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Calculation of vibrational eigenenergies on a quantum computer:
Application to the Fermi resonance in CO2
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We apply a modified version of the multistate contracted variational quantum eigensolver method to calculate
vibrational eigenstates of CO2 on a quantum computer. A two-mode model of CO2 is employed, and the
vibrational wave function is expanded using three harmonic-oscillator basis functions for each mode. The wave
functions are mapped to four qubits by a compact mapping method. The Hamiltonian matrix elements
are evaluated on a simulator including noise and on a quantum computer available at IBM Quantum, while the
Hamiltonian matrix is diagonalized on a classical computer. We propose an error mitigation method by which
the shift of the numerical values of the matrix elements originating from the noise can be corrected, and examine
the dependence of the statistical uncertainties on the number of executions of each quantum circuit. We find that,
at about 8 × 106 executions, the energy eigenvalues of the Fermi resonance states in CO2 can be obtained with
an uncertainty within 1 cm−1.
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I. INTRODUCTION

The calculation of energy levels of quantum-mechanical
systems is one of the promising applications of future quan-
tum computers [1,2]. At present, even though a quantum
computational advantage has been demonstrated using 53
superconducting qubits [3] and a 100-mode photonic interfer-
ometer [4], quantum chemistry calculations have been carried
out for only relatively small quantum systems containing a
few particles using quantum computers having up to 10 qubits.
Recently, a Hartree-Fock calculation of the potential-energy
curve of a linear chain of 12 hydrogen atoms (H12) was
demonstrated using 12 qubits [5]. It is highly awaited that
much larger and much less noisy quantum computers will be
available in the future, which motivates the development of
algorithms and methods using quantum computers presently
available for their implementations in the future.

Thus far, the main focus of research in quantum chemistry
using quantum computers has been the electronic eigenvalue
problem, where the positions of the nuclei in the molecule are
treated as parameters. Potential-energy curves of H2 [6–10],
HeH+ [11], LiH [8,10], and BeH2 [8] have been obtained
using quantum computers.

On the other hand, the vibrational eigenvalue problem
has received much less attention. Even if we can obtain the
potential-energy surface of a molecule, a complete discussion
of the dynamics of the molecule must include the vibra-
tional motion, which should be treated quantum mechanically.
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Because a nonlinear molecule having N atoms has 3N − 6
vibrational degrees of freedom, if we assign a basis set of
size κ to each degree of freedom, we have to diagonalize a
κ3N−6 × κ3N−6 matrix to obtain the vibrational eigenenergies.
Because of the exponential increase of the matrix size with
N , obtaining all the bound vibrational levels on a classical
computer is possible only for molecules having up to N = 5
atoms [12,13]. In the case of a quantum computer, where
K qubits can store an exponentially large number (2K ) of
amplitudes, the vibrational wave functions can be represented
even for large molecules having a large N , suggesting that the
vibrational eigenenergies can be obtained for gigantic molec-
ular systems that cannot be treated by classical computers.

A general discussion of how to map the quantum-
mechanical vibrational Hamiltonian to qubits has been
reported in Refs. [14,15], with application to triatomic
molecules (H2O [14] and H2O, SO2, and NO2 [15]). In
Ref. [16], an approach based on modal basis functions was
introduced, and a few vibrationally excited states of CO2

were computed. We also note that a method referred to
as bosonic sampling may enable efficient evaluation of the
Franck-Condon factors in vibronic transitions [17–19].

In the present study, in order to explore future applications
of quantum computers to molecular vibrational spectroscopy,
we apply a modified version of the multistate contracted
variational quantum eigensolver (MC-VQE) method to the
calculation of a few low-lying vibrational eigenstates of
carbon dioxide (CO2), one of the typical linear triatomic
molecular species. The MC-VQE method was proposed in
Ref. [20] as a method for calculating electronic transition
energies. We find that a suitably adapted version of the MC-
VQE method gives good results also when it is applied to the
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calculation of vibrational eigenenergies. Differently from
available eigenvalue methods such as the phase estimation
method [21,22] and the Trotterized adiabatic quantum com-
puting approach [23–25], in both of which multiple operations
of the time evolution operator are involved so that quantum
circuits would become very long, the circuits required in the
MC-VQE method are much shorter and suitable for the exe-
cution on presently available quantum computers.

