class of characterization methods frequently used in current experiments, but its
standard protocols suffer from unreliability originated from preknowledge assumptions. Self-consistent quantum
tomography is an approach to avoid the problem, which treats every quantum operation in a characterization
experiment as unknown objects to be characterized. As compensation for the beneficence, it leads to a problem
that its characterization results cannot be determined uniquely only from experimental data due to the existence
of experimentally undetectable gauge degrees of freedom, and we need to introduce a criterion to fix the gauge.
Here, we propose to use a regularization technique to fix the gauge. First, we derive a sufficient condition on a
characterization experiment to obtain all information of objects to be characterized except for the gauge. Second,
we propose a self-consistent data-processing method with regularization and physicality constraints. A careless
use of regularization can lead to non-negligible bias on the characterization result. As a solution for the concern,
we propose a concrete way to tune the strength of the regularization, and mathematically prove that the method
provides characterization results that converge to the gauge-equivalence class of the quantum operations of
interest at the limit of data going to infinity. The asymptotic convergence guarantees the reliability of the method.
We also derive the asymptotic convergence rate, which would be optimal. These theoretical results hold for any
finite-dimensional quantum systems. Finally, as its first numerical implementation, we show numerical results
on one-qubit system, which confirm the theoretical results and prove that the method proposed is practical.
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I. INTRODUCTION

As error rates of elementary quantum operations im-
plemented in recent experiments approach a fault-tolerant
threshold of a surface code [1], it becomes more important
to develop more reliable methods for characterizing their
actions to validate and to further improve their accuracies.
Standard randomized benchmarking (RB) [2–6] and the rel-
atives [7–14] are efficient methods specified for estimating an
accuracy parameter like the average gate fidelity, except for a
tomographic RB protocol [15] for multiparameter estimation.
Although they are frequently used in current experiments,
recent numerical work revealed that a non-negligible bias can
exist in the estimation results in realistic experimental set-
tings [16–18]. Standard quantum tomography (QT) [19–26]
denotes methods for estimating full information of state
preparations, measurements, or gates. They are also popular
in experiments but have two disadvantages: Exponentially
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growing costs of implementation and inevitable biases caused
by unknown imperfections in experiments. When we restrict
the use of QT to small subsystems like a few qubits, the high
implementation costs do not pose a problem. If the biases
stem from finiteness of data size, we can make their effects
as small as necessary by increasing the size. However, in
a realistic scenario, the biases in estimation results of RB
and QT can survive even at the limit of data size going to
infinity, regardless of what kind of data processing is used.
Hence, the possible low reliability of QT and RB can become
crucial because the purpose of quantum characterization is
to reliably characterize superaccurate operations beyond the
fault-tolerance threshold.

Self-consistent quantum tomography (SCQT) [27–29] is
an approach towards overcoming the low reliability of stan-
dard QT. In the SCQT approach, all quantum operations
used in a characterization experiment are treated as unknown
objects to be estimated, in contrast to standard QTs that
model some of them as known. This makes it possible to
avoid biases caused from our preknowledge discrepancy be-
tween the true unknown objects and assumed models. On the
other hand, the approach causes a problem that we cannot
uniquely determine the set of quantum operations only from
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TABLE I. Comparison of GST and RSCQT. GST is a current
representative tomographic method in the self-consistent approach.
RSCQT is the method proposed in the paper. Both suffer from non-
linearity of data fitting, which can cause numerical instability. There
are two possible advantages of RSCQT compared to GST. One is that
RSCQT does not need additional gauge optimization, which reduces
numerical costs of data processing. The other is that RSCQT fully
takes physicality constraints into account, which is suitable to the
accuracy validation step. On the other hand, long gate sequences,
which have been implemented in GST to amplify effects of tiny
physical errors, have not been implemented in RSCQT yet.

GST RSCQT

Data-fitting Nonlinear Nonlinear
optimization
Gauge-fixing Additional Regularization at
method gauge optimization data fitting
Physicality Not fully taken Fully taken
constraints into account into account
Long gate Implemented Not implemented
sequences

experimental data even if we have infinite amount of data.
This is because there exist experimentally undetectable gauge
degrees of freedom [28]. In order to obtain estimates of quan-
tum operations in the setting of SCQT, we have to choose how
to fix the gauge. Gate-set tomography (GST) [29] is a current
representative method in SCQT, and a software package for
performing GST, named pyGSTi, is provided [30]. For the
gauge fixing, GST uses an optimization with respect to a norm
over the gauge degrees of freedom [31]. GST has superior
features, e.g., it is self-consistent and free from the preknowl-
edge errors, there is a method for testing the existence of
time-dependent errors with data for the GST experiment,
and so on. However, it has at least two problems. First, the
data-processing procedure in GST is very complicated, and
it becomes hard to theoretically evaluate the estimation error
caused by finiteness of data. Second, the optimization is a non-
linear problem, and its numerical implementation suffers from
high numerical cost, low numerical stability, and hardness of
taking into account physicality constraints.

Actually, the current version of pyGSTi can ensure phys-
icality of gates, but physicality of state preparation and
measurement (SPAM) is not guaranteed [32]. Such a gauge-
fixing method with possibly unphysical results is not suitable
for use in the validation step.

Here, we propose a method based on SCQT with regular-
ization that is used for fixing the gauge degrees of freedom.
We call the method regularized self-consistent quantum to-
mography (RSCQT). A careless use of a regularization can
lead to a non-negligible bias on its characterization result.
We propose a method for tuning the regularization in order to
avoid the bias problem and prove the validity mathematically
and theoretically. Comparisons of RSCQT and GST are sum-
marized in Table I for readers familiar with GST. In Sec. II,
settings and notation are explained. Details of settings and
notation are explained in Appendices A and B. Section III
includes three theoretical results. First, we introduce the
SCQT method with regularization and mathematically prove a

sufficient condition on a characterization experiment to obtain
all information of objects to be characterized except for the
gauge degrees of freedom. Second, we prove its asymptotic
convergence and derive the convergence rate, which are valid
for any finite-dimensional systems and have been proven in
SCQT methods. Third, we propose a method to extract infor-
mation of Lindbladian from a characterization result of a gate.

Proofs of theorems in Sec. III are given in Appen-
dices C, D, and E. Two statistical techniques, regularization
and cross validation, are used in the method proposed, and
their brief explanations are given in Appendices F and G,
respectively. We performed numerical experiments for one-
qubit system, and the numerical results are reported in Sec. IV.
Details of the numerical experiments are described in Ap-
pendix H. Section V is devoted for discussions. We conclude
the main text in Sec. VI.

II. SETTING AND NOTATION

We consider a characterization problem of quantum oper-
ations on a finite-dimensional quantum system in the SCQT
approach. Let d denote the dimension of the system. The
dimension considered in Sec. III is arbitrarily finite, and d = 2
in Sec. IV. The purpose of SCQT is to know mathemati-
cal representations of a set of unknown state preparations,
measurements, and gates that are implemented in a quantum
information processing (QIP) protocol. We use notations ρ,
�, and G for a density matrix for a state preparation, a positive
operator-valued measure (POVM) for a measurement, and a
linear trace-preserving and completely positive (TPCP) map
for a gate. In the SCQT approach, every state, measurement,
and gate used in its characterization experiment are treated
as unknown objects to be estimated, under assumptions that
(i) d is finite and known, (ii) the numbers of outcomes of
measurements are known, (iii) operations are independent of
each other, and (iv) the actions of operations are identical at
any timing during the experiment. For simplicity, we consider
cases that the set of quantum operations to be estimated s
consists of single state preparation, single measurement, and
multiple gates. Generalizations of theoretical results in Sec. III
to cases of multiple state preparations and measurements are
straightforward. Let ng denote the number of gates in s.

A set of quantum operations can be parametrized with
a real Euclidean vector. We identify the set s and the
parametrization vector. Details of the parametrization are ex-
plained in Appendix A. Let S denote the physical region in
the Euclidean space. Let starget ∈ S denote the ideal, noiseless,
and known set of quantum operations that we aim to imple-
ment in a laboratory. An implemented set, say strue ∈ S , is
unknown, noisy, and different from starget because of imper-
fections on experimental devices.

We perform a set of experiments for estimating strue, which
consists of many different combinations of a state prepa-
ration, gate sequences, and a measurement. In the SCQT
approach, the range of possible choices of the combinations
is extremely wide. For example, GST chooses complicated
combinations [31]. In this paper, the conditions required on
the experiments for estimating full information of strue are
presented in Sec. III A. Concrete combinations used in the

062615-2



SELF-CONSISTENT QUANTUM TOMOGRAPHY WITH … PHYSICAL REVIEW A 103, 062615 (2021)

FIG. 1. Example of an experimental schedule. A set of quantum
operations s consists of ρ, �, G0, G1, and G2. In this case, the
experimental schedule Id consists of three index sequences i1, i2,
and i3.

numerical experiments reported in Sec. IV are shown in Ta-
ble III in Appendix H.

Each combination of operations is specified with an index
sequence of gates, say i, and a set of index sequences is de-
noted by Id, called experimental schedule. An example of an
experimental schedule is shown in Fig. 1. Let pi(s) denote the
probability distribution of measurement outcomes of the ith
experiment with a set of quantum operations s ∈ S . We define
p(Id, s) := {pi(s)}i∈Id. We repeat the experiment N times for
each i ∈ Id. Let f i

N denote an empirical distribution calcu-
lated from data obtained in the N repetitions of a sequence i
and f N (Id) := { f i

N }i∈Id. The total amount of data is N |Id|.
For any strue, there exist sets of quantum operations s̃ ∈

S satisfying pi(strue ) = pi(s̃) for any i in arbitrary Id [29].
We call such s̃ gauge equivalent to strue. Let [strue] denote
the gauge-equivalence class of strue, i.e., the set of all s̃
gauge equivalent to strue. Any difference in the gauge degrees
of freedom is superficial and experimentally undetectable.
Therefore, in the SCQT approach, we have to choose how to
fix the gauge to obtain an estimate of strue from experimental
data. In Sec. III B, we propose a SCQT method that uses a
regularization to fix the gauge. Details of the gauge degrees of
freedom are explained in Appendix B.

III. THEORETICAL RESULTS

In this section, we show our theoretical results. In
Sec. III A, we introduce a concept of informational complete-
ness for the self-consistent approach, which is an expansion
of informational completeness in the standard quantum to-
mography [26]. We prove that the expanded informational
completeness is a sufficient condition on experiments for
estimating all parameters of a set strue except for the gauge
degrees of freedom (Theorem 1). The details of the proof
of Theorem 1 are shown in Appendix C. In Sec. III B, we
propose a data-processing method, called an estimator in
statistics, with regularization for estimating strue. We prove
that, by tuning a regularization parameter appropriately, an
estimate sequence of the estimator sest

N converges into [strue]
at the limit of N going to infinity, assuming that an experi-
ment satisfies the informational completeness. We also prove
that p(Id, sest

N ) converges to p(Id, strue ) with convergence rate
equivalent to or faster than f N (Id) does, which would be
optimal. The details of the proof of the asymptotic conver-
gence and derivation of the convergence rate are shown in
Appendix D. These results guarantee the reliability of the pro-

posed method for sufficiently large data. In Sec. III C, we give
formulas for extracting information of dynamics generators
such as Hamiltonian and dissipator from the estimates of a
gate in sest

N . Details of the derivation of the formula are shown
in Appendix E. The formulas would be useful for improving
accuracy of a gate in QIP experiments.

A. Informational completeness and gauge equivalence

We derive a sufficient condition on an experimental sched-
ule Id to self-consistently characterize quantum operations.
Under the condition, we can know full information of strue

except for the gauge degrees of freedom. We introduce in-
formational completeness in the context of SCQT. Let Id =
{(ig1k , . . . , igLk ) : k = 1, . . .} denote a set of index vectors,
where k is an index for gate sequences and ig is an index for
gates. We call an experimental schedule Id state information-
ally complete if a set of density matrix{

ρ i := GigLk
◦ · · · ◦ Gig1k

(ρ)
}

i∈Id (1)

is a (possibly overcomplete) basis of d × d matrix space.
We call an experimental schedule Id POVM information-

ally complete if a set of POVMs{
�i := G†

ig1k
◦ · · · ◦ G†

igLk
(�)

}
i∈Id (2)

is a (possibly overcomplete) basis of the space. Let i ∪ i′

denote the direct union of two index vectors, i.e., i ∪ i′ =
(i1, . . . , iL, i′1, . . . , i′L′ ).

