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Approximate dynamics leading to more optimal control: Efficient exact derivatives
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Accurate derivatives are important for locally traversing and converging efficiently in quantum optimization
landscapes. By deriving analytically exact control derivatives (gradient and Hessian) for unitary control tasks,
we show here that the computational feasibility of meeting this accuracy requirement depends on the choice of
propagation scheme and problem representation. Even when exact propagation is sufficiently cheap it is, perhaps
surprisingly, much more efficient to optimize the (appropriately) approximate propagators: Approximations in
the dynamics are traded off for significant complexity reductions in the exact derivative calculations. Impor-
tantly, past the initial analytical considerations, only standard numerical techniques are explicitly required with
straightforward application to realistic systems. These results are numerically verified for two concrete problems
of increasing Hilbert space dimensionality. The best schemes obtain unit fidelity to machine precision, whereas
the results for other schemes are separated consistently by orders of magnitude in computation time and in
worst-case ten orders of magnitude in achievable fidelity. Since these gaps continually increase with system size
and complexity, this methodology allows numerically efficient optimization of very high-dimensional dynamics,
e.g., in many-body contexts, operating in the high-fidelity regime.
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I. INTRODUCTION

The demand for precise and fast quantum control extending
into high-fidelity regimes places increasing emphasis on the
role of optimization methodologies and their performance
capacities. Identification and extraction of quantum optimal
controls have enjoyed theoretical and experimental success
in numerous research areas [1], such as superconducting
qubits [2–5], nuclear magnetic resonance systems [6–10],
nitrogen-vacancy centers [11–14], cold molecules [15–17],
and cold atoms [18–24], to name a few. At the same
time, an increasing array of algorithmic approaches is avail-
able in these arenas, counting among others derivative
based (GRAPE [7,25,26], auxiliary matrix [27–29] or equiv-
alently GOAT [30], GROUP [10,31], and Krotov [32–34]),
derivative-free (Nelder-Mead CRAB [18,19,35], stochastic as-
cent [36], and genetic evolutionary [37]), and combinations
thereof [38]. Along a separate axis lie additional choices of
open-loop [39,40], closed-loop [41–43], and/or human-in-
the-loop [36,44] control.

Irrespective of the physical platform and choice of op-
timization algorithm, a common denominator is inevitable:
With growing problem complexity and numerical simulation
efforts, the relative efficiency of each optimization cycle must
be streamlined to allow convergence to, e.g., high-fidelity so-
lutions within finite time. Accuracy and computational speed
have been identified as important goals and challenges for
modern control design [1,45]. In the context of derivative-
based methods, i.e., update rules relying on local gradient and

*jhasseriis@phys.au.dk
†sherson@mgmt.au.dk

Hessian calculations of the optimization objective, this has
been recognized at least since the seminal work presented in
Ref. [7], where the analytical first-order approximation to the
gradient was calculated. However, this first-order approxima-
tion is not suited for obtaining standard quasi-Newton search
directions due to the rapid error accumulation in the Hessian
approximation which is built iteratively from gradients [46].
The steepest descent direction is also only a minimally viable
choice with the weakest convergence properties among the
standard methods. The use of quasi-Newton methods with the
more desirable convergence properties was enabled later by,
e.g., Ref. [25], where the analytically exact gradient for an
exact propagator was calculated at the expense of additional
computational time per iteration. As system sizes increase,
however, exact propagators and their exact derivatives become
prohibitively resource intensive.

In this work we advance the theoretical toolbox for ob-
taining controls that satisfy high-performance criteria in
arbitrary unitary quantum tasks. Following a discretize-then-
optimize approach, we derive general analytically exact
gradients and Hessians for different propagation schemes,
specifically an exact exponentiation propagator and two
Suzuki-Trotter propagators which we interpret in terms of
optimization landscapes. This means that each choice of ef-
fective time evolution operator gives rise to its own, but
not necessarily dynamically exact, optimization landscape as
illustrated in Fig. 1 (Sec. II). Given, then, that the exact
propagator approach is sometimes computationally infeasi-
ble, we thus examine the interplay between approximations
in the landscape (i.e., dynamics) versus in the derivative
calculations.

We show that the complexity of exact analytical deriva-
tives strongly depends on the chosen propagation scheme,
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FIG. 1. Abstract illustration of local minimization in exact and
approximate landscapes (equivalent to dynamical schemes), each
with different analytical forms for the exact derivatives. The planes
are spanned by control functions u(t ) with associated functional
values given by the colormap and dots denote optimization iterates.
In the exact landscape exact derivatives are expensive but ultimately
lead to optimal results, while cheaper, approximate derivatives may
not. In the approximate landscape exact derivatives and the dynamics
itself are significantly cheaper and yield faithful optimal results under
appropriate conditions. Thus, for the same optimization wall-clock
time τ , a common initial u0 leads to different uτ (white dot centers)
and hence manifests a performance gap.

corresponding to the specifics of the numerical implemen-
tation details, and representation of the problem: Solving
the problem in a basis where the controllable part of the
Hamiltonian is diagonal and simultaneously employing one
of the Trotterized propagators greatly simplifies the derivative
calculations (Sec. III). Analytically exact derivatives can thus
be computed very efficiently, principally limited only by the
time it takes to propagate states, which by virtue of the dy-
namical approximation is also particularly cheap. That is, our
results and, e.g., Fig. 1 are not just trivial consequences of
the reduced propagation time due to the dynamical approx-
imation, but also the complexity reduction of the analytical
exact derivatives. Through numerical experiments, remarks on
implementation details, scaling comparisons, and generaliz-
ability analyses, our main goal is to show that the presented
Trotter derivative methodologies are not only very efficient on
realistic problems, but also straightforwardly applicable since
they rely only on otherwise well-known ingredients. Another
state-of-the-art approach to calculating exact gradients and
Hessians is through the aforementioned so-called auxiliary
matrix method [27–29] as implemented, e.g., in the SPINACH

software library [47], and we include this methodology in our
comparative studies.

We cement these findings and calculations1 by first opti-
mizing a minimal two-level Landau-Zener (LZ) problem and
then a nine-level transmon system (Sec. IV). In both instances,
we attain the performance hierarchy qualitatively captured in

1Only the exact gradient derivation for the exact propagator is
similar to the calculations in Ref. [25].

Fig. 1. We then show that this trend is exponentially mono-
tonic in the face of more complex and larger systems. As the
Hilbert space dimension scales exponentially in the number of
constituents, this becomes especially relevant when, e.g., the
system size enters the many-body regime where exact diago-
nalization, exact propagation, and associated exact derivatives
are completely outside the realm of numerical feasibility. Fi-
nally, we show that the results generalize well to scenarios
with more than one control (Sec. V) and touch on a few
pertinent discussion points (Sec. VI).

II. EXACT DERIVATIVES FOR QUANTUM OPTIMAL
CONTROL

A. Formulation of unitary control tasks

In quantum optimal control we seek to dynamically steer
some quantum mechanical process in a controlled way such
as to maximize a desired physical yield. For unitary evolution,
any such task can be encoded as a minimization over an
appropriate cost functional J[Û (T ; 0)], where

Û (T ; 0) = T exp

(
−i
∫ T

0
Ĥ (t ) d t

)
(1)

is the time evolution operator in units where h̄ = 1 from time
t = 0 → T , T denotes time ordering, and Ĥ is the system
Hamiltonian carrying some generic time dependence. The
cost functional is a purely mathematical and malleable con-
struct that quantifies our desired set of success criteria or
goals. Quite often these not only include the desired quantum
dynamics but also experimental constraints. The individual
criteria are typically represented by their own cost functional
Ji and the total cost composed by J =∑i Ji. Typically, one
will define the cost such that J � 0 and J = 0 is then guar-
anteed to be a global minimum. We briefly return to different
potential choices of Ji at the end of this section. Minimizing J
thus instructs us how to feasibly achieve the desired dynamics
under the given experimental constraints.

The manipulatory access to the system dynamics in Eq. (1)
is through a set of control parameters in the Hamiltonian. To
preserve clarity of the presentation we initially consider the
case of a single generic control u(t ) and we may without loss
of generality separate the system Hamiltonian as

Ĥ = Ĥ (t, u(t )) = Ĥd (t ) + Ĥc(t, u(t )). (2)

In Sec. V we extend our analysis to more than one control
and show that the generalization remains feasible. The drift
Hamiltonian Ĥd (t ) represents parts of the system dynamics
that are uncontrollable. The control Hamiltonian Ĥc(t, u(t )),
on the other hand, depends on the control u(t ) and grants
us a mandate to steer the dynamics. As an example, for a
single-particle system the drift could be the kinetic energy
Ĥd = T̂ and the control Hamiltonian the potential profile
Ĥc = V̂ (x, u).

Similarly to the cost J , it is gainful to think of u(t ) as a
malleable mathematical object that is tied to some physical
quantity p(t ) in the system such as the intensity, trap center,
or frequency of a laser that ultimately affects the system.
In this general framing we can write p(t ) = g(u(t )), where
g is some suitable differentiable function and this allows a
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certain degree of modeling convenience. For example, one
might choose g(u) = au for numerical reasons, where c is an
appropriate scaling constant [46] such that appropriate values
of u is of order 1. Other examples include letting g be a
shifted and scaled sigmoid or arctan function [48] such that
p is bounded within a range of values or letting g be a so-
called transfer function such that p respects finite electronic
response times [31]. This provides, e.g., alternative measures
for incorporating experimental constraints without the use of
additional cost functionals.

Notice that our definition of the control Hamiltonian in
Eq. (2) subsumes the control itself, which is more general
than the pervasive bilinear assumption, i.e., Ĥc(t, u(t )) →
u(t )Ĥc(t ). Linear physical dependences do indeed occur in
many systems, e.g., in the form of spin couplings which can
be subject to control. Nevertheless, assuming control linearity
precludes both the use of nonlinear g as defined above and
treatment of systems that are inherently not linear in the
physical parameter. Examples of the latter include position-
controlled Gaussian potential profiles V (x, u) ∝ exp[2(x −
u)2/σ 2], where σ is a width [49], or phase-controlled optical
lattices V (x, u) ∝ cos2(kx + u), where k is a wave num-
ber [50]. For these reasons and since the derivations presented
here do not depend on it we do not impose linearity assump-
tions and simply note that this limiting case can always be
taken at the end.