We implement the MC-VQE method using a compact
mapping of the vibrational Hamiltonian to a qubit form. The
performance of the method is assessed for the ideal noise-free
case, for a simulator including the noise model FakeRome as
implemented in QISKIT [26], and for the ibmq_rome quantum
computer at IBM Quantum [27].

The vibrational mode coupling in CO2 is characterized
by a well-known strong 1:2 anharmonic resonance, called a
Fermi resonance [28,29]. The Fermi resonance in CO2 refers
to the strong mixing of the wave function where the symmetric
stretching ν1 mode is singly excited and the wave function
where the bending ν2 mode is doubly excited, and appears
in the Raman spectrum as a double peak at 1285 cm−1 and
1388 cm−1. The 1:2 Fermi resonance is a good test case for
an eigenvalue method implemented on a quantum computer
because it is an example of the most fundamental anhar-
monic resonances, which exist universally in the vibrationally
excited states of polyatomic molecules and play a decisive
role in intramolecular vibrational energy redistribution (IVR)
processes [30] and unimolecular reactions [31].

II. THEORY

A. Vibrational Hamiltonian and qubit mapping

We consider a two-mode model of CO2, represented by the
vibrational Hamiltonian

H = H0 + HI

=
2∑

i=1

ωi

2

(
− ∂2

∂q2
i

+ q2
i − 1

)
+

∑
i� j�l

ki jl qiq jql , (1)

where qi is a dimensionless normal mode coordinate, ωi is
the harmonic frequency of mode i, and ki jl are anharmonic
coupling coefficients. The ν1 mode is the symmetric stretching
mode and ν2 is the bending mode. Note that we have sub-
tracted the zero-point energy so that the ground-state energy
is zero in absence of the anharmonic coupling. The numerical
values for the harmonic frequencies ωi and the anharmonic
coupling coefficients ki jl in Eq. (1) are taken to be the ex-
perimentally determined values reported in Ref. [32], and
are given as ω1 = 1354.31 cm−1, ω2 = 672.85 cm−1, k111 =
−45.78 cm−1, k122 = 74.72 cm−1, and k112 = k222 = 0. The
coefficients k112 and k222 vanish because the molecular po-
tential is an even function of the bending coordinate q2. We
express energy in units of cm−1, as is conventionally done
in vibrational spectroscopy. For the conversion to other com-
monly employed energy units, we have 1 eV ≈ 8065.54 cm−1

and 1 a.u. ≈ 219475 cm−1.
We employ harmonic-oscillator eigenfunctions |v2, v1〉

satisfying

H0|v2, v1〉 = (ω2v2 + ω1v1)|v2, v1〉 (2)

as basis functions, and consider 0 � v1, v2 � vmax = 2. The
nth eigenstate |ψn〉 of the Hamiltonian H is expanded as

|ψn〉 =
vmax∑

v2,v1=0

cn
v2v1

|v2, v1〉. (3)

The Fermi resonance occurs because of the nonzero value of
k122 and the approximate equality ω1 ≈ 2ω2, resulting in a
strong mixing of the |2, 0〉 and |0, 1〉 levels.

We consider the compact mapping [14,33], which is also
called binary mapping, as the method of mapping the wave
function and Hamiltonian to a qubit form. For our two-mode
model with vmax = 2, we need four qubits to represent the
vibrational wave function. A brief discussion on the mapping
method and explicit expressions for the qubit Hamiltonian can
be found in Appendix A.

B. MC-VQE method

The MC-VQE method, which we are now going to use for
the calculation of vibrational energy levels, was proposed in
[20] as a method for obtaining electronic transition energies
of molecules, and is a method which can be used to obtain a
few low-lying eigenstates out of a large Hilbert space.

The MC-VQE method is based on an extension of the
variational quantum eigensolver (VQE) idea [34–37]. First,
we define a set of basis functions represented as circuits on
the quantum computer. The basis set is parametrized by a
parameter θ, which is chosen so that the sum of the ground-
and excited-state energies is minimized. Second, we construct
a Hamiltonian matrix by evaluating the matrix elements on the
quantum computer. Third, we obtain estimates of the energy
eigenvalues by diagonalizing the Hamiltonian matrix on a
classical computer.

