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Quantum state exchange is a quantum communication task for two users in which the users faithfully exchange
their respective parts of an initial state under the asymptotic scenario. In this work, we generalize the quantum
state exchange task to a quantum communication task for M users in which the users circularly transfer their
respective parts of an initial state. We assume that every pair of users may share entanglement resources, and
they use local operations and classical communication in order to perform the task. We call this generalized task
the (asymptotic) quantum state rotation. First of all, we formally define the quantum state rotation task and its
optimal entanglement cost, which means the least amount of total entanglement required to carry out the task. We
then present lower and upper bounds on the optimal entanglement cost, and provide conditions for zero optimal
entanglement cost. Based on these results, we find out a difference between the quantum state rotation task for
three or more users and the quantum state exchange task.
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I. INTRODUCTION

In quantum information theory, some quantum commu-
nication tasks [1–8], such as quantum teleportation [1] and
quantum state merging [2,3], commonly deal with a two-user
setting in which a quantum state is transmitted from one user
to the other. In these quantum communication tasks, the users
are determined as either a sender or a receiver, as depicted in
Fig. 1(a), and it is assumed that the users are in each other’s
laboratories far apart. So, in order to successfully perform the
tasks, it is required to consume nonlocal resources, such as
ebits and bit channels.

One of the research topics related to quantum communica-
tion tasks is to find out the minimal amounts of the nonlocal
resources consumed during the tasks. Such research is con-
sidered to be important in quantum information theory, since
the minimal amounts can often be represented as entropic
quantities, such as the von Neumann entropy and the quantum
conditional entropy [9], and hence provides a way to interpret
these quantities from an operational viewpoint. For example,
the quantum conditional entropy H (A|B) of a quantum state
ρAB can be operationally interpreted as the minimal amount
of entanglement needed in the quantum state merging [2,3]
in which Alice and Bob share parts A and B of the quantum
state ρAB, respectively, and Alice’s part A is merged to Bob
via entanglement-assisted local operations and classical com-
munication (LOCC). Note that, in the quantum state merging
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task, Bob does not transmit his part B to Alice, but he can use
it as quantum side information.

Quantum state exchange (QSE) [10–12], on the other hand,
is a more complex quantum communication task in which two
users share parts A and B of a quantum state ρAB, and they
exchange their respective parts with each other by means of
entanglement-assisted LOCC. Thus, the users of the QSE task
do not take one of the roles of a sender and a receiver, but
both, as depicted in Fig. 1(b). The main concern of the QSE
is to figure out the minimal amount of entanglement between
the users under the assumption that classical communication
is free. The authors of the original QSE task [10] named
the minimal amount of entanglement “uncommon informa-
tion.” Unlike other quantum communication tasks [1–8], an
exact value of the uncommon information is unknown to
date.

In this work, we introduce a quantum communication task
involving three or more users, which is similar to the ro-
tation in volleyball. In a volleyball game, players rotate on
the court when their team makes a serve. Similarly to this
rotation, one may think of users of the task and their quantum
states as locations of the court and the players, respectively.
More specifically, M users of the task transmit their respective
quantum states from the ith user to the (i + 1)th user via
entanglement-assisted LOCC, while keeping entanglement
with an environment system. We call this task quantum state
rotation (QSR). We provide a simple illustration of the QSR
task for three users in Fig. 2(a). Note that the QSR task for
two users, i.e., M = 2, is nothing but the QSE task described
in Fig. 1(b), since the first user transmits his/her quantum
state to the 2nd user, and the first user also receives the second
user’s quantum state. So the QSR task can be regarded as one
possible generalization of the QSE task.
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(a)

Sender or Receiver Sender or Receiver

(b)

Sender Receiver

FIG. 1. In these illustrations, quantum states are represented as
polygons, and the users transmit their quantum states in the directions
of arrows. (a) Illustration of transmitting a quantum state from a
sender to a receiver. (b) Illustration of exchanging two quantum states
of two users: In this case, each user is not only a sender but also a
receiver.

Intuitively, the QSR task for three or more users may be
achievable by sequentially performing the QSE tasks for sev-
eral pairs of the users. For example, as depicted in Fig. 2(b),
two QSE tasks among three users can carry out the QSR
task for three users. So one may think it is not necessary to
conduct a study on the QSR task. However, from the per-
spective of entanglement resources, it is unclear whether the
combination of QSE tasks gives the minimal amount of total
entanglement needed in the QSR task, since the uncommon
information of the QSE task is unknown. Moreover, the QSR
for three or more users might exhibit intrinsic properties of
multipartite entanglement, which cannot be understood only
by a straightforward generalization of the analysis of the QSE
for two users. On this account, the main parts of our work
focus on analyzing the minimal amount of total entanglement
consumed among the M users for achieving the QSR task.

This paper is organized as follows. In Sec. II, we provide
formal descriptions of the QSR task, the achievable total en-
tanglement rate, and the optimal entanglement cost. In Secs.
III and IV, we present lower and upper bounds, respectively,
on the optimal entanglement cost of the QSR task. In Sec. V,
we present conditions obtained by zero optimal entanglement
costs and zero achievable total entanglement rates. Based on
these results, in Sec. VI, we show that a property of the QSE
task does not hold in the QSR task for three or more users.
In Sec. VII, we consider two settings of the QSR tasks and
investigate what the users should do to reduce the optimal
entanglement cost in each setting. In the first setting, some
users do not have to participate in the QSR task. In the second,
some users can cooperate to achieve the task by performing
global operations over the users. In Sec. VIII, we summarize
and discuss our results.

II. DEFINITIONS

In this section, we explain notations used throughout this
paper, and we describe formal definitions of the QSR task and
its optimal entanglement cost.

FIG. 2. In each illustration, quantum states are represented as
polygons; users transmit their quantum states in the directions of
arrows. (a) Concept of the quantum state rotation task for three users:
The users are not only a sender but also a receiver. (b) Performing the
quantum state rotation task for three users with a combination of the
quantum state exchange tasks: The first user and the second user first
exchange their quantum states, and then the first user and the third
user perform the quantum state exchange task again. Consequently,
these two quantum state exchange tasks carry out the quantum state
rotation task for three users.
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A. Notations: Systems, states, channels, and entropies

We assume that all Hilbert spaces H in this paper are finite
dimensional, and let dX denote the dimension of the Hilbert
space HX representing a quantum system X . A composite
quantum system of two quantum systems X and Y is described
by the tensor product HX ⊗ HY of the Hilbert spaces HX

and HY . For the sake of convenience, the composite quantum
system is denoted by X ⊗ Y or XY , and dX is called the
dimension of the quantum system X .

Let D(H) be the set of density operators on a Hilbert space
H, i.e., D(H) = {ρ ∈ L(H) : ρ � 0, Tr ρ = 1}, where L(H)
is the set of linear operators on H. For a Hilbert space HX

representing a quantum system X , we use notations D(X ) and
L(X ) instead of D(HX ) and L(HX ), respectively, in order to
emphasize the quantum system X . The elements of the set
D(H) are called quantum states. If a quantum state ρ is a
rank-1 projector, i.e., it is represented as

ψ := |ψ〉〈ψ |, (1)

where |ψ〉 is a normalized vector on the Hilbert space H,
the quantum state is said to be pure. For pure quantum states
|φ〉〈φ|, we also call the unit vector |φ〉 a pure quantum state.

For quantum systems X and Y , a map N : L(X ) → L(Y )
is called a quantum channel if it is linear, completely positive,
and trace preserving [9]. As a special case of quantum chan-
nels, idL(X ) is the identity map on L(X ). When L(X ) = L(Y ),
idL(X )→L(Y ) means the identity map from L(X ) to L(Y ). For
reference, 1X is the identity matrix on the quantum system X .

The von Neumann entropy H (ρ) of a (pure) quantum state
ρ on a quantum system X is defined as H (ρ) = H (X )ρ =
− Tr ρ log ρ. For a (pure) quantum state σ on a bipartite
quantum system XY , the von Neumann entropy H (X )σ of σ

on the subsystem X is calculated as H (X )σ = H (TrY σ ). Then
the quantum conditional entropy H (X |Y )σ and the quantum
mutual information I (X ;Y )σ of the bipartite quantum state σ

are given by

H (X |Y )σ = H (XY )σ − H (Y )σ , (2)

I (X ;Y )σ = H (X )σ + H (Y )σ − H (XY )σ . (3)

Finally, the number of users of the QSR task is denoted by
a natural number M � 2. If the ith user has a quantum system
Xi for each i in the set [M] = {1, 2, . . . , M}, then the addition
of two indices is defined modulo M, with offset 1.

B. Formal description of quantum state rotation

Before describing definitions of the QSR task, we briefly
explain a conception of the QSR task. The QSR is a quantum
communication task for M users. The users initially share an
M-partite quantum state, and circularly transfer their respec-
tive quantum states from the ith user to the (i + 1)th user via
entanglement-assisted LOCC.

To be specific, let |ψ〉AE be the initial state of the QSR
task, where A is an M-partite quantum system with A =
A1A2 · · · AM , and E is the environment system. Assume that
the ith user holds a quantum subsystem Ai of A, so that the ith
user has the ith part of the initial state |ψ〉AE . Let us now con-
sider an M-partite quantum system A′ with A′ = A′

1A′
2 · · · A′

M
and HA′

i
= HAi , and assume that the ith user holds a quantum

FIG. 3. Illustration of the quantum state rotation task for four
users: Circles indicate quantum systems for the task, and correlations
among the quantum systems are represented by lines connecting
them. In this task, four users want to transform an initial state
|ψ〉A1A2A3A4E into a final state |ψf〉A′

1A′
2A′

3A′
4E . To carry out this task,

they apply LOCC R to the initial state ψ and input entanglement
resources �̃, while they cannot apply any operations on the envi-
ronment system E . After the task, the ith user’s quantum state is
transmitted to the (i + 1)th user’s quantum system A′

i, and they can
gain output entanglement resources �̃ from the task. The allocation
of entanglement resources, such as �̃ and �̃, is called the complete
entanglement allocation.

subsystem A′
i−1 of A′. Then the final state |ψf〉A′E of the QSR

task is defined by using |ψ〉AE as follows:

ψf =
(

M⊗
i=1

idL(Ai )→L(A′
i ) ⊗ idL(E )

)
(ψ ), (4)

which means that the ith user’s quantum state on the quantum
system Ai is transferred to the (i + 1)th user’s quantum system
A′

i. The initial state and the final state for four users, i.e., M =
4, are presented in Fig. 3.

In the QSR task, the users make use of LOCC assisted by
shared entanglement, in order to transform the initial state
|ψ〉AE into the final state |ψf〉A′E . In this work, we assume
that every two of the M users of the QSR task may share an
entanglement resource of varying dimensions. More specif-
ically, for each i �= j, the ith user and the jth user have
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additional quantum systems Bi, j and Bj,i, respectively, whose
dimensions are the same, and the two users share a bipartite
maximally entangled state |�i, j〉 on the quantum systems
Bi, jB j,i given by

|�i, j〉 = 1√
dBi, j

dBi, j −1∑
k=0

|k〉Bi, j
⊗ |k〉Bj,i

. (5)

As in other quantum communication tasks [2–8,10–12], the
users of the QSR task may gain extra entanglement resources
from the QSR task. To describe these entanglement resources,
we also assume that, for each i �= j, the ith user and the jth
user have quantum systems Ci, j and Cj,i, respectively, with
dCi, j = dCj,i , and they share a bipartite maximally entangled
state |�i, j〉 on the quantum systems Ci, jCj,i as an entangle-
ment resource after the QSR task, i.e.,

|�i, j〉 = 1√
dCi, j

dCi, j −1∑
k=0

|k〉Ci, j
⊗ |k〉Cj,i

. (6)

Let �̃ and �̃ be global quantum states representing all
entanglement resources shared among the M users before and
after the QSR task, respectively, which are defined as

�̃ = ⊗
i, j ∈ [M]

i < j

�i, j and �̃= ⊗
i, j ∈ [M]

i < j

�i, j . (7)

The shapes of entanglement resources �̃ and �̃ correspond to
a complete graph, if we regard the M users and their entangle-
ment resources as vertices and edges of a graph, respectively.
In this work, we call such a resource allocation of entangled
states the complete entanglement allocation, and the complete
entanglement allocation for four users is described in Fig. 3.

In the QSR task, a quantum channel

R : L
(

M⊗
i=1

AiBi

)
−→ L

(
M⊗

i=1
A′

iCi

)
(8)

is called the QSR protocol of the initial state |ψ〉AE with error
ε, if it is performed by LOCC among the M users and satisfies

‖(R ⊗ idL(E ) )(ψ ⊗ �̃ ) − ψf ⊗ �̃‖1 � ε, (9)

where quantum systems Bi and Ci are defined by

Bi = ⊗
j∈[M]\{i}

Bi, j and Ci = ⊗
j∈[M]\{i}

Ci, j, (10)

and ‖ · ‖1 is the trace norm [9].

C. Optimal entanglement cost of quantum state rotation

To investigate asymptotic limits for the total amount of
entanglement, we consider a sequence {Rn}n∈N of QSR pro-
tocols Rn of ψ⊗n with error εn, where ψ⊗n indicates the n
copies of the initial state ψ . We call the case dealing with
sequences of QSR protocols an asymptotic scenario.

According to the number of the initial state and the users’
strategies in the asymptotic scenario, the total amount of en-
tanglement consumed or gained among the users can differ.
To reflect this, it is assumed that, for each n, the ith user and
the jth user have additional quantum systems B(n)

i, j C
(n)
i, j and

B(n)
j,i C

(n)
j,i , respectively, where dB(n)

i, j
= dB(n)

j,i
and dC(n)

i, j
= dC(n)

j,i
, and

the two users share bipartite maximally entangled states |� (n)
i, j 〉

and |�(n)
i, j 〉 on the quantum systems B(n)

i, j B(n)
j,i and C(n)

i, j C(n)
j,i , re-

spectively. In this case, for each n, the complete entanglement
allocations before and after the QSR protocol Rn of ψ⊗n with
error εn are represented as �̃n and �̃n, respectively.