For numerical (and, as we will see, analytical) convenience
it is natural to discretize time in regular δt intervals

t ∈ [t1, t2, . . . , tNt ] = [0, δt, . . . , T ], t j = ( j − 1)δt, (3)

with time indices denoted by subscripts. Physical quantities
evaluated at these grid points are similarly defined by un =
u(tn) and Ĥn = Ĥ (tn, un) and similarly for Ĥc

n and Ĥd
n . This

leads to a product of time evolution operators

Û (T ; 0) ≈
Nt −1∏
j=1

Û j = ÛNt −1 · · · Û2Û1, (4a)

where

Ûn = exp

(
−i
∫ tn+δt

tn

Ĥ (t, u(t ))dt

)
(4b)

is the propagator across the time interval [tn, tn+1] = [tn, tn +
δt]. As seen later, the error made with respect to Eq. (1)
is given by Nt − 1 first-order Suzuki-Trotter expansions and
vanishes when δt → 0 ↔ Nt → ∞ or if [Ĥ (t j ), Ĥ (ti )] = 0
for all t j and ti. We return to the computation of Ûn in Sec. II D
and for now simply note that Û (T ; 0) depends on the dis-
cretized control vector u = (u1, . . . , uNt )

T .
The optimal control task thus consists in finding appropri-

ate control vector(s) u that correspond to local and hopefully
global minima in the control landscape defined by the cost

J (u) = J
(
ÛNt −1 · · · Û2Û1

)
. (5)

There is a plethora of techniques and prescriptions for maneu-
vering the landscape in search of such minima.

B. Derivative-based local optimization

In this paper we focus on derivative-based local opti-
mization methodologies characterized by making informed
decisions in traversing the control landscape u(k) → u(k+1)

using local information at iteration k about the landscape
topography. In prototypical line-search-based updates of the
form

u(k+1) = u(k) + α(k) p(k), α(k) ∈ R+, (6a)

J (u(k+1)) � J (u(k) ), (6b)

the search direction p(k) is calculated from the current lo-
cal gradient (e.g., steepest descent, conjugate gradient, and
quasi-Newton directions) and possibly also the Hessian (e.g.,
Newton direction). It is helpful to abstractly depict landscapes
as in Fig. 1, where the colormap denotes the cost value J (u),
each dot is an iterate u(k), and the line connecting it to the next
is the step α(k) p(k). The step size α(k) is in practice determined
by an inexact line search [46] and values largely depend on
the chosen line-search algorithm, search direction, problem
scaling, and how close to a minimum the iterate is. Far from
the minimum, as is typical for the initial iterate, it can be
on the order of hundreds or thousands, after which it usually
becomes of order one or smaller as it approaches convergence.

Although the functional form of the cost J in Eq. (5) de-
pends on the particular unitary task [34], e.g., gate synthesis,
state transfer, or maximization of a given observable, and
whether a pure state or density matrix description is consid-
ered, they all lead to the same principal form for the control
derivative calculations, specifically

gradient ∼ ∂

∂un

(
ÛNt −1 · · · Û2Û1

)
, (7a)

Hessian ∼ ∂2

∂un∂um

(
ÛNt −1 · · · Û2Û1

)
. (7b)

Accurate control derivatives are paramount in success-
fully traversing the optimization landscape, since inaccuracies
or willful approximations yield poor search directions and
may significantly slow down, altogether prevent convergence,
and/or limit the achievable fidelity (cf. the exact landscape
in Fig. 1). Out of the standard search directions, the steepest
descent direction is well known to have the comparatively
worst general properties such as zigzag iterate trajectories and
a linear convergence rate [46]. This is irrespective of the ex-
actness of the gradient and inaccuracies will make this choice
even more unattractive. The much more theoretically sound
exact Newton direction exhibits quadratic convergence and a
step size of αk → 1 when approaching a minimum [46]. It is
however typically several orders of magnitude more expensive
to construct than a steepest descent direction because it relies
on both the gradient and the Hessian. Inaccuracies in either
derivative thus negate any of the potential gains from the extra
computational effort. The class of quasi-Newton methods is
generally accepted to be the most general-purpose class of
search directions and exhibit superlinear convergence [46].
For example, the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
direction is initialized as a steepest descent step and then
builds up an approximation for the Hessian based on the
gradients recorded in each iteration. If the individual gradients
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are inaccurate, this error will accumulate in each iteration and
make the Hessian approximation unreliable as the optimiza-
tion progresses. This will in turn manifest as increasingly
poor search directions that ultimately lead the optimization
irreparably astray as depicted in Fig. 1. This is referred to as
the slowdown problem in Ref. [25].

These considerations are generic and not limited to the
field of quantum control. We calculate the exact derivatives
that surpass these issues in Sec. III and verify the calculations
and claims above by numerical demonstration in Sec. IV.
For specificity, we consider the case of pure state transfer
|ψini〉 → |ψtgt〉, ideally obtaining unit fidelity given by

F = |〈ψtgt|ψ (T )〉|2 = |〈ψtgt|Û (T ; 0)|ψini〉|2, (8)

where |ψtgt〉 is the target state and |ψini〉 = |ψ1〉 is the initial
state. The state |ψ (T )〉 = |ψNt 〉 = Û (T ; 0) |ψini〉 at final time
T is produced by stepwise evolution according to |ψn+1〉 =
Ûn |ψn〉. The associated fidelity cost is JF = (1 − F )/2. It will
be convenient to write the fidelity as F = o∗o and thus the
fidelity cost and its derivatives as

JF = 1

2
(1 − o∗o), (9a)

∂JF

∂un
= −Re

(
o∗ ∂o

∂un

)
, (9b)

∂2JF

∂un∂um
= −Re

[(
∂o

∂um

)∗
∂o

∂un
+ o∗ ∂2o

∂un∂um

]
, (9c)

with o being the overlap or transfer amplitude with derivatives

o = 〈χNt

∣∣ψNt

〉 = 〈χNt

∣∣ÛNt −1 · · · Ûn · · · Û1|ψ1〉,
(9d)

∂o

∂un
= 〈χNt

∣∣ ∂

∂un

(
ÛNt −1 · · · Ûn · · · Û1

)|ψ1〉, (9e)

∂2o

∂un∂um
= 〈χNt

∣∣ ∂2

∂un∂um

(
ÛNt −1 · · · Ûn · · · Û1

)|ψ1〉, (9f)

where we introduced an auxiliary state |χNt 〉 = |ψtgt〉 with
|χn〉 = Û†

n |χn+1〉. The overlap derivatives is in the form of
Eqs. (7), as anticipated. The Hessian matrix is of course
symmetric and allows reuse of gradient elements. To obtain
numerically implementable expressions for the gradient and
Hessian in Eqs. (9b) and (9c), our task is now to analytically
calculate Eqs. (9e) and (9f). These calculations will clearly
depend on the details of the propagator Ûn.

We stress that, although the particular functional form for
J = JF leads to “specialized” derivatives in Eqs. (9), dictated
by the chain rule, our evaluations of Eqs. (7) are general and
always constitute the by far largest numerical effort. Thus,
obtaining exact derivatives for any other unitary control task
mentioned above, e.g., gate synthesis and dynamics described
by density matrices, is a trivial extension by appropriately
applying the chain rule to the encoding functional. We there-
fore restrict our attention to the pure state transfer formulation
in the remainder of this paper. For completeness we also
include derivatives for common control regularization terms
in the Appendix. These cost augmentations are, as mentioned
earlier, often introduced for experimental reasons and they do
not depend on the numerical propagation scheme.

C. Suzuki-Trotter expansions

To set the stage for the following section we briefly recall
a few ubiquitous Suzuki-Trotter expansions for the operator
exponential.

The exponential of the operator X̂ or its matrix representa-
tion is defined in terms of its Taylor series

eαX̂ =
∞∑

k=0

(αX̂ )k

k!
= 1 + αX̂ + 1

2
α2X̂ 2 + O(α3), (10)

where α is a scalar and O(α3) denotes terms of order α3

or higher. Operator exponentials appear in many scientific
contexts and the literature surrounding its explicit and effi-
cient evaluation is quite extensive [51]. Let us assume that
additional structure is present, X̂ = Â + B̂, in which case the
expansion reads

eα(Â+B̂) = 1 + α(Â + B̂)

+ 1
2α2(Â2 + ÂB̂ + B̂Â + B̂2) + O(α3), (11)

after performing the square. Properties of Â and B̂ typically
ensure that individual evaluation of eαÂ and eαB̂ is much
simpler than the composite eα(Â+B̂). For example, if Â is rep-
resented in a diagonal basis by the N × N matrix A, then the
matrix exponential is also diagonal with elements (eαA)n,n =
eαAn,n for all n = 1, . . . , N .

Motivated by this fact and the rules for scalar exponen-
tials, evaluating the product eαÂeαB̂ using Eq. (10) twice leads
to the simplest, first-order Suzuki-Trotter expansion [52] by
comparing to Eq. (11),

eαÂeαB̂ = 1 + α(Â + B̂) + α2

2
(Â2 + 2ÂB̂ + B̂2) + O(α3)

= eα(Â+B̂) + O(α2). (12a)

The first-order expansion evidently has an error scaling

eα(Â+B̂) − eαÂeαB̂ = α2

2
[B̂, Â] + O(α3) = O(α2), (12b)

which depends on the commutator [B̂, Â]. In fact it is well
known that eα(Â+B̂) = eαÂeαB̂ is exact if [B̂, Â] = 0. Suppose
we instead consider an ansatz on the form eαÂ1 eαB̂eαÂ2 where

Â = Â1 + Â2 + O(α2). (13a)

By applying Eq. (10) three times we obtain

eαÂ1 eαB̂eαÂ2 = 1 + α(Â1 + Â2 + B̂)

+ α2

2

(
Â2

1 + Â2
2 + 2(Â1Â2 + Â1B̂ + B̂Â2) + B̂2

)
+ O(α3). (13b)

This Suzuki-Trotter expansion has error

eα(Â+B̂) − eαÂ1 eαB̂eαÂ2 = 1
2α2([Â2, Â1] + [B̂, Â1 − Â2])

+ O(α3), (13c)

which is also to first order O(α2) for arbitrary Â1 and Â2, but
to second order O(α3) when

[Â1, Â2] = 0, (14a)

Â1 − Â2 = O(α). (14b)
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More generally, it is possible to systematically construct
Suzuki-Trotter expansion variants of arbitrarily high order by
considering, e.g., the ansatz ep1αÂep2αB̂ep3αÂep4αB̂ · · · epMαB̂ +
O(αm+1) and choosing suitable coefficients pi [52]. Although
arbitrarily low error is an enticing prospect, it also entails
more computational time. Since in our context α = −iδt rep-
resents a small time step, it is sufficient to henceforth only
consider expansions such as the ones above.