We define a set of θ-dependent basis functions as

|χn〉 = U (θ)|φn〉, n = 0, . . . , 2vmax = 4, (4)

where U (θ) is a unitary operator depending on a set of pa-
rameters θ = (θ1, θ2, . . .) and {|φn〉} is a set of single-mode
excited states,

|φn〉 =
⎧⎨
⎩

|0, 0〉 if n = 0,

|0, n〉 if 0 < n � vmax,

|n − vmax, 0〉 if vmax < n � 2vmax.

(5)

The role of the unitary operator U (θ) is to introduce contri-
butions from double-mode excitations in the basis set without
increasing the number of basis functions, so that the descrip-
tions of both the ground and the excited states are improved.
Note that, for a polyatomic molecule having many modes,
U (θ) introduces contributions not only from the double-mode
excitation but also multimode excitations such as triple-mode
and quadruple-mode excitations. The parametrization of U (θ)
is chosen such that U (θ = 0) equals the identity operator.

After having defined the basis set, we construct the Hamil-
tonian matrix h with matrix elements

hmn = 〈χm|H |χn〉 = 〈φm|U †(θ)HU (θ)|φn〉 (6)

by evaluating hmn on the quantum computer. The technique
for evaluating hmn is described in Appendix B. We obtain the
vibrational eigenvalues En by diagonalizing the matrix h on a
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classical computer,

h = bEb†, (7)

where the columns of b contain the eigenvectors and E is
a diagonal matrix with the eigenenergies on the diagonal.
In the present example of a two-mode model of CO2 using
vmax + 1 = 3 basis functions per mode, we need to diagonal-
ize a (2vmax + 1) × (2vmax + 1) = 5 × 5 matrix.

The optimal value of θ is determined so that the sum S of
the eigenenergies,

S =
2vmax∑
n=0

En, (8)

is minimized. By Eq. (7), we see that S can be written as

S = Trh =
2vmax∑
n=0

hnn, (9)

which means that, in the optimization procedure, we only
need to evaluate the diagonal elements of h. The strength of
the MC-VQE method is that all energy levels are considered
in the energy optimization, so that both the ground-state and
excited-state wave functions are treated on an equal footing.
In addition, the same set of basis functions is used for both
ground and excited states, which guarantees mutual orthogo-
nality among the ground- and excited-state wave functions.

In the original publication [20], the unitary operator U (θ)
was expressed as a combination of general SO(4) operators
acting pairwise on two qubits, which was suitable for the exci-
ton model considered in Ref. [20]. For vibrational eigenvalue
calculations, we use the exponentiated unitary coupled-cluster
operator as U (θ),

U (θ) = eT (θ)−T †(θ), (10)

where T is the cluster operator. The unitary coupled-cluster
(UCC) ansatz [38,39] is a widely used ansatz in VQE
approaches for the calculation of electronic eigenenergies
[7,34,40–42], and has also been proposed for the evaluation of
the vibrational eigenvalues [16]. In the present investigation,
we include single excitation operators in the cluster operator
T and write

T (θ) − T †(θ) =
2∑


=1

vmax∑
v′,v=0

θ

v′v|v′〉〈v|
, (11)

where |v′〉〈v|
 is a single excitation operator for mode 
. We
have for example |v′〉〈v|1|v2, v1〉 = δv1v|v2, v

′〉. The parame-
ter matrix θ


v′v is a real-valued antisymmetric matrix satisfying
θ

v′v = −θ


vv′ .
We find that, for the Hamiltonian (6), it is sufficient to

consider the parameter θ1
01 ≡ θ as a variational parameter, and

set the remaining part of θ

v′v to be zero. We have confirmed

that the eigenenergies are lowered by only less than 0.2 cm−1

if all parameters θ

v′v are allowed to be varied in Eq. (11). We

therefore employ the following form of U (θ),

U (θ ) = eθ (|0〉〈1|1−|1〉〈0|1 ), (12)

in the discussion below in Sec. III.