For the initial state ψ and the sequence {Rn}, we define the
segment entanglement rate ei, j (ψ, {Rn}) between the ith user
and the jth user as

ei, j (ψ, {Rn}) = lim
n→∞

1

n

(
log dB(n)

i, j
− log dC(n)

i, j

)
, (11)

where i �= j, and logarithms are taken to base 2 through-
out this paper. For convenience, we define ei,i(ψ, {Rn}) as
zero for each i. Note that e j,i(ψ, {Rn}) = ei, j (ψ, {Rn}) holds
for each i, j. If the segment entanglement rate ei, j (ψ, {Rn})
converges for each i �= j, then we can define the total entan-
glement rate etot (ψ, {Rn}) as

etot (ψ, {Rn}) =
∑

i, j ∈ [M]
i < j

ei, j (ψ, {Rn}). (12)

A real number r is said to be an (asymptotically) achievable
total entanglement rate, if there is a sequence {Rn}n∈N of
QSR protocols Rn of ψ⊗n with error εn such that (i) for
any i, j, ei, j (ψ, {Rn}) converges; (ii) etot (ψ, {Rn}) = r; and
(iii) limn→∞ εn = 0. The optimal entanglement cost (OEC)
eopt (ψ ) of the QSR task for ψ is defined as the infimum of
the achievable total entanglement rates.

Remark 1. In the QSR task, the users obtain the final state
ψf and the output entanglement resources �̃ by applying the
QSR protocol to the initial state ψ and the input entanglement
resources �̃. Note that the QSR protocol is LOCC, and the
initial state ψ and the final state ψf have the same amount
of entanglement, since ψf is defined by using ψ and identity
maps. So, it is obvious that the total amount of entanglement
among the users does not increase on average via the QSR
protocol. As a measure that fulfills this condition, we use
the total entanglement rate etot in this work. The total entan-
glement rate etot measures the total amount of entanglement
between pairs of the users. In addition, we will see the non-
negativity of the total entanglement rate in Remark 4. On this
account, the total entanglement rate is a valid measure for
analyzing the total amount of entanglement required for the
QSR task.

For example, let us consider a simple initial state

|φ1〉A = |ϕ1〉A1A2
⊗ |ϕ2〉A3

, (13)

where E is regarded as a one-dimensional system, |ϕ1〉 is any
two-qubit entangled state, and |ϕ2〉 is any quantum state. We
provide illustrations of the initial state φ1 and its final state in
Fig. 4. For the initial state φ1, we can calculate the segment
entanglement rates ei, j and the total entanglement rate etot

through the following strategy.
(i) In order to rotate φ1, the second user locally prepares

a two-qubit state |ϕ1〉, which is not the original state |ϕ1〉 on
the quantum systems A1A2, and asymptotically transfers one
qubit of the new state to the third user by using Schumacher
compression [9,16] and the quantum teleportation [1]. From
this, the second user and the third user can share the state
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FIG. 4. Initial state φ1 in Eq. (13), its final state, and input and
output entanglement resources: Circles indicate quantum systems,
and correlations among the quantum systems are represented by
lines connecting them. In order to rotate φ1, the second user locally
prepares the two-qubit entangled state ϕ1, and transfers one qubit of
ϕ1 to the third user, so they can share ϕ1 on quantum systems A′

1A′
2.

For this, the amount of entanglement consumed by them is H (A1)ϕ1 .
Then the first user and the second user asymptotically generate the
same amount of entanglement by applying entanglement distillation
[13–15] to ϕ1 on quantum systems A1A2. Finally, the first user locally
prepares the pure quantum state ϕ2 on the system A′

3. In an illustration
for input (output) entanglement resources, two circles connected by
a line indicate consumed (gained) entanglement whose amount is
H (A1)ϕ1 .

|ϕ1〉 on the systems A′
1A′

2, and the amount of entanglement
consumed by them is H (A1)ϕ1 .

(ii) Since the quantum state |ϕ1〉 is already distributed to
the second user and the third user, the original state |ϕ1〉 of
the first user and the second user is now superfluous, but it
can be transformed into an output entanglement resource of
the QSR task. In other words, the first user and the second
user asymptotically generate H (A1)ϕ1 amount of entangle-
ment by applying entanglement distillation [13–15] to their
state |ϕ1〉A1A2

.
(iii) Finally, the first user locally prepares the pure quan-

tum state |ϕ2〉. This preparation neither requires nor generates
any entanglement resources. To be specific, this strategy can

be represented as a sequence {Rn} of QSR protocols of φ1

whose segment entanglement rates are

e1,2(φ1, {Rn}) = −H (A1)ϕ1 , (14)

e2,3(φ1, {Rn}) = H (A1)ϕ1 , (15)

e3,1(φ1, {Rn}) = 0, (16)

and so the total entanglement rate is zero, i.e., etot (φ1, {Rn}) =
0. The positive (negative) segment entanglement rate is de-
scribed in Fig. 4.

III. LOWER BOUND

In this section, we present a lower bound on the OEC of
the QSR task. For a nonempty proper subset P of the set [M]
and the initial state |ψ〉AE with A = A1A2 · · · AM , we consider
a quantity lP(ψ ) defined as

lP(ψ ) = max
U

{
H

(⊗
i∈P

Ai−1V

)
U |ψ〉

− H

(⊗
i∈P

AiV

)
U |ψ〉

}
,

(17)

where the maximum is taken over all isometries U from E to
V ⊗ W [9], V and W are any quantum systems, and U |ψ〉 is
an abbreviation for 1A ⊗ U |ψ〉. Note that, for any partition
{P, Pc} of the set [M], lP(ψ ) = lPc (ψ ) holds. The quantity
lP(ψ ) is a lower bound on the sum of the segment entangle-
ment rate as follows:

Lemma 2. For the initial state |ψ〉AE and the partition
{P, Pc} of the set [M], the following inequality holds:∑

i∈P

∑
j∈Pc

ei, j (ψ, {Rn}) � lP(ψ ), (18)

where the segment entanglement rate ei, j is defined in
Eq. (11), and {Rn}n∈N is a sequence of QSR protocols Rn of
ψ⊗n with error εn whose total entanglement rate is achievable.

A detailed description of the quantity lP(ψ ) and the proof
of Lemma 2 are presented in Appendix A. By using Lemma 2,
we obtain the following theorem providing a lower bound on
any achievable total entanglement rate of the QSR task.

Theorem 3. Let |ψ〉AE be the initial state of the QSR task
with A = A1A2 · · · AM . Any achievable total entanglement rate
r of the QSR task is lower bounded by

r � lk (ψ ) := 1

2
(M−2

k−1

) ∑
P∈Sk

lP(ψ ), (19)

where 1 � k < M, Sk is the set of subsets P of [M] whose
sizes are k, i.e., |P| = k, and lP(ψ ) is given in Eq. (17).

We refer the reader to Appendix B for the proof of Theo-
rem 3. Theorem 3 implies that the OEC eopt (ψ ) of the initial
state ψ is lower bounded by

eopt (ψ ) � l (ψ ) := max
1�k�� M

2 �
lk (ψ ), (20)

where �x� denotes the floor function defined as max{m ∈ Z :
m � x}.
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Remark 4. The lower bounds li(ψ ) are non-negative,
since, for each i,

∑
P∈Si

lP(ψ ) �
∑
P∈Si

[
H

(⊗
j∈P

Aj−1

)
ψ

− H

(⊗
j∈P

Aj

)
ψ

]
(21)

=
∑
P∈Si

H

(⊗
j∈P

Aj

)
ψ

−
∑
P∈Si

H

(⊗
j∈P

Aj

)
ψ

= 0.

(22)

Thus, the OEC cannot be negative, i.e., eopt (ψ ) � 0. This
means that the total amount of entanglement gained from
the QSR task cannot exceed that of entanglement resources
consumed in the task.

In this work, while we analyze the OEC as a figure of
merit, the case of zero OECs, eopt = 0, does not necessarily
mean that the related segment entanglement rates are zero,
i.e., ei, j = 0 for each i �= j, as shown in Eqs. (14) and (15).
In general, entanglement resources for the QSR task may be
consumed by some pair of users while distilled by another
pair, as in the example of Remark 1.

Remark 5. One of our contributions is to generalize results
of the QSE task [10] to the general cases including more than
two users. To be specific, Remark 4 implies the non-negativity
of the OEC for the QSE task. For M = 2, the lower bound
l (ψ ) in Eq. (20) becomes

l (ψ ) = max
U

{H (A1V )U |ψ〉 − H (A2V )U |ψ〉} (23)

= max
N

{H (A1V )N (ψ ) − H (A2V )N (ψ )}, (24)

where V is any quantum system, N is any quantum channel
from L(E ) to L(V ), and N (ψ ) is an abbreviation for (1L(A) ⊗
N )(ψ ). The first equality comes from l{1}(ψ ) = l{2}(ψ ). The
second equality holds, since there is a one-to-one correspon-
dence between isometries U and quantum channels N . That
is, any isometry U : E → V ⊗ W combined with the partial
trace over the quantum system W becomes a quantum channel
N : E → V , and for any quantum channel N , we can find its
isometric extension U [9]. The above quantity is the lower
bound on the OEC for the QSE task presented in Ref. [10].

IV. ACHIEVABLE UPPER BOUND

In this section, we present an achievable upper bound on
the OEC of the QSR task by considering a specific strategy.

The QSR task can be carried out by using an M-partite
merge-and-send strategy. We can obtain this strategy by
generalizing the merge-and-send strategy presented in
Ref. [10]. The idea of the M-partite merge-and-send strategy
is as follows:

(i) The first user and the second user of the QSR task
merge the part A1 to the second user by using quantum state
merging [2,3]. In this case, the part A2 of the second user acts
as the quantum side information. After finishing merging A1,
the second user considers his or her part A1 as a part of the
environment system. Then the second user and the third user
can make use of the quantum state merging protocol again,
in order to merge A2. In this way, the part Ai is sequentially
merged from the ith user to the (i + 1)th user except for the
last part AM .

(ii) Finally, the last user and the first user perform
Schumacher compression [9,16] together with quantum tele-
portation [1] in order to transfer the part AM to the first
user. Through this strategy, the M users can rotate any initial
state of the QSR task. Note that instead of using quantum
state merging [2,3], the M users can apply quantum state
redistribution [6,7] with quantum teleportation [1] in order to
perform the QSR task. In this case, the total amount of entan-
glement is identical to that of the M-partite merge-and-send
strategy, while the amounts of classical communication can be
different.

When the users adopt the above M-partite merge-and-send
strategy, for each i ∈ [M − 1], the entanglement cost of merg-
ing Ai is represented as H (Ai|Ai+1)ψ , and the entanglement
cost for transferring AM is H (AM )ψ . In other words, these
entanglement costs can be represented in terms of the segment
entanglement rates as follows.

Lemma 6. For any initial state |ψ〉AE of the QSR task with
A = A1A2 · · · AM , there is a sequence {Rn}n∈N of QSR proto-
cols Rn of ψ⊗n with error εn such that limn→∞ εn = 0,

ei, j (ψ, {Rn})=

⎧⎪⎨
⎪⎩

H (Ai|Ai+1)ψ if i ∈ [M−1] and j = i + 1

H (AM )ψ if i = M and j = 1

0 otherwise,

(25)

etot (ψ, {Rn}) = H (AM )ψ +
M−1∑
i=1

H (Ai|Ai+1)ψ. (26)

In order to prove Lemma 6, we apply a technique presented
in Ref. [11], which is used to show the existence of the
merge-and-merge protocol therein, and we refer the reader to
Appendix C for the proof of Lemma 6.

By using Lemma 6, we obtain the following theorem,
which provides an achievable upper bound on the OEC of the
QSR task.

Theorem 7. Let |ψ〉AE be the initial state for the QSR task
with A = A1A2 · · · AM . The OEC eopt (ψ ) is upper bounded by

u(ψ ) :=
M∑

i=1

H (Ai|Ai+1)ψ + min
1�i�M

I (Ai; Ai+1)ψ. (27)

Proof. For each i ∈ [M], we consider an M-partite merge-
and-send strategy in which the part Ai is first merged from
the ith user to the (i + 1)th user and the part Ai−1 is last sent
from the (i − 1)th user to the ith user. From Lemma 6, the
achievable total entanglement rate ui(ψ ) for this strategy is
given by

ui(ψ ) = H (Ai−1)ψ +
∑

j∈[M]\{i−1}
H (Aj |Aj+1)ψ (28)

= I (Ai; Ai−1)ψ +
∑
j∈[M]

H (Aj |Aj+1)ψ. (29)

It follows that eopt (ψ ) � min1�i�M ui(ψ ), from optimizing
the choice of the first user starting the merge-and-send
strategy. �

Remark 8. By using the lower bound in Eq. (20) and The-
orem 7, we can exactly evaluate the OECs for some initial

062613-6



QUANTUM STATE ROTATION: CIRCULARLY … PHYSICAL REVIEW A 103, 062613 (2021)

states. For example, let us consider an initial state

|φ2〉AE =
M⊗

i=1
|ϕi〉AiEi

, (30)

where E = E1E2 · · · EM , and |ϕi〉 is any pure bipartite entan-
gled state on the quantum systems AiEi. Then, from the lower
bound in Eq. (20), the OEC eopt (φ2) is lower bounded by

l1(φ2) = 1

2

M∑
i=1

max
U

{H (Ai−1V )U |φ2〉 − H (AiV )U |φ2〉}, (31)

where l1 is defined in Theorem 3, and U |φ2〉 is an abbreviation
for 1A ⊗ U |φ2〉. So, eopt (φ2) is lower bounded by

eopt (φ2) � 1

2

M∑
i=1

[H (Ai−1Ei )φ2 − H (AiEi )φ2 ] =
M∑

i=1

H (Ai )ϕi ,

(32)

if we consider isometries Ui : E → Ei ⊗ (E \ Ei ) with i ∈
[M] such that TrE\Ei Uiφ2U

†
i = TrE\Ei φ2, where E \ Ei =

E1 · · · Ei−1Ei+1 · · · EM . Moreover, from Theorem 7, we have

eopt (φ2) � u(φ2) =
M∑

i=1

H (Ai )ϕi . (33)

Hence, eopt (φ2) = ∑M
i=1 H (Ai )ϕi .