D. Dynamics and optimization landscapes

We now return to the numerical evaluation of Eqs. (4). To
compute the propagator in Eq. (4b) we must first perform the
integral in the exponential. We consider numerical quadra-
tures based on the left-point rectangle rule and the trapezoidal
rule ∫ tn+δt

tn

Ĥ (t, u(t ))dt ≈ δt ×
{

Ĥn (trapezoidal)
Ĥn (rectangle),

(15)

where Ĥn = Ĥ (tn, un) and Ĥn = 1
2 (Ĥn+1 + Ĥn). If the under-

lying time dependence is assumed continuous, the trapezoid
and rectangle approximations have integration errors O(δt3)
and O(δt2), respectively. If the time dependence is assumed
piecewise constant, the rectangle approximation is exact. Both
rules thus satisfy the condition in Eq. (13a).

Depending on the choice of quadrature, we will refer to the
exact exponentiation propagators as

Û ex1
n = exp(−iĤnδt ), (16a)

Û ex2
n = exp(−iĤnδt ) (16b)

and their corresponding Suzuki-Trotter (or Trotterized) prop-
agators as, respectively,

ÛST1
n = Û c/2

n+1Ûd
n Û c/2

n ≈ Û ex1
n , (16c)

ÛST2
n = Û c/2

n Ûd
n Û c/2

n ≈ Û ex2
n , (16d)

with definitions for the control and drift exponentials

Û c/2
n ≡ exp

(−iĤ c
n δt/2

)
, (16e)

Ûd
n ≡

{
exp
(
−iĤn

d
δt
)

for ST1

exp
(−iĤd

n δt
)

for ST2.
(16f)

The operator splitting ÛST2
n is achieved by utilizing Eqs. (13)

with B = Ĥd
n and Â1 = Â2 = Ĥc

n /2 and always has Trotteri-
zation error O(δt p) with p = 3 according to Eqs. (14). The

operator splitting ÛST1
n is achieved by letting B = Ĥn

d
, Â1 =

Ĥc
n+1/2, and Â2 = Ĥc

n /2 and has Trotterization error O(δt p)
where p = 2, 3 depending on Eqs. (14). For unrelated rea-
sons, we will later assume that the control Hamiltonians are
diagonal, which leaves only the condition (14b). However, the
precise Trotter error p is not of crucial importance since δt
must under all circumstances be small enough that the errors
made in going from Eq. (1) to Eqs. (4)2 and in integrating
Eq. (15) are small. What is much more important is that ÛST2

n

2This corresponds to Nt − 1 applications of the first-order expan-
sion in Eqs. (12).

is fully local in n whereas ÛST1
n depends on both n and n + 1.

The resulting derivative calculations with respect to un and
final expressions are thus different. This underscores that the
precise specification of the implementation is central for use
in optimal control contexts. The derivatives should “match”
the dynamics.

The local O(δt p) Trotterization errors accumulate through-
out the Nt − 1 evolutions in Eq. (4a), yielding an overall error
(Nt − 1)δt p ≈ (T/δt )δt p = T δt p−1 ∼ O(δt p−1). It is conve-
nient to interpret this as an approximation error with respect
to the exact landscape (cf. Fig. 1)

JST
F (u) = Jex

F (u) + OJST
F

(δt p−1) (17)

for ex = ex1, ex2 and associated ST = ST1, ST2. The granu-
larity of δt determines how faithful the representation is and
it follows that geometric entities for the same point u are
generally different in each landscape. This includes the height
or cost value, derivatives, and thus also the search directions
for optimization. Importantly, the optimal controls associated
with optima in the Trotterized landscapes at large finite δt may
not correspond to optima in the exact landscapes, which is
equivalent to the target not being obtained when propagating
said controls using Eqs. (16a) and (16b). As δt → 0, however,
the Trotterized landscapes continuously deform into the exact
landscapes, and below some sufficiently small finite δt they
represent it with only negligible perturbations. The landscapes
transitively inherit the numerical implementation properties of
their associated propagator.

Numerically, the exact propagator corresponds to direct
exponentiation of the Hamiltonian matrix, an operation that
scales extremely poorly with increasing Hilbert space di-
mension DH. On the other hand, the Trotterized propagators
lend themselves more readily to a variety of very efficient,
problem-dependent implementations through, e.g., the use
of sparsity structures, and these have a much more benign
Hilbert space scaling, extending its applicability far beyond
the exact propagator approach. For example, we will assume
that the control Hamiltonian is diagonal and this significantly
boosts runtime performance. This is because Û c/2

n is relatively
cheap to represent and calculate since diagonal matrix expo-
nentiation is the elementwise exponentiation of the diagonal.
Additionally, the relatively very expensive calculations of Ûd

n
for all n can be performed once and stored in memory or on
the disk as they are by definition independent of the choice of
u. We can also write vectorized forms useful for state transfer
and unitary synthesis, respectively, as

UST1
n × ψn = U c/2

n+1 
 [Ud
n × (U c/2

n 
 ψn

)]
, (18a)

UST1
n = Ud

n 
 [U c/2
n+1 × (U c/2

n

)T]
, (18b)

where UST1
n and Ud

n are dense matrices, U c/2
n and ψn are a

vectors, × (
) denotes regular (elementwise) matrix multi-
plication, and T is transposition. These numerical techniques
are the original reasons for approximating the dynamics. In
the next section we show that also more subtle and important
simplifications occur when calculating the exact derivatives.
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III. ANALYTICAL RESULTS

Detailed calculations of the analytically exact derivatives
stated in Eqs. (9) using the propagators in Eqs. (16) are given
in the Appendix. Here we focus on the central equations and
contexts. Of the exact propagators, we consider for simplicity
only Û ex

n = Û ex2
n given by Eq. (16b) from here on.

By defining the recursive commutator

[X,Y ]k = [X, [X,Y ]k−1], [X,Y ]0 = Y, (19)

a central calculation shows that

∂Û ex
n

∂un
= Û ex

n (−iδt )
∞∑

k=0

ikδt k

(k + 1)!

[
Ĥn,

∂Ĥc
n

∂un

]
k

, (20)

where ∂Ĥc
n /∂un = ∂Ĥn/∂un is the control derivative Hamil-

tonian. The presence of the infinite sum means that in the
context of optimization it may not be desirable to use exact
time evolution even if it is readily available. In numerical
application, the summation continues until machine precision
or to a desired accuracy, corresponding to some kmax. This is
necessary because the Hamiltonian and its control derivative

generally do not commute, [Ĥn,
∂Ĥc

n
∂un

] �= 0, and the recursive
commutator is not guaranteed to terminate. A few examples
include Ĥ = σ̂x + u(t ) · σ̂z, where σ̂i are Pauli spin- 1

2 opera-
tors, Ĥ = T̂ + V̂ (u(t )), where V̂ (T̂ ) is the potential (kinetic)
energy operator for a single particle, or the Bose-Hubbard
Hamiltonian Ĥ = −Ĵ + Û (u(t )), where Ĵ (Û ) is the tunneling
(on-site interaction) operator.

The propagator derivatives for the Trotterizations in
Eq. (16c) and (16d) contain an infinite series of the same struc-
ture as in Eq. (20), but with Ĥn → Ĥc

n in the first argument of
the recursive commutator. Thus, by additionally assuming that
the control Hamiltonian is expressed in its diagonal represen-
tation, we find

∂

∂un

(
ÛST1

n ÛST1
n−1

) = (−iδt )ÛST1
n

∂Ĥc
n

∂un
ÛST1

n−1, (21a)

∂ÛST2
n

∂un
= − iδt

2

(
∂Ĥc

n

∂un
ÛST2

n + ÛST2
n

∂Ĥc
n

∂un

)
, (21b)

since the series terminate exactly after kmax = 0. This huge
simplification occurs because two diagonal matrices always

commute, [Ĥc
n ,

∂Ĥc
n

∂un
]k = ∂Ĥc

n
∂un

δ0,k . Incidentally, in many cases
the “natural” basis states for computations are already the
ones that diagonalize Ĥc

n , e.g., spin eigenstates (|↑〉 and |↓〉),
position eigenstates (|x〉), or site-occupation eigenstates (|ni〉),
respectively, for the Hamiltonians mentioned above.

Inserting the results in Eqs. (20) and (21) into Eqs. (9), we
obtain the gradient elements

∂Jex
F

∂un
= Re

(
io∗〈χn|∂Ĥc

n

∂un
|ψn〉

)
δt + O∇Jex

F
(δt2), (22a)

∂JST1
F

∂un
= Re

(
io∗〈χn|∂Ĥc

n

∂un
|ψn〉

)
δt, (22b)

∂JST2
F

∂un
= Re

(
io∗

2

{
〈χn+1|∂Ĥc

n

∂un
|ψn+1〉 + 〈χn|∂Ĥc

n

∂un
|ψn〉

})
δt .

(22c)

The states in each equation are understood to be evolved
according to the propagation scheme denoted on the left-hand
side, but this notational completeness is omitted here for
brevity. It is important to remember that these Trotter gradi-
ents assume that the control Hamiltonian Ĥc is diagonal. The
remainder term for the exact propagator inherits the infinite
series of Eq. (20),

O∇Jex
F

(δt2) ∝ 〈χn|
( ∞∑

k=1

ikδt k

(k + 1)!

[
Ĥn,

∂Ĥc
n

∂un

]
k

)
|ψn〉δt, (23)

where the first-order approximation in Eq. (22a) is the k = 0
term.