We call Id self-consistently informationally complete
(SCIC) if it includes

{is ∪ ip | is ∈ Ids, ip ∈ Idp} (3)

and

{is ∪ ig ∪ ip | is ∈ Ids, ig ∈ {1, . . . , ng}, ip ∈ Idp} (4)

as subsets where Ids and Idp are state informationally and
POVM informationally complete sets of gate index sequences,
respectively. Equation (4) means that when i is SCIC, it in-
cludes quantum process tomography (QPT) experiment for
all gates in s, and Eq. (3) means that it includes quantum
state tomography (QST) experiment for state preparations and
POVM tomography (POVMT) experiment for measurements
used in the QPT experiment. The SCIC condition implies that
Id includes QST, POVMT, and QPT experiments allowing
duplication of index sequences. Hence, we expect that we can
obtain full information of s except for the gauge degrees of
freedom from experimental data of a SCIC Id.

Theorem 1. Suppose that assumptions (i)–(iv) in Sec. II
hold, Id is SCIC, and inverse maps G−1

ig
exist for ig =

1, . . . , ng. Then, for any s, s̃ ∈ S , the following two state-
ments are equivalent:

(1) s̃ ∈ [s].
(2) p(Id, s̃) = p(Id, s).
Proof of Theorem 1 is given at Appendix C. Note

that the inverse maps mentioned in Theorem 1 are not
required to be TPCP. The inverse map always exists if
a gate is implemented with dynamics obeying a time-
dependent Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
master equation [33–35], the time period is finite, and the
dissipator of the dynamics is bounded [36] (see Appendix E.
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1). These conditions are considered as natural in usual settings
of QIP experiments, and the condition on the existence of the
inverse is a natural assumption in experiments.

Theorem 1 indicates that the experimental indistinguisha-
bility implies the gauge equivalence when the set of gate index
sequences is SCIC. By taking contraposition of Theorem 1,
we have

s̃ /∈ [s] ⇔ p(Id, s̃) �= p(Id, s). (5)

This means that we can distinguish gauge-inequivalent sets
of quantum operations from probability distributions of ex-
periments satisfying the SCIC condition. Therefore, the SCIC
condition is a sufficient condition.

B. Asymptotically gauge-equivalent estimator

We propose an estimator with regularization. The estimator
is formulated with three parts: Loss function, regularization
function, and regularization parameter. Here we specify the
classes of loss and regularization functions into squared errors
for simplicity. Results in this section hold for much wider
classes, which is mentioned in Sec. V A.

Suppose that we choose an experimental schedule Id sat-
isfying the SCIC condition and obtain experimental data after
N repetition. Our purpose is to obtain an estimate sest

N from
the data. In order to do that, we introduce loss regularization
functions as

L(p(Id, s), f N (Id)) := 1

|Id|
∑
i∈Id

1

2

∥∥pi(s) − f i
N

∥∥ 2

2 (6)

and

R(s, s′) := 1

2
‖ρ − ρ ′‖ 2

2 + 1

|X |
∑
x∈X

1

2
‖�x − �′

x‖ 2
2

+
ng∑

ig=1

1

2d2

∥∥HS
(
Gig

) − HS
(
G ′

ig

)∥∥ 2

2
, (7)

where HS(G) denotes a Hilbert-Schmidt matrix representation
of a TPCP map G.

We propose the following estimator:

sest
N := argmin

s∈S
{L(p(Id, s), f N (Id)) + rN R(s, starget )}, (8)

where rN is a positive number, called regularization parameter.
It is user tunable and can depend not only on N , but also on
data. The regularization term in Eq. (8) takes a role for fixing
the gauge as the estimate becomes close to s′, which is a dif-
ferent way to use regularization. The set s′ is a user-specified
set of quantum operations. Its choice is arbitrary and up to
the user. We propose to use the target set as the regularization
point, i.e., s′ = starget in Eq. (8). We discuss the choice of s′ in
Sec. V A.

We call the estimator defined by Eq. (8) a regular-
ized self-consistent (RSC) estimator, and we call a quantum
tomographic protocol with the RSC estimator regularized self-
consistent quantum tomography (RSCQT). We have to select
the value of rN carefully. For example, if we select rN so
large that the effect of the loss function in the minimization of
Eq. (8) becomes negligible, the RSC estimate sest

N approaches
starget. Then p(Id, sest

N ) cannot reproduce f N (Id) precisely for
finite N .

The following theorem gives a guideline to select a valid
value of rN . We use a mathematical notation � in such a
way that f (N ) � g(N ) indicates that, for a positive constant
a, f (N ) � ag(N ) holds for any sufficiently large N . An ab-
breviation, a.s., stands for almost surely in probability theory.
A rigorous definition of the notation is given in Appendix D 1.

Theorem 2 (Asymptotic gauge equivalence). Suppose that
assumptions (i)–(iv) in Sec. II hold. If we select a regular-
ization parameter satisfying

lim
N→∞

rN = 0 (a.s.), (9)

then the sequence of the probability distributions, {p(Id, sest
N )},

converges to the true one p(Id, strue) almost surely, i.e., the
equality

lim
N→∞

√
L
(

p
(
Id, sest

N

)
, p(Id, strue)

) = 0 (a.s.) (10)

holds. If we select the regularization parameter satisfying

rN � 1/N (a.s.), (11)

then inequalities√
L
(

p
(
Id, sest

N

)
, p(Id, strue)

)
�

√
L(p(Id, strue), f N (Id))

(12)

�
√

ln ln N

N
(a.s.) (13)

hold. If Eq. (9) is satisfied and Id is SCIC, then the sequence
of RSC estimates {sest

N } converges to [strue] almost surely, i.e.,
the equality

lim
N→∞

min
{

R
(
sest

N , s̃
) ∣∣ s̃ ∈ [strue]

} = 0 (a.s.) (14)

holds.
The details of the proof are given in Appendix D. Here we

sketch them.
(i) Proof of Eqs. (10), (12), and (13): We combine a

property of sest
N as a minimizer with the strong law of large

numbers, the central limit theorem, and the strong law of
iterated logarithm [37] in order to prove them.

(ii) Proof of Eq. (14): First, we derive an inequality that
any points in S outside ε neighborhood of [strue] satisfy. A
main mathematical tool at the derivation is the strong law of
large numbers. Second, we prove that, for any small ε > 0,
by taking a sufficiently large N , sest

N does not satisfy the in-
equality. This indicates that sest

N is in the ε neighborhood and
converges to [strue].

At the construction of the proof of Eq. (14), we used
known results from mathematical statistics as reference. If we
neglect the existence of the gauge degrees of freedom in the
setting of SCQT, the RSC estimator defined by Eq. (8) can
be categorized into an abstract and general class of statistical
estimators, called minimum contrast estimator. In statistical
parameter estimation, some sufficient conditions for a mini-
mum contrast estimator to asymptotically converge to the true
parameter are known [38]. These results are not directly ap-
plicable to the RSC estimator in the setting of SCQT because
there exist the gauge degrees of freedom. Nevertheless, our
setting has many properties that are easy to mathematically
handle, such as finite-dimensional parameter space, multino-
mial probability distributions, and smooth parametrization of
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the probability distributions. We modified the known results
to make them applicable to the setting of SCQT. Simultane-
ously, with the good properties of the setting of SCQT and
the specific form of the RSC estimates sest

N , we simplified
the modified sufficient conditions. Detailed explanations on
differences between our results and known results of regular-
ization are given in Appendix F.

Suppose that Id is SCIC and rN is chosen to satisfy Eq. (9).
Theorem 2 indicates the asymptotic gauge equivalence of
sest

N , i.e., the convergence of sest
N to [strue], and this guarantees

the high reliability of the RSC estimates sest
N for sufficiently

large N . The estimates are physical because the minimization
range is restricted into the physical region S . Hence, sest

N is
self-consistent, stringently physical, and asymptotically gauge
equivalent, in theory. Additionally, Eq. (12) guarantees that,
if we choose rN = c/N where c is a positive constant inde-
pendent of N , the asymptotic convergence rate of p(Id, sest

N )
to p(Id, strue) becomes equivalent to or better than that of
f N (Id). This means that sest

N can reproduce p(Id, strue) at least
as precise as f N (Id) can. We conjecture that the asymptotic
convergence rates of p(Id, sest

N ) and f N (Id) are equivalent
because that of f N (Id) would be optimal. There is still ar-
bitrariness of selection of c for tuning the value of rN . In
practice, even if c is independent of N , too large c can lead a
large bias on the RSC estimates for finite N . We can avoid to
select such unreasonably large c by combining the estimator
with cross validation [39,40], which is a standard method for
selecting a regularization parameter in statistics and its brief
explanation is given at Appendix G. We show the performance
of the combination for the case of one-qubit system in Sec. IV.

C. Dynamics generator analysis

Here we propose a method for extracting information of
dynamics generators from an estimate of a gate. Suppose that
the dynamics of a quantum state during the gate operation
obeys the time-dependent GKLS equation [33–35]

dρ

dt
= Lt (ρ) := −i[H (t ), ρ] + {J (t ), ρ}

+
d2−1∑
α,β=1

Kαβ (t )BαρB†
β, (15)

where B := {Bα}d2−1
α=0 is an orthonormal Hermitian ma-

trix basis satisfying B0 = I/
√

d , H (t ) = ∑d2−1
α=1 Hα (t )Bα ,

J (t ) = ∑d2−1
α=0 Jα (t )Bα , Hα (t ) ∈ R, Jα (t ) ∈ R, and Kαβ (t ) ∈

C. When a gate G is implemented under Eq. (15) from t = 0
to T , the HS representation of the map is formally expressed
as

HS(G) = T exp

[∫ T

0
dt HS(Lt )

]
, (16)

where T stands for the chronological operator. If H (t ), J (t ),
and K (t ) are bounded for any t ∈ [0, T ] and T is finite,
HS(G)−1 exists (see Appendix E 1 for the proof), and there
exists a matrix Lacc satisfying

HS(G) = exp(Lacc). (17)

We call Lacc the accumulated dynamics generator of the gate
G. It satisfies

Lacc = ln HS(G). (18)

Let us define Lacc as a linear map satisfying

HS(Lacc) = Lacc. (19)

From the completeness of the matrix basis B, the action of the
map Lacc can be represented in the following form:

Lacc(ρ) = −i[H acc, ρ] + {Jacc, ρ} +
d2−1∑
α,β=1

Kacc
αβ BαρB†

β, (20)

where

H acc =
d2−1∑
α=1

H acc
α Bα, (21)

Jacc =
d2−1∑
α=0

Jacc
α Bα. (22)

The matrix H acc represents the accumulated action of the
original Hamiltonian H (t ) from t = 0 to T , and Kacc repre-
sents the accumulated action of the original dissipator K (t )
from t = 0 to T . When the original generators are time
independent, i.e., H (t ) = H , J (t ) = J , and K (t ) = K , the
accumulated generators {H acc, Jacc, Kacc} are simply H acc =
T H , Jacc = T J , and Kacc = T K .

Let Lacc,cb denote the HS representation of Lacc with
respect to the computational basis. The coefficients of the ac-
cumulated generators can be calculated from Lacc as follows:

H acc
α = i

2d
Tr[Lacc,cb(Bα ⊗ I − I ⊗ Bα )],

α = 1, . . . , d2 − 1 (23)

Jacc
α = 1

2d (1 + δ0α )
Tr[Lacc,cb(Bα ⊗ I + I ⊗ Bα )],

α = 0, . . . , d2 − 1 (24)

Kacc
αβ = Tr[Lacc,cb(Bα ⊗ Bβ )], α, β = 1, . . . , d2 − 1 (25)

where Bα is the complex conjugate of the matrix basis element
with respect to the computational basis representation. The
derivations of Eqs. (23)–(25) are shown in Appendix E 2.
After performing a self-consistent tomographic experiment
and data processing, we have an estimate Gest := HS(Gest ) of
a gate G = HS(G). Then, we can obtain an estimate of the
accumulated generators in the following procedure:

(1) Choose the computational basis as the representation
basis of HS. Then we have Gest = HScb(Gest ).