Remark 9. In general, the M-partite merge-and-send strat-
egy is not necessarily the optimal strategy, although we have
used it in order to find the OEC for the specific initial state
in Remark 8. As a counterexample of the optimality, let us
consider an initial state

|φ3〉A = |ϕ1〉A1A3
⊗ |ϕ2〉A2

⊗ |ϕ3〉A4
, (34)

where |ϕ1〉 is any pure two-qubit entangled state, and |ϕ2〉 and
|ϕ3〉 are any pure quantum states. Here, E is regarded as a
one-dimensional system. If we apply the M-partite merge-
and-send strategy to the initial state |φ3〉A, then we obtain
u(φ3) = 2H (A1)ϕ1 from Theorem 7.

However, using the strategy presented in Remark 1, we
obtain an achievable upper bound smaller than u(φ3). To
be specific, the second user locally prepares the two-qubit
entangled state ϕ1, and transfers one qubit of the state to
the fourth user by consuming as much entanglement as
H (A1)ϕ1 . The first user and the third user then generate the
same amount of entanglement by distilling their state ϕ1

on the quantum systems A1A3. Finally, the first user and
the third user locally prepare pure states ϕ3 and ϕ2, re-
spectively, without consuming and gaining any entanglement
resource. This strategy can be represented as a sequence
{Rn} of QSR protocols of φ3 whose segment entanglement
rates are zero except for e1,3(φ3, {Rn}) = −H (A1)ϕ1 and
e2,4(φ3, {Rn}) = H (A1)ϕ1 , and etot (φ3, {Rn}) = 0. It follows
that etot (φ3, {Rn}) < u(φ3), since ϕ1 is entangled. This shows
that the M-partite merge-and-send strategy is not optimal in
general. In addition, the non-negativity of the OEC implies
eopt (φ3) = 0 in this case.

Remark 10. Throughout this paper, we have been assum-
ing that the users of the QSR task make use of the complete
entanglement allocation. However, one may think that it suf-
fices to consider bipartite entanglement resources between the

FIG. 5. Illustrations of the complete entanglement allocation and
the cycle entanglement allocation for four users: An entanglement
resource between two users is represented as two circles connected
by a line. Under the complete entanglement allocation, every pair of
four users can freely consume and generate entanglement resource.
However, under the cycle entanglement allocation, only the ith user
and the (i + 1)th user can manipulate entanglement resources, and
the ith user and the (i + 2)th user are not allowed to deal with any
entanglement resources.

ith user and the (i + 1)th user for each i, since the ith user
transfers his or her quantum state to the (i + 1)th user in
the M-partite merge-and-send strategy. Here, we call such an
allocation of entanglement resources the cycle entanglement
allocation, and we provide illustrations explaining how four
users share entanglement resources according to the complete
entanglement allocation and the cycle entanglement allocation
in Fig. 5.

The initial state φ3 in Eq. (34) shows that, under the com-
plete entanglement allocation setting, the users can reduce the
total amount of entanglement for the QSR task compared to
the case that the users use the cycle entanglement allocation
for rotating the same initial state.

To see this reduction, we evaluate a lower bound on the
OEC for rotating φ3, when the users use the cycle entangle-
ment allocation. This means that the first (second) user and the
third (fourth) user cannot employ any entanglement resource
between them, as depicted in Fig. 5. Let {Cn}n∈N be a sequence
of such protocols Cn rotating φ⊗n

3 with error εn, where the
users of each protocol use the cycle entanglement allocation.
While there is no need to consider the segment entanglement
rates e1,3(φ3, {Cn}) and e2,4(φ3, {Cn}) in this case, we assume
that e1,3(φ3, {Cn}) = e2,4(φ3, {Cn}) = 0, in order to regard the
protocol Cn as the special case of the QSR protocol. Recall
that the state φ3 has no further environment system E , as
shown in Eq. (34). Then, from Lemma 2, we obtain that the
inequality

ei,i−1(φ3, {Cn}) + ei,i+1(φ3, {Cn}) � l{i}(φ3) (35)

holds for each 1 � i � 4. By using this inequality and the
definition of etot in Eq. (12), we obtain

etot (φ3, {Cn}) � l{1}(φ3) + l{3}(φ3), (36)

etot (φ3, {Cn}) � l{2}(φ3) + l{4}(φ3) = −(l{1}(φ3) + l{3}(φ3)).

(37)
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It follows that

|l{1}(φ3) + l{3}(φ3)| (38)

= |H (A1)φ3 − H (A2)φ3 + H (A3)φ3 − H (A4)φ3 | (39)

= 2H (A1)ϕ1 (40)

is a nonzero lower bound on the OEC of rotating φ3 under
the cycle entanglement allocation. However, in the case of the
complete entanglement allocation, we obtain eopt (φ3) = 0, as
explained in Remark 9.

On this account, the case of the initial state φ3 tells us that
the use of the complete entanglement allocation can give a
smaller total entanglement rate than that of the cycle entangle-
ment allocation. This justifies that we consider the complete
entanglement allocation rather than cyclic entanglement allo-
cation in the definition of the QSR task.

V. CONDITIONS

In this section, we present a sufficient condition on positive
OECs and a necessary condition on zero achievable total
entanglement rates.

A. Condition on positive optimal entanglement cost

We provide a sufficient condition on positive OECs of the
QSR task. When M = 2, the QSR task is nothing but the QSE
task, and we can find out a condition by using results on the
QSE task presented in Refs. [10,12]. That is, if H (A1)ψ �=
H (A2)ψ for the initial state |ψ〉A1A2E , then the OEC of the QSE
task is positive, i.e., eopt (ψ ) > 0. So, one may naturally guess
a generalized sufficient condition with respect to the initial
state |ψ〉AE on A = A1A2 · · · AM as follows: If there exist some
i, j ∈ [M] such that

H (Ai )ψ �= H (Aj )ψ, (41)

then eopt (ψ ) > 0.
However, this guess is not the case. Let us consider the

initial state φ3 in Eq. (34). Then, it is satisfied that H (A1)φ3 >

0 = H (A2)φ3 , but eopt (φ3) = 0 as explained in Remark 9. In-
terestingly, the above condition can be corrected in terms of
quantum conditional entropies.

Theorem 11. Let |ψ〉AE be the initial state for the QSR
task with A = A1A2 · · · AM . If there exist some i, j ∈ [M] such
that

H (E |Ai )ψ �= H (E |Aj )ψ, (42)

then eopt (ψ ) > 0.
The proof of Theorem 11 can be found in Appendix D.
Remark 12. The converse of Theorem 11 does not neces-

sarily hold. Consider the initial state

|φ4〉AE =
M⊗

i=1
|ϕ〉AiEi

, (43)

where E = E1E2 · · · EM and |ϕ〉 is any pure bipartite entan-
gled state. Then we know that the OEC for rotating φ4 is
positive from the lower bound in Eq. (20), but the condition in
Theorem 11 does not hold.

B. Condition on zero achievable total entanglement rate

We now present the following theorem providing a neces-
sary condition on zero achievable total entanglement rates for
the QSR task.

Theorem 13. Let |ψ〉AE be the initial state of the QSR task
with A = A1A2 · · · AM , and let {Rn}n∈N be a sequence of QSR
protocols Rn of ψ⊗n with error εn whose total entanglement
rate r is achievable. If r = 0, then the segment entanglement
rates ei, j (ψ, {Rn}) for i �= j are determined as follows:

(i) If M = 3, ei, j (ψ, {Rn}) = −l{i, j}(ψ ).
(ii) If M = 4,

ei, j (ψ, {Rn}) = 1

2
(l{i}(ψ ) + l{ j}(ψ ) − l{i, j}(ψ )). (44)

(iii) If M > 4, ei, j (ψ, {Rn}) is represented as

1

αM

⎛
⎜⎜⎜⎝βMl{i, j}(ψ ) + γM

∑
s ∈ {i, j}

t ∈ [M] \ {i, j}

l{s,t}(ψ ) − 2
∑

s, t ∈ [M] \ {i, j}
s < t

l{s,t}(ψ )

⎞
⎟⎟⎟⎠, (45)

where l{i} and l{i, j} are defined in Eq. (17), αM = 2(M − 2)(M − 4), βM = 2 − (M − 4)2, and γM = M − 4.

The main idea of the proof for Theorem 13 is to construct
a system of linear equations obtained by regarding segment
entanglement rates as its unknowns and to solve it. We refer
the reader to Appendix E for the proof of Theorem 13.

Remark 14. The meaning of Theorem 13 is that if there
exist two sequences {Rn}n∈N and {R′

n}n∈N of QSR protocols
for the same initial state |ψ〉AE whose achievable total entan-
glement rates are zero, then their segment entanglement rates
are the same, i.e.,

ei, j (ψ, {Rn}) = ei, j (ψ, {R′
n}) (46)

for each i �= j. This implies that, when an achievable total
entanglement rate of the QSR task is zero, for each i �= j, all
possible segment entanglement rates ei, j between the ith user
and the jth user are uniquely determined as the same value,
even though there may not be a unique optimal strategy for
the QSR task.

Remark 15. To evaluate the segment entanglement rates
presented in Theorem 13, we need to evaluate two quantities
l{i}(ψ ) and l{i, j}(ψ ). In general, it is difficult to calculate these
quantities with respect to the initial state |ψ〉AE , since they are
optimized over all isometries U from E to V ⊗ W , where V
and W are any quantum systems. However, for initial states
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|ψ〉A without the environment system E , it is possible to
compute them as follows:

l{i}(ψA) = H (Ai−1)ψA − H (Ai )ψA , (47)

l{i, j}(ψA) = H (Ai−1Aj−1)ψA − H (AiAj )ψA . (48)

We will see that these computable quantities play a crucial
role in proving Proposition 16 in the next section.

VI. DIFFERENCE BETWEEN QUANTUM STATE
ROTATION AND QUANTUM STATE EXCHANGE

In this section, we show that a property of the QSE task
[10] does not hold in the QSR task. This shows the difference
between the QSE task and the QSR task.

In the QSE task, the initial state |ψ〉A1A2
without the

environment system E can be exactly exchanged without
consuming any entanglement resources via local unitary oper-
ations. So, for any initial state |ψ〉A1A2

, there exists a sequence
of QSE protocols for |ψ〉A1A2

whose achievable (total) en-
tanglement rate is zero. Thus, the OEC for the QSE task of
|ψ〉A1A2

is always zero.
How about the QSR task of M users (M � 3)? That is,

for any initial state |ψ〉A with A = A1A2 · · · AM , is there a
sequence of QSR protocols whose achievable total entangle-
ment rate is zero? In the cases of M = 3, 4, 5, we have not
found answers to the above question. However, if M � 6,
we can find some initial states that cannot be rotated at zero
achievable total entanglement rate.

Proposition 16. For each M � 6, there exists an initial
state |ψ〉A of the QSR task whose achievable total entan-
glement rates r cannot be zero, i.e., r > 0, where A =
A1A2 · · · AM .

Before proving Proposition 16, let us consider a three-user
(TU) task different from the QSR task. In the TU task, three
users, Alice, Bob, and Charlie, share two Greenberger-Horne-
Zeilinger (GHZ) states [17], and they transform the GHZ
states into three ebits symmetrically shared among the three
users, where the states are defined as

|GHZ〉 = 1√
2

(|000〉 + |111〉), (49)

|ebit〉 = 1√
2

(|00〉 + |11〉). (50)

It turns out that, by using LOCC, it is impossible to perform
the TU task under the exact and asymptotic scenarios [18,19].

To prove Proposition 16, we further show that, even consid-
ering the catalytic use of entanglement resources among them,
it is impossible to carry out the TU task under the asymptotic
scenario. To be specific, assume that Alice, Bob, and Charlie
of the TU task have quantum systems AiA′

i, BiB′
i, and CiC′

i with
i = 1, 2, respectively. Let |φ〉 and |φf〉 be the initial and final
states of the TU task given by

|φ〉 = |GHZ〉A1B1C1
⊗ |GHZ〉A2B2C2

, (51)

|φf〉 = |ebit〉A′
1B′

2
⊗ |ebit〉B′

1C′
2
⊗ |ebit〉C′

1A′
2
. (52)

FIG. 6. Illustration for the three-user task of Alice, Bob, and
Charlie: Circles indicate quantum systems for the task, and cor-
relations among the quantum systems are represented by lines
connecting them. In this task, the initial state φ and the final state
φf consist of two GHZ states and three ebits, respectively. On the left
side of the illustration, a GHZ state (an ebit) is represented as three
(two) circles connected by lines. The aim of this task is to transform
φ into φf . To perform the task, they apply LOCC T to the initial state
φ and input entanglement resources �̃. After the task, they can gain
output entanglement resources �̃ from the task.

Then a quantum channel

T : L
(

2⊗
i=1

AiBiCi ⊗ D

)
−→ L

(
2⊗

i=1
A′

iB
′
iC

′
i ⊗ F

)
(53)

is called the TU protocol of the initial state φ with error ε, if it
is performed by LOCC among the three users and satisfies
‖T (φ ⊗ �̃ ) − φf ⊗ �̃‖1 � ε, where D and F are multipar-
tite quantum systems with D = D1,2D1,3D2,1D2,3D3,1D3,2 and
F = F1,2F1,3F2,1F2,3F3,1F3,2, and �̃ and �̃ are entanglement
resources on D and F for the complete entanglement alloca-
tion. We present an illustration for the TU task in Fig. 6.

We provide the following lemma whose proof is presented
in Appendix F.