The advantage of the MC-VQE method executed on a
quantum computer originates from choosing the unitary op-
erator U (θ) such that the matrix elements hmn are difficult
to evaluate on a classical computer, but can be efficiently
evaluated on a quantum computer. This is true in our case with
U (θ) being the unitary coupled-cluster operator, which cannot
be implemented efficiently on a classical computer when the
number of vibrational modes V = 3N − 6 is large. In order to
implement U (θ) on a classical computer, we have to represent
U (θ) as a full CI matrix of exponentially large size κV × κV

[43], where κ is the number of basis functions for each mode.
On a quantum computer, we estimate (see Appendix C for a
detailed discussion) that the total number of circuits Ncirc and
the total number of controlled-NOT (CNOT) gates NCNOT in each
circuit scale polynomially in V as

Ncirc = O(V p+2κ2p+2) (13)

and

NCNOT = O(V cκ3c log2 κ ), (14)

where p is the highest order of the anharmonic coupling term
in the Hamiltonian and c is the excitation order of the unitary
coupled-cluster operator. In the case considered in the present
paper, we have p = 3 and c = 1.

III. RESULTS

We implement the four-qubit quantum circuits necessary
for the evaluation of the matrix h using QISKIT [26]. For
most of the results shown in this section, we evaluate the cir-
cuits using the simulator qasm_simulator and the error model
FakeRome. The error model includes incoherent single-gate
errors in the form of a depolarizing channel combined with
a single-qubit thermal relaxation channel and readout errors
[26,44,45]. We also present data obtained with the ibmq_rome
five-qubit quantum computer at IBM Quantum [27]. The
depth of the longest circuit is 10 and the maximum number of
CNOT gates is three. Unless otherwise indicated, each circuit
is executed Nshots = 8192 times (the largest value possible at
IBM Quantum). Because of the finite value of Nshots, the ma-
trix elements carry an intrinsic statistical uncertainty, which
is present even in the absence of the incoherent single-gate
errors and the readout errors. One matrix element hmn requires
the execution of 25 circuits when m = n and 49 circuits when
m �= n.

In order to estimate the statistical uncertainty due to the
finite value of Nshots, we repeat the evaluation of h 1000 times
(M = 1000), and record a histogram of each matrix element.
The statistical uncertainty of the matrix elements is estimated
as the square root of the variance of the data. The average
value of the matrix h after the evaluations for M times is
denoted by h, whose matrix elements are hmn.

A. Error mitigation

We employ the following four methods to reduce the error
in the evaluation of h.

(i) Only matrix elements hmn with m � n are evaluated.
The remaining part of the matrix is filled by using hmn = hnm,
so that h is guaranteed to be a symmetric matrix.
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(ii) Matrix elements vanishing identically are not evalu-
ated, but set to be zero. If we write the Hamiltonian matrix
as

hmn = h0
mn + hI

mn = 〈χm|H0|χn〉 + 〈χm|HI |χn〉, (15)

the only nonvanishing matrix elements of h0
mn are h0

01 = h0
10 �=

0 and the diagonal matrix elements h0
mm �= 0. For hI

mn, the
matrix elements vanishing identically are hI

03 = hI
13 = hI

23 =
hI

34 = 0. For example, we have

U (θ )|v2, 0〉 = cos θ |v2, 0〉 − sin θ |v2, 1〉. (16)

It follows that

h03 = 〈0, 0|U †(θ )HU (θ )|1, 0〉 = 0, (17)

because the Hamiltonian (1) contains only even orders of q2

and cannot couple basis functions |v2, v1〉, |v′
2, v

′
1〉, where v2

is even and v′
2 is odd.