Thus, the gradients for Jex and JST1 are in the same form3

only to first order in δt : Whereas ∇JST1
F is analytically exact

with just the δt term, ∇Jex
F entails an expensive remainder

term beyond the first-order approximation. This is noteworthy
and nontrivial since, while ST2 is the most commonly encoun-
tered type of Trotterization, ∇Jex

F and ∇JST2
F do not coincide

even to first order. Generally, neither do the derivatives for
other dynamical approximations such as the Krylov-Lanczos
method, finite Taylor expansions, the Crank-Nicolson method,
and Chebyshev schemes [53–55]. Nevertheless, the gradient
∇JST2

F is only slightly more involved than ∇JST1
F due to two

sum terms and this is negligible compared to the computa-
tional effort of the time evolution and overlap calculations
can be reused. Preference towards either may therefore rely
on which of the integration quadratures in Eq. (15) is most
appropriate in a given situation. Similar calculations and ar-
guments apply to the analytically exact Hessians, but in this
case, the expressions for ∇2Jex

F and ∇2JST2
F are much more

complicated than ∇2JST1
F , as shown in the Appendix.

An alternative way of calculating the exact propagator
derivatives is through the auxiliary matrix method [28,29].
Focusing on the first derivative, the relation(

Ûn
∂Ûn
∂un

0 Ûn

)
= exp

[
−i

(
Ĥn

∂Ĥn
∂un

0 Ĥn

)
δt

]
(24)

allows extraction of both Ûn and ∂Ûn
∂un

by explicitly calculat-
ing the right-hand-side 2 × 2 block matrix exponential. The
expression can be augmented to a 3 × 3 block matrix to also
include the Hessian. This approach provides exact derivatives
while elegantly circumventing the cumbersome commutator
series in Eq. (23) associated with the exact propagator, but the
required 2DH (or 3DH with Hessian) square matrix exponen-
tials becomes similarly expensive.

What happens if we combine the auxiliary matrix with
our Trotterization with diagonal controls? The deriva-
tive of un-dependent propagators is, e.g., ∂

∂un
(ÛST1

n ÛST1
n−1) =

(Û c/2
n+1Ûd

n ) ∂Û c
n

∂un
(Ûd

n−1Û
c/2
n−1) and we can then employ Eq. (24)

with Ûn → Û c
n and Ĥn → Ĥc

n . Since Ĥc
n is assumed diagonal,

the right-hand-side exponent is a very sparse, almost diagonal
matrix with a single dense off-diagonal. Although very effi-
cient numerical sparse solvers exist, the computation remains
nontrivial, and it is always cheaper to instead utilize either

3Except at the end points (see the Appendix).
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Eqs. (22b) or (22c) in this case since the exponential itself is

analytically trivialized and ∂Ĥc
n

∂un
is also an analytically closed

form.
In Sec. VI we also discuss the results in comparison to the

Krylov-Lanczos propagation scheme, another common type
of approximate time evolution for quantum states. Other types
of techniques for extending simulation capabilities such as the
reduced density matrix in, e.g., nuclear magnetic resonance
systems [56] will not be further discussed here.

IV. NUMERICAL RESULTS

To numerically verify the analytical conclusions and as-
sertions made in Sec. III, we initially examine the methods’
performance capacities on two concrete state-transfer prob-
lems with dimensionalities of DH = 2 and 9, respectively. We
then investigate the gradient evaluation time as DH contin-
ually increases. In general, the particular parameters chosen
for these studies are not central to the overall methodological
conclusions and will only be discussed to the extent that they
are relevant. The process duration T for the presented results
is chosen such that T F=1

min � T � Tadiabatic, where T F=1
min is the

minimal duration that F = 1 solutions exist and Tadiabatic is the
adiabatic limit. We also briefly discuss the behavior at 0.5,
0.75, 1.25, and 1.5 times this T . All results were generated on
a 2017 Macbook Pro laptop with 16 GB RAM using a single
2.8-GHz Intel Core i7 processor.

A. Two-level system

We first consider the canonical LZ model with Ĥn =
Ĥd + Ĥc

n = 1
2 (σ̂x + un · σ̂z ) and the state transfer |ψini〉 =

|↑〉 → |ψtgt〉 = |↓〉. Employing the natural basis {|↑〉 , |↓〉},
this problem is already represented in the necessary control-
diagonal form. The reason for choosing this problem is
twofold. First, it represents the smallest possible nontrivial
type of problem (DH = 2). Second, it has well-understood
solutions [57] with a single, analytical π -pulse solution un =
0 at the minimal F = 1 duration T F=1

min = π and remains
solvable beyond this duration. Yet despite its simplicity,
the model remains prototypical even in the context of
the many-body arena. For example, many-body dynamics
can in certain scenarios be thought of as a cascade of
independent LZ transitions and similar characteristics be-
tween LZ and some many-body control problems have been
identified [58–60].

We optimize the same 100 uniformly randomly gen-
erated seeds un = uniform(−10, 10) at T = 1.01π � T F=1

min
with δt = 0.075 using the BFGS search direction imple-
mented in MATLAB’s fminunc in five different scenarios:
exact propagator with first-order (kmax = 0) and exact (kmax =
9 and auxiliary method) gradients, and both Trotterized
propagators with exact gradients. Figure 2 shows the op-
timization results. Only 14 seeds did not converge to
machine precision within 400 iterations when using exact
gradients.

From the 1 − F iteration median trajectories we find that
unit fidelities to machine precision are easily obtainable only
when utilizing any of the exact gradients, whereas the inex-
act approximate variant leads to poor results. Solutions of

FIG. 2. Demonstration of optimization in exact and Trotterized
landscapes for the simple two-level LZ problem. The 1 − F median
is shown as a function of (a) iteration and (b) wall-clock time. The
performance gap between the exact methods is roughly denoted by
the horizontal arrow. (c) Analytical gradients ∇Jana relative to their
numerical central finite-difference approximation ∇Jnum with pertur-
bation εpert = ε

1/3
mach for a constant example control with un = 5. Note

that the auxiliary and kmax = 9 gradients are identical to machine
precision and thus yield (nearly) the same iteration trajectories and,
incidentally, nearly the same wall-clock time trajectories.

the former exhibit very rapid convergence when they ap-
proach the optimum with a variance in the low tens for the
number of iterations needed. Looking however at the opti-
mization wall-clock time trajectories provides a definite per-
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formance hierarchy with negligible variance. The mint and red
trajectories are separated by more than an order of magnitude
in computation time from the dark and light blue trajectories.
These medians are associated with the Trotterized and exact
landscapes qualitatively shown in Fig. 1, respectively, and
the separation is due to both the difference in propagation
computation time and either the kmax > 0 tail in Eq. (23) or
the 2DH × 2DH matrix exponential in Eq. (24). As men-
tioned, the first-order gradient approximation kmax = 0 in the
exact landscape performs significantly worse while also being
slower compared to iterations in the Trotterized landscapes.
Note however that its performance is decent up until around
50 iterations, at which point it prevents convergence to unit fi-
delities by more than ten orders of magnitude. This is because
the Hessian approximation eventually becomes completely
unreliable as discussed in Sec. II.

As a further verification of Eqs. (22) we compare the
analytical gradients to their respective central finite dif-
ference gradients and find relatively close agreement. The
latter are themselves associated with errors of O∇JF (δt2),
and the relative differences are on the order

√
εmach,

where εmach = 2.22 × 10−16 is the machine precision for
the double-precision floating-point format. We also quantita-
tively find that the first-order approximation is unsurprisingly
poor.

The truncation parameter necessary for exact gradients is
roughly bounded δt kmax+1/(kmax + 1)! � εmach. With decreas-
ing δt , the necessary kmax for exact gradients also decreases
and the k = 0 term becomes increasingly dominant. Indeed,
running the same optimizations as shown in Fig. 2 for δt =
0.025, the kmax = 0 optimization yields final results that are
two to three orders of magnitude better relative to kmax = 0
in Fig. 2 with δt = 0.075. At δt = 0.01 this first-order ap-
proximation is sufficient for finding machine precision unit
fidelities. That is, reducing the number of k terms required
for accurate gradients is traded off for increased computation
time per iteration due to additional time evolutions. Con-
sequently, even though such kmax = 0 trajectories may now
be sufficient in terms of final results, they are stretched to
much higher wall-clock times than any of the results shown in
Fig. 2.

We also performed optimizations at durations 0.5, 0.75,
1.25, and 1.5 times T = 1.01π . For both the smaller and
larger durations we find empirically that the control landscape
becomes very easy in the sense that only a few iterations
(fewer than ten) are required for convergence and the op-
timized fidelities are nearly identical. This is not surprising
since the problem is relatively simple even when the control
is heavily constrained [61]. Due to this simplicity and the
associated low number of required iterations, the approxi-
mate gradient actually becomes competitive with the exact
ones in the exact landscape in terms of wall-clock time at
these durations. That is, convergence is achieved before the
Hessian approximation becomes very unreliable. This sim-
plicity should not be expected for the majority of control
problems, and a detailed study of this behavior and at inter-
mediate T is outside the scope of this paper. The performance
gap to the exact gradient methods in the approximate land-
scape seen in Fig. 2 persists across all the different tested
T values regardless. Together with the discussion above,

this shows that the optimal choice of kmax is nontrivial and
dependent on the other problem parameters. This suggests
a methodological simplicity of the Trotter approach where
gradient exactness is always ensured by just the first-order
term.

B. Transmon system

We now turn to a second example of higher dimension-
ality (DH = 9), a superconducting transmon system with a
two-qutrit computational basis {|00〉 , |10〉 , . . . |12〉 , |22〉} de-
scribed by the Hamiltonian

Ĥn =
[
�b̂†

1b̂1 + 1

2

∑
j=1,2

δ j b̂
†
j b̂ j (b̂

†
j b̂ j − 1) + κ (b̂†

1b̂2 + b̂1b̂†
2)

]

+ un(b̂†
1 + b̂1) = Ĥd + Ĥc

n , (25)

with the same parameter values as in Ref. [54], here with the
relabeling J → κ to avoid ambiguity with the cost functional.
We consider the state transfer |ψini〉 = |10〉 → |ψtgt〉 = |11〉,
i.e., a single state mapping of a controlled-NOT (CNOT) gate
in the qubit subspace {|00〉 , |01〉 , |10〉 , |11〉}, without control
constraints.4 Note that the control Hamiltonian is not diag-
onal in the natural computational basis. To obtain a proper
representation for the Trotter exact derivatives, we therefore
numerically diagonalize Ĥc

n = un(b̂†
1 + b̂1). The eigenvectors

are identical for all nonzero values of the control and we take
un = 1 for simplicity. Storing these eigenvectors as columns
in the basis transformation operator R̂, we perform the basis
change

Ĥc
n ← R̂†Ĥc

n R̂, Ĥd ← R̂†ĤdR̂, (26)

|ψini〉 ← R̂† |ψini〉 , |ψtgt〉 ← R̂† |ψtgt〉 . (27)

The results of optimizing this control-diagonalized problem
are shown in Fig. 3. We find a nearly identical situation to
Fig. 2, except the gap between the control-diagonal Trot-
ter and exact propagator gradient methods has significantly
increased (note the logarithmic scale) due to the increased
DH. Further, more iterations are generally needed and the
first-order approximation “falsely” converges to even worse
fidelities. This indicates that this problem is somewhat more
challenging than that of Fig. 2.