Lemma 17. Let |φ〉 be the initial state of the TU task. Then
there is no sequence {Tn}n∈N of LOCC Tn of φ⊗n with error εn

such that ei, j (φ, {Tn}) = 0 for each i �= j and limn→∞ εn = 0.
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In Lemma 17, the catalytic use of entanglement resources
is described in the following sense: While three users are
free to consume and gain the entanglement resources in each
protocol Tn, the amount of entanglement consumed by every
pair of the users is asymptotically equal to that of entangle-
ment gained between them; i.e., the segment entanglement
rate ei, j (φ, {Tn}) is zero, for each i �= j.

Proof of Proposition 16. As described in Fig. 7(a), we
construct an initial state |φ5〉A of the QSR task on the system
A = A1A2 · · · AM with M � 6 as follows:

|φ5〉A = |GHZ〉A1,1A3,1A5,1
⊗ |GHZ〉A1,2A3,2A5,2

⊗ ⊗
i∈[M]\{1,3,5}

|ϕi〉Ai
, (54)

where Ai = Ai,1Ai,2 for i = 1, 3, 5, and |ϕi〉 is any pure quan-
tum state. The final state corresponding to φ5 is also presented
in Fig. 7(b).

Suppose that there is a sequence {Rn}n∈N of QSR protocols
Rn of φ⊗n

5 whose achievable total entanglement rate is zero.
From Theorem 13, we obtain exact values of the segment
entanglement rates ei, j (φ5, {Rn}) for i �= j as follows:

ei, j (φ5, {Rn}) =
⎧⎨
⎩

1 if i, j ∈ {2, 4, 6}
−1 if i, j ∈ {1, 3, 5}
0 otherwise.

(55)

Illustrations for quantum systems of entanglement resources
giving nonzero segment entanglement rates are provided in
Fig. 8.

The sequence {Rn}n∈N and its segment entanglement rates
ei, j in Eq. (55) imply that it is possible to carry out the TU task
by means of LOCC assisted by the catalytic use of entangle-
ment under the asymptotic scenario. To be specific, recall that
each Rn is LOCC protocol transforming the initial state φ⊗n

5
and the input entanglement resources �̃n into the final state
φ⊗n

f and the output entanglement resources �̃n with error εn,
where φf is the final state of the QSR task corresponding to
the initial state φ5. Note that, in Eq. (55), the zero segment
entanglement rate ei, j means that the ith user and the jth user
catalytically use entanglement resources in the asymptotic
scenario. Thus, the sequence {Rn}n∈N of the QSR protocols
can be considered as a sequence of LOCC protocols assisted
by the catalytic use of entanglement, which asymptotically
transforms an initial state

|η〉 = |GHZ〉A1,1A3,1A5,1
⊗ |GHZ〉A1,2A3,2A5,2

⊗ ⊗
i∈[M]\{1,3,5}

|ϕi〉Ai

⊗|ebit〉B2,4B4,2
⊗ |ebit〉B4,6B6,4

⊗ |ebit〉B6,2B2,6
(56)

into a final state

|ηf〉 = |GHZ〉A′
1,1A′

3,1A′
5,1

⊗ |GHZ〉A′
1,2A′

3,2A′
5,2

⊗ ⊗
i∈[M]\{1,3,5}

|ϕi〉A′
i

⊗|ebit〉C1,3C3,1
⊗ |ebit〉C3,5C5,3

⊗ |ebit〉C5,1C1,5
. (57)

In this case, if the first user has all systems of the others except
for the third user and the fifth user, and the first user play the
roles of the rest except for the third user and the fifth user, then
the first user can locally prepare the three ebits and the pure
quantum states ϕi with i ∈ [M] \ {1, 3, 5} of the initial state
η and the two GHZ states of the final state ηf , and the third
user and the fifth user can locally prepare the pure quantum

FIG. 7. (a) Initial state φ5 in Eq. (54) shared over M users for
M � 6. (b) Final state obtained by rotating the initial state. In each
illustration, circles indicate quantum systems for the quantum state
rotation task, and, for each i � 7, the ith user and his or her quantum
systems are not explicitly illustrated. A GHZ state is represented as
three circles connected by lines.
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FIG. 8. Systems of entanglement resources giving positive or
negative segment entanglement rates: Circles indicate quantum sys-
tems for entanglement resources, and, for each i � 7, the ith user
and his or her quantum systems are not explicitly illustrated. If
we assume that the initial state φ5 in Eq. (54) can be rotated by
a sequence {Rn}n∈N of QSR protocols whose achievable total en-
tanglement rate is zero, then Theorem 13 implies that all segment
entanglement rates have one of three values 1, 0, and −1, as shown
in Eq. (55). In this illustration, consumed (generated) entanglement
resources corresponding to positive (negative) segment entanglement
rates are described as circles connected by straight (dashed) lines.
Entanglement resources for zero segment entanglement rates are not
explicitly illustrated.

states ϕ2 and ϕ4, respectively. It follows that there exists a
sequence of LOCC protocols assisted by the catalytic use
of entanglement, which asymptotically transforms a quantum
state

|GHZ〉A1,1A3,1A5,1
⊗ |GHZ〉A1,2A3,2A5,2

(58)

into a quantum state

|ebit〉C1,3C3,1
⊗ |ebit〉C3,5C5,3

⊗ |ebit〉C5,1C1,5
. (59)

This means that two GHZ states shared by the first user, the
third user, and the fifth user are transformed into the three
ebits symmetrically shared among the three users by means of
LOCC and the catalytic use of entanglement resources under
the asymptotic scenario. However, this contradicts Lemma 17.
Hence, the achievable total entanglement rate r is positive. �

We remark that it is not sufficient to consider initial states
similar to the state φ5 in Eq. (54) in order to prove Proposition
16 with respect to M = 3, 4, 5. For example, consider the

initial state

|φ6〉A = |GHZ〉A1,1A2,1A3,1
⊗ |GHZ〉A1,2A2,2A3,2

⊗ |ϕ〉A4
, (60)

where Ai = Ai,1Ai,2 for i = 1, 2, 3, and |ϕ〉 is any pure quan-
tum state. If there exists a sequence {Rn} of QSR protocols
for φ6 whose achievable total entanglement rate is zero, then
Theorem 13 tells us that its segment entanglement rates are
determined as

e1,2(φ6, {Rn}) = e1,3(φ6, {Rn}) = −1, (61)

e1,4(φ6, {Rn}) = e2,3(φ6, {Rn}) = 0, (62)

e2,4(φ6, {Rn}) = e3,4(φ6, {Rn}) = 1. (63)

To the best of our knowledge, whether such a sequence exists
or not is unknown. On this account, it is hard to prove Propo-
sition 16 for M = 3, 4, 5, as long as we stick to initial states
consisting of the two GHZ states.

VII. EXAMPLES

A. SWAP-invariant initial states

In this section, we see that reduction of the number of users
in the QSR task does not necessarily reduce the OEC of the
task.

The initial state |ψ〉A1A2A3A4E of the QSR task is said to be
SWAP invariant on systems A2 and A3, if it satisfies

(SWAPA2↔A3 )(ψ ) = ψ, (64)

where SWAPX↔Y is a quantum channel swapping quantum
states in quantum systems X and Y . Let us consider the QSR
task of the SWAP-invariant initial state |ψ〉A1A2A3A4E . We pro-
vide illustrations of the SWAP-invariant initial state and its final
state in Figs. 9(a) and 9(b), respectively. From the viewpoint
of the third user, the part A′

2 of the final state ψf is identical to
the part A3 of the initial state ψ . So, it is possible to exclude
the third user to carry out the QSR task of the four users, and
so the third user does nothing, since this task can be done by
the second user directly transmitting his or her quantum state
to the fourth user, as described in Fig. 9(c). In other words,
the original QSR task of the four users can be replaced by the
QSR task of the first user, the second user, and the fourth user
for the same initial state.

Let e(3)
opt (ψ ) and e(4)

opt (ψ ) be the OECs for the QSR tasks
of the initial state |ψ〉A1A2A3A4E performed by the three users
and the four users, respectively. In this case, are two OECs
e(3)

opt (ψ ) and e(4)
opt (ψ ) equal? One may guess that e(3)

opt (ψ ) �
e(4)

opt (ψ ) holds in general, since the part A3 does not need to
be transmitted during the second.

However, this is not the case. Consider the SWAP-invariant
initial state

|φ7〉A1A2A3A4
= |ϕ1〉A1

⊗ |ebit〉A2A3
⊗ |ϕ2〉A4

, (65)

where E is regarded as a one-dimensional system, |ϕ1〉 and
|ϕ2〉 are any pure quantum states, and |ebit〉 is presented in
Eq. (50).

If the first user, the second user, and the fourth user rotate
the initial state φ7 without the third user, then this QSR task
is nothing but Schumacher compression [9,16] in which the
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FIG. 9. In each illustration, circles indicate quantum systems for
the initial and final states, and two blue circles represent symmetric
parts. (a) Initial state |ψ〉A1A2A3A4E of the quantum state rotation task
for four users: The initial state is SWAP invariant on systems A2 and
A3. (b) Final state rotated by all users. (c) Final state rotated by the
first user, the second user, and the fourth user: Here, the quantum
system A3 is considered as a part of the environment.

part A2 is transmitted to the fourth user by consuming ebits
instead of qubit channels. This is because the quantum states
ϕ1 and ϕ2 can be locally prepared by the second user and the
first user, respectively, without consuming and gaining any
entanglement resource. It turns out that the minimal amount
of entanglement required for this Schumacher compression
is H (A2)φ7 , and Theorem 3 implies that H (A2)φ7 is a lower
bound on the OEC of this QSR task of three users. Thus, we
have e(3)

opt (φ7) = H (A2)φ7 .
On the other hand, in the QSR task of four users, the third

user can locally prepare an ebit, and then the third user can
share the ebit with the fourth user by using the Schumacher
compression [9,16] and the quantum teleportation [1]. The
amount of entanglement consumed in this transmission is
H (A2)φ7 . The second user and the third user can gain the same
amount of entanglement by distilling the ebit on the systems
A2 and A3. Lastly, without any entanglement resource, the
first user and the second user locally prepare ϕ2 and ϕ1,
respectively. In this way, the initial state φ7 is rotated, and the

FIG. 10. (a) Initial state and input entanglement resources for
the quantum state rotation task of three users. (b) Initial state and
input entanglement resources when the second user and the third user
cooperate: To cooperate, they gathered in the same laboratory, and
so an entangled state in the systems B2,3 and B3,2 is not considered
a nonlocal resource. In the second illustration, these systems are not
described.

achievable total entanglement rate becomes zero in this case.
The non-negativity of the OEC implies e(4)

opt (φ7) = 0.

Therefore, we obtain that e(3)
opt (φ7) > e(4)

opt (φ7) holds for the
SWAP-invariant initial state φ7. This means that even though
the third user does not have to participate in the QSR task,
helping the remaining users to achieve the task can reduce the
OEC.

B. Quantum state rotation with cooperation

In this section, we answer the following question: If some
of the users are allowed not only LOCC but nonlocal (global)
operations on their shared quantum systems, can they perform
the QSR task at a smaller OEC?

We consider the QSR task of |ψ〉A1A2A3E performed by
three users, as shown in Fig. 10(a), and we modify this QSR
task by assuming that the second user and the third user are
in the same laboratory in order to cooperate, as depicted in
Fig. 10(b). In this case, the second user and the third user
can apply any quantum operations to their quantum states in
the laboratory, but pure maximally entangled states shared by
the second user and the third user are not considered nonlocal
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resources in this modified task, since the entangled states can
be locally prepared in their laboratory. On this account, while
the three users in Fig. 10(b) can make use of any QSR protocol
of |ψ〉A1A2A3E in Fig. 10(a), it is hard to guess the minimal
amount of entanglement consumed by two laboratories in the
modified task.

Under this setting, one may guess that the OEC of the
modified task is less than or equal to that of the original one.
However, the initial state

|φ8〉A1A2A3
= |ϕ1〉A1

⊗ |ϕ2〉A2A3
(66)

shows that such a guess is wrong, where E is regarded as
a one-dimensional system, |ϕ1〉 is any pure quantum state,
and |ϕ2〉 is any pure entangled state. In this case, the initial
state φ8 can be rotated by three users with a zero achievable
total entanglement rate as follows: The pure quantum state
|ϕ1〉 is prepared by the second user, and the first user and
the third user can share the pure quantum state |ϕ2〉 by using
Schumacher compression [9,16] together with the quantum
teleportation [1]. The amount of entanglement consumed in
this transmission is H (A2)φ8 . The second user and the third
user can gain the same amount of entanglement by applying
entanglement distillation [13–15] to ϕ2 on the systems A2A3.
Thus, the OEC is zero when the QSR task is performed with-
out any cooperation.

On the other hand, in the modified task, the first user and
the second (third) user cannot share the quantum state ϕ2

without consuming any entanglement resources between two
laboratories, since ϕ2 is entangled. This means that the OEC
of the modified task is positive. Therefore, from the initial
state φ8, we know that the OEC for the original task without
any cooperation can be less than that of the modified task
in which some of the users cooperate. This is because one
does not take into account gain as well as consumption of
entanglement resources between them when computing the
OEC of the modified task with the cooperation of the second
user and the third user.

VIII. CONCLUSION

In this work, we have introduced the QSR task in which the
M users circularly transfer their respective quantum states via
entanglement-assisted LOCC. We have considered the QSR
as a fundamental quantum communication task for M users
and have investigated the minimal amount of entanglement
consumed among the users under the asymptotic scenario.
For this investigation, we have formally formulated the QSR
protocol, the achievable total entanglement rate, and the OEC.
We have derived lower and upper bounds on the OEC, and
have presented conditions on zero OECs and zero achievable
total entanglement rates.