(2) Calculate the matrix logarithm ln Gest =: (Lacc,cb)est.
(3) Substitute (Lacc,cb)est into Lacc,cb in the right-hand side

of Eqs. (23)–(25).
By following the steps above, we can extract information

of the accumulated generators H acc, Jacc, and Kacc, but we
cannot know the information about the original generators
H (t ), J (t ), and K (t ) at each t ∈ [0, T ]. This is because in
general quantum tomography treats a gate as a black box, and

062615-5



SUGIYAMA, IMORI, AND TANAKA PHYSICAL REVIEW A 103, 062615 (2021)

a tomographic result gives the information of an input-output
relation during the time period.

IV. NUMERICAL RESULTS

Theorem 2 in Sec. III guarantees the high reliability of
the RSC estimator for asymptotically large N on any finite-
dimensional quantum system. In practice, it is important to
investigate its performances for finite N . The investigation
must be done by numerical experiments because calculations
of an estimation error require information of the true set
strue, and it is not available in real experiments. Numerical
implementation of the RSC estimator includes a constraint
nonlinear optimization problem, which is the main challenge
and is different from standard QT. As the first step, we numer-
ically implemented the RSC estimator for one-qubit systems
and performed numerical experiments

We investigated the performance of the RSC estimator for
several settings and parameter regions of error models. The
observed results are both positive and negative. The positive
part is that they are consistent with Eqs. (10), (12), and (13),
and these indicate its high reliability on its prediction per-
formance of probability distributions with finite data as well,
even though there exist effects of bias originated from regular-
ization. The negative part is that Hamiltonian estimated with
the dynamics generator analysis includes an effect of a gauge
transformation and can differ from the true value, which is not
a specific feature of the RSC estimator, but would be a com-
mon feature of the SCQT approach. In this section, we briefly
explain the setting and results of the numerical simulations.
Details of the simulation are described in Appendix H.

A. Setting

The system simulated is a two-level system
(d = 2). The target set is chosen as starget =
{ρ target,�target,G target

0 ,G target
1 ,G target

2 } such that

ρ target = |0〉〈0|, (26)

�target = {|0〉〈0|, |1〉〈1|}, (27)

G target
0 (ρ) = ρ, (28)

G target
1 (ρ) = e−i π

4 σ1ρei π
4 σ1 , (29)

G target
2 (ρ) = e−i π

4 σ2ρei π
4 σ2 , (30)

i.e., the target state is the ground state, the target POVM is the
projective measurement along with the Z axis, and the target
gates are the identity, π

2 rotation along with the X axis, and
π
2 rotation along with the Y axis. The true set strue is chosen
as a set that is close to the target set but it includes coherent
errors and decoherence. In the realistic model, the state and
POVM are affected by a depolarizing error, and the gates are
generated by a rectangular pulse with decoherence obeying
a GKLS master equation [41]. We chose an experimental
schedule Id consisting of 45 operation sequences, which is
SCIC. Details of the model are described in Appendix H 1.

Along with Theorem 2, we select the regularization param-
eter as rN = c/N , where c is a constant positive value. The

selection of c is up to the user. In order to check the effect of
the selection on the performance, we set c in a wide range,
10−1, 1, 10, 102, 103, and we combined the RSC estimator
with a k-fold cross validation, which selects a reasonable
value of c from the set of candidate values. The procedure of
the data processing at the k-fold cross validation is explained
in Appendix G. The computational cost for k-fold cross-
validation procedures becomes larger as k becomes larger.
In order to keep the computational cost as small as possible,
we set k = 3. We performed a Monte Carlo simulation with
N = 102 to 106. Statistics like expectations, variances, and
standard deviations are calculated with 500 iterations.

B. Numerical result 1: Loss and regularization

At the first analysis, we investigate behaviors of quantities
related to the loss function L in Eq. (6) and regularization
function R in Eq. (7) in order to test how the performance
of the RSC estimator for finite N differs from the asymptotic
behaviors in Theorem 2. The results are visualized in Fig. 2,
which includes four panels. Horizontal axes of the panels are
the amount of data N .

Figure 2(a) is for the root-mean square of estimation er-
ror from strue with respect to the probability distributions,
i.e.,

√
E[L(p(Id, s), p(Id, strue))]. The black solid line is for

s = starget, and it quantifies the discrepancy between starget and
strue in the space of probability distributions, which is inde-
pendent of N . The blue solid line is for empirical distributions√
E[L( f N (Id), p(Id, strue))], which scales as 1/

√
N . The red

solid line is for s = sest
N with the cross validation, and the other

dotted lines are for s = sest
N with fixed c. Line style and color

of sest
N are common in all panels of Figs. 2, 3, and 4. Lines

of sest
N converge to zero as N increases, and they are, except

for the line of the largest c, almost parallel with and below
the line of f N . The convergence in the space of probability
distributions means the convergence to the gauge-equivalence
class [strue] because of the SCIC of the experimental schedule
and Theorem 1. This is consistent with Eqs. (10) and (13). The
panel also shows that the cross validation selects the almost
best value of c in the candidates on average.

It is interesting that the estimation errors of sest
N are smaller

than that of f N (except for c = 103), and the gap remains up
to asymptotically large amount of data, at least N = 106. We
observed the same tendency at the other error models as well.
This means that, if we choose a reasonable value of c, the
RSC estimator has the predictability of the true probability
distributions higher than experimental data itself. There are
four possible origins of the gap: (i) inequality constraints of
physicality, (ii) equality constraints of physicality, (iii) reg-
ularization, and (iv) gauge degrees of freedom. It is known
that, in the standard QT, the inequality constraints contribute
to reduce an estimation error [42]. Such effect exists as well
in the SCQT, but it would not be the main origin of the gap
because the effect is expected to decrease as N increases.
The equality constraints must be one of the main origin
because it reduces the degrees of freedom of s and p(Id, s)
while there are no restrictions on f N . Regularization can also
be the main origin because it tends to reduce the variance
of the estimator, although it introduces a bias. Whatever the
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FIG. 2. Plots of root-mean squares (RMS) of loss and regularization functions for the RSC estimator against number of data N when the
error is generated by the GKLS master equation. Panel (a) is for the estimation error in the space of the probability distributions. Panel (b) is
for the goodness of fit to data. Panel (c) is for the estimation error in the space of quantum operations. Panel (d) is for the regularization term
to the target set. All of the horizontal and vertical axes are log-scale. See main texts for the details.

origin, the figure indicates the RSC estimator’s high pre-
dictability of probability distributions.

Figure 2(b) is for the goodness of fit to data, i.e.,√
E[L(p(Id, s), f N )]. The blue line is for s = strue, and note

that it is equivalent to the blue line at Fig. 2(a) due to the
symmetry of

√
L with respect to the first and second variables.

For s = sest
N , the lines correspond to the first term of the right-

hand side of Eq. (8) after its minimization process. The lines
are almost similar except for the largest c. This means that the
selection of the regularization parameter c does not affect on
the goodness of fit of the RSC estimator to data if c is not too
large.

Figure 2(c) is for the estimation error in the space of quan-
tum operations. The vertical axis is the root-mean-squared

FIG. 3. Root-mean-squared error (RMSE) of the estimated Lindbladian against the number of data N when the error is generated by
the GKLS master equation. The number and letter at each panel label correspond to the gate index (0, 1, 2) and part of Lindbladian (H for
Hamiltonian, and D for dissipator). All of the horizontal and vertical axes are log-scale. See the main text for the details.
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FIG. 4. Root-mean-squared error (RMSE) of the estimated Hamiltonian components against the number of data N when the error is
generated by the GKLS master equation. The number and letter at each panel label correspond to the gate index (0, 1, 2) and Hamiltonian
component (X, Y, Z). All of the horizontal and vertical axes are log-scale. See the main text for the details.

error from strue,
√
E[R(s, strue)], for s = starget and s = sest

N . In
Figs. 2(c) and 2(d), we have performed a gauge transformation
on sest

N that diagonalizes the POVM in order to adjust a refer-
ence frame for comparing to strue. The lines of sest

N are below
that of starget, but they do not converge to zero. Figures 2(a)
and 2(c) indicate that the RSC estimates converge to a point
in the gauge-equivalence class [strue] and the point is different
from strue. This is as expected because there is an arbitrary
choice of gauge-fixing method and the gauge fixing with the
squared 2-norm distance to the target set, R(s, starget ), does not
lead the estimates to the true set in general. We investigate the
discrepancy of sest

N and strue later at the explanation of Figs. 3
and 4.

Figure 2(d) is for the root mean of the regularization
term without the regularization parameter

√
E[R(s, starget )] for

s = strue and s = sest
N . Note that the black lines in Figs. 2(c)

and 2(d) are equivalent due to the symmetry of R. For regions
of small N , sest

N tends to be closer to starget as c becomes larger.
This is as expected because larger c makes its estimate closer
to starget.

The observed behaviors of sest
N in Fig. 2 indicate that the

use of regularization for fixing the gauge degrees of freedom
does not cause effective biases on estimation of probability
distributions and the discrepancy originated from different
choice of the regularization parameter c becomes negligible
as the amount of data increases.

C. Numerical result 2: Dynamics generator analysis

As shown in the previous section, the RSC estimator gives
estimates converge to the gauge-equivalence set [strue], but the
convergence point is different from strue. This is due to the
existence of the gauge degrees of freedom. We investigate
more details of the discrepancy with the dynamics generator
analysis proposed in Sec. III C.

Figure 3 shows the root-mean-squared errors (RMSE) of
the RSC estimator to strue. We have performed a gauge trans-

formation on sest
N that diagonalizes their POVM in order to

adjust a reference frame to strue. There are six panels. Three
panels at the upper row are for the RMSE of the Hamiltonian
part of the Lindbladian of gate 0, 1, and 2, respectively. Other
panels at the lower row are for the RMSE of the dissipator
part of Lindbladian of each gate. In the all panels, the black
solid lines are for starget, red solid lines are for sest

N with the
cross validation, and the other dashed lines are for sest

N with a
fixed c. These six panels indicate that the main sources of the
nonconvergence to strue are the Hamiltonian parts of gate-1
and gate-2 [panels (1-H) and (2-H)].

More details of the estimation errors of the Hamiltonian
are shown in Fig. 4, which is for the RMSE of the Pauli X ,
Y , and Z components of the estimated Hamiltonian. There are
six panels. Three panels at the upper row are for the RMSE
of the components of gate 1, respectively. Other panels at the
lower row are for the RMSE of them of gate 2. Line style
and color are same as in Fig. 3. Behaviors of the lines for sest

N
in the six panels can be classified into three types: (i) they
decrease almost monotonically [panels (1-Z) and (2-Z)], (ii)
they are below the black line but converge to a finite value
[panels (1-X) and (2-Y)], and (iii) they are the same order of
the black line [panels (1-Y) and (2-X)]. This classification has
a symmetry on X and Y for gate 1 (π/2 rotation along with X
axis) and gate 2 (π/2 rotation along with Y axis).