(iii) In the evaluation of the matrix elements h0
mn of the

harmonic-oscillator part H0 of the Hamiltonian (1), we discard
measurements of a circuit resulting in a qubit state which does
not represent a basis function. For example, the evaluation of
the matrix elements of H0 involves expectation values like

z = 〈ψ |σz(0)|ψ〉, (18)

where |ψ〉 is a wave function represented by a quantum circuit
and σz(0) is a Pauli operator acting on qubit 0. Without error
mitigation, we would estimate z by measuring the circuit
representing |ψ〉 Nshots times and calculating

z = n0 − n1

Nshots
, (19)

where ni is the number of measurements where qubit 0 was
measured as i. In our error mitigation scheme, we measure all
the qubits and discard the measurements where the measured
qubit state is outside the Hilbert space spanned by the basis
functions adopted in the model. This means that we discard
measurements where either qubits 0 and 1 are measured as
q1q0 = 11 or qubits 2 and 3 are measured as q3q2 = 11. For
example, we discard the measurements when the set of four
qubits are q3q2q1q0 = 0011 because this qubit state |00 11〉
corresponds to the vibrational basis function |v2 = 0, v1 = 3〉
whose vibrational quantum number, v1, exceeds the upper
limit of vmax = 2. The expectation value (18) is evaluated as

z = ñ0 − ñ1

Nshots − Ne
, (20)

where ñi is the number of measurements where qubit 0 was
measured as i after discarding the erroneous measurements
and Ne is the total number of the erroneous measurements.

(iv) Error corrections are made by comparison with the
Hamiltonian matrix evaluated at θ = 0. Errors in the execu-
tion of the quantum circuits result in a shift of the matrix
elements from the exact values. As will be demonstrated be-
low in Sec. III B, the shift can be assumed to be independent
of θ to a good approximation. Thus we have

h(θ ) ≈ hexact (θ ) + �, (21)

where h(θ ) is the matrix evaluated on the quantum computer,
hexact (θ ) is the numerically exact value of the Hamiltonian

matrix (6), and � is a constant matrix. Assuming that the shift
� is θ independent, we can estimate � at θ = 0,

� = hexact (0) − h(0). (22)

The idea is that, although we cannot evaluate hexact (θ ) classi-
cally in the general case of a polyatomic molecule having a
large number of vibrational degrees of freedom, hexact (θ = 0)
can be evaluated on a classical computer because it involves
the matrix elements between single-mode excited basis states.
For a nonlinear molecule having N atoms having 3N − 6
vibrational degrees of freedom, there are a total of κs = (3N −
6)(κ − 1) + 1 single-mode excited states if we assume that
κ basis functions are used to describe each mode. Because
κs scales linearly with N , it is feasible to adopt this error
mitigation method via the calculation of hexact (θ = 0) even
for larger-sized polyatomic molecules with N � 1.

Based on the above considerations, we propose the fol-
lowing error mitigation scheme, labeled as scheme (iv). First,
we evaluate hexact (θ = 0) classically and h(θ = θ0) on the
quantum computer, where θ0 is a small number of the order of
10−5. We cannot use θ0 = 0 because, as explained in the next
Sec. III B, the constant shift � obtained when θ is exactly
equal to zero is different from that obtained when θ is very
close to zero but not exactly zero. Second, the constant shift
�0 is evaluated according to

�0 = hexact (0) − h(θ0) (23)

and the corrected Hamiltonian matrix h′(θ ) is calculated as

h′(θ ) = h(θ ) − �0. (24)

We remark that the error mitigation method described above
can be applied when θ is sufficiently small, so that the shift
�0 is approximately the same for all θ .

A commonly employed error mitigation approach, which is
an alternative to the scheme (iv) described above, is to intro-
duce controlled amounts of additional noise into the quantum
circuit, measure the circuit at various values of the noise,
and finally extrapolate to zero noise [46–49]. We have used
the error mitigation method (iv) in the present investigation
because of the simplicity of its implementation.