The QSR task includes the QSE task [10–12] as a special
case, in which two users, Alice and Bob, exchange their
respective quantum states via entanglement-assisted LOCC.
However, the QSR task is not a direct generalization of the
QSE task. That is, we have shown that there is a unique
property of the QSR task not appearing in QSE tasks for two
users: Not all initial states without the environment system

can be rotated without consuming any entanglement, while
such states can be exchanged at zero entanglement cost via
local unitary operations. We have also considered two specific
settings of QSR tasks. In the first setting, some users do not
have to participate in the task. In the second, some of the users
can cooperate by using nonlocal operations. For some initial
states, we have shown that the OEC for the original QSR task
can be smaller than those for each setting.

While the lower bound l presented in Eq. (20) is helpful
to evaluate the OEC, it becomes zero for initial states without
the environment system E . This means that it is not straight-
forward to determine whether the OECs for such initial states
are zero or not, unless we can explicitly construct an optimal
QSR protocol. This is the main reason why we used the result
of Theorem 13 that the segment entanglement rates are deter-
mined in terms of the von Neumann entropies of the initial
state, in order to prove Proposition 16 instead of the lower
bound l . On this account, finding tighter lower bounds can be
a meaningful future work.

As potential applications of our work, the QSR task can
serve as one of the fundamental subroutines in distributed
quantum computing [20,21] and quantum networks [22,23],
since they usually involve more than two users. In addition,
the QSR task can be used as a subtask of more general
quantum communication tasks. For example, let σ be a
permutation on [M]; then we can devise a new quantum
communication task for M users in which the ith user trans-
mits his or her quantum state to the σ (i)th user by means
of entanglement-assisted LOCC. We call this task quantum
state permutation. It is a well-known fact that any permutation
on a finite set has a unique cycle decomposition; i.e., the
permutation is expressed as a product of disjoint cycles. So,
the quantum state permutation task with respect to σ can be
decomposed as QSR subtasks, since the QSR tasks intuitively
correspond to disjoint cycles. In this situation, our results for
the QSR task can be useful tools to investigate the OEC for
the quantum state permutation task.
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APPENDIX A: PROOF OF LEMMA 2

In this Appendix, we prove Lemma 2 in the main text. If a protocol R in Eq. (8) satisfies (R ⊗ idL(E ) )(ψ ⊗ �̃ ) = ψf ⊗ �̃,
then R is said to be exact. The case regarding only exact QSR protocols is called an exact scenario.

To express two sets of the M users, we make use of a partition of the set [M]. Let {P, Pc} be a partition of the set [M], where P
is any nonempty proper subset of [M], and Pc is the complement of P, i.e., Pc = [M] \ P. If we interpret an element i of the set
[M] as the ith user of the QSR task, then we can divide the M users into two disjoint subsets P and Pc via the partition {P, Pc}.

For an exact QSR protocol R of ψ , we define the bipartite entanglement difference dP(ψ,R) for a partition {P, Pc} as

dP(ψ,R) =
∑
i∈P

∑
j∈Pc

[
log dBi, j − log dCi, j

]
, (A1)

where dBi, j (dCi, j ) indicates the Schmidt rank of the entanglement resource �i, j (�i, j) shared by the ith user and the jth user
before (after) performing the QSR protocol R. The following proposition provides a lower bound on the bipartite entanglement
difference for the QSR task of the initial state ψ .

Proposition 18. Let |ψ〉AE be the initial state of the QSR task. The bipartite entanglement difference dP(ψ,R) for a partition
{P, Pc} is lower bounded by

dP(ψ,R) � lP(ψ ) = max
U

{
H

(⊗
i∈P

Ai−1V

)
U |ψ〉

− H

(⊗
i∈P

AiV

)
U |ψ〉

}
, (A2)

where the maximum is taken over all isometries U from E to V ⊗ W , V and W are any quantum systems, and U |ψ〉 is an
abbreviation for 1A ⊗ U |ψ〉.

Proof. Let us consider an R-assisted QSR task whose idea comes from Refs. [10–12]. While the environment system E of the
initial state |ψ〉AE is not owned by any users of the original QSR task, in the R-assisted QSR task, we additionally consider a
referee who has the environment system E . In this task, the referee can assist M users as follows: The referee divides his part
E of the initial state |ψ〉AE into two parts V and W . To be specific, the referee locally applies an isometry U : E → V ⊗ W
[9] to his quantum state on the quantum system E , and so the initial state |ψ〉AE becomes a quantum state |ξ 〉AVW satisfying
TrE ψ = TrVW ξ . The referee now transfers his quantum state on the system V (W ) to one of the users belonging to the set P
(Pc), so that the M users can share the quantum state |ξ 〉AVW .

After finishing the referee’s assistance, M users rotate the quantum state |ξ 〉AVW via entanglement-assisted LOCC, as in the
original QSR. To be specific, the quantum systems V and W of the users are not rotated during the QSR task, while the user can
use them as quantum side information, as in other quantum communication tasks [2,3,6–8,11,12]. In the following, we call such
a protocol an exact R-assisted QSR protocol of the state |ξ 〉AVW , and it is denoted by A. Since A is LOCC among the M users,
it is also LOCC between two disjoint subsets P and Pc of the users. By using the fact that the amount of entanglement between
two sets P and Pc of the users cannot increase on average via LOCC [14], we obtain the inequality

H

(⊗
i∈P

AiV Bi

)
ξ⊗�̃

� H

(⊗
i∈P

A′
i−1VCi

)
ξf ⊗�̃

. (A3)

By using the additivity of the von Neumann entropy [9], we obtain

H

(⊗
i∈P

AiV Bi

)
ξ⊗�̃

= H

(⊗
i∈P

AiV

)
ξ

+ H

(⊗
i∈P

Bi

)
�̃

. (A4)

Recall that the quantum state �̃ is defined as the tensor product of bipartite maximally entangled states as in Eq. (7), and the
systems Bi are defined as in Eq. (10). The additivity of the von Neumann entropy [9] implies

H

(⊗
i∈P

Bi

)
�̃

=
∑

i, j ∈ P
i < j

H (Bi, jB j,i )�i, j +
∑
i∈P

∑
j∈Pc

H (Bi, j )�i, j =
∑
i∈P

∑
j∈Pc

log dBi, j . (A5)

Since �i, j is a pure bipartite maximally entangled state on quantum systems Bi, jB j,i whose Schmidt rank is dBi, j , H (Bi, jB j,i )�i, j =
0 and H (Bi, j )�i, j = log dBi, j hold for each i �= j. The second equality in Eq. (A5) comes from this fact. So we obtain

H

(⊗
i∈P

AiBiV

)
ξ⊗�̃

= H

(⊗
i∈P

AiV

)
ξ

+
∑
i∈P

∑
j∈Pc

log dBi, j . (A6)

By using the same method, we obtain

H

(⊗
i∈P

A′
i−1CiV

)
ξf ⊗�̃

= H

(⊗
i∈P

A′
i−1V

)
ξf

+
∑
i∈P

∑
j∈Pc

log dCi, j , (A7)
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where dCi, j is the Schmidt rank of the entanglement resource �i, j on quantum systems Ci, jCj,i. Consequently, the inequality in
Eq. (A3) is rewritten as

∑
i∈P

∑
j∈Pc

[
log dBi, j − log dCi, j

]
� H

(⊗
i∈P

A′
i−1V

)
ξf

− H

(⊗
i∈P

AiV

)
ξ

= H

(⊗
i∈P

A′
i−1V

)
U |ψf 〉

− H

(⊗
i∈P

AiV

)
U |ψ〉

, (A8)

where U |ψf〉 and U |ψ〉 are abbreviations for 1A ⊗ U |ψf〉 and 1A ⊗ U |ψ〉, respectively. By the definition of the final state ψf ,
we obtain that

H

(⊗
i∈P

A′
i−1V

)
U |ψf 〉

= H

(⊗
i∈P

Ai−1V

)
U |ψ〉

(A9)

holds. It follows that

dP(ψ,A) � H

(⊗
i∈P

Ai−1V

)
U |ψ〉

− H

(⊗
i∈P

AiV

)
U |ψ〉

. (A10)

Note that the above inequality holds for any quantum systems V and W and any isometry U : E → V ⊗ W . We further note that
any exact QSR protocol of |ψ〉AE is the special case of the exact R-assisted QSR protocol in which the referee does not assist the
users. It follows that dP(ψ,R) � lP(ψ ) holds. �

Similarly to the bipartite entanglement difference, we define the bipartite entanglement rate eP(ψ, {Rn}) with respect to the
partition {P, Pc} of the set [M] and the sequence {Rn}n∈N whose total entanglement rate is achievable as follows:

eP(ψ, {Rn}) =
∑
i∈P

∑
j∈Pc

ei, j (ψ, {Rn}), (A11)

where the segment entanglement rate ei, j is defined in Eq. (11). To prove Lemma 2, we use the following lemma telling the
continuity of the von Neumann entropy [9,24,25].

Lemma 19 (Fannes-Audenaert inequality [9]). Let ρ and σ be density operators in D(X ), where X is a quantum system,
and suppose that ε := 1

2‖ρ − σ‖1. Then the inequality |H (ρ) − H (σ )| � ε log[dX − 1] + h(ε) holds, where h(·) is the binary
entropy.

Proof of Lemma 2. We consider the R-assisted QSR task explained in the proof of Proposition 18. To be specific, for each n,
we consider an R-assisted QSR protocol

An : L
(

M⊗
i=1

A⊗n
i V ⊗nW ⊗nB(n)

i

)
−→ L

(
M⊗

i=1
(A′

i )
⊗nV ⊗nW ⊗nC(n)

i

)
(A12)

of the quantum state |ξ 〉⊗n
AVW with error εn satisfying

‖An(ξ⊗n ⊗ �̃n) − ξ⊗n
f ⊗ �̃n‖1 � εn, (A13)

where quantum systems B(n)
i and C(n)

i are defined by

B(n)
i = ⊗

j∈[M]\{i}
B(n)

i, j and C(n)
i = ⊗

j∈[M]\{i}
C(n)

i, j , (A14)

and �̃n and �̃n are explained in Sec. II C. For each n, let T bef
n and T aft

n be total amounts of entanglement between two sets P and
Pc of the users before and after performing the protocol An, respectively. Since the amount of entanglement between the two
sets of the users cannot increase on average via LOCC [14], we obtain that T bef

n � T aft
n holds for each n. Note that the amounts

of entanglement are represented as

T bef
n = H

(⊗
i∈P

A⊗n
i V ⊗nB(n)

i

)
ξ⊗n⊗�̃n

= nH

(⊗
i∈P

AiV

)
ξ

+
∑
i∈P

∑
j∈Pc

log dB(n)
i, j

and T aft
n = H

(⊗
i∈P

(A′
i−1)⊗nV ⊗nC(n)

i

)
An(ξ⊗n⊗�̃n )

,

(A15)

where T bef
n is obtained by using the additivity of the von Neumann entropy [9]. By applying the monotonicity of the trace

distance [9] to the inequality in Eq. (A13), we have

ε′
n := 1

2

∥∥Tr⊗i∈Pc (A′
i−1 )⊗nC(n)

i W ⊗n

[
An
(
ξ⊗n ⊗ �̃n

)]− Tr⊗i∈Pc (A′
i−1 )⊗nC(n)

i W ⊗n

[
ξ⊗n

f ⊗ �̃n
]∥∥

1 � εn. (A16)
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By applying Lemma 19 to the above inequality, we obtain the following inequalities:∣∣∣∣∣T aft
n − H

(⊗
i∈P

(A′
i−1)⊗nV ⊗nC(n)

i

)
ξ⊗n

f ⊗�̃n

∣∣∣∣∣ � ε′
n log

(
d⊗

i∈P (A′
i−1 )⊗nC(n)

i V ⊗n − 1
)+ h(ε′

n) � ε′
n log

(
d⊗

i∈P (A′
i−1 )⊗nC(n)

i V ⊗n

)+ h(ε′
n)

(A17)

� ε′
n

(
n
∑
i∈P

log dA′
i−1

+
∑
i∈P

log dC(n)
i

+ n log dV

)
+ h(ε′

n). (A18)

The additivity of the von Neumann entropy [9] implies

H

(⊗
i∈P

(A′
i−1)⊗nV ⊗nC(n)

i

)
ξ⊗n

f ⊗�̃

= nH

(⊗
i∈P

A′
i−1V

)
ξf

+
∑
i∈P

∑
j∈Pc

log dC(n)
i, j

. (A19)

Consequently, T bef
n � T aft

n becomes

nH

(⊗
i∈P

AiV

)
ξ

+
∑
i∈P

∑
j∈Pc

log dB(n)
i, j

� nH

(⊗
i∈P

A′
i−1V

)
ξf

+
∑
i∈P

∑
j∈Pc

log dC(n)
i, j

− ε′
n

(
n
∑
i∈P

log dA′
i−1

+
∑
i∈P

log dC(n)
i

+ n log dV

)

− h(ε′
n). (A20)

This implies that

∑
i∈P

∑
j∈Pc

1

n

(
log dB(n)

i, j
− log dC(n)

i, j

)
� H

(⊗
i∈P

A′
i−1V

)
ξf

− H

(⊗
i∈P

AiV

)
ξ

− ε′
n

(∑
i∈P

log dA′
i−1

+ 1

n

∑
i∈P

log dC(n)
i

+ log dV

)

− h(ε′
n)

n
, (A21)

which holds for each n, and so we obtain that

eP(ψ, {An}) � H

(⊗
i∈P

A′
i−1V

)
ξf

− H

(⊗
i∈P

AiV

)
ξ

= H

(⊗
i∈P

A′
i−1V

)
U |ψf 〉

− H

(⊗
i∈P

AiV

)
U |ψ〉

= H

(⊗
i∈P

Ai−1V

)
U |ψ〉

− H

(⊗
i∈P

AiV

)
U |ψ〉

. (A22)

Here, U |ψf〉 and U |ψ〉 are abbreviations for 1A ⊗ U |ψf〉 and 1A ⊗ U |ψ〉, respectively, and the last equality comes from Eq. (A9).
Thus, we have eP(ψ, {Rn}) � lP(ψ ), since the quantum system V,W and the isometry U are arbitrary, and any sequence of QSR
protocols is also a sequence of R-assisted QSR protocols. �

From Proposition 18 and Lemma 2, we know that the lower bound lP of the exact scenario is also a lower bound of the
asymptotic scenario. In other words, we can easily obtain a lower bound of the bipartite entanglement rate by merely finding that
of the bipartite entanglement difference in the exact scenario. Note that it is possible to apply this technique to other quantum
communication tasks, such as the generalized quantum Slepian-Wolf [26] and the multiparty state merging [27], in which users
perform the tasks via entanglement-assisted LOCC in the asymptotic scenario.