These behaviors can be explained by the commutation
relation between the ideal Hamiltonian of each gate and the
generator of the gauge transformation as follows. Let Gi =
exp(Li ) denote the matrix representation of the ith gate of
the convergence point of the RSC estimates, where Li denote
their Lindbladian. The convergence point is gauge equivalent
to strue, there exists a gauge transformation between them. Let
A denote the matrix representation of the gauge transforma-
tion. Because of the invertibility of A, there exists a matrix
a satisfying A = ea. Let Ltarget

i denote the ideal Lindbladian
of the i th gate, which consists of the Hamiltonian part only
and 
i denote the discrepancy between Li and Ltarget

i , i.e.,
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i = Li − Ltarget
i . Then,

Gi = AGtrue
i A−1 = exp (eaLie

−a) ≈ exp
(
Li + [

a, Ltarget
i

])
,

(31)

where we assumed ‖a‖ � 1, used Tailer expansion, and ne-
glected higher-order terms. Equation (31) indicates that the
gauge transformation changes the Lindbladian from Li to Li +
[a, Ltarget

i ] (approximately). The Lindbladians contain parts of
Hamiltonian and dissipators. For simplicity, let us focus on the
Hamiltonian part. In the dynamics generator analysis, we have
performed the gauge transformation that makes POVM diago-
nal. At the reference frame of diagonal POVM, the remaining
gauge degrees of freedom in the Hamiltonian part are the ro-
tation along with the Z axis because rotations along with other
axes make POVM nondiagonal. Then the Hamiltonian part of
a contains Z component only. On the other hand, the target
Lindbladian contains only X component for gate 1 and only Y
component for gate 2. Hence, the commutator [a, Ltarget

i ] leads
to Y component for gate 1 and to X component for gate 2.

At the discussion above, we ignored the higher-order terms
of the Taylor expansion. When ‖a‖ is not so small, such
higher-order terms become non-negligible. Actually, we ob-
served such cases in our numerical simulations with another
setting.

The results of the dynamics generator analysis shown here
indicate that the RSC estimates are affected by uncontrollable
gauge transformation and the estimated Hamiltonian can be
different from the true value in some non-negligible amount.
The discrepancy makes the RSC estimates not useful for ex-
perimentalists to perform further improvement of their gate
operations. Although we investigated the performance of the
RSC estimator only, we believe that this defect is common for
all characterization methods in the SCQT approach because
the gauge degrees of freedom remain in any way.

V. DISCUSSION

In Sec. V A, we explain the suitability of the use of a
regularization for the gauge fixing in the SCQT approach.
We discuss implementation costs in Sec. V B. Discussions and
Appendices in [43] would be useful for considering relations
between the SCQT approach with regularization and steps of
accuracy validation and improvement for quantum computing.

A. Choice of regularization

The main purpose of this paper is to propose a reliable
tomographic estimator. We require the estimator to return a
physical estimate that can reproduce experimental data and
predict results of a QIP experiment in the future precisely.
A physical argument that minimizes the loss function, i.e.,
argmins∈S L(p(Id, s), f N (Id)) might look suitable for the re-
quest. However, since there exist gauge degrees of freedom,
the argument is not unique. In order to obtain an estimate
from multiple candidates, we have to fix the gauge. It is desir-
able to choose a gauge-fixing method suitable for validation
and improvement after characterization. A typical task at the
validation and improvement steps is to estimate a difference
between strue and starget, say D(strue, starget ), by evaluating the
difference between sest

N and starget, D(sest
N , starget ). Suppose that

there are two gauge-fixing methods A and B. Their respec-
tive estimates, obtained from experimental data, are denoted
as sest

A,N and sest
B,N . If p(Id, sest

A,N ) is as close to f N (Id) as
p(Id, sest

B,N ) is and D(sest
A,N , starget ) < D(sest

B,N , starget ), we con-
sider method A better because the difference D(sest

B,N , starget ) −
D(sest

A,N , starget ) is mainly caused by the difference of gauge
degrees of freedom that are experimentally indistinguishable.
In order to reduce such fake effect on estimates, we fix the
gauge such that estimates are as close to the target starget as
they can describe experimental data precisely.

In Eq. (8), we choose the squared 2-norm as the regulariza-
tion. This is for the simplicity of mathematical and numerical
treatments. We can replace the 2-norms in the loss function
and in the regularization with any other norms. The estima-
tor with other norms is also asymptotically gauge equivalent
because any norms can be upper bounded by the 2-norm in
finite-dimensional complex spaces [44]. In quantum informa-
tion theory, some norms like the trace norm and diamond
norm have operational meanings [45,46]. A regularization
using such norms might be more suitable from the perspective
of validation after characterization, but numerical treatments
of such norms become harder and their computational costs at
the minimization increase.

As numerically shown in Sec. IV, the existence of the
gauge degrees of freedom can cause discrepancy between
true and estimated Hamiltonians of the RSC estimator, which
is a common feature of the SCQT approach. The possible
discrepancy makes the performance of the current form of
the RSC estimator at the use for further improvement of
accuracy low. One possible direction toward improving the
performance is to exploit prior information on the experiment
with the regularization term.

B. Implementation costs

The RSC estimator proposed here has superior properties
such as asymptotic gauge equivalence and probably optimal
convergence rate. On the other hand, it suffers from one dis-
advantage that the cost of experiments and data processing
scales exponentially with respect to the number of subsys-
tems.

The exponential scaling is common in tomographic meth-
ods, where the experimental cost of SCQT is about the same
as that of GST and is higher than that of standard QT. The
numerical cost of RSC estimator depends on the choice of the
loss and regularization functions and optimization algorithm,
but in general it is higher than that of standard QT because the
number of parameters to be estimated is much higher. Com-
parison to GST or PYGSTI is a bit obscure because they use
an approximated likelihood function as a loss function, which
is different from our choice, and the physicality constraints
are not fully taken into account at the optimization [30–32],
whereas the constraints are taken into account in the RSC
estimator.

Suppose that, for GST and RSCQT, we have chosen the
same experimental setting, the same loss function, and the
same optimization algorithm with fully taking into the phys-
icality constraints. Then, the only difference between them
is how to fix the gauge. GST performs the gauge-fixing data
processing separately after the optimization of the loss func-
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tion, and in the approach we need to perform an additional
optimization over the gauge degrees of freedom. On the other
hand, in the RSCQT approach, the gauge fixing is simulta-
neously performed during the optimization of the objective
function. The objective function consists of loss and regu-
larization functions. If we choose the squared 2-norm as the
regularization, the numerical cost of the objective function is
dominated by that of the loss function because the nonlinearity
of the loss function is much higher than a quadratic function
in general. The regularization function is a function of the set
of quantum operations s, and the gauge degrees of freedom do
not appear explicitly there. In the RSCQT approach, we can
avoid the optimization over the gauge degrees of freedom. The
gauge optimization problem contains the matrix inverse [see
Eq. (B5)] with the physicality constraints. The highly nonlin-
ear constraint optimization can become numerically unstable
and hard to solve. This might be a reason that the current
version of PYGSTI cannot take into account the full physi-
cality constraints. Therefore, because of the difference of the
gauge-fixing methods, for a fixed regularization parameter, the
computational cost of the RSC estimator would be lower than
that of GST. From the perspective of numerical stability, the
RSCQT approach would be superior than GST as well. When
we combine a k-fold cross validation with the RSC estimator,
we have to perform the optimization of the objective function
many times. In that case, it is unclear which computational
cost is lower, which depends on how hard the optimization
of the gauge degrees of freedom in GST with full physicality
constraints is.

In quantum computation based on the circuit model, a
computational process is constructed with combinations of
one-qubit state preparations, one-qubit measurements, one-
qubit gates, and two-qubit gates [45]. If we restrict the use of
the RSC estimator to such small subsystems, the exponential
increase of the implementation costs mentioned above poses
no problem. Let nQ denote the number of qubits in a device.
In cases where qubits are aligned at each node on a two-
dimensional square-grid lattice, the total number of possible
locations of one-qubit and nearest-neighbor two-qubit oper-
ations increases linearly with respect to nQ. Even if there is
concern about crosstalk errors and we need to evaluate nearest
k-qubit subsystems, the scaling of the cost of characterization
with the RSC estimator still remains linear with respect to
nQ, where k is assumed to be small and independent of nQ.
Therefore, if we focus on reliable characterization of ele-
mentary quantum operations on the physical layer, the high
implementation cost of RSC estimator would not be a fatal
disadvantage. Naturally, lower computational cost is better,
and therefore it is important to develop more stable, more
accurate, and faster numerical algorithms for solving the min-
imization in Eq. (8). A task to be tackled in the near future
is a numerical implementation of the RSC estimator for a
two-qubit system.

VI. CONCLUSION

In this paper, we considered a quantum characterization
problem based on the self-consistent quantum tomographic
approach. First, we derived a sufficient condition on experi-
mental designs which enables us to access all information of

a set of unknown state preparations, measurements, and gates
except for the gauge degrees of freedom. Second, we proposed
a self-consistent estimator with regularization and physicality
constraints. We theoretically proved that, by appropriately
tuning the strength of the regularization, the sequence of
estimates converges to the gauge-equivalence class of the pre-
pared true set of operations at the limit of the data size going to
infinity. This guarantees the high reliability of the estimation
results for sufficiently large amount of data. We also theoreti-
cally derived the rate of the asymptotic convergence, which is
expected to be optimal. We presented mathematically rigorous
proofs of asymptotic behaviors of a self-consistent quantum
tomography method. Additionally, we also proposed how to
extract information of dynamics generators such as Hamilto-
nian and dissipator from a tomographic estimation result of a
gate. These theoretical results hold for any finite-dimensional
systems. Third, we implemented the self-consistent estimator
for a one-qubit system, performed numerical experiments, and
numerically analyzed its performances for finite amount of
data. The numerical results are compatible with the theoretical
results, and it is numerically shown that the proposed esti-
mator has predictability of the true probability distributions
higher than that of empirical distributions, even though there
exists a bias originated from the regularization. The numerical
results also showed that the existence of the gauge degrees
of freedom makes it difficult to directly use the estimation
result for the accuracy improvement step, which would be a
common feature of the self-consistent approach. In order
to make quantum technologies, e.g., quantum computa-
tion, quantum communication, and quantum sensing more
practical, it is indispensable to develop more reliable char-
acterization method for accuracy validation and accuracy
improvement of elementary quantum operations. Theoretical
and numerical results indicate that the method is suitable for
the reliable accuracy validation and needs additional ingenuity
for contributing to the accuracy improvement.
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APPENDIX A: PARAMETRIZATION
OF QUANTUM OPERATIONS

In this Appendix, we explain real vector parametrization
of state preparation, measurement (POVM), and gate. Let H
denote a quantum system of interest. The dimension of H is
finite, denoted by d .
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Let ρ denote a density matrix on H, which is a d × d
complex matrix that is trace-one and positive semidefinite,
i.e.,

Tr[ρ] = 1 & ρ � 0. (A1)

Let B = {Bα}d2−1
α=0 denote a d × d Hermitian orthonormal

matrix basis with B0 = I/
√

d . From the completeness and or-
thogonality of the basis, we can uniquely expand any density
matrix by B as

ρ =
d2−1∑
α=0

ραBα. (A2)

From the Hermiticity of B and ρ, the expansion coefficients
ρα are real. The trace-one condition leads to ρ0 = 1/

√
d . The

other (d2 − 1) real numbers parametrize the density matrix.
The positive-semidefiniteness condition restricts the possible
range of (ρ1, . . . , ρd2−1) into a compact convex region in
Rd2−1.