B. Optimal value of θ

In Fig. 1, we show the sum of the eigenenergies, S = Trh,
as a function of θ , obtained using the qasm_simulator and the
error model FakeRome. The S value is evaluated at θ = 0,
10−5, 0.005, 0.01, . . ., 0.10. The value θ = 10−5 is added
to illustrate the difference between θ = 0 and a small but
nonzero value of θ . The S value evaluated using a combination
of the three error mitigation methods (i), (ii), and (iii) is shown
in Fig. 1(a). We observe that S evaluated by the simulator
is larger than the exact value of S by about 210 cm−1. We
also see that the shift of S(θ = 0) is different from the shift
of S(θ > 0). This is because, at θ = 0, the unitary operator
U (θ = 0) = 1 and the quantum circuit used for the evaluation
of h is simplified. In Fig. 1(b), we show the summed energy
evaluated using a combination of the four error mitigation
methods (i), (ii), (iii), and (iv). After the error correction, the
curve obtained using the simulator agrees well with the exact
curve.
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FIG. 1. Sum of the excited-state energies S as a function of the
variational parameter θ . The value of S(θ = 0) is shown with open
squares and the values of S(θ > 0) are shown with filled squares.
(a) Without subtraction of the constant shift �0; (b) after error mit-
igation by subtraction of a constant energy shift �0 [see Eq. (24)].
The curve labeled “Exact” refers to the numerically exact value of
S calculated with a classical computer. The lengths of the error bars
correspond to the square root of the variance. The legend in panel
(a) applies also to panel (b).

In order to demonstrate that the matrix elements hmn are
approximately constant as a function of θ , as required in the
error mitigation scheme described in Sec. III A, we show the
matrix elements mn(θ ) of the difference matrix � in Fig. 2,
where �(θ ) is defined as

�(θ ) = h(θ ) − hexact (θ ). (25)

The curves of mn(θ ) in Fig. 2 clearly show that �(θ )
is approximately constant over the range 10−5 � θ � 0.10.

FIG. 2. Difference mn of the Hamiltonian matrix evaluated on
the quantum computer and the exact Hamiltonian [see definition in
Eq. (25)] as a function of the variational parameter θ . The legend
indicates the indices mn. mn is shown only when the matrix element
hmn > 1 cm−1. The statistical uncertainties as measured by the square
root of the variances are smaller than 8 cm−1 for all curves, and are
not shown in the figure.

We have confirmed that the change of mn(θ ) is less than
4 cm−1 over the range 10−5 � θ � 0.10 for all matrix
elements shown in Fig. 2. This means that the average Hamil-
tonian matrix h is shifted from the exact Hamiltonian hexact by
an amount of energy which is approximately independent of θ .

We can see in Fig. 1(b) that the optimal value of θ is
close to 0.04. For the results shown in the remainder of this
paper, we have therefore used θ = 0.04 in the evaluation
of h. In the present investigation, the wave-function ansatz
depends on one parameter only, so that the optimal value of
θ can be inferred from the minimum of a one-dimensional
curve. In the general case in which the wave-function
ansatz depends on several parameters, we have to consider
a suitable optimization algorithm and examine the effect of
noise on the minimization procedure as has been discussed
before [34,50–52].

C. Eigenenergy evaluation

As described in Sec. III A, we obtain the corrected Hamil-
tonian matrix h′ (evaluated at θ = 0.04) by subtracting a
constant shift from the uncorrected Hamiltonian matrix h [see
Eq. (24)]. The evaluation of h′ is repeated M = 1000 times,
so that we obtain M sample Hamiltonians h′(1), . . . , h′(M ).
The average Hamiltonian h

′
is defined as

h
′ = 1

M

M∑
i=1

h′(i) (26)

and the statistical uncertainty of each matrix element is de-
fined as

τmn =
√√√√ 1

M − 1

M∑
i=1

[h′
mn(i) − h

′
mn]2. (27)

The final estimate En (n = 0, . . . , 2vmax = 4) of the energy
eigenvalues evaluated by the quantum computer is given by
the diagonalization of h

′
as

En = b†
nh

′
bn, (28)

where bn is the nth eigenvector of h
′
.

The statistical uncertainty of the eigenvalues calculated
from an ensemble of random matrices h′(i) can be estimated
as follows. We first write

h′ = h
′ + δ, (29)

where δ is a random symmetric matrix with matrix elements
denoted by δmn and where each matrix element has an average
value δmn = 0 and the width τmn given by Eq. (27). If we
assume that each matrix element τmn is small, we obtain by
first-order perturbation theory

En ≈ En + bn
†δbn

= En +
4∑

m=0

b2
mnδmm + 2

4∑
l = 0
m > l

blnbmnδlm, (30)

where in the last equality we have used the symmetry δmn =
δnm. It follows from Eq. (30) that the statistical uncertainty of
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TABLE I. Energy eigenvalues in units of cm−1. The numbers in parentheses in the “Simulator” row are the statistical uncertainties estimated
by Eq. (32).