We remark that while the lower bound in Proposition 18 is presented in terms of the von Neumann entropy, this lower bound
can be generalized by replacing the von Neumann entropy with the Rényi entropies [28] under the exact scenario, as in the
one-shot quantum state exchange [12].

APPENDIX B: PROOF OF THEOREM 3

Let r be any achievable total entanglement rate for the initial state ψ . Then there is a sequence {Rn}n∈N of QSR protocols
Rn of ψ⊗n with error εn such that ei, j (ψ, {Rn}) converges for any i, j, etot (ψ, {Rn}) = r, and limn→∞ εn = 0. Since lPk = lPM−k

holds for any k ∈ [M − 1], we have lk (ψ ) = lM−k (ψ ). So we will prove in the following that lk (ψ ) is a lower bound on the OEC
for 1 � k � �M/2�.

For a nonempty proper subset P of the set [M], we defined a function fP : [M] × [M] → {0, 1} as follows:

fP(i, j) =
{

1 if (i ∈ P, j ∈ Pc) or ( j ∈ P, i ∈ Pc)
0 otherwise. (B1)
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Note that fP( j, i) = fP(i, j) holds for each i, j, and the bipartite entanglement rate eP(ψ, {Rn}) is represented as

eP(ψ, {Rn}) =
∑

i, j ∈ [M]
i < j

fP(i, j)ei, j (ψ, {Rn}). (B2)

For given elements i, j, let Si j
k be the subset of the set Sk whose elements Pk satisfy fPk (i, j) = 1. Then the size of the set Si j

k is

nk := 2
(M−2

k−1

)
. Observe that |Si j

k | = |Si′ j′
k | holds for any elements i, j, i′, and j′. This means that for a given segment entanglement

rate ei, j there exist nk subsets Pk of the set [M] such that fPk (i, j) = 1, i.e.,∑
Pk∈Sk

fPk (i, j)ei, j (ψ, {Rn}) = nkei, j (ψ, {Rn}). (B3)

From Eqs. (B2) and (B3), it follows that

etot (ψ, {Rn}) =
∑

i, j ∈ [M]
i < j

ei, j (ψ, {Rn}) = 1

nk

∑
i, j ∈ [M]

i < j

∑
Pk∈Sk

fPk (i, j)ei, j (ψ, {Rn}) (B4)

= 1

nk

∑
Pk∈Sk

∑
i, j ∈ [M]

i < j

fPk (i, j)ei, j (ψ, {Rn}) = 1

nk

∑
Pk∈Sk

ePk (ψ, {Rn}) � lk (ψ ). (B5)

Here, the last inequality comes from Eq. (A11) and Lemma 2. This shows that r � lk (ψ ) holds for any achievable total
entanglement rate r and any k.

APPENDIX C: PROOF OF LEMMA 6

Let ψ0 = ψ , and for each i ∈ [M − 1], we define quantum states ψi for the quantum state merging tasks as

ψi =
(

i⊗
j=1

idL(Aj )→L(A′
j ) ⊗

M⊗
j=i+1

idL(Aj ) ⊗ idL(E )

)
(ψ ). (C1)

Note that, for each i ∈ [M − 1], ψi is a pure quantum state on the quantum systems

i⊗
j=1

A′
j ⊗

M⊗
j=i+1

Aj ⊗ E . (C2)

For each i ∈ [M − 1], the ith user and the (i + 1)th user transform the quantum state ψi−1 into the quantum state ψi, by means
of LOCC and shared entanglement. To be specific, the quantum state on the quantum system Ai of the ith user is asymptotically
merged to the (i + 1)th user’s quantum system A′

i by using the (i + 1)th user’s quantum system Ai+1 as quantum side information.
So, in this case, the remaining quantum systems of the quantum state ψi−1,

Ei := ⊗
j∈[M]\[i+1]

Aj ⊗ ⊗
j∈[i−1]

A′
j ⊗ E , (C3)

are considered as the parts of the environment system. From the definition of the OEC of the quantum state merging [2,3], for
each i ∈ [M − 1], there is a sequence {M(i)

n }n∈N of LOCC,

M(i)
n : L

(
A⊗n

i ⊗ B(n)
i,i+1 ⊗ A⊗n

i+1 ⊗ B(n)
i+1,i

) −→ L
(
A′⊗n

i ⊗ C(n)
i,i+1 ⊗ A⊗n

i+1 ⊗ C(n)
i+1,i

)
, (C4)

of ψ⊗n
i−1 with error ε(i)

n which merges the part Ai from the ith user to the (i + 1)th user and satisfies limn→∞ ε(i)
n = 0,∥∥(M(i)

n ⊗ idL(E⊗n
i )

)(
ψ⊗n

i−1 ⊗ � (i)
n

)− ψ⊗n
i ⊗ �(i)

n

∥∥
1
� ε(i)

n , (C5)

lim
n→∞

1

n

(
log dB(n)

i,i+1
− log dC(n)

i,i+1

) = H (Ai|Ai+1), (C6)

where � (i)
n and �(i)

n are pure maximally entangled states on quantum systems B(n)
i,i+1B(n)

i+1,i and C(n)
i,i+1C

(n)
i+1,i shared by the ith user

and the (i + 1)th user with Schmidt rank dB(n)
i,i+1

and dC(n)
i,i+1

, respectively. In addition, from the Schumacher compression [9,16]
together with the quantum teleportation [1], there exists a sequence {Sn}n∈N of LOCC

Sn : L
(
A⊗n

M ⊗ B(n)
M,1 ⊗ B(n)

1,M

) −→ L
(
A′⊗n

M ⊗ C(n)
M,1 ⊗ C(n)

1,M

)
(C7)
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of ψ⊗n
M−1 with error ε(M )

n , which transfers the part AM from the Mth user to the first user and satisfies limn→∞ ε(M )
n = 0,∥∥(Sn ⊗ idL(E⊗n

M )

)(
ψ⊗n

M−1 ⊗ � (M )
n

)− ψ⊗n
f ⊗ �(M )

n

∥∥
1
� ε(M )

n , (C8)

lim
n→∞

1

n

(
log dB(n)

M,1
− log dC(n)

M,1

) = H (AM ), (C9)

where EM = ⊗M−1
j=1 A′

j ⊗ E , and � (M )
n and �(M )

n are pure maximally entangled states on quantum systems B(n)
M,1B(n)

1,M and C(n)
M,1C

(n)
1,M

shared by the first user and the Mth user with Schmidt rank dB(n)
M,1

and dC(n)
M,1

, respectively. For each n ∈ N, we define LOCC Rn

as

Rn = Sn ◦ M(M−1)
n ◦ M(M−2)

n ◦ · · · ◦ M(1)
n . (C10)

We also define quantum states �̃n, �̃n, and �̃(i)
n for each i ∈ [M] as

�̃n = ⊗
i∈[M]

� (i)
n , �̃n = ⊗

i∈[M]
�(i)

n , and �̃(i)
n =

M⊗
j=i+1

� ( j)
n ⊗

i−1⊗
j=1

�( j)
n . (C11)

Observe that, for i = 2, . . . , M − 1, the inequalities∥∥(M(i)
n ◦ · · · ◦ M(1)

n

)
(ψ⊗n ⊗ �̃n) − ψ⊗n

i ⊗ � (i+1)
n ⊗ �̃(i+1)

n

∥∥
1

�
∥∥(M(i)

n ◦ · · · ◦ M(1)
n

)
(ψ⊗n ⊗ �̃n) − (

M(i)
n ⊗ idL(E⊗n

i )

)(
ψ⊗n

i−1 ⊗ � (i)
n

)⊗ �̃(i)
n

∥∥
1

(C12)

+ ∥∥(M(i)
n ⊗ idL(E⊗n

i )

)(
ψ⊗n

i−1 ⊗ � (i)
n

)⊗ �̃(i)
n − ψ⊗n

i ⊗ � (i+1)
n ⊗ �̃(i+1)

n

∥∥
1

�
∥∥(M(i−1)

n ◦ · · · ◦ M(1)
n

)
(ψ⊗n ⊗ �̃n) − ψ⊗n

i−1 ⊗ � (i)
n ⊗ �̃(i)

n

∥∥
1 + ∥∥(M(i)

n ⊗ idL(E⊗n
i )

)(
ψ⊗n

i−1 ⊗ � (i)
n

)− ψ⊗n
i ⊗ �(i)

n

∥∥
1

(C13)

hold, where the first inequality and the second inequality come from the triangle property and the monotonicity of the trace
distance [9], and other identity maps idE⊗n , and idE⊗n

i
are omitted for convenience. Then we have

‖(Rn ⊗ idE⊗n )(ψ⊗n ⊗ �̃n) − ψ⊗n
f ⊗ �̃n‖1

�
∥∥(Rn ⊗ idE⊗n )(ψ⊗n ⊗ �̃n) − (

Sn ⊗ idL(E⊗n
M )

)(
ψ⊗n

M−1 ⊗ � (M )
n

)⊗ �̃(M )
n

∥∥
1

(C14)

+ ∥∥(Sn ⊗ idL(E⊗n
M )

)(
ψ⊗n

M−1 ⊗ � (M )
n

)⊗ �̃(M )
n − ψ⊗n

f ⊗ �̃n

∥∥
1

�
∥∥(M(M−1)

n ◦ · · · ◦ M(1)
n

)
(ψ⊗n ⊗ �̃n) − ψ⊗n

M−1 ⊗ � (M )
n ⊗ �̃(M )

n

∥∥
1 + ∥∥(Sn ⊗ idL(E⊗n

M )

)(
ψ⊗n

M−1 ⊗ � (M )
n

)− ψ⊗n
f ⊗ �(M )

n

∥∥
1

(C15)

�
∥∥M(1)

n (ψ⊗n ⊗ �̃n) − ψ⊗n
1 ⊗ � (2)

n ⊗ �̃(2)
n

∥∥
1 +

M−1∑
i=2

∥∥(M(i)
n ⊗ idL(E⊗n

i )

)(
ψ⊗n

i−1 ⊗ � (i)
n

)− ψ⊗n
i ⊗ �(i)

n

∥∥
1

(C16)

+ ∥∥(Sn ⊗ idL(E⊗n
M )

)(
ψ⊗n

M−1 ⊗ � (M )
n

)− ψ⊗n
f ⊗ �(M )

n

∥∥
1

=
M−1∑
i=1

∥∥(M(i)
n ⊗ idL(E⊗n

i )

)(
ψ⊗n

i−1 ⊗ � (i)
n

)− ψ⊗n
i ⊗ �(i)

n

∥∥
1
+ ∥∥(Sn ⊗ idL(E⊗n

M )

)(
ψ⊗n

M−1 ⊗ � (M )
n

)− ψ⊗n
f ⊗ �(M )

n

∥∥
1
�

M∑
i=1

ε(i)
n .

(C17)

Here, the first inequality and the second inequality hold from the triangle property and the monotonicity of the trace distance
again. The third inequality is obtained by repeatedly applying the inequality in Eq. (C12). Since ψ = ψ0, the last equality holds.
The last inequality comes from Eqs. (C5) and (C8). Set εn = ∑M

i=1 ε(i)
n . Then limn→∞ εn = 0, since limn→∞ ε(i)

n = 0 holds for
each i ∈ [M]. It follows that there is a sequence {Rn}n∈N of QSR protocols Rn of |ψ〉⊗n with error εn such that limn→∞ εn = 0,

ei, j (ψ, {Rn}) =

⎧⎪⎨
⎪⎩

H (Ai|Ai+1) if i ∈ [M − 1] and j = i + 1

H (AM ) if i = M and j = 1

0 otherwise,

(C18)

etot (ψ, {Rn}) = H (AM ) +
M−1∑
i=1

H (Ai|Ai+1). (C19)

APPENDIX D: PROOF OF THEOREM 11

To prove Theorem 11, we use the following lemma.
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Lemma 20. The lower bound l1(ψ ) shown in Theorem 3 is lower bounded by

l1(ψ ) � 1

2
max

D⊆[M]

∣∣∣∣∣∣
∑
i j∈D

(−1) jH (E |Aij )ψ

∣∣∣∣∣∣, (D1)

where D denotes a subset {i1, i2, . . . , i2k} of the set [M] with k = 1, . . . , �M/2� and i1 < i2 < · · · < i2k , and the maximum is
taken over all possible subsets D whose sizes are even.