Performing optimizations at durations 0.5, 0.75, 1.25, and
1.5 times T = 2.83 did not change the results outside of
scaling the performance gap and, for the lower values, the
overall best attainable fidelity. In contrast to the two-level
problem, this problem was never so simple that the approx-
imate gradient could yield results competitive results with the
exact gradient in the exact landscape and we expect this to be
representative of most control problems.

4This process is expected to have a lower quantum speed limit than
what we found for the full gate [54]. The full CNOT gate could have
been considered in the state transfer formulation by optimizing a
composite cost, e.g., J |00〉→|00〉

F + J |01〉→|01〉
F + J |11〉→|10〉

F + J |10〉→|11〉
F .
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FIG. 3. Same as Fig. 2 for 50 seeds, but for the transmon sys-
tem (25)–(27) with T = 2.83 (50 ns) and δt = 0.025 (0.442 ns)
given in nondimensionalized numerical units and SI units, respec-
tively (energy is measured in units of |κ| ≈ 5.97 × 10−27 J and time
in h̄/|κ| ≈ 17.7 ns).

C. Gradient evaluation time

Next we record the wall-clock time for calculating the
various gradients as a function of DH, including DH = 2
and 9 associated with Figs. 2 and 3. For each DH we gen-
erate ten random Hamiltonian matrices and controls of length
Nt = 400. Figure 4 shows the median wall-clock time con-
sumption and these results reveal that the performance gap
between the exact derivative methods is monotonically and
exponentially increasing (note the logarithmic scale). This is

O

FIG. 4. Gradient and recursive commutator tail (23) median cal-
culation time with negligible variance as a function of Hilbert space
dimensionality. The exponentially increasing performance gap be-
tween exact derivative methods is roughly indicated by the arrows.

not inherently surprising due to the exact propagation itself
being trivially much slower. However, even when subtracting
this contribution, calculating the recursive commutator tail
in Eq. (23) to ensure gradient exactness exhibits a similar
scaling with orders of magnitude in separation to the full
Trotter calculations. That is, the smaller gaps between the
three upper methods also grow with DH. This trend was
already visible in Figs. 2 and 3 by comparing the relative
wall-clock time distance between the dark and light blue
trajectories.

A natural question is, then, where the exact derivatives for
other approximate dynamical schemes such as the aforemen-
tioned Krylov-Lanczos, finite Taylor series, Crank-Nicolson,
and Chebyshev methods would manifest in Fig. 4. Leaving
a complete numerical study of this for future work, we nev-
ertheless argue based on scaling properties in Sec. VI that
Krylov-Lanczos scheme, perhaps the most prominent general
alternative, would lie somewhere in the shown performance
gap for DH � 1 and above otherwise. We have performed
similar mathematical analysis for the remaining mentioned
schemes but consider it beyond the scope of this paper to
include it explicitly since they yield comparable or worse
results. In addition to δt , most of these also depend on series
truncation parameters similar to kmax in Eq. (23).

V. GENERALIZABILITY OF MULTIPLE CONTROLS

Up to now our analyses assumed a single, generically
parametrized control Hamiltonian Ĥc(t, u(t )). When includ-
ing more than one control, our approach depends on the
computational feasibility of maintaining the diagonality cri-
teria for the control Hamiltonians as follows.

We define a set of K controls and their corresponding
control Hamiltonians by

C(t ) = {Ĥc
(k)(t, u(k)(t ))

}K

k=1 = ∪Q
q=1Cq(t ), (28)

which we have sorted into Q sets Cq of mutually commut-
ing elements with K =∑q |Cq(t )|. Let R̂q(t ) be the unitary
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basis change operator that simultaneously diagonalizes the
elements of Cq(t ) from a chosen reference basis, e.g., a natural
or the computational. That is, [X̂ , Ŷ ] = 0 and R̂q(t )†X̂R̂q(t )
is diagonal for all X̂ , Ŷ ∈ Cq(t ).

Upon temporal discretization, consider the time evolution
operator at time index n with, e.g., the ST2 expansion of
Eq. (16d),

Û ex
n = exp

[
−iδt

(
Ĥd

n +
K∑

k=1

Ĥc
n,(k)

)]

≈ ÛST2
n

= exp

[
− iδt

2

(∑
k

Ĥ c
n,(k)

)]
e−iδt Ĥd

n

× exp

[
− iδt

2

(∑
k

Ĥ c
n,(k)

)]
. (29)

The sum can be grouped as
∑

k =∑q

∑
Cn,q

and the expo-
nential can then be split into the sets of mutually commuting
elements with further first-order Trotterizations as in Sec. II C,

exp

⎡
⎣− iδt

2

∑
q

⎛
⎝∑

Cn,q

Ĥ c
n,(k)

⎞
⎠
⎤
⎦

≈
Q∏

q=1

exp

⎡
⎣− iδt

2

⎛
⎝∑

Cn,q

Ĥ c
n,(k)

⎞
⎠
⎤
⎦

=
Q∏

q=1

R̂n,q

⎛
⎝exp

⎡
⎣− iδt

2

⎛
⎝∑

Cn,q

R̂†
n,qĤc

n,(k)R̂n,q

⎞
⎠
⎤
⎦
⎞
⎠R̂†

n,q,

(30)

which is exact if Q = 1 and of O(δt2) otherwise. Also, we
utilized that eÂ = B̂eB̂†ÂB̂B̂† for any unitary B̂. Here each
R̂†

n,qĤc
n,(k)R̂n,q is by definition diagonal and Eq. (30) thus

sequentially transforms into the respective control-diagonal
bases where it is trivial to compute the exponentials and their
exact derivatives. This is the same core idea as in the split-
step Fourier transform [62] for propagating real-space wave
functions.

For this to be an effective approach for Q > 1, performing
the basis change R̂n,q must be significantly cheaper than the
original dense exponentiation. The one exceptional instance
where this condition is not met occurs when R̂n,q depends
on the control value and simultaneously no closed analytical
solution to the transformations is known. This implies that
R̂n,q must be obtained anew in each iteration by numerical di-
agonalization, which is as expensive as dense exponentiation.
Otherwise, R̂n,q and products involving these need only be
calculated maximally once and can be stored on the disk and
loaded into memory at runtime. Note in particular that the ex-
ceptional case can be categorically ruled out upon additionally
including the pervasive assumption of bilinear controls, i.e.,
Ĥc

(k)(t, u(t )) → u(k)(t )Ĥc
(k)(t ). As in the transmon example,

this is because the control value is simply a scaling factor to
the matrix diagonalization.

In certain Q > 1 cases it may not possible to numerically
diagonalize for R̂n,q even once due to very large DH, for
example, in a many-body setting. One is then seemingly re-
stricted to Q = 1, which incidentally covers a broad range
of rich and realistic problems: for example, combined con-
trol over (i) individual and similar site-site couplings in spin
chains [63] [

∑
k uk (t )σ̂ i

k and
∑

k uk (t )σ̂ i
k σ̂

i
k+1, respectively, for

any i = x, y, z] or (ii) on-site interaction and single-site poten-
tials in the Bose-Hubbard model [18,64] [u(t )

∑
k n̂k (n̂k − 1)

and
∑

k uk (t )n̂k , respectively]. However, we may yet entertain
the capability of treating Q > 1. For example, a Q = 2 spin
chain in the form Ĥ = u1(t )

∑
σ̂ x

k σ̂ x
k+1 + u2(t )

∑
σ̂ z

k σ̂ z
k+1 can

be represented in terms of either σ̂ x or σ̂ z eigenstates which
yield control diagonal representations for the respective terms.
We can then proceed to optimize one of the mutually com-
muting sets while momentarily considering the rest a drift
contribution, so effectively Q = 1 for a number of iterations.
That is, by numerically constructing the bases, Hamiltonians,
and states for each set individually and choosing either of the
representations at the start of each iteration, we circumvent the
need for explicitly calculating R̂n,q that transforms between
them. The controls u1(t ) and u2(t ) in the example may then
be sequentially optimized and in the optimization literature
this is known as coordinate descent [46].

The principal computational cost associated with consider-
ing multiple controls in Eq. (28) is therefore not the number
of controls K itself but the number of mutually commuting
sets Q � K they distribute into. Importantly, the number of
basis transformations scales only linearly with Q − 1 and
typical values are Q = 1, 2. For the simplest case Q = 1 and
time-independent R̂ = R̂n,1 the full time evolution Û (T ; 0) is
further simplified since R̂†R̂ = 1. The two concrete problems
studied in Sec. II fall into this category. For the two-level
(transmon) system, the natural basis did (did not) diagonalize
the control and thus R̂ = 1 (R̂ was numerically obtained).

The presented control-diagonal Trotter methodology’s re-
sults and relative performance capacity therefore generalize
well to more than one control.

VI. DISCUSSION AND OUTLOOK

We discussed how and why accurate derivatives are central
to achieve high fidelities and convergence rates in derivative-
based methods for generic optimization tasks. Examining
common choices of time evolution scheme, the exact and
two Suzuki-Trotter expanded propagators, showed how these
can be interpreted and related in terms of optimization land-
scapes. We found their resulting analytically exact derivatives
to differ vastly in complexity: Assuming a diagonal control
Hamiltonian for the Trotterized landscapes, we circumvented
a detrimental infinite series and highlighted many additional
attractive properties compared to the exact landscape leading
to the performance gap qualitatively illustrated in Fig. 1.