E0 E1 E2 E3

Simulator −0.68(19) 672.19(19) 1307.35(13) 1381.81(11)
Exact (θ = 0.04) −0.36 672.56 1307.03 1381.47
Exact (θ = 0) −0.36 672.85 1309.25 1383.78
Full CI −0.88 672.15 1306.27 1380.56

En denoted as wn can be estimated as

wn =

√√√√√√
4∑

m=0

b4
mnτ

2
mm + 4

4∑
l = 0
m > l

b2
lnb2

mnτ
2
lm. (31)

For the statistical uncertainty σ n of the eigenenergies En that
we obtain by diagonalizing the average Hamiltonian h

′
, we

have

σ n = wn√
M

. (32)

In order to visualize the distribution of eigenvalues, we also
obtain energy eigenvalues E (i)

n (n = 0, . . . , 2vmax = 4 and i =
1, . . . , M) by diagonalizing each h′(i). The average Ẽn over
the M values of E (i)

n is defined as

Ẽn = 1

M

M∑
i=1

E (i)
n . (33)

The statistical uncertainty of E (i)
n denoted as σn is defined

as the square root of the variance of E (i)
n ,

σn =
√√√√ 1

M − 1

M∑
i=1

[
E (i)

n − Ẽn
]2

. (34)

We note that En �= Ẽn in general, because the energy eigen-
values are nonlinear functions of the matrix elements h′

mn. In
the present investigation, however, En ≈ Ẽn (we have |En −
Ẽn| < 0.2 cm−1 for all n) because of the small statistical
uncertainty. We also find that σn ≈ wn (we have |σn − wn| <

0.1 cm−1 for all n), and, therefore, both σn and wn can be
used as measures of the statistical uncertainty of the resultant
eigenenergies.

In Fig. 3, we show a histogram of the energy eigenvalues
En for n � 3, as well as the energies En, obtained using the
qasm_simulator and the error model FakeRome. We also show
the energy eigenvalues obtained by M = 13 evaluations of h′

using the ibmq_rome quantum computer at IBM Quantum.
The energy levels of the ground state, E0, and that of the
first excited state, E1, have the corresponding wave func-
tions |ψ0〉 ≈ |0, 0〉 and |ψ1〉 ≈ |1, 0〉, respectively. The energy
levels E2 and E3 are the two energy levels involved in the
Fermi resonance and have the approximate wave functions
|ψ2〉 ≈ (|0, 1〉 − |2, 0〉)/

√
2 and |ψ3〉 ≈ (|0, 1〉 + |2, 0〉)/

√
2.

The basis functions |0, 1〉 and |2, 0〉 appear with almost equal
weight in |ψ2〉 and |ψ3〉 because the anharmonic coupling
matrix element 〈0, 1|HI |2, 0〉 = 37.36 cm−1 is larger than the
unperturbed energy gap ω1 − 2ω2 = 8.61 cm−1.

For comparison, we also show the following reference
energy values in Fig. 3.

(i) The numerically exact energy E exact
n (θ ) resulting from

the diagonalization of the exact Hamiltonian defined in
Eq. (6). We show E exact

n (θ ) for θ = 0 and θ = 0.04, labeled
by “Exact (θ = 0)” and “Exact (θ = 0.04).” E exact

n (θ = 0)
represents the energy obtained using unmodified single-mode
excited states as basis functions and can be calculated effi-
ciently on a classical computer. E exact

n (θ = 0.04) represents
the energy which would be obtained on a quantum computer
in the absence of noise and in the limit of Nshots → ∞.