Proof. It is easy to check that l1(ψ ) is lower bounded by

1

2

M∑
i=1

max {H (Ai−1)ψ − H (Ai )ψ, H (Ai−1E )ψ − H (AiE )ψ }, (D2)

by using the definition of the lower bound li(ψ ) in Eq. (19). So it suffices to show the equality LHS = RHS, where LHS and
RHS are defined as

LHS =
M∑

i=1

max {αi, βi} and RHS = max
D⊆[M]

∣∣∣∣∣∣
∑
i j∈D

(−1) jH (E |Aij )ψ

∣∣∣∣∣∣, (D3)

with αi = H (Ai−1)ψ − H (Ai )ψ and βi = H (Ai−1E )ψ − H (AiE )ψ .
(i) To show LHS � RHS, we use functions fi : {0, 1} → R defined as fi(x) = (1 − x)αi + xβi. Let b be an M-bit string

b = b1b2 · · · bM such that bi ∈ {0, 1} for each i. Then LHS is represented as

LHS = max
b

M∑
i=1

fi(bi ), (D4)

where the maximum is taken over all M-bit strings. In addition, we observe that the equalities

M∑
i=1

fi(bi ) =
M∑

i=1

[(1 − bi )αi + biβi] =
M∑

i=1

bi(βi − αi ) =
M∑

i=1

(bi − 1)βi −
M∑

i=1

biαi = −
M∑

i=1

[(1 − (1 − bi ))αi + (1 − bi )βi]

(D5)

= −
M∑

i=1

fi(1 − bi ) (D6)

hold for any M-bit string b, where the second equality and the third equality come from equalities
∑M

i=1 αi = ∑M
i=1 βi = 0. This

implies

LHS=max
b

∣∣∣∣∣
M∑

i=1

fi(bi )

∣∣∣∣∣, (D7)

where the maximum is taken over all M-bit strings having k zero bits with 1 � k � �M/2�. For any M-bit string b = b1b2 · · · bM

with k bits in state zero, we can express k zero bits and the other bits in state one using two functions gb : [k] → [M] and
hb : [M − k] → [M] satisfying bgb(i) = 0 and bhb(i) = 1, respectively. Observe that

M∑
i=1

fi(bi ) =
k∑

i=1

fgb(i)(0) +
M−k∑
i=1

fhb(i)(1) =
k∑

i=1

fgb(i)(0) −
k∑

i=1

fgb(i)(1) =
k∑

i=1

[H (E |Agb(i) )ψ − H (E |Agb(i)−1)ψ ] (D8)

=
∑

i∈X\Y

H (E |Ai )ψ −
∑

i∈Y \X

H (E |Ai )ψ, (D9)

where X = {gb(i) : i ∈ [k]} and Y = {gb(i) − 1 : i ∈ [k]}. The second equality comes from the simple fact

k∑
i=1

fgb(i)(1) +
M−k∑
i=1

fhb(i)(1) =
M∑

i=1

fi(1) = 0. (D10)

Since 1 � k � �M/2�, the set X is nonempty. Let lX be the largest element of the set X . Then lX /∈ Y , by the definition of the set
Y , and so X \ Y is nonempty. Assume that |X | = |Y | = s > 0 and |X \ Y | = |X \ Y | = t > 0 for some natural numbers s and t
with t � s. Then we can represent the sets X , Y , X \ Y , and X \ Y as

X = {x1, x2, . . . , xs}, Y = {y1, y2, . . . , ys}, X \ Y = {a1, a2, . . . , at }, Y \ X = {b1, b2, . . . , bt }, (D11)

where xi < x j and yi < y j for each i, j ∈ [s] with i < j, and ak < al and bk < bl for each k, l ∈ [t] with k < l .
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For each i ∈ [s − 1], we consider two consecutive elements xi and xi+1 of the set X . By the definition of the set Y , xi − 1 ∈ Y
and xi+1 − 1 ∈ Y . If xi + 1 = xi+1, then xi = xi+1 − 1 ∈ Y , and so xi /∈ X \ Y . Conversely, if xi /∈ X \ Y , then xi ∈ Y . By the
definition of the set Y , xi + 1 ∈ X . Since xi < xi+1, we have xi+1 = xi + 1. Thus, we obtain that, for each i ∈ [s − 1],

xi + 1 = xi+1 if and only if xi /∈ X \ Y. (D12)

Similarly to the above equivalence, we also obtain that, for each i ∈ [s − 1],

yi + 1 = yi+1 if and only if yi+1 /∈ Y \ X. (D13)

Note that x1 � a1 holds in general, and equalities x1 − 1 = y1 = b1 also hold, by the definition of the set Y . Thus, b1 < a1.
For the case that x1 = a1, we have a1 = b1 + 1. If b2 = b1 + 1, then a1 + 1 = b2 + 1 ∈ X , by the definition of the set Y .

From Eq. (D12), a1 ∈ X and a1 + 1 ∈ X means a1 /∈ X \ Y , which contradicts a1 ∈ X \ Y . Thus, a1 = b1 + 1 < b2. For the case
that x1 < a1, we have x1 /∈ X \ Y , since a1 is the smallest element of X \ Y . From Eq. (D12), this means that x1 + 1 is an element
of the set X . If x1 + 1 < a1, then x1 /∈ X \ Y , since a1 is the smallest element of X \ Y , and Eq. (D12) implies that x1 + 2 is an
element of the set X . In this way, we find a subset {x1, x1 + 1, . . . , a1} of the set X , and so a set {x1 − 1, x1, . . . , a1 − 1} is a
subset of the set Y , by the definition of the set Y . From Eq. (D13), we obtain a1 � b2. In addition, since a1 is the element of the
set X \ Y , b2 cannot be equal to a1. Thus, a1 < b2.

If a2 � b2, then a2 − 1 ∈ Y , by the definition of the set Y . Since b2 is the second smallest element of the set Y \ X , a2 − 1 /∈
Y \ X . From Eq. (D13), a2 − 1 /∈ Y \ X implies a2 − 2 ∈ Y . If b1 < a2 − 2, then a2 − 2 /∈ Y \ X , since b2 is the second smallest
element of the set Y \ X , and so a2 − 3 ∈ Y from Eq. (D13). In this way, we find a subset {b1, b1 + 1, . . . , a2 − 1} of the set Y ,
and so we obtain that a1 ∈ {b1 + 1, b1 + 2, . . . , a2} ⊂ X , by the definition of the set Y . From Eq. (D12), a1 /∈ X \ Y . In addition,
since a1 is the element of the set X \ Y , b2 cannot be equal to a1. Thus, a1 < b2, which is a contradiction. Thus, b2 < a2.

Consequently, we have shown that b1 < a1 < b2 < a2. By repeatedly applying the above process, we obtain that bi < ai <

bi+1 < ai+1 for each i ∈ [t − 1]. This shows that there is a subset D = {i1, i2, . . . , i2k} of [M] with k ∈ {1, . . . , �M/2�} such that
i1 < i2 < · · · < i2k , for each j ∈ [k], i2 j−1 ∈ Y \ X and i2 j ∈ X \ Y ,

M∑
i=1

fi(bi ) =
∑
i j∈D

(−1) jH (E |Aij )ψ. (D14)

Thus, LHS � RHS holds, since the M-bit string b with k zero bits is arbitrary.
(ii) We show LHS � RHS. Let D = {i1, i2, . . . , i2k} be a subset of [M] with k ∈ {1, . . . , �M/2�} and i1 < i2 < · · · < i2k

satisfying RHS = |∑i j∈D(−1) jH (E |Aij )ψ |. Set an M-bit string b as follows:

b j =
⎧⎨
⎩

1 if j ∈ {i1, i3, . . . , i2k−1}
0 if j ∈ {i2, i4, . . . , i2k}
b j+1 otherwise,

(D15)

where bM is defined as b1 when M /∈ D. We obtain the following equalities:

M∑
j=1

f j (b j ) =
i1∑

j=1

f j (1) +
k∑

j=1

i2 j∑
l=i(2 j−1)+1

fl (0) +
k−1∑
j=1

i(2 j+1)∑
l=i2 j+1

fl (1) +
M∑

j=i2k+1

f j (1) (D16)

=
i1∑

j=1

β j +
k∑

j=1

i2 j∑
l=i(2 j−1)+1

αl +
k−1∑
j=1

i(2 j+1)∑
l=i2 j+1

βl +
M∑

j=i2k+1

β j (D17)

=
(

M∑
j=i2k+1

β j +
i1∑

j=1

β j

)
+

k∑
j=1

i2 j∑
l=i(2 j−1)+1

αl +
k−1∑
j=1

i(2 j+1)∑
l=i2 j+1

βl (D18)

= (H (Ai2k E )ψ − H (Ai1 E )ψ ) +
k∑

j=1

[
H (Ai(2 j−1) )ψ − H (Ai2 j )ψ

]+
k−1∑
j=1

[H (Ai2 j E )ψ − H (Ai(2 j+1) E )ψ ] (D19)

= H (Ai2k E )ψ − H (Ai1 E )ψ + H (Ai(2k−1) )ψ − H (Ai2k )ψ (D20)

+
k−1∑
j=1

[H (Ai(2 j−1) )ψ − H (Ai2 j )ψ ] +
k−1∑
j=1

[H (Ai2 j E )ψ − H (Ai(2 j+1) E )ψ ]

= H (E |Ai2k )ψ − H (Ai1 E )ψ + H (Ai(2k−1) )ψ +
k−1∑
j=1

H (Ai(2 j−1) )ψ +
k−1∑
j=1

H (E |Ai2 j )ψ −
k−1∑
j=1

H (Ai(2 j+1) E )ψ (D21)
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=
(

H (E |Ai2k )ψ +
k−1∑
j=1

H (E |Ai2 j )ψ

)
+
(

H (Ai(2k−1) )ψ +
k−1∑
j=1

H (Ai(2 j−1) )ψ − H (Ai1 E )ψ −
k∑

j=2

H (Ai(2 j−1) E )ψ

)

(D22)

=
k∑

j=1

H (E |Ai2 j )ψ −
k∑

j=1

H (E |Ai(2 j−1) )ψ (D23)

=
2k∑
j=1

(−1) jH (E |Aij )ψ, (D24)

where the fourth equality comes from the fact that
m∑

i=n

βi = H (An−1E )ψ − H (AmE )ψ,

m∑
i=n

αi = H (An−1)ψ − H (Am)ψ. (D25)

In the case that the sum
∑

i j∈D(−1) jH (E |Aij )ψ is negative, we can find another M-bit string b′ satisfying b′
i = 1 − bi, where bi

is the ith bit of the M-bit string b defined in Eq. (D15). By using the relation in Eq. (D5), we obtain

M∑
j=1

f j (b
′
j ) = −

∑
i j∈D

(−1) jH (E |Aij )ψ. (D26)

It follows that LHS � RHS. �
Proof of Theorem 11. We prove the contrapositive of Theorem 11. Suppose that eopt (ψ ) = 0. Then l1(ψ ) = 0, since the lower

bound li on the OEC is non-negative. So Lemma 20 implies

max
D⊆[M]

∣∣∣∣∣∣
∑
i j∈D

(−1) jH (E |Aij )ψ

∣∣∣∣∣∣ = 0, (D27)

where D is a subset {i1, i2, . . . , i2k} of the set [M] with k = 1, . . . , �M/2� and i1 < i2 < · · · < i2k . By choosing D as a set {i, j}
with i �= j, we obtain H (E |Ai )ψ = H (E |Aj )ψ for any i, j. �

APPENDIX E: PROOF OF THEOREM 13

To prove Theorem 13, we use the following lemma.
Lemma 21. Let |ψ〉AE be the initial state of the QSR task, and let {Rn}n∈N be a sequence of QSR protocols Rn of |ψ〉⊗n with

error εn whose total entanglement rate r is achievable. If r = 0, then

eP(ψ, {Rn}) = lP(ψ ) (E1)

holds for any nonempty proper subset P of [M], where eP and lP are defined in Eq. (A11) and Eq. (17), respectively.
Proof. Since r = 0, Theorem 3 and Remark 4 imply that the lower bound li(ψ ) in Eq. (19) is zero for each i ∈ [M].
Suppose that there exists a nonempty proper subset Q of [M] such that eQ(ψ, {Rn}) �= lQ(ψ ). Then Lemma 2 implies

eQ(ψ, {Rn}) > lQ(ψ ). (E2)

If the size of the set Q is k, then we consider the set Sk of subsets Pk of [M] whose size is k, so that Q ∈ Sk . Then we can obtain

0 = etot (ψ, {Rn}) = 1

nk

∑
Pk∈Sk

ePk (ψ, {Rn}) >
1

nk

∑
Pk∈Sk

lPk (ψ ) = lk (ψ ) = 0, (E3)

where nk = 2
(M−2

k−1

)
, which is a contradiction. Here, the second equality and the inequality come from Eqs. (B5) and (E2),

respectively. Consequently, eP(ψ, {Rn}) = lP(ψ ) holds for any nonempty proper subset P of [M]. �
Proof of Theorem 13. Since r = 0, Lemma 21 implies that∑

i∈P

∑
j∈Pc

ei, j (ψ, {Rn}) = lP(ψ ) (E4)

holds for any nonempty proper subset P of [M]. This can be interpreted as the following linear equation, if we consider the
segment entanglement rates ei, j (ψ, {Rn}) and the lower bounds lP(ψ ) as unknowns and coefficients:

M∑
i=1

M∑
j=1

ci, j (P)ei, j (ψ, {Rn}) = lP(ψ ), (E5)
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where the coefficient ci, j (P) is defined as

ci, j (P) =
{

1
2 if (i ∈ P, j ∈ Pc) or ( j ∈ P, i ∈ Pc)

0 otherwise.
(E6)

Note that ei,i(ψ, {Rn}) = 0 and e j,i(ψ, {Rn}) = ei, j (ψ, {Rn}) for each i, j ∈ [M]. In this way, we construct a system of linear
equations for each case as follows.