Additionally, only one of the Trotter gradients’ analytical
forms coincides with that of the first-order approximation in
the exact landscape. This is quite exceptional, since the second
Trotter gradient of equivalent complexity, as well as those due
to other, standard dynamical approximations with increased
derivative complexities, does not. When balancing respective
errors in the dynamics and in the derivative calculations, the
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latter is in a certain sense more important as the derivatives
should match the landscape. We demonstrated the main ideas
by considering two problems of varying Hilbert space size and
in both instances found the expected performance hierarchies.
The control-diagonal Trotter exact derivatives lead to a sev-
eral orders of magnitude increase in computational speed and
high-fidelity results with zero error to machine precision. This
trend was verified to be monotonic and exponentially growing
due to separate numerical complexity differences in both dy-
namics and derivatives with the Hilbert space size. Finally,
it was shown that the control-diagonal Trotter methodology
generalizes well to more than one control.

The immediate advantages of optimizing in the Trotterized
landscapes over the exact landscape are twofold: (i) They are
applicable to much larger systems and (ii) their analytically
exact control derivatives and thus search directions essential
for optimization convergence are greatly simplified. We as-
sumed that the control Hamiltonian is diagonal and this can
practically always be, and often automatically is, fulfilled. In
particular, the main computational effort in the optimization
lies in propagating the state, i.e., the dynamics, and is not
subject to severely scaling bottlenecks like matrix exponen-
tiation, recursive commutators, or diagonalization. We did
not include the exact gradient obtained in the diagonalization
paradigm [54] for our comparative studies. The principal cost
is Nt diagonalizations of size DH × DH in each iteration and
it would thus exhibit a similar performance gap to the Trotter
methods.

The only implicit requirement is that δt is small enough
for the Trotterization to faithfully approximate the exact dy-
namics or, equivalently, the exact landscape in Fig. 1 and
Eq. (17). We did not explicitly include this consideration in
the discussion of the presented examples since it is not cen-
tral or important to the overall methodological performance
hierarchy. Of course, to obtain meaningful results in prac-
tical application, it is essential to establish an upper bound
for the time resolution also with respect to the initial ap-
proximation of Eq. (1) by Eqs. (4). Note, however, that the
exact Trotter derivatives are irrespective of δt in terms of
complexity. This allows for the effective use of homotopy
methods [64,65] (among others) in δt , that is, optimization
with an increasingly finer time resolution. This can be used
to significantly speed up initial iterations without loss of ac-
curacy in the final dynamics, which typically has an error of
O(δt2), because the (quasi)continuous deformation of δt can
be made arbitrarily small at the end. The exact propagator can
nonetheless still be used if the Hilbert space is sufficiently
low dimensional such that direct exponentiation and series
summation or alternatively auxiliary matrix exponentiation
or diagonalization is feasible (cf. Fig. 4). However, even for
the simplest possible nontrivial two-level LZ problem illus-
trated in Fig. 2, this approach is seen to be much slower
than the alternative, controllably approximate methods. This
difference in computational feasibility increases monotoni-
cally and exponentially with the Hilbert space dimensionality
as evidenced by Fig. 4. The aggregate computational perfor-
mance of our control-diagonal Trotter methodology provides
a scaffolding for efficient derivative-based optimization of
very-high-dimensional many-body dynamics in the high-
fidelity limit. We pursue this in parallel work [64] for a system

far beyond exact diagonalization approaches, necessitating a
matrix product state description. Below we expand on a few
pertinent discussion points.

Krylov-Lanczos methods. Another common way of ap-
proximating the time evolution for extended applicability
is through the use of Krylov-Lanczos subspace meth-
ods [53,66,67] where exponential operator applications are
performed without explicit construction. Notice that the aux-
iliary matrix method (24) can be adapted to this setting by
multiplying from the right by (0, |ψn〉)T , yielding two separate
Krylov-Lanczos calculations ( ∂Ûn

∂un
|ψn〉 , Ûn |ψn〉)T for each of

the K controls in Eq. (30). Here we briefly compare this
approach with our Trotterized control-diagonal scheme for
K = 1. For example, numerically stepping forward in time
|ψn+1〉 = Ûn |ψn〉 with Krylov-Lanczos entails (i) iterative
construction of k � DH Lanczos vectors qi of dimension
DH, each requiring a matrix-vector multiplication of the form
Ĥnqi as the most expensive operation, and (ii) matrix ex-
ponentiation of a k × k matrix and at least another matrix
multiplication. This turns out to be computationally efficient
compared to exact propagation when 1 < k � DH, where
k controls the approximation accuracy. The control-diagonal
Trotter steps, e.g., |ψn+1〉 = Û c/2

n Ûd
n Û c/2

n |ψn〉, naively require
numerically a total of three matrix multiplications, but the
vectorized form (18a) reduces this significantly. Since Û c/2

n is
diagonal, the exponentiation of each diagonal element can be
efficiently stored in a vector, and a total of two elementwise
vector-vector multiplications need to be performed for the
control part. For the drift part, recall that Ûd

n only needs to
be calculated once and can be cached indefinitely, leaving
only a matrix-vector multiplication with the same cost as con-
structing a single Lanczos vector. Thus, simply constructing
the Lanczos vectors [step (i)] is more costly than performing
the full Trotter step. Further, the Krylov-Lanczos procedure
obfuscates the direct analytical dependence on the control
un, disallowing a straightforward analytical derivative calcu-
lation. As opposed to the control-diagonal Trotterization, this
leads to a mismatch between the optimization landscape and
the derivative calculations unless k is large enough since the
exactness of both is linked to an approximation parameter.
Nevertheless, Krylov propagation is strongly preferable to
exact propagation even for moderate values of DH and we
expect that further studies would place it somewhere inside
the performance gaps in Figs. 2–4.

Robustness. Optimal controls extracted from open-loop
methodologies may be sensitive to variations and uncertainties
in the underlying physical model. Let x be a physical and
possibly time-dependent quantity related to the control or any
of the uncontrolled system parameters. If x was modeled to
have value xtheory but in actual experimental implementation
has value xexpt, then the fidelity is likely to degrade as a result,
Fexpt < Ftheory. These modeling errors could originate from
many sources, for example, imperfect equipment fabrication,
drifting or fluctuating noisy signals, or nondeterministic run-
to-run system preparation.

It is however possible to account for such errors by
including these uncertainties through, e.g., ensemble opti-
mization [10,68]. The cost function is then taken as an
ensemble average J̄ =∑L

l=1 J[xl ], possibly weighted, over L
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realizations of the physical system. In each realization, the
uncertain parameter is taken to be x = xl , which could be
randomly or regularly sampled from a suitable model distribu-
tion, for example, Gaussian or bounded uniform. If the noise
on x is adequately characterized, the optimal controls achieved
by minimizing J̄ will have built-in robustness to the parameter
fluctuations.

Although this idea is simple and straightforward to im-
plement, each iteration now requires the calculation of L
gradients since ∂ J̄

∂un
=∑L

l=1
∂J[xl ]
∂un

. This places an increased
emphasis on both gradient computation speed and exact-
ness. Reaching a certain number of iterations increases the
wall-clock time by roughly a factor of L. Additionally, deriva-
tive errors are compounded much more severely between
iterations. For example, Hessian approximation errors for
quasi-Newton methods would lead to false convergence at
roughly L times the normal rate or equivalently at 1/L times
the normal iterations.

As an example, suppose one of the physical parameters
associated with Figs. 2–3 was uncertain and optimized with
L = 10 ensemble members. The kmax = 0 approximation in
Figs. 2 and 3 stagnated at fewer than 50 iterations would now
stagnate at fewer than 10. The exact gradient wall-clock time
performance gap between the Suzuki-Trotter and exact prop-
agator methods would increase by another order of magnitude
in absolute time since all iterations take L = 10 longer.

The herein presented control-diagonal Trotter methods are
thus prospectively useful not only for handling larger Hilbert
spaces but also for more efficiently incorporating robustness.

Hessian. The exact Hessian has strong theoretical proper-
ties as discussed in Sec. II, and although our calculations of
the exact Hessian have been verified numerically, we did not
perform comparative studies. Nevertheless, we have found in
a parallel similar work that a calculation of the exact Hes-
sian within the diagonalization paradigm [54] outperforms a
gradient-only quasi-Newton approach in terms of statistics
and best results in certain domains. This suggests similar
possibilities in the present case.

Discretize-then-optimize. Finally, we point out that the re-
sults in this paper followed a discretize-then-optimize (time
discretization before ordinary vector derivatives of a cost
function) rather than optimize-then-discretize [48] (time dis-
cretization after continuous Gâteaux derivatives of a cost
functional) approach. Since these approaches in general do not
necessarily yield the same derivative expressions, the former
approach is preferable because it specifically takes into ac-
count the chosen propagation scheme implementation and the
derivatives match the landscape equivalently dynamics which
has been a main point throughout this paper.5 It is therefore
quite fortuitous that, e.g., (i) the exact propagator gradient
∇Jex

F calculated by the optimize-then-discretize approach [48]
yields exactly the same expression as ∇JST1

F and (ii) ÛST1

is a standard propagator for some systems, e.g., for wave

5Similarly, application of Krylov subspace methods for the time
evolution while using exact gradients for the exact propagator con-
stitutes another potential mismatch between the derivatives and
landscape equivalently dynamics.

functions in real space [62,65,69]. The combined effect is that
the sought-after gradient exactness is obtained by virtue of
standard methods alone in these situations. The same would
not be true if either Û ex or ÛST2 was used [cf. Eqs. (22)].
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APPENDIX: DERIVATION OF EXACT GRADIENTS AND
HESSIANS

Here we present the calculations leading to the exact
gradient and Hessian expressions for one of the exact expo-
nentiation propagators and the two Trotterized propagators
with a diagonal control Hamiltonian defined in Eqs. (16). We
also define the regularization cost functionals and likewise
calculate their derivatives after discretization. Emphasis is put
on thoroughness of the steps, and relevant equations for the
derivations are restated for convenience where applicable so
as to be self-contained.