There are two objects of description of a quantum mea-
surement as a quantum operation: A probability distribution of
measurement outcome and state transformations with respect
to an obtained outcome. A positive operator-valued measure
(POVM) can treat the former only, and a quantum measure-
ment process can treat both of them. In the main text, we
do not consider a quantum state after measurement, and here
we explain POVM. Let us assume that the set of possible
outcomes of a measurement is discrete and finite. Then, a
POVM � = {�x}m−1

x=0 is a discrete and finite set of d × d Her-
mitian matrices that is sum identity and positive semidefinite
each, i.e.,

m−1∑
x=0

�x = I & �x � 0. (A3)

From the sum-identity condition, one of the m elements of the
POVM is fixed, e.g., as �m−1 = I − ∑m−2

x=0 �x. We expand
the (m − 1) matrices as a density matrix

�x =
d2−1∑
α=0

�x,αBα, x = 0, . . . , m − 2. (A4)

From the Hermiticity of B and each �x, the (m − 1) × d2 ex-
pansion coefficients �x,α are real and parametrize the POVM.
The positive-semidefiniteness condition restricts the possible
range of the parameters into a compact convex region in
R(m−1)d2

.
A quantum gate transforms a state ρ to another state ρ ′, and

the action is described by a linear map G : ρ �→ ρ ′ = G(ρ)
that is completely positive (CP) and trace preserving (TP). An
action of a linear map can be represented by a matrix. Let
us choose a matrix representation along with the real vector
representation of a state |ρ〉〉 := (ρ0, . . . , ρd2−1)T ∈ Rd2

with
respect to the basis B. Let G denote the matrix representation
of G. Then, it is a d2 × d2 real matrix. The TP condition leads
to equations,

G0β = δ0β (β = 0, . . . , d2 − 1). (A5)

The other (d2 − 1) × d2 numbers Gαβ (α = 1, . . . , d2 −
1, β = 0, . . . , d2 − 1) are real and parametrize the gate. The

CP condition restricts the possible range of the parameters
into a compact convex region in R(d2−1)d2

. We introduce
another matrix representation of a linear map, called Choi-
Jamiołkowski matrix, CJ(G) ∈ Cd2×d2

, in order to treat the
CP condition mathematically. Let us define a vector vec(I ) :=∑d

i=0 |i〉|i〉 ∈ Cd2
. With the vector, the CJ matrix is defined as

CJ(G) := (G ⊗ I )vec(I )vec(I )†, (A6)

where I is the identity map on Cd×d . The CP condition on G
is equivalent to the matrix inequality,

CJ(G) � 0. (A7)

An explicit form of the relation between CJ and HS matrices
is given in Eq. (H8).

For a given set of quantum operations consist-
ing of ns states, np POVMs, and ng gates, i.e.,
{ρ0, . . . , ρns−1, �0, . . . ,�np , G0, . . . ,Gng−1}, the real vector
s for the set is the set of parameters for each operation, i.e.,

s = (ρ0,1, . . . , ρ0,d2−1, . . . , ρns−1,1, . . . , ρns−1,d2−1,

×�0,0, . . . , �0,d2−1, . . . , �m−2,0, . . . ,�m−2,d2−1,

× G0,10, . . . , G0,d2−1d2−1, . . . , Gng−1,10, . . . ,

× Gng−1,d2−1d2−1)T . (A8)

Theoretical results in Sec. III hold for any ns, np, and ng. The
parametrization in Eq. (A8) is used in numerical experiments
for a one-qubit system explained in Sec. IV, which were
performed for the case of ns = 1, np = 1, and ng = 3.

APPENDIX B: GAUGE DEGREES OF FREEDOM

In this Appendix, we explain a mathematical treatment of
the gauge degrees of freedom. For a given set of quantum
operations s, a gauge transformation A is an invertible map
from a set of quantum operations to another set that satisfies
A(s) ∈ [s], in which a set of quantum operations and a pa-
rameter characterizing the set are identified as explained in
Sec. II. Let As, Ap, and Ag denote the maps corresponding to
the action of A on a state, POVM, and gate, respectively, e.g.,
for s = {ρ,�,G}, A(s) = {As(ρ),Ap(�),Ag(G)}. By defi-
nition, gauge-equivalent sets give an equivalent probability
distribution for a given experimental setting. The functional-
ities of As, Ap, and Ag are limited into linear because of the
linearity of the Born’s rule.

Let X denote a d × d complex matrix with the form X =∑d2−1
α=0 XαBα , where B = {Bα} is an orthonormal matrix basis.

We introduce a vectorization of X with respect to the basis
|X 〉〉 := ∑d2−1

α=0 Xαeα , where {eα}d2−1
α=0 is an orthonormal basis

on Cd2
. The vectorization keeps the value of the Hilbert-

Schmidt inner product of two matrices, i.e.,

Tr[Y †X ] = 〈〈Y |X 〉〉. (B1)

An action of a linear map on ρ can be represented by a matrix
on the vectorization |ρ〉〉, as in the case of a gate explained in
Appendix. A. The matrix representation of a linear map, say
F , is called the Hilbert-Schmidt (HS) representation, and we
use a notation HS(F ) for the representation. Let A denote the
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matrix representation of As, i.e.,

|As(ρ)〉〉 = A|ρ〉〉. (B2)

Then, the Born’s rule enacts the action of Ap and Ag as
follows:

〈〈Ap(�x )| = 〈〈�x|A−1, (B3)

HS(Ag(G)) = A HS(G)A−1. (B4)

Therefore, the action of a gauge transformation A on a state,
POVM, and gate is characterized by a d2 × d2 matrix as

|ρ〉〉 �→ A|ρ〉〉,
A : 〈〈�x| �→ 〈〈�x|A−1,

G �→ AGA−1.

(B5)

In general, a gauge transformation A is an invertible linear
map, and a transformed set A(s) is not guaranteed to be
physical even if the original set s is physical. If we require
Hermiticity of the transformed state As(ρ) as well, As is a
Hermiticity-preserving map. When we choose B as each Bα is
Hermitian, the HS representation of a Hermiticity-preserving
(HP) map is a real matrix. If we require the trace-oneness of
the transformed state, the As is a trace-preserving map. If we
choose B such that B0 = I/

√
d , the HS representation of a

trace-preserving map satisfies A0β = δ0β for β = 0, . . . , d2 −
1. In that case, the representation can be written as

A =
[

1 0T

b C

]
, (B6)

where b is a (d2 − 1)-dimensional vector, C is a (d2 − 1) ×
(d2 − 1) matrix, and T denotes the transposition with respect
to the indexing of the HS representation. 0T denotes the (d2 −
1)-dimensional zero vector transposed. The inverse A−1 has
the following form:

A−1 =
[

1 0T

−C−1b C−1

]
. (B7)

Let us choose an Hermitian orthonormal matrix basis B satis-
fying B0 = I/

√
d . Then the vectorization of a density matrix

ρ is represented as

|ρ〉〉 = 1√
d

[
1
v

]
. (B8)

The parameter vector v ∈ Rd2−1 is a generalized Bloch vector.
The transformed vectorized density matrix via a TPHP gauge
transformation is

A|ρ〉〉 = 1√
d

[
1

Cv + b

]
. (B9)

From the singular value decomposition of C, the matrix C
contains actions of rotation and rescaling of v. The vector b
acts as the origin shift. Therefore, the actions of a gauge trans-
formation are categorized into rotation, rescaling, and origin
shift. The rescaling and origin shift can cause an unphysical
A(s). The number of degrees of freedom characterizing a
TPHP gauge transformation is d4 − d2.

APPENDIX C: PROOF OF THEOREM 1

In this Appendix, we give a proof of Theorem 1. First, we
mention two lemmas on vector bases as a preparation for the
proof. Let dim denote a finite-positive integer. We will set
dim = d2 in the proof.

Lemma 1. Let {ai}dim
i=1 and {bi}dim

i=1 denote bases of a dim-
dimensional complex vector space Cdim. Then there exists a
unique invertible dim × dim matrix C satisfying

bi = Cai, i = 1, . . . , dim . (C1)

Proof (Lemma 1). Let {ei}d
i=1 denote an orthonormal basis

of Cdim. There exist unique invertible matrices A and B satis-
fying

ai = Aei, bi = Bei, ∀ i = 1, . . . , dim . (C2)

Then

bi = BA−1ai (C3)

holds, and C = BA−1. From the uniqueness and invertibility
of A and B, C is also unique and invertible. �

Lemma 2. Let {ai}dim
i=1 and {bi}dim

i=1 denote bases of Cdim. If
matrices X , Y ∈ Cdim × dim satisfy

b j · Xai = b j · Y ai, ∀ i, j = 1, . . . , dim, (C4)

then X = Y holds.
Proof (Lemma 2). As introduced in the proof of Lemma 1,

there exist unique invertible matrices A and B satisfying

ai = Aei, bi = Bei, ∀ i = 1, . . . , dim . (C5)

Then

e j · B†XAei = b j · Xai = b j · Y ai = e j · B†YAei. (C6)

Therefore, we have B†XA = B†YA. From the invertibility of
A and B, X = Y holds. �

Second, we introduce a lemma on informationally com-
plete sets of states and POVMs with gauge equivalence. In the
following, we set dim = d2. Let |ρ〉〉, |�〉〉 = {|�x〉〉}x∈X , and
G denote a vectorized representation of a density matrix ρ, the
same representation of a POVM �, and a HS representation
of a TPCP map G [26,47] as explained in Appendix A. The
vectors |ρ〉〉 and |�x〉〉 are in Cdim and the matrix G is in
Cdim × dim. Then generalized Born’s rule can be rewritten with
the vector representation as

p(x|ρ,G,�) = Tr [�xG(ρ)] = 〈〈�x|G|ρ〉〉. (C7)

Note that

〈〈G†(�x )| = 〈〈�x|G (C8)

holds.
Lemma 3. Suppose that {|ρ i〉〉}Ns

i=1 and {|ρ̃ i〉〉}Ns
i=1 are state

informationally complete and {|� j〉〉}Np

j=1 and {|�̃ j〉〉}Np

j=1 are
POVM informationally complete. If〈〈

� j
x

∣∣ρ i
〉〉 = 〈〈

�̃ j
x

∣∣ρ̃ i
〉〉

(C9)
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holds for any i, j, and x, then there exists a unique invertible
matrix A satisfying

|ρ̃ i〉〉 = A|ρ i〉〉, (C10)〈〈
�̃ j

x

∣∣ = 〈〈
� j

x

∣∣A−1, (C11)

for any i, j, and x.
Proof (Lemma 3). We divide each set into a linear in-

dependent subset subscripted with 1 and the residual subset
subscripted with 2:

{|ρ i〉〉}Ns
i=1 = S1 ∩ S2, (C12)

S1 := {|ρ i〉〉}dim
i=1, (C13)

S2 := {|ρ i〉〉}Ns
i=dim +1, (C14)

{|ρ̃ i〉〉}Ns
i=1 = S̃1 ∩ S̃2, (C15)

S̃1 := {|ρ̃ i〉〉}dim
i=1, (C16)

S̃2 := {|ρ̃ i〉〉}Ns
i=dim +1, (C17)

{|� j〉〉}Np

j=1 = P1 ∩ P2, (C18)

P1 := {|� j
x j
〉〉}dim

j=1, (C19)

P2 := {∣∣� j
x j

〉〉}|X |·Np

j=dim +1, (C20)

{|�̃ j〉〉}Np

j=1 = P̃1 ∩ P̃2, (C21)

P̃1 := {∣∣�̃ j
x j

〉〉}dim

j=1, (C22)

P̃2 := {∣∣�̃ j
x j

〉〉}|X |·Np

j=dim +1. (C23)

During the division process, if necessary, we relabel the in-
dices i, j, and x so that S1 and P1 are bases of Cdim. From
Lemma 1, there exist unique invertible matrices A and B
satisfying

|ρ̃ i〉〉 = A|ρ i〉〉, ∀ i = 1, . . . , d (C24)〈〈
�̃ j

x j

∣∣ = 〈〈
�̃ j

x j

∣∣B, ∀ j = 1, . . . , dim . (C25)

Then 〈〈
� j

x j

∣∣ρ i
〉〉 = 〈〈

�̃ j
x

∣∣ρ̃ i〉〉 = 〈〈
� j

x j

∣∣BA
∣∣ρ i〉〉 (C26)

holds for i, j = 1, . . . , d . From Lemma 2, we have B = A−1.
Therefore, it is proven that there exists a unique matrix A
satisfying Eqs. (C10) and (C11) for the linear independent
subsets S1, S̃1, P1, and P̃1.