(i) For M = 3, there exist three unknowns of ei, j (ψ, {Rn}). Consider the sets P ⊆ [3] whose sizes are one. Then, from
Eq. (E4), we obtain that

ei,i+1(ψ, {Rn}) + ei,i+2(ψ, {Rn}) = l{i}(ψ ) (E7)

for each i. This can be expressed as a system of linear equations as follows:⎛
⎝1 0 1

1 1 0
0 1 1

⎞
⎠
⎛
⎝e1,2(ψ, {Rn})

e2,3(ψ, {Rn})
e1,3(ψ, {Rn})

⎞
⎠ =

⎛
⎝l{1}(ψ )

l{2}(ψ )
l{3}(ψ )

⎞
⎠. (E8)

Note that if we consider other sets P whose sizes are k > 1, then we can have a different representation of the linear equations
in Eq. (E8). By simply solving this system, we obtain

ei, j (ψ, {Rn}) = 1

2
(l{i}(ψ ) + l{ j}(ψ ) − l{k}(ψ )), (E9)

where {i, j, k} = [3], which becomes ei, j (ψ, {Rn}) = −l{k}(ψ ) = −l{i, j}(ψ ), since l1(ψ ) = 0.
(ii) Similarly, the system of linear equations corresponding to the case of M = 4 can be represented as⎛

⎜⎜⎜⎜⎜⎝

1 0 0 1 1 0
1 1 0 0 0 1
0 1 1 0 1 0
0 0 1 1 0 1
0 1 0 1 1 1
1 0 1 0 1 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

e1,2(ψ, {Rn})
e2,3(ψ, {Rn})
e3,4(ψ, {Rn})
e1,4(ψ, {Rn})
e1,3(ψ, {Rn})
e2,4(ψ, {Rn})

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

l{1}(ψ )
l{2}(ψ )
l{3}(ψ )
l{4}(ψ )

l{1,2}(ψ )
l{2,3}(ψ )

⎞
⎟⎟⎟⎟⎟⎠, (E10)

and its solution is given by

ei, j (ψ, {Rn}) = 1

2
(l{i}(ψ ) + l{ j}(ψ ) − l{i, j}(ψ )). (E11)

Recall that, for any partition {P, Pc} of the set [M], lP(ψ ) = lPc (ψ ) holds. For example, l{1,2}(ψ ) = l{3,4}(ψ ) when M = 4.
(iii) Set N = M(M − 1)/2. If M > 4, the number of unknowns of ei, j (ψ, {Rn}) is N . In this case, it suffices to consider

subsets P2 of [M] whose size is two in order to construct a system of linear equations. To be specific, there exist N different
linear equations

M∑
i=1

M∑
j=1

ci, j (P2)ei, j (ψ, {Rn}) = lP2 (ψ ), (E12)

so we have a system of N linear equations with N unknowns. This system of linear equations can be represented as a matrix
equation of the form

DMxM = bM , (E13)

where the matrix DM is N × N , and the matrices xM and bM are N × 1. To describe entries of these matrices, we use a bijective
function fM : [N] → TM , where TM is the set of all two-element subsets P2 of [M]. Then the entries of the matrices DM , xM , and
bM are given by

[DM]s,t =
⎧⎨
⎩

0 if s = t
1 if s �= t and fM (s) ∩ fM (t ) �= ∅
0 if s �= t and fM (s) ∩ fM (t ) = ∅,

(E14)

[xM]s,1 = e fM (s)(ψ, {Rn}), (E15)

[bM]s,1 = l fM (s)(ψ ), (E16)

where [DM]s,t is derived from the coefficients ci, j (P2) in Eq. (E12), and e fM (s)(ψ, {Rn}) indicates the segment entanglement rate
eis js (ψ, {Rn}) if fM (s) = {is, js} ⊂ [M].
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Now, we show that the matrix DM is invertible. Consider an N × N matrix D−1
M defined as

[
D−1

M

]
s,t =

⎧⎨
⎩

βM/αM if s = t
γM/αM if s �= t and fM (s) ∩ fM (t ) �= ∅
−2/αM if s �= t and fM (s) ∩ fM (t ) = ∅,

(E17)

where αM = 2(M − 2)(M − 4), βM = 2 − (M − 4)2, and γM = M − 4. For each s �= t , define subsets T (1)
s,s and T (i)

s,t of [N] as
follows:

T (1)
s,s = {k ∈ [N] : k �= s, | fM (k) ∩ fM (s)| = 1}, (E18)

T (2)
s,t = {k ∈ [N] : s = k, t �= k, fM (t ) ∩ fM (k) �= ∅}, (E19)

T (3)
s,t = {k ∈ [N] : s �= k, fM (s) ∩ fM (k) �= ∅, t �= k, fM (t ) ∩ fM (k) �= ∅}, (E20)

T (4)
s,t = {k ∈ [N] : s �= k, fM (s) ∩ fM (k) = ∅, t �= k, fM (t ) ∩ fM (k) �= ∅}. (E21)

The sizes of these sets are given by ∣∣T (1)
s,s

∣∣ = 2(M − 2), (E22)

∣∣T (2)
s,t

∣∣ =
{

1 if fM (s) ∩ fM (t ) �= ∅
0 otherwise, (E23)

∣∣T (3)
s,t

∣∣ =
{

M − 2 if fM (s) ∩ fM (t ) �= ∅
4 otherwise, (E24)

∣∣T (4)
s,t

∣∣ =
{

M − 3 if fM (s) ∩ fM (t ) �= ∅
2(M − 4) otherwise. (E25)

We obtain that the diagonal entries of the matrix D−1
M DM are

[
D−1

M DM
]

s,s =
N∑

k=1

[
D−1

M

]
s,k[DM]s,k = γM

αM

∣∣T (1)
s,s

∣∣ = γM

αM
2(M − 2) = 1. (E26)

Since the matrix DM is symmetric, the first equality holds, and by directly comparing Eqs. (E14) and (E17) we obtain the second
equality. On the other hand, observe that the equality

[
D−1

M

]
s,k[DM]k,t =

⎧⎪⎪⎨
⎪⎪⎩

βM/αM if k ∈ T (2)
s,t

γM/αM if k ∈ T (3)
s,t

−2/αM if k ∈ T (4)
s,t

0 otherwise

(E27)

holds for any s, t, k ∈ [N] with s �= t . From the above equation, the off-diagonal entries of the matrix D−1
M DM are calculated as

[
D−1

M DM
]

s,t =
N∑

k=1

[
D−1

M

]
s,k[DM]k,t = 1

αM

(
βM

∣∣T (2)
s,t

∣∣+ γM

∣∣T (3)
s,t

∣∣− 2
∣∣T (4)

s,t

∣∣) = 0. (E28)

This shows that the matrix D−1
M is the inverse of the matrix DM , and so xM = D−1

M bM . �

APPENDIX F: PROOF OF LEMMA 17

To prove Lemma 17, we use the relative entropy of entanglement [29] between the second user and the third user instead of
the entanglement entropy between each user and the other two users, since the entanglement entropies for the initial and final
states are the same.

Suppose that there exists a sequence {Tn}n∈N of LOCC Tn of φ⊗n with error εn such that ei, j (φ, {Tn}) = 0 for each i, j and
limn→∞ εn = 0, where the segment entanglement rate ei, j is defined in Eq. (11). From the monotonicity of the trace distance [9],
we obtain that

δn = ∥∥TrA′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[
φ⊗n

f ⊗ �̃n
]− TrA′

1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[
Tn
(
φ⊗n ⊗ �̃n

)]∥∥
1 � εn. (F1)

Let D(�‖τ ) be the quantum relative entropy between two mixed states � and τ , i.e., D(�‖τ ) = Tr[�(log � − log τ )]. Then the
relative entropy of entanglement of �XY is defined by

ER(X ;Y )� = min
τXY ∈SEP(X ;Y )

D(�XY ‖τXY ), (F2)
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where SEP(X ;Y ) is the set of all separable states on the system XY . From the continuity of the relative entropy of entanglement
[29], if δn � 1/3, then we have

2
(
δn(n log dB′

1B′
2C′

1C′
2
+ log dF (n)

2,1 F (n)
2,3 F (n)

3,1 F (n)
3,2

) − δn log δn
)+ 4δn (F3)

�
∣∣ER

(
B′

1
⊗nB′

2
⊗nF (n)

2,1 F (n)
2,3 ;C′

1
⊗nC′

2
⊗nF (n)

3,1 F (n)
3,2

)
Tr

A′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[φ⊗n
f ⊗�̃n] (F4)

− ER
(
B′

1
⊗nB′

2
⊗nF (n)

2,1 F (n)
2,3 ;C′

1
⊗nC′

2
⊗nF (n)

3,1 F (n)
3,2

)
Tr

A′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[Tn(φ⊗n⊗�̃n )]

∣∣
� ER

(
B′

1
⊗nB′

2
⊗nF (n)

2,1 F (n)
2,3 ;C′

1
⊗nC′

2
⊗nF (n)

3,1 F (n)
3,2

)
Tr

A′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[φ⊗n
f ⊗�̃n]

− ER
(
B1

⊗nB2
⊗nD(n)

2,1D(n)
2,3;C1

⊗nC2
⊗nD(n)

3,1D(n)
3,2

)
Tr

A⊗n
1 A⊗n

2 D(n)
1,2D(n)

1,3
[φ⊗n⊗�̃n], (F5)

where the second inequality comes from the fact that the relative entropy of entanglement cannot increase under LOCC [9]. It is
easy to check that two equalities

TrA⊗n
1 A⊗n

2 D(n)
1,2D(n)

1,3
[φ⊗n ⊗ �̃n] = J⊗n

B1C1
⊗ J⊗n

B2C2
⊗ In(2, 1)D(n)

2,1
⊗ �

(n)
2,3 ⊗ In(3, 1)D(n)

3,1
, (F6)

TrA′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[
φ⊗n

f ⊗ �̃n
] = I⊗n

B′
2

⊗ (|ebit〉〈ebit|)⊗n
B′

1C′
2
⊗ I⊗n

C′
1

⊗ I ′
n(2, 1)F (n)

2,1
⊗ �

(n)
2,3 ⊗ I ′

n(3, 1)F (n)
3,1

(F7)

hold. Here, the mixed states J , In(i, j), I ′
n(i, j), and I are

J = 1

2
(|00〉〈00| + |11〉〈11|), In(i, j) = 1

dD(n)
i, j

d
D(n)

i, j
−1∑

j=0

| j〉〈 j|, I ′
n(i, j) = 1

dF (n)
i, j

d
F (n)

i, j
−1∑

j=0

| j〉〈 j|, I = 1

2
(|0〉〈0| + |1〉〈1|), (F8)

where dD(n)
i, j

(dF (n)
i, j

) is the Schmidt rank of the entanglement resource �
(n)
i, j (�(n)

i, j ) on the quantum systems D(n)
i, j D(n)

j,i (F (n)
i, j F (n)

j,i )

shared by the ith user and the jth user before (after) performing the QSR protocol Tn. So we obtain

ER
(
B1

⊗nB2
⊗nD(n)

2,1D(n)
2,3;C1

⊗nC2
⊗nD(n)

3,1D(n)
3,2

)
Tr

A⊗n
1 A⊗n

2 D(n)
1,2D(n)

1,3
[φ⊗n⊗�̃n] (F9)

� nER(B1B2;C1C2)TrA1A2 [φ] + ER
(
D(n)

2,1D(n)
2,3; D(n)

3,1D(n)
3,2

)
Tr

D(n)
1,2D(n)

1,3
[�̃n] (F10)

= ER(D(n)
2,1D(n)

2,3; D(n)
3,1D(n)

3,2)Tr
D(n)

1,2D(n)
1,3

[�̃n]. (F11)

In the above, the first inequality comes from the subadditivity [30] of the relative entropy of entanglement. The last equality
holds, since TrA1A2 [φ] is separable.

By discarding systems B′
2
⊗nF (n)

2,1 and C′
1
⊗nF (n)

3,1 , we have

ER
(
B′

1
⊗nB′

2
⊗nF (n)

2,1 F (n)
2,3 ;C′

1
⊗nC′

2
⊗nF (n)

3,1 F (n)
3,2

)
Tr

A′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[φ⊗n
f ⊗�̃n] � ER

(
B′

1
⊗nF (n)

2,3 ;C′
2
⊗nF (n)

3,2

)
|ebit〉⊗n

B′
1C′

2
⊗�

(n)
2,3

. (F12)

In addition, Bob and Charlie can locally prepare the quantum states I⊗n
B′

2
⊗ I ′

n(2, 1)F (n)
2,1

and I⊗n
C′

1
⊗ I ′

n(3, 1)F (n)
3,1

, respectively. It
follows that

ER
(
B′

1
⊗nF (n)

2,3 ;C′
2
⊗nF (n)

3,2

)
|ebit〉⊗n

B′
1C′

2
⊗�

(n)
2,3

� ER
(
B′

1
⊗nB′

2
⊗nF (n)

2,1 F (n)
2,3 ;C′

1
⊗nC′

2
⊗nF (n)

3,1 F (n)
3,2

)
Tr

A′
1
⊗nA′

2
⊗nF (n)

1,2 F (n)
1,3

[
φ⊗n

f ⊗�̃n

]. (F13)

From the fact that ER(X ;Y )� = H (X )� holds for any pure state �XY , we have

ER
(
B′

1
⊗nF (n)

2,3 ;C′
2
⊗nF (n)

3,2

)
|ebit〉⊗n

B′
1C′

2
⊗�

(n)
2,3

= H
(
B′

1
⊗nF (n)

2,3

)
I⊗n

B′
1
⊗n ⊗I ′

n(2,3)F2,3

= n + log dF (n)
2,3

. (F14)

Similarly, we have

ER
(
D(n)

2,1D(n)
2,3; D(n)

3,1D(n)
3,2

)
Tr

D(n)
1,2D(n)

1,3
[�̃] = log dD(n)

2,3
. (F15)

By using Eqs. (F9), (F14), and (F15), Eq. (F5) becomes

2δn log dB′
1B′

2C′
1C′

2
+ δn

n

(
2 log dF (n)

2,1 F (n)
2,3 F (n)

3,1 F (n)
3,2

− 2 log δn + 4
)+ 1

n

(
log dD(n)

2,3
− log dF (n)

2,3

)
� 1. (F16)

As n → ∞, this inequality becomes 0 = e2,3(φ, {Tn}) � 1, which is a contradiction. Therefore, it is impossible to transform
two GHZ states shared by Alice, Bob, and Charlie into three ebits symmetrically shared among them via LOCC, even under the
catalytic use of entanglement resource.
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If we consider a nonasymptotic scenario in which users begin this transformation with finite copies of the initial states, whether
the transformation is possible or not under the nonasymptotic scenario with the catalytic use of entanglement is unknown, to the
best of our knowledge.
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