We assume that the control u(t ) is discretized on a regularly
spaced time grid t ∈ [t1, t2, . . . , tNt ] = [0, δt, . . . , T ]. Recall
that |ψn+1〉 = Ûn |ψn〉 with |ψ1〉 = |ψini〉 and |ψNt 〉 = |ψ (T )〉,
and Ĥ (un) = Ĥn = Ĥd

n + Ĥc
n , where Ĥc

n (Ĥd
n ) is the control

(drift) Hamiltonian. Define the auxiliary state |χNt 〉 = |ψtgt〉
with |χn〉 = Û†

n |χn+1〉. The derivatives given in Eqs. (9) are to
be evaluated for the propagators Û ex = Û ex2 , ÛST1 , and ÛST2

given in Eqs. (16).
As mentioned in the main text, the following results are

trivially extended to situations other than pure state transfer:
The central calculations of Eqs. (7) are the same. The primary
differences lie in how these enter a given cost functional and
if the cached objects are states or either unitary or density
matrices.

1. Derivatives for exact propagators

The exact exponentiation propagator has the form Û ex
n =

exp[−iĤ (un)δt] and the derivative overlap reads
∂o

∂un
= 〈χNt

∣∣ ∂

∂un

(
Û ex

Nt −1 · · · Û ex
n · · · Û ex

1

)|ψ1〉

= 〈χn+1|∂Û
ex
n

∂un
|ψn〉. (A1)

The task is then to calculate ∂Û ex
n

∂un
and be careful with ordering.

The ex superscript is omitted for brevity in most of the steps
below. We expand the exponential as

∂Ûn

∂un
= ∂

∂un
(e−iĤnδt )

=
∞∑

p=0

(−iδt )p

p!

∂

∂un

(
Ĥ p

n

)

=
∞∑

p=1

(−iδt )p

p!

p−1∑
q=0

Ĥq
n

(
∂Ĥn

∂un

)
Ĥ p−q−1. (A2)
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Define for momentary simplicity A ≡ −iĤnδt and B ≡
−i ∂Ĥn

∂un
δt . Then it can be shown that

∂Ûn

∂un
=

∞∑
p=0

∞∑
q=0

ApBAq

(p + q + 1)!
. (A3)

Using now the relations for the beta and Gamma func-
tions [70]


(a) = (n − 1)! for a ∈ Z+, (A4)

β(a, b) =
∫ 1

0
(1 − α)a−1αb−1dα

= 
(a)
(b)


(a + b)

= (a − 1)!(b − 1)!

(a + b − 1)!

= p!q!

(p + q + 1)!
(A5)

and taking a = p + 1 and b = q + 1, we obtain

1

(p + q + 1)!
= 1

p!q!

∫ 1

0
(1 − α)pαqdα. (A6)

Inserting this and initially pulling out the integral, we obtain

∂Ûn

∂un
=

∞∑
p=0

∞∑
q=0

ApBAq

p!q!

∫ 1

0
αp(1 − α)qdα

=
∫ 1

0

( ∞∑
p=0

((1 − α)A)p

p!

)
B

∞∑
q=0

(αA)q

q!
dα

=
∫ 1

0
e(1−α)ABeαAdα

= eA
∫ 1

0
e−αABeαAdα

= Ûn

∫ 1

0
e(iαδt )Ĥn

(
−iδt

∂Ĥn

∂un

)
e−(iαδt )Ĥn dα. (A7)

The integrand can be evaluated by defining the recursive com-
mutator in Eq. (19) with the base case [cxX, cyY ]0 = cyY and
using Baker-Campbell-Hausdorff relations [71]

[cxX, cyY ]k = [cxX, [cxX, cyY ]k−1] = ck
xcy[X,Y ]k, (A8)

ecxXYe−cxX =
∞∑

k=0

[cxX, cyY ]k

k!
=

∞∑
k=0

ck
xcy

k!
[X,Y ]k; (A9)

by evaluating these with scalars cx = iαδt and cy = −iδt , we
obtain

∂Ûn

∂un
= Ûn

∫ 1

0

( ∞∑
k=0

(iαδt )k (−iδt )

k!

[
Ĥn,

∂Ĥn

∂un

]
k

dα

)

= Ûn

∞∑
k=0

(−iδt )
ikδt k

k!

[
Ĥn,

∂Ĥn

∂un

]
k

(∫ 1

0
αkdα

)

= Ûn(−iδt )
∞∑

k=0

ikδt k

(k + 1)!

[
Ĥn,

∂Ĥn

∂un

]
k

. (A10)

Substituting this into Eq. (A1), then inserting the resulting

expression into Eqs. (9), and using ∂Ĥn
∂un

= ∂Ĥc
n

∂un
gives

∂Jex
F

∂un
= −Re

(
o∗〈χn+1|∂Û

ex
n

∂un
|ψn〉

)

= Re

{
io∗〈χn|

( ∞∑
k=0

ikδt k

(k + 1)!

[
Ĥn,

∂Ĥc
n

∂un

]
k

)
|ψn〉

}
δt

= Re

(
io∗〈χn|∂Ĥc

n

∂un
|ψn〉

)
δt + O∇Jex

F
(δt2), (A11)

which is the expression stated in Eqs. (22a) and (23).
With the gradient in hand, the Hessian calculation only

needs additional evaluation of the second derivatives of o,

∂2o

∂un∂um
= 〈χNt

∣∣ÛNt −1 · · · ∂Ûn

∂un
· · · ∂Ûm

∂um
· · · Û1|ψ1〉

= 〈χn+1|∂Ûn

∂un

(
n−1∏

j=m+1

Û j

)
∂Ûm

∂um
|ψm〉 for n > m,

(A12a)

∂2o

∂un∂um
= 〈χNt

∣∣ÛNt −1 · · · ∂2Ûn

∂u2
n

· · · Û1|ψ1〉

= 〈χn+1|∂
2Ûn

∂u2
n

|ψn〉 for n = m. (A12b)

The case m > n is the same as n > m with indices n � m
and we thus need only calculate one of the cases due to this
symmetry. Inserting these expressions in Eqs. (9), we obtain
the exact Hessian elements n � m without loss of generality
for the exact propagator Ûn = Û ex

n ,

∂2Jex
F

∂un∂um

= −Re

[(
〈χm+1|∂Ûm

∂um
|ψm〉

)∗
〈χn+1|∂Ûn

∂un
|ψn〉

]

− Re

[
o∗ 〈χn+1|∂Ûn

∂un

(
n−1∏

j=m+1

Û j

)
∂Ûm

∂um
|ψm〉

]
(1 − δn,m)

− Re

(
o∗ 〈χn+1|∂

2Ûn

∂u2
n

|ψn〉
)

δn,m, (A13)

where ∂Ûn
∂un

is given by Eq. (A10). Note that the third and
second terms appear only on the diagonal and off-diagonal,
respectively. In optimization contexts the propagator gradient
is also always computed and those elements can thus be reused
here in practical applications. Evaluating ∂2Ûn

∂u2
n

is straightfor-
ward and gives

∂2Ûn

∂u2
n

= Ûn

{(
− iδt

∞∑
k=0

ikδt k

(k + 1)!

[
Ĥn,

∂Ĥc
n

∂un

]
k

)2

− iδt
∞∑

k=0

ikδt k

(k + 1)!

∂

∂un

([
Ĥn,

∂Ĥc
n

∂un

]
k

)}
, (A14)
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but the recursive commutator derivative is cumbersome

[Ĥn, Ĥ ′
n]′k = [Ĥn, [Ĥn, Ĥ ′

n]′k−1] − [Ĥ ′
n, [Ĥn, Ĥ ′

n]k−1]

[Ĥn, Ĥ ′
n]′0 = Ĥ ′′

n ,

[Ĥn, Ĥ ′
n]′1 = [Ĥn, Ĥ ′′

n ],

[Ĥn, Ĥ ′
n]′2 = [Ĥn, [Ĥn, Ĥ ′′

n ]] + [Ĥ ′
n, [Ĥn, Ĥ ′

n]],
... (A15)

where we explicitly evaluated the first few terms and Ĥ ′
n ≡

∂Ĥn/∂un. Note that the exact derivatives entail an infinite
summation or to machine precision for finite arithmetic.

2. Derivatives for Trotterized propagators

We consider now in turn the Suzuki-Trotter expansions
ÛST1

n = Û c/2
n+1Ûd

n Û c/2
n and ÛST2

n = Û c/2
n Ûd

n Û c/2
n , where Û c/2

n ≡
exp(−iĤ c

n δt/2) and Ûd
n is given by Eq. (16f).

a. Derivatives of ÛST1
n

For the Suzuki-Trotter expansion ÛST1
n = Û c/2

n+1Ûd
n Û c/2

n , the
un control dependence is distributed among n and n − 1 (ex-
cept at the end points n = 1, N), yielding

∂o

∂un
= 〈χNt

∣∣ ∂

∂un

(
ÛST1

Nt −1 · · · ÛST1
n ÛST1

n−1 · · · ÛST1
1

)|ψ1〉

= 〈χn+1| ∂

∂un

(
ÛST1

n ÛST1
n−1

)|ψn−1〉. (A16)

Additionally, assume that the control Hamiltonian is diagonal.
We use Eq. (A10) to take the derivative of (ÛST1

n ÛST1
n−1),

∂

∂un

(
ÛST1

n ÛST1
n−1

) = ∂

∂un

[(
Û c/2

n+1Ûd
n Û c/2

n

)(
Û c/2

n Ûd
n−1Û

c/2
n−1

)]

= (Û c/2
n+1Ûd

n

)∂Û c
n

∂un

(
Ûd

n−1Û
c/2
n−1

)

= (Û c/2
n+1Ûd

n

){
Û c

n

(
−iδt

∂Ĥc
n

∂un

)}(
Ûd

n−1Û
c/2
n−1

)

= (−iδt )
(
Û c/2

n+1Ûd
n Û c/2

n

)∂Ĥc
n

∂un

(
Û c/2

n Ûd
n−1Û

c/2
n−1

)

= (−iδt )ÛST1
n

∂Ĥc
n

∂un
ÛST1

n−1. (A17)

Here we also used the fact that two diagonal matrices al-
ways commute, first to evaluate the recursive commutator

[Ĥc
n ,

∂Ĥc
n

∂un
]k = ∂Ĥc

n
∂un

δ0,k from Eq. (A10) and second to recom-

bine the initial propagators since [ ∂Ĥc
n

∂un
, Û c/2

n ] = 0. Inserting
this into Eqs. (A16) and (9) yields the exact gradient stated
in Eq. (22b),

∂JST1
F

∂un
= Re

(
io∗〈χn|∂Hc

n

∂un
|ψn〉

)
δt, (A18)

with an additional factor 1
2 at the end points (n = 1, Nt ). Apart

from these, this is identical in structure to the exact propagator
gradient (22a) when in the first-order approximation kmax = 0,
i.e., discarding the otherwise expensive O(δt2) tail.