Suppose that dim < k � Ns in the case of dim < Ns. We
can span any residual vectors in S2 and S̃2 by S1 and S̃1 as

|ρk〉〉 =
dim∑
i=1

cki|ρ i〉〉, |ρ̃k〉〉 = A

(
dim∑
i=1

c̃ki|ρ i〉〉
)

. (C27)

Then from Eq. (C9),

〈〈
� j

x j

∣∣( dim∑
i=1

cki|ρ i〉〉
)

= 〈〈
� j

x j

∣∣ρk
〉〉

= 〈〈
�̃ j

x j

∣∣ρ̃k
〉〉

= 〈〈
� j

x j

∣∣BA

(
dim∑
i=1

c̃ki

∣∣ρ i
〉〉)

= 〈〈
� j

x j

∣∣( dim∑
i=1

c̃ki

∣∣ρ i
〉〉)

(C28)

holds for j = 1, . . . , dim.
Then

|ρ̃k〉〉 = A|ρk〉〉 (C29)

holds for k = dim +1, . . . , Ns.
In the same way as the state vector, we can prove〈〈
�̃ j

x j

∣∣ = 〈〈
� j

x j

∣∣A−1, ∀ j = dim +1, . . . , |X | · Np. (C30)

�
In the proof above, we assumed that numbers of possible

outcomes are common for all � j for simplicity. A general-
ization to cases that each POVM has a different number of
elements is straightforward.

Now we are ready for proving Theorem 1.
Proof (Theorem 1). When s̃ ∈ [s], p(Id, s̃) = p(Id, s)

holds by definition of the gauge equivalence. Here we prove
the opposite direction, i.e., when Id is SCIC and each gate in
s has the inverse, which can be unphysical, then p(Id, s̃) =
p(Id, s) implies s̃ ∈ [s]. When Id is SCIC, it includes a set of
index sequences satisfying Eq. (3). Ids and Idp included in Id
are state and POVM informationally complete, respectively.
From Lemma 3, the equations〈〈

�̃
ip
x

∣∣ρ̃ is
〉〉 = 〈〈

�
ip
x

∣∣ρ is
〉〉

(C31)

imply that there exists a unique matrix A such that

|ρ̃ is〉〉 = A|ρ is〉〉, ∀ is ∈ Ids, (C32)〈〈
�̃

ip
x

∣∣ = 〈〈
�

ip
x

∣∣A−1, ∀ ip ∈ Idp, x ∈ X . (C33)

The SCIC Id also includes a set of index sequences satis-
fying Eq. (4). Then〈〈

�
ip
x

∣∣Gig

∣∣ρ is
〉〉 = 〈〈

�̃
ip
x

∣∣G̃ig

∣∣ρ̃ is
〉〉

= 〈〈
�

ip
x

∣∣A−1G̃ig A
∣∣ρ is

〉〉
(C34)

hold for is ∈ Ids, ig = 1, . . . , ng, ip ∈ Idp, and x ∈ X . From
Lemma 2, we have

Gig = A−1G̃ig A ⇔ G̃ig = AGig A−1, (C35)

for ig = 1, . . . , ng.
With Eq. (C35), (C32), and (C33) can be rewritten as

AGis A−1|ρ̃〉〉 = AGis |ρ〉〉, (C36)

〈〈�̃x|AGip A−1 = 〈〈�x|Gip A−1, (C37)

where Gis and Gip are HS representations of gates constructed
by applying Gig along with is and ip, respectively. From the
invertibility of A and Gig , we obtain

|ρ̃〉〉 = A|ρ〉〉, 〈〈�̃x| = 〈〈�x|A−1. (C38)

Let i denote an arbitrary gate index sequences whose each
element is in {1, . . . , ng}. The length of i is arbitrary, and
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i itself is not necessarily in Id. Equations (C38) and (C35)
lead to

pi(s̃) = pi(s). (C39)

Therefore, s̃ ∈ [s]. �
In the proof above, the numbers of states and POVMs are

assumed to be 1. A generalization of the proof to cases of
multiple states and POVMs is straightforward.

APPENDIX D: PROOF OF THEOREM 2

In this Appendix, we give a proof of Theorem 2. In order to
clarify the roles of each property of the RSC estimator in the
setting of SCQT and each condition mentioned in Theorem 2,
we split the proof into two parts. First, we prove theorems for
a general setting of statistical parameter estimation with the
following conditions:

C.1 The parameter space S is a compact subset of a
finite-dimensional Euclidean space, and the parametrization
of p(Id, s) is continuous.

C.2 The regularization function R(s, s′) is positive and
bounded.

C.3 The regularization parameter rN is positive and satis-
fies lim

N→∞
rN = 0 (a.s.).

C.4 The regularization parameter rN is positive and satis-
fies rN � L(p(Id, strue), f N (Id)).

C.5 For a given strue ∈ S , a point s ∈ S satisfying
pi(s) = pi(strue) is uniquely determined up to the gauge
equivalence. In other words, s /∈ [strue] ⇔ ∃i ∈ Id such that
‖pi(s) − pi(strue)‖2 > 0.

Second, we show that the theorems for the general setting
are applicable to the RSC estimator in the setting of SCQT.

In Appendix D 1, we give a rigorous definition of the
asymptotic notation �. The definition is used in proofs in
this Appendix. In Appendix D 2, we introduce a lemma about
bounds of the asymptotic convergence rate of the empirical
distributions to the true probability distributions. The lemma
is used in Appendix D 4. In Sec. D 3, we prove Eq. (10). In
Appendix D 4, we prove Eqs. (12) and (13). In Appendix D 5,
we prove Eq. (14). The main tools used in the proofs are the
property of sest

N as the minimizer of the objective function, the
triangle inequality of norms, the strong law of large numbers,
the central limit theorem, and the strong law of iterated loga-
rithm.

1. Definition of the asymptotic notation

We give a rigorous definition of the asymptotic notation
“�” introduced in the main text and used in Theorem 2.
Suppose that f (N ) and g(N ) are positive functions of the data
size N > 0. Then the notation is defined as

f (N ) � g(N )
def⇐⇒ lim sup

N→∞

f (N )

g(N )
< ∞. (D1)

Equivalently, f (N ) � g(N ) holds if and only if there exists a
positive real numbers a and N0 such that

f (N ) � ag(N ), ∀ N � N0. (D2)

This is equivalent to the big O notation, f (N ) ∈ O(g(N )), in
computer science.

2. Asymptotic convergence rate of empirical distributions

We introduce a lemma for proving Eqs. (12) and (13).
Lemma 4. The asymptotic convergence rate of f N (Id) to

p(Id, strue) is bounded as

1√
N

�
√

L(p(Id, strue), f N (Id)) �
√

ln ln N

N
(a.s.). (D3)

Proof (Lemma 4). First, we prove the left inequality of
Eq. (D3) by contradiction to the central limit theorem. We
assume

L(p(Id, strue), f N (Id)) <
C

N
(a.s.), (D4)

for arbitrary positive constant C and sufficiently large N .
Then, due to the dominant convergence theorem, we obtain

E[L(p(Id, strue), f N (Id))] <
C

N
, (D5)

for arbitrary positive constant C and sufficiently large N ,
where E denotes the expectation with respect to the observed
measurement outcomes. On the other hand, the central limit
theorem [37] leads to

E[L(p(Id, strue), f N (Id))] ∝ 1

N
. (D6)

Equation (D5) contradicts Eq. (D6). Therefore, there exists a
positive number a such that

a

N
� L(p(Id, strue), f N (Id)) (a.s.), (D7)

for any sufficiently large N , and we obtain the first inequality
to be proved. The right inequality of Eq. (D3) is the strong law
of iterated logarithm [37] itself. �

3. Proof of Eq. (10)

We prove Eq. (10) in Theorem 2. First, we prove an equiv-
alent statement under conditions C.1, C.2, and C.3.

Theorem 3. If C.1, C.2, and C.3 are satisfied, then

lim
N→∞

√
L
(

p
(
Id, sest

N

)
, p(Id, strue)

) = 0 (a.s.) (D8)

holds.
Proof (Theorem 3). Under condition C.1, there exists an

argument minimizing the objective function FN (s) over S .
Then, we have

L
(

p(Id, sest
N ), f N (Id)

)
� min

s∈S
FN (s)

� FN (strue) → 0 as N → ∞ (a.s.).

(D9)

Here we used the strong law of large numbers [37] and condi-
tions C.2 and C.3. By using the triangle inequality of

√
L, we

have√
L
(
p
(
Id, sest

N

)
, p

(
Id, strue

))
�

√
L
(
p
(
Id, sest

N

)
, f N (Id)

)

+
√

L(p(Id, strue), f N (Id))

(D10)

→ 0 as N → ∞ (a.s.). (D11)

�
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Let us move on to the proof of Eq. (10). In the setting
of SCQT, we can choose a continuous parametrization of
probability distributions, and the continuous parameter space
can be a compact subset of a finite-dimensional Euclidean
space. Hence, condition C.1 is satisfied. Condition C.2, the
positivity and boundedness of R, is satisfied in the RSC esti-
mator. Condition C.3 is Eq. (9) itself. Therefore, Theorem 3
is applicable to the RSC estimator in the setting of SCQT, and
Eq. (10) holds. �

4. Proof of Eqs. (12) and (13)

We prove Eqs. (12) and (13) in Theorem 2. First, we prove
an equivalent statement under conditions C.1, C.2, and C.4.

Theorem 4. If C.1, C.2, and C.4 are satisfied, then√
L
(

p
(
Id, sest

N

)
, p(Id, strue)

)

�
√

L(p(Id, strue), f N (Id)) (a.s.) (D12)

holds.
Proof (Theorem 4). Under conditions C.1 and C.2 with a

property of minimizer of the estimator, we have

L
(

p(Id, sest
N ), f N (Id)

)
� L

(
p(Id, strue), f N (Id)

)

+ rN R(strue, starget ). (D13)

By combining conditions C.2 and C.4 with Eq. (D13), we
obtain

L
(

p
(
Id, sest

N

)
, f N (Id)

)

� {1 + R(strue, starget )}L(p(Id, strue), f N (Id)) (D14)

� L(p(Id, strue), f N (Id)) (a.s.). (D15)

By using the triangle inequality of
√

L and Eq. (D15), we have√
L
(

p
(
Id, sest

N

)
, p(Id, strue)

)

�
√

L(p(Id, strue), f N (Id)) (a.s.). (D16)

�
Let us move on to prove Eqs. (12) and (13) in Theorem 2.

Conditions C.1 and C.2 are satisfied in the setting of SCQT
as explained in the end of Appendix D 3. If we select a
regularization parameter satisfying rN � 1/N (a.s.) [Eq. (11)],
inequalities

rN � 1

N
� L(p(Id, strue), f N (Id)) (a.s.) (D17)

hold because of the left inequality in Lemma 4, and condition
C.4 is satisfied. Therefore, Theorem 4 is applicable to the RSC
estimator in the setting of SCQT, and we obtain Eq. (12).
Equation (13) is given by combining the right inequality in
Lemma 4 and Theorem 4. �

5. Proof of Eq. (14)

We prove that a sequence of estimates {sest
N } converges to

the gauge-equivalence class [strue] almost surely at the limit of
N going to infinity. To prove that, we modify the proof of The-
orem 4.4 in [38] to make it applicable to the RSC estimator in
the setting of SCQT, which is an ill-posed problem caused by

the existence of the gauge degrees of freedom. We define

R(s, [strue]) := min{R(s, s′) | s′ ∈ [strue] } (D18)

as a (squared) distance between s and the gauge-equivalence
class [strue].

Theorem 5. If conditions C.1, C.2, C.3, and C.5 are satis-
fied, the sequence of RSC estimates {sest

N } converges to [strue]
almost surely, i.e.,

lim
N→∞

R
(
sest

N , [strue]
) = 0 (a.s.). (D19)

Proof (Theorem 5). First, we derive an inequality that any
points in S outside the ε neighborhood of [strue] satisfy. For a
given ε > 0, we define

ηε := min
s∈S

{√
L(p(Id, strue), p(Id, s)); R(s, [strue]) � ε

}
.

(D20)

Since pi(s) are continuous functions over the compact set S
(condition C.1), the minimal value ηε exists. From condition
C.5, ηε > 0 holds.