The second derivatives to be calculated for the Hessian are

∂2o

∂un∂um
= 〈χn+1| ∂

∂un

(
ÛST1

n ÛST1
n−1

)( n−2∏
j=m+1

Û j

)
∂

∂um

(
ÛST1

m ÛST1
m−1

) |ψm−1〉 for n > m, (A19a)

∂2o

∂un∂um
= 〈χn+1| ∂2

∂u2
n

(
ÛST1

n ÛST1
n−1

)|ψn−1〉 for n = m. (A19b)

For n > m we only need the first derivative given in Eq. (A17). For n = m we take the second derivative of (ÛST1
n ÛST1

n−1) using

Eq. (A17) and [ ∂Ĥc
n

∂un
, Û c/2

n ] = 0,

∂2

∂u2
n

(
ÛST1

n ÛST1
n−1

) = (−iδt )
∂

∂un

(
ÛST1

n

∂Ĥc
n

∂un
ÛST1

n−1

)

= (−iδt )Û c/2
n+1Ûd

n

∂

∂un

(
Û c

n

∂Ĥc
n

∂un

)
Ûd

n−1Û
c/2
n−1

= (−iδt )Û c/2
n+1Ûd

n

(
Û c

n

(
−iδt

∂Ĥc
n

∂un

)
∂Ĥc

n

∂un
+ Û c

n

∂2Ĥc
n

∂u2
n

)
Ûd

n−1Û
c/2
n−1

= (−iδt )Û c/2
n+1Ûd

n Û c/2
n

(
∂2Ĥc

n

∂u2
n

− iδt

(
∂Ĥc

n

∂un

)2
)
Û c/2

n Ûd
n−1Û

c/2
n−1

= (−iδt )ÛST1
n

(
∂2Ĥc

n

∂u2
n

− iδt

(
∂Ĥc

n

∂un

)2
)
ÛST1

n−1. (A20)
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Inserting into Eqs. (9), the exact Hessian elements n � m for this Trotterization scheme are therefore

∂2JST1
F

∂un∂um
= −Re

(
〈ψm|∂Ĥc

m

∂um
|χm〉 〈χn|∂Ĥc

n

∂un
|ψn〉

)
δt2 + Re

⎡
⎢⎣o∗ 〈χn|∂Ĥc

n

∂un

⎛
⎜⎝ n−1∏

j = m

ÛST1
j

⎞
⎟⎠∂Ĥc

m

∂um
|ψm〉

⎤
⎥⎦(1 − δn,m)δt2

+ Re

{
io∗ 〈χn|

[
∂2Ĥc

n

∂u2
n

− iδt

(
∂Ĥc

n

∂un

)2
]
|ψn〉

}
δn,mδt . (A21)

Derivatives of the end points corresponding to the outer “rim”
of the Hessian matrix carry an additional factor 1

2 each, for
a total of 1

4 in the corners and 1
2 on the edges. Note that

the third and second terms appear only on the diagonal and
off-diagonal, respectively. As with the gradient, the Hessian
is similarly identical to Eq. (A13) when retaining only the
k = kmax = 0 term. As an implementation detail, note that
the propagated states and operator-state products from (22b)
may be reused here. The second term is the most costly to
evaluate because of additional state propagations. The order
of evaluation should be done row by row to further increase
reusability of computations.

b. Derivatives of ÛST2
n

The Suzuki-Trotter expansion reads ÛST2
n = Û c/2

n Ûd
n Û c/2

n
and the overlap derivative reads

∂o

∂un
= ∂

∂un

(
ÛST2

Nt −1 · · · ÛST2
n · · · ÛST2

1

)

= 〈χn+1|∂Û
ST2
n

∂un
|ψn〉. (A22)

Invoking Eq. (A10) for Û c/2
n , we find

∂ÛST2
n

∂un
= ∂Û c/2

n

∂un
Ûd

n Û c/2
n + Û c/2

n Ûd
n

∂Û c/2
n

∂un

= − iδt

2

(
Û c/2

n

∂Ĥc
n

∂un
Ûd

n Û c/2
n + Û c/2

n Ûd
n Û c/2

n

∂Ĥc
n

∂un

)

= − iδt

2

(
∂Ĥc

n

∂un
ÛST2

n + ÛST2
n

∂Ĥc
n

∂un

)
. (A23)

Here we also used that two diagonal matrices always com-

mute, first to evaluate the recursive commutator [Ĥc
n ,

∂Ĥc
n

∂un
]k =

∂Ĥc
n

∂un
δ0,k from Eq. (A10) and second to recombine the ini-

tial propagators since [ ∂Ĥc
n

∂un
, Û c/2

n ] = 0. Substituting back into
Eqs. (A22) and (9), we find

∂o

∂un
= − iδt

2
〈χn+1|

(
∂Ĥc

n

∂un
ÛST2

n + ÛST2
n

∂Ĥc
n

∂un

)
|ψn〉

= − iδt

2

(
〈χn+1|∂Ĥc

n

∂un
|ψn+1〉 + 〈χn|∂Ĥc

n

∂un
|ψn〉

)

= − iδt

2

n+1∑
p=n

〈χp|∂Ĥc
n

∂un
|ψp〉 (A24)

⇒ ∂JST2
F

∂un
= Re

(
io∗

2

n+1∑
p=n

〈χp|∂Hc
n

∂un
|ψp〉

)
δt (A25)

for all n = 1, . . . , Nt − 1, which is the expression in Eq. (22c).
After some lines of calculation, the second derivatives of o

for the Hessian evaluate to

∂2o

∂un∂um
= −δt2

4

n+1∑
p=n

m+1∑
q=m

〈χp|∂Ĥc
n

∂un

(
p−1∏
j=q

ÛST2
n

)

× ∂Ĥc
m

∂um
|ψq〉 for n > m, (A26a)

∂2o

∂un∂um
= − iδt

2

{
n+1∑
j=n

〈χ j |
[

∂2Ĥc
n

∂u2
n

− iδt

2

(
∂Ĥc

n

∂un

)2
]
|ψ j〉

− iδt〈χn+1|∂Ĥc
n

∂un
ÛST2

n

∂Ĥc
n

∂un
|ψn〉

}
for n = m.

(A26b)

Substituting Eqs. (A24), (A26a), and (A26b) into Eq. (9)
yields the final result

∂2JST2
F

∂un∂um

= Re

(
1

4

n+1∑
p=n

m+1∑
q=m

〈ψq|∂Ĥc
m

∂um
|χq〉 〈χp|∂Ĥc

n

∂un
|ψp〉 δt2

+ o∗

4

n+1∑
p=n

m+1∑
q=m

〈χp|∂Ĥc
n

∂un

p−1∏
j=q

ÛST2
n

∂Ĥc
m

∂um
|ψq〉 (1 − δn,m)δt2

+ io∗

2

{
n+1∑
j=n

〈χ j |
[
∂2Ĥc

n

∂u2
n

− iδt

2

(
∂Ĥc

n

∂un

)2]
|ψ j〉

−iδt 〈χn+1|∂Ĥc
n

∂un
ÛST2

n

∂Ĥc
n

∂un
|ψn〉

}
δn,mδt

)
. (A27)

The Hessian expression for ÛST2
n is thus much more cumber-

some than that for ÛST1
n .

3. Derivatives for regularizations

In many applications, it is advantageous to regularize the
control amplitude and/or its temporal derivative. This requires
additional terms in the cost functional objective, imposition of
discretization, and calculation of the respective derivatives. As
with the propagator, the chosen form of the implementation
scheme changes the derivative calculations.
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The amplitude regularization is straightforward,

Jα = α

2

∫ T

0
u(t )2dt → α

2
δt

Nt∑
i=1

u2
i , (A28)

∂Jα

∂un
= αδtun,

∂2Jα

∂um∂un
= αδtδn,m, (A29)

where α is a weighting factor. The derivative regularization is a bit more involved because of the end points

Jγ = γ

2

∫ T

0
u̇(t )2dt → γ

8δt

(
(−3u1 + 4u2 − u3)2 +

Nt −1∑
i=2

(ui+1 − ui−1)2 + (3uNt − 4uNt −1 + uNt −2)2

)
, (A30)

where we used forward (backward) difference approximations for the first (last) point and center approximations for the bulk, all
to O(δt2). The derivative with respect to the first and last three indices is different from the bulk. The resulting gradient written
in vector form is

∇Jγ = γ

4δt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10u1 − 12u2 + 2u3

−12u1 + 17u2 − 4u3 − u4

2u1 − 4u2 + 3u3 − u5
...

2un − un−2 + un+2
...

2uNt − 4uNt −1 + 3uNt −2 − uNt −4

−12uNt + 17uNt −1 − 4uNt −2 − uNt −3

10uNt − 12uNt −1 + 2uNt −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A31)

where the vertical dots extend over the bulk points. Similarly, the three first and last Hessian rows are different from the bulk. In
a stacking notation where the indices denote the rows, we obtain

∇2Jγ =
⎡
⎣ [∇2Jγ ]1:3s

[∇2Jγ ]4:Nt −3

[∇2Jγ ]Nt −2:Nt

⎤
⎦, (A32)

where the matrices evaluate to

[∇2Jγ ]1:3 = γ

4δt

⎡
⎣ 10 −12 2 0 0 0 · · ·

−12 17 −4 −1 0 0 · · ·
2 −4 3 0 −1 0 · · ·

⎤
⎦, (A33)

[∇2Jγ ]4:Nt −3 = γ

4δt

⎡
⎣ 0 −1 0 2 0 −1 0 0 · · ·

. . .
. . .

. . .

· · · 0 0 −1 0 2 0 −1 0

⎤
⎦, (A34)

[∇2Jγ ]Nt −2:Nt = γ

4δt

⎡
⎣· · · 0 −1 0 3 −4 2

· · · 0 0 −1 −4 17 −12
· · · 0 0 0 2 −12 10

⎤
⎦, (A35)

with the dots denoting continuation of the number they point to.
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