The following arguments hold almost surely. From the
strong law of large numbers [37], for any i ∈ Id

lim
N→∞

f i
N = pi(strue) (a.s.). (D21)

From Eq. (D21) and condition C.3, for every ε > 0, there
exists a constant N (ε) such that

N � N (ε) ⇒
{√

L( f N (Id), p(Id, strue)) <
ηε

4 ,√
rN R(strue, starget ) <

ηε

4 .
(D22)

Then, for every s satisfying R(s, [strue]) � ε, we have√
L( f N (Id), p(Id, s)) �

√
L(p(Id, s), p(Id, strue))

−
√

L( f N (Id), p(Id, strue))

(D23)

� 3
4ηε, (D24)

where we used the triangle inequality for the 2-norm (
√

L).
Therefore, an inequality

min
s∈S

{L(p(Id, s), f N (Id)) | R(s, [strue]) � ε } >
9

16
η2

ε

(D25)

holds. Then we obtain

min
s∈S

{FN (s) | R(s, [strue]) � ε} (D26)

� min
s∈S

{L(p(Id, s), f N (Id)) | R(s, [strue]) � ε} (D27)

> 9
16η2

ε . (D28)

Next, we show that sest
N does not satisfy Eq. (D28). Since

sest
N is the argument minimizing FN (s) over s ∈ S , FN (sest

N ) �
FN (s) holds for any s ∈ S . Then, from Eq. (D22), we have

FN
(
sest

N

)
� FN (strue) < 2

16η2
ε < 9

16η2
ε . (D29)

Hence, sest
N does not satisfy Eq. (D28), and it means that sest

N is
in the ε neighborhood of [strue]. Thus, we obtain

N � N (ε) ⇒ R
(
sest

N , [strue]
)

< ε. (D30)
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Since ε is an arbitrary positive number, we obtain

lim
N→∞

R
(
sest

N , [strue]
) = 0 (a.s.). (D31)

�
Let us move on to the proof of Eq. (14). Conditions C.1

and C.2 are satisfied in the setting of SCQT as explained
in the ends of Appendices D 3 and D 4. Condition C.3 is
Eq. (9) itself. When Id is SCIC, condition C.5 is satisfied
(Theorem 1). Therefore, Theorem 5 is applicable to the RSC
estimator in the setting of SCQT, and it leads to Eq. (14) in
Theorem 2. �

APPENDIX E: PROOFS ON DYNAMICS
GENERATOR ANALYSIS

In this Appendix, we prove the existence of the matrix
logarithm of the HS representation of a gate and Eqs. (23)–
(25) in Sec. III C, if its dynamics obeys the time-dependent
GKLS equation under conditions of finite energy and finite
time period. In Appendix E 3, we explain a relation between
the dynamics generator analysis proposed and similar known
results.

1. Proof of the existence of the matrix logarithm

We give the proof of the existence of the matrix logarithm,
which is assumed in the dynamics generator analysis proposed
in Sec. III C. In the vectorized state representation, the time-
dependent version of the GKLS equation is rewritten as

d

dt
|ρ(t )〉〉 = HS(Lt )|ρ(t )〉〉 (E1)

⇔ d

dt
HS(Gt )|ρ(0)〉〉 = HS(Lt )HS(Gt )|ρ(0)〉〉, (E2)

where we used |ρ(t )〉〉 = HS(Gt )|ρ(0)〉〉, and Gt is defined as
a map corresponding to the gate implemented with the dy-
namics during the time period [0, t], and GT corresponds to
G in Sec. III C. Equation (E2) holds for arbitrary ρ(0), and it
implies

d

dt
HS(Gt ) = HS(Lt )HS(Gt ). (E3)

Therefore, HS(Gt ) is a solution of the homogeneous first-order
linear differential equation. The general theory of differential
equations guarantees the unique existence of the solution, and
the following equality holds (problems 4a in Sec. 6.5, pp.507-
508 in [36]):

det HS(Gt ) = exp

[∫ t

0
dt ′ Tr {HS(Lt ′ )}

]
. (E4)

When H (t ′), J (t ′), and K (t ′) in Eq. (15) are bounded for
any t ′ ∈ [0, t] with finite t ,

∫ t
0 dt ′Tr {HS(Lt ′ )} > −∞ and

det HS(Gt ) > 0 hold. This implies that HS(Gt ) is invertible.
Every invertible matrix can be written as the exponential of
a complex matrix (exercises 2.9 and 2.10 in [48]). Then, for
every HS(Gt ), there exists a matrix X (t ) that satisfies

HS(Gt ) = exp [X (t )]. (E5)

�

Note that the trace in the right-hand side of Eq. (E4) can be
rewritten as

Tr {HS(Lt )} = Tr{HScb(Lt )} = 2dJ0(t ), (E6)

where the superscript cb stands for the computational basis,
and this means that the Hamiltonian part does not affect on
the invertibility. When the dynamics is trace preserving, J and
K are related as

J (t ) = −1

2

d2−1∑
α,β=1

Kαβ (t )B†
βBα (E7)

and

J0(t ) = Tr{B†
0J (t )} = − 1

2
√

d
Tr {K (t )}. (E8)

Therefore, K (t ) affects the invertibility through J0(t ). When
K (t ) is positive semidefinite, the dynamics becomes com-
pletely positive, and Tr {K (t )} � 0 and J0(t ) � 0 hold. Then
Tr {HS(Lt )} � 0 > −∞ holds and the inverse exists.

2. Proof of Eqs. (23)–(25)

For simplicity of notation, we omit the superscript acc
below. Equation (20) can be rewritten as

L(ρ) = −i
d2−1∑
α=1

Hα (Bαρ − ρBα ) +
d2−1∑
α=0

Jα (Bαρ + ρBα )

+
d2−1∑
α,β=1

KαβBαρB†
β. (E9)

In the matrix vectorization, or the HS representation with re-
spect to the computational basis in the row major order |X 〉〉 :=∑

i, j Xi j |i〉| j〉, an equality |ABC〉〉 = A ⊗ CT |B〉〉 holds. Then

HScb(L)|ρ〉〉 =
{

−i
d2−1∑
α=1

Hα (Bα ⊗ I − I ⊗ Bα )

+
d2−1∑
α=0

Jα (Bα ⊗ I + I ⊗ Bα )

+
d2−1∑
α,β=1

KαβBα ⊗ Bβ

}
|ρ〉〉 (E10)

hold for any ρ, and we have

Lcb := HScb(L) = −i
d2−1∑
α=1

Hα (Bα ⊗ I − I ⊗ Bα )

+
d2−1∑
α=0

Jα (Bα ⊗ I + I ⊗ Bα )

+
d2−1∑
α,β=1

KαβBα ⊗ Bβ. (E11)

By combining Eq. (E11) with the orthonormality and Her-
miticity of B, we obtain Eqs. (23)–(25). �
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3. Related work on dynamics generator analysis

Here we discuss relation of the dynamics generator anal-
ysis proposed in Sec. III C to known methods. In recent
experiments on superconducting quantum circuits [49,50], ex-
perimentalists try to estimate the accumulated Hamiltonian
H acc in which experiments and data-processing procedures
are different from the methods proposed here. They report
that calibration methods for gates using the estimated infor-
mation worked well. The data-processing procedures depend
on specific models of target accumulated Hamiltonians and
do not take into account the effects of decoherence during the
gate operations. On the other hand, the method we propose
is very general, there are no assumptions on the model of the
accumulated generators, and in the data processing both ef-
fects of Hamiltonian and decoherence are taken into account.
Therefore, our method can give us more accurate information
of the accumulated generators, which would be useful for
calibration.

An error generator, defined as ln {(Gtarget )−1G}, is esti-
mated with results of gate-set tomography in [31]. When
a target gate is unitary, any gate can be decomposed into
the form of G = G target ◦ E , where E := (G target )−1 ◦ G. This
leads to

E := HS(E ) = (Gtarget )−1G. (E12)

The error generator ln E can be considered as a representation
of errors on the accumulated generators. However, in gen-
eral ln E and ln Gtarget =: (Lacc)target are not commutable, and
Lacc �= (Lacc)target + ln E because

G = exp(Lacc) = exp[(Lacc)target] exp(ln E)

�= exp[(Lacc)target + ln E]. (E13)

Therefore, the error generator ln E does not represent the
direct discrepancy of the accumulated generators. On the
other hand, if we define 
L := ln G − ln Gtarget = Lacc −
(Lacc)target, Lacc = (Lacc)target + 
L holds by definition. We

consider 
L or {H acc
α − (H acc

α )target}d2−1
α=1 more suitable for the

use in a calibration process. In theory of quantum information,
especially in quantum error correction, an error model on a
quantum gate is typically introduced as G = E ′ ◦ G target. Note
that the timing of the error’s action is different from E . If the
purpose of analysis is to know information of E ′, for com-
parison to numerical simulation of a quantum error-correction
code, for example, E′ := G(Gtarget )−1 would be an appropriate
quantity to analyze.

APPENDIX F: REGULARIZATION

In this Appendix, we briefly explain the conventional
purpose of using a regularization in applied mathematics.
After that, we describe differences between regularization in
RSCQT and those in conventional settings, from the view-
points of motivation and three mathematical properties.

Regularization is an attractive way to stably solve inverse
problems [51,52], i.e., the solution is not much changed
when the observed data are slightly fluctuated. Much attention
has been paid to the regularization in many other fields of
mathematical sciences including integral equation [53], signal
processing [54], statistics and machine learning [55–57]. It

is also used in variants of standard QT [58–60]. A purpose
to use regularization depends on each research field. For
example, it is used to avoid overfitting to observed data in
machine learning, to make a solution stable or to solve
ill-posed problems in inverse problems, and among others.
Moreover, in order to improve interpretability of models in
regression problems by increasing sparsity of estimates or
to obtain a smooth function in nonparametric estimation, the
regularization also plays an important role in statistics. From
the viewpoint of Bayesian analysis, a regularization can be
regarded as exploiting prior information with respect to model
parameters under some conditions.

Our purpose of introducing a regularization into the setting
of SCQT is to fix the gauge degrees of freedom, suitable for
the improvement and validation steps. This is originated from
the role of quantum characterization in quantum information
processing and our choice of SCQT approach. This is quite
different from the conventional purposes of regularization
mentioned above, although the use of starget in the regulariza-
tion function can be regarded as a use of prior information
of the target set of quantum operations that we aim to im-
plement. Additionally, a mathematical framework of RSCQT
has at least the following three attributes: (i) nonuniqueness of
the true solution of the original (unregularized) problem, (ii)
constraint parameter space, (iii) nonlinear parametrization, of
which difficulties make our problem more complicated than
the previous studies. Hereafter, we briefly explain these three
attributes.

First, there exist the gauge degrees of freedom, which is
originated from the self-consistent approach and Born’s rule,
a fundamental principle of quantum theory. We cannot de-
termine parameters of interests only from experimental data,
and such an estimation problem can be categorized into an
ill-posed problem in the inverse problem. A conventional
approach to the ill-posed problem in applied mathematics is
to neglect or remove such unaccessible degrees of freedom.
On the other hand, we cannot neglect or remove the gauge
degrees of freedom because at the validation and improvement
steps after characterization each mathematical representation
of state, measurement, and gate is necessary. In order to sep-
arate the representations from each other, we need to fix the
gauge somehow.

Second, the region of possible parameters is constrained,
which is originated from the requirement of physicality on es-
timates of quantum operations. When an accuracy of quantum
operations is high, the true set lies close to the boundary of
the physical region. If we require physicality on estimates, we
have to take the boundary into account at the data processing.
In standard QT, the boundary affects on the performance of
estimators [42] for finite data. In RSCQT, the dimension of
the parameter space is much larger than that of standard QT,
and the analysis of the boundary effect becomes much harder.

Third, the parametrization of probability distributions is
nonlinear, originated from the SCQT approach. A nonlinear
function in a loss function is often analyzed in the inverse
problems [61]. The asymptotic convergence for nonlinear
Tikhonov regularization was derived in [62] under an as-
sumption that the true solution of the original (unregularized)
problem is unique, and [63] showed its convergence rate under
a similar assumption. Since their proofs are shown by exploit-
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ing the uniqueness of the original solution, it is nontrivial to
extend their results to our framework with the gauge degrees
of freedom, in which the original solution is not unique.

A previous study, which takes three attributes, (i), (ii) and
(iii), exists [64]. However, the study only considers a case
that the regularization parameter rN is fixed, and does not
show the asymptotic convergence to equivalence class of the
true parameter nor the convergence rate of estimator. As a
matter of fact, when we fix the regularization parameter, a bias
caused by a regularization remains even at the limit of data
size going to infinity, and the asymptotic convergence does
not hold. On the other hand, we proved that the RSC estimator
has the asymptotic convergence if we select rN � 1/N , and we
derived its convergence rate.

APPENDIX G: CROSS VALIDATION

Cross validation is a standard method for selecting a
regularization parameter in statistics and machine learn-
ing [39,40]. In the numerical experiments reported in Sec. IV,
we combined the RSC estimator with k-fold cross validation
(k = 3). Roughly speaking, the k-fold cross validation selects
a regularization parameter from the perspective of prediction.
If we calculate both of the goodness of fit and the estimate
from common data, an overfitting to the data occurs, and the
performance of predicting the true probability distributions or
the goodness of fit to different data can become worse. The
overfitting problem is caused by the statistical dependence
of the data for calculating the estimate and goodness of fit.
In order to avoid the problem, the cross validation divides
the data into two parts. One is for calculating an estimate,
which is called learning data. The other is for calculating
the goodness of fit, which is called test data. This division
makes learning data and test data statistically independent. In
order to reduce an effect of the way of division, divisions are
differently performed k times. A goodness of a regularization
parameter is evaluated by an average value of the goodness of
fit over k divisions. We explain the details of the procedure of
k-fold cross validation below.

Suppose that we performed experiments with a SCIC set
of experimental schedules Id and obtained experimental data
DN with an amount of data N . For a given coefficient c, a
regularization parameter in the RSC estimator is calculated
from the coefficient and amount of data as rN = c/N . Let
c = {c1, . . . , cnr } denote a set of candidates of regularization
parameter coefficients. Let k denote a positive integer larger
than or equal to 2. The k-fold cross validation selects a value
from c for the RSC estimator along with the following proce-
dure.

(i) Data division. We randomly divide the data into k dis-
tinct parts as equally as possible. Let DN,1, . . . , DN,k denote
the k parts of DN (DN = ∪k

j=1DN, j). We introduce a notation

for complement sets DN, j := DN\DN, j , j = 1, . . . , k. At the
jth division DN = DN, j ∪ DN, j , DN, j are the test data and DN, j

are the learning data. Let Nj and Nj denote the amounts of data
for DN, j and DN, j , respectively. Roughly speaking, Nj ≈ N/k
and Nj ≈ N − N/k hold.

(ii) Calculation of empirical distributions. We calculate
empirical distributions from each DN, j and DN, j . Let f Nj

(Id)

and f Nj
(Id) denote the set of empirical distributions cal-

culated from DN, j and DN, j , respectively. For simplicity of
notation, we omit Id from the notation of the set of empirical
distributions below in this section.

(iii) Calculation of cross-validation losses. First, we cal-
culate multiple RSC estimates from complement data and
coefficient candidates. Next, we calculate values of loss func-
tions for cross validation. Let � denote an index for the
candidates of regularization parameter. For � = 1, . . . , nr , we
repeat the following procedures:

3.1 Calculation of estimates. We calculate each RSC
estimate from complement empirical distribution f Nj

and a

regularization parameter c�/Nj for j = 1, . . . , k along with
Eq. (8). Let sest

Nj
(c�) denote the estimates, in which their

dependency on c� is explicitly shown in the notation for
clarifying the dependence.

3.2 Calculation of cross-validation losses. We calculate
values of the loss function in Eq. (6) between the probabil-
ity distributions predicted by the estimates calculated in the
previous substep from the leaning data and the empirical
distributions calculated from the test data for j = 1, . . . , k.
We calculate the arithmetic mean, which is the definition of
the cross-validation (cv) loss for a candidate c�. Let Lcv(c�)
denote the cv loss of c�. An explicit mathematical form of
the cv loss is as follows:

Lcv(c�) := 1

k

k∑
j=1

L
(
p
(
Id, sest

Nj
(c�)

)
, f Nj

)
. (G1)

At the end of step 3, we have a set of values of cv loss
{Lcv(c�)}nr

�=1.
Step 4. Selection of regularization parameter. From c, we

choose the coefficient candidate c� that has the minimal value
of the cv loss. Let ccv denote the selected coefficient. It is
defined as

ccv := argmin
c∈c

Lcv(c). (G2)

In the procedure of k-fold cross validation explained above,
we need to perform the optimization for calculating an RSC
estimate knr times. After the procedure, we obtain the selected
coefficient ccv. Finally, we calculate the RSC estimate sest

N (ccv)
with the total data DN and the selected regularization parame-
ter rcv

N := ccv/N . The estimate sest
N (ccv) is the result of the RSC

estimator with k-fold cross validation. In total, we need to
perform the optimization (knr + 1) times for the combination.
The knr times optimizations are additional costs for using
k-fold cross validation.

APPENDIX H: NUMERICAL EXPERIMENTS

We describe details of numerical experiments for the one-
qubit system explained in Sec. IV.

1. Setting

Three quantum gates are implemented with a Hamiltonian
model [65]

H (t ) = −
ω

2
σ3 + f (t )

2
{cos(φ)σ1 + sin(φ)σ2}, (H1)
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TABLE II. Coherent error parameters and average gate infidelity
(AGIF) for G true in the numerical experiments.

Gate 
ω AW φ AGIF

G true
0 0.01 0 0 2.0 × 10−3

G true
1 0.01 π/2 + 0.1 0.1 5.5 × 10−3

G true
2 0.01 π/2 + 0.1 π/2 + 0.1 5.5 × 10−3

where 
ω is the frequency detuning, f (t ) is the pulse shape,
and φ is the relative phase. For simplicity, we choose a rect-
angular pulse,

f (t ) =
{

A (0 � t � W ),
0 otherwise. (H2)

Each target gate in Eqs. (28), (29), and (30)
corresponds to the combination of 
ω = 0,
AW = 0 (G target

0 ), π/2 (G target
1 , G target

2 ), and φ =
0 (G target

0 , G target
1 ), π/2 (G target

2 ), respectively. In the numerical
experiments, true gates were chosen so that they include the
following coherent errors and decoherence. We choose the
gate time as 15 ns and W = 10 ns with coherent errors shown
in Table II. Decoherence is modeled by the following three
dissipation operators [41] in the GKLS master equation.√

�+|1〉〈0|,
√

�−|0〉〈1|, √
�φ

σ3√
2
. (H3)

Relations between the dissipation ratios �+, �−, �φ and co-
herence times T1, T2, Tφ and the thermal population pth are
given as

�+ + �− = 1

T1
, (H4)

1

2
�+ + 1

2
�− + �φ = 1

T2
, (H5)

�φ = 1

Tφ

, (H6)

�+ − �−
�+ + �−

= pth. (H7)

In the numerical experiments, we choose T1 = 30 μs, T2 =
20 μs, and pth = 0.01. Values of the average gate infidelity
for each gate, which include both coherent errors and deco-
herence, are shown in Table II. They are shown only the first
two digits and in order of 10−3. The depolarizing error rates
for state and POVM are 0.015 and 0.010, respectively.

The schedule of the experiments consists of subexperi-
ments. Every subexperiment starts with the state initialization
ρ true and ends with the measurement �true. Gate sequences
between ρ true and �true are shown in Table III. The set of
subexperiments satisfies the SCIC condition. We choose a
common number of repetitions N for each subexperiment.

2. Optimization solver and physicality constraints

We numerically implemented the RSC estimator for one-
qubit systems with IPOPT [66]. IPOPT is implemented by C++
and provides interfaces to convert the objective function and
constraints into a standard form of the solver in several
programming languages. We used C++ to shorten the compu-
tation time. The information of the first and second derivatives

TABLE III. List of gate sequences used in the numerical ex-
periments. The operation order is from left to right. G0, G1, G2
correspond to G true

0 , G true
1 , G true

2 , respectively.

ID Gate sequence ID Gate sequence ID Gate Sequence

1 G0 · G0 16 G0 · G2 · G0 31 G2 · G1 · G0
2 G0 · G1 17 G0 · G2 · G1 32 G2 · G1 · G1
3 G0 · G2 18 G0 · G2 · G2 33 G2 · G1 · G2
4 G1 · G0 19 G1 · G0 · G0 34 G2 · G2 · G0
5 G1 · G1 20 G1 · G0 · G1 35 G2 · G2 · G1
6 G1 · G2 21 G1 · G0 · G2 36 G2 · G2 · G2
7 G2 · G0 22 G1 · G1 · G0 37 G1 · G1 · G0 · G0
8 G2 · G1 23 G1 · G1 · G1 38 G1 · G1 · G0 · G1
9 G2 · G2 24 G1 · G1 · G2 39 G1 · G1 · G0 · G2
10 G0 · G0 · G0 25 G1 · G2 · G0 40 G1 · G1 · G1 · G0
11 G0 · G0 · G1 26 G1 · G2 · G1 41 G1 · G1 · G1 · G1
12 G0 · G0 · G2 27 G1 · G2 · G2 42 G1 · G1 · G1 · G2
13 G0 · G1 · G0 28 G2 · G0 · G0 43 G1 · G1 · G2 · G0
14 G0 · G1 · G1 29 G2 · G0 · G1 44 G1 · G1 · G2 · G1
15 G0 · G1 · G2 30 G2 · G0 · G2 45 G1 · G1 · G2 · G2

of the objective function and constraints are optionally ac-
ceptable with an interface of IPOPT. Such optional information
is helpful for making the computation time even shorter. We
provided them to the interface with optional parameters. At
the interface, we can specify our degree of tolerance of accept-
able violation of the constraints δ. The tolerance parameter
of δ = 0 means that we do not accept any violation of the
constraints, and ideally δ = 0 would be desired. However,
we chose δ = 10−4 for the numerical simulations reported in
this paper because computational time for the optimization
becomes longer as we set smaller δ. We observed unphysical
estimates sometimes in the simulations and confirmed that all
violations are controlled to be below δ.

We explain our numerical treatment of the physicality
constraints on quantum operations. We chose the parametriza-
tion of quantum operations by real numbers explained in
Appendix A. As explained there [Eqs. (A1), (A3), (A5), (A7)],
the physicality constraints on quantum operations are cate-
gorized into two types: Equality constraints and inequality
constraints. The equality constraints have been taken into
account by the parametrization itself automatically. All of
the inequality constraints are represented in the form of the
positive semidefiniteness of an Hermitian matrix such as ρ �
0, �x � 0, and CJ(G j ) � 0. The positive semidefiniteness
of an Hermitian matrix is rewritten as a set of polynomial
inequalities [67,68]. We provided the information of the poly-
nomial inequalities for quantum operations with their first and
second derivatives to the interface of IPOPT. The parametriza-
tion of a gate is based on the HS matrix, and we derived
and used the following equality to represent the inequality
constraint on the gate with respect to the HS matrix

CJ(G) =
d2−1∑
α,β=0

HS(G)αβBα ⊗ Bβ, (H8)

where B = {Bα}d2−1
α=0 is the matrix basis introduced in

Appendix A, and Bβ is the complex conjugate of the matrix
Bβ .
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Proof [Eq. (H8)]. Matrix elements of the HS matrix of a
linear map G with respect to the basis B is given as

HS(G)αβ = Tr[B†
α G(Bβ )], (H9)

for α, β = 0, . . . , d2 − 1. The action of the map is repre-
sented with the CJ matrix as

G(ρ) = Tr2[(I1 ⊗ ρT )CJ(G)]. (H10)

Then

HS(G)αβ = Tr1,2[(Bα ⊗ Bβ )†CJ(G)]. (H11)

�
Note that the proof holds for any orthonormal matrix basis

B, which is not necessarily Hermitian or B0 = I/
√

d . There-
fore, Eq. (H8) holds not only for the (generalized) Pauli basis,
but also for the other orthonormal basis including the compu-
tational basis.
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