(ii) The energy EFCI
n , which is the full configuration-

interaction (full CI) energy obtained by including all nine
basis functions |v2, v1〉, 0 � v1, v2 � 2 in the wave-function
expansion. The energy EFCI

n represents the best possible en-
ergy obtainable given the basis set |v2, v1〉 (0 � v1, v2 � 2)
and is labeled by “Full CI” in Fig. 3. Because of the limited
size of the present model system, we can obtain both E exact

n (θ )
and EFCI

n exactly on a classical computer.
We can see that the eigenenergies of the average Hamil-

tonian obtained by the qasm_simulator at θ = 0.04 are very
close to the exact energies. We have |E exact

0 (0.04) − E0| =
0.32 cm−1, |E exact

1 (0.04) − E1| = 0.37 cm−1, |E exact
2 (0.04) −

E2| = 0.32 cm−1, and |E exact
3 (0.04) − E2| = 0.34 cm−1,

demonstrating that, after the error correction, an uncertainty
of below 1 cm−1 can be obtained with the MC-VQE method
combined with the compact qubit mapping. The uncertainty
is defined as the difference between the eigenvalues En evalu-
ated on the quantum computer and the exact eigenvalues E exact

n
evaluated on the classical computer. The numerical values of
En, E exact

0 (θ = 0, 0.04), and EFCI
n are summarized in Table I.

In Ref. [16], the vibrational ground-state energy of CO2 was
obtained with an uncertainty of about 100 cm−1 using the
Compact Heuristic for Chemistry (CHC) wave function ansatz
and an error model with parameters from the ibmq_almaden
device, with no error mitigation.

For the ground state and the first excited state,
the effect of introducing the θ -dependent basis set de-
fined in Eq. (4) is rather small. We have E exact

0 (θ =
0) − E exact

0 (θ = 0.04) = 3 × 10−4 cm−1 and E exact
1 (θ = 0) −

E exact
1 (θ = 0.04) = 0.3 cm−1. On the other hand, the Fermi

resonance state energies are lowered by about 2 cm−1 by
introducing a θ -dependent basis set (4) with θ = 0.04. This
means that, in order to discuss if the improvement is achieved
when using θ = 0.04 compared with θ = 0, we have to reduce
the uncertainty of the energies calculated using the quantum
computer to be smaller than 1 cm−1. Indeed, as shown in
Table I, the uncertainties are all smaller than 1 cm−1 for all
energy eigenvalues, which fulfills the present requirement.
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FIG. 3. Histograms of the energy eigenvalues E (i)
n for n = 0 (the ground state) and n = 1, 2, 3 (excited states). The green histograms shown

in the left column in (a), (c), (e), and (g) are obtained by the qasm_simulator with the error model FakeRome, and the magenta bars shown in
the right column in (b), (d), (f), and (h) are obtained by the ibmq_rome quantum computer at IBM Quantum. Also shown are the energy En

obtained by diagonalizing the average Hamiltonian h
′
, the exact energies E exact

n (θ ) at θ = 0 and 0.04, and the full CI energy EFCI
n . The insets

in the left column show expanded views around En.

The experimental rovibrational transition frequencies of
polyatomic molecules such as C6H6 [53], CH3OH [54].
and CO2 [55] obtained by high-resolution vibrational spec-
troscopy typically have uncertainties as small as 0.001 cm−1.
In order to reach the uncertainty achieved in high-resolution
vibrational spectroscopy, we need to introduce improved error
mitigation methods and lower the noise level in the quantum
computer significantly.

The energy eigenvalues obtained using the ibmq_rome
quantum computer at IBM Quantum, shown with magenta
bars in in Figs. 3(b), 3(d), 3(f), and 3(h), do not agree well

with the exact energies E exact
n (θ = 0.04) because of the lim-

ited number of evaluations M = 13. We expect that the same
uncertainty of below 1 cm−1 could be obtained also using
ibmq_rome if the number of evaluations of the corrected
Hamiltonian matrix h′ is increased to the same value of M =
1000 as that used for the simulator.

We comment that, because of the limited number of ba-
sis functions (vmax = 2), the inclusion of two modes out of
three, and the truncation of the anharmonic potential to the
third-order terms, the excitation energies calculated within
the present model need to be regarded as rough estimates
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FIG. 4. Uncertainty σn of the energy eigenvalues E0 (green
symbols), E1 (red symbols), E2 (blue symbols), and E3 (magenta
symbols). The uncertainties obtained by the simulator including
noise are shown with filled circles and the uncertainties obtained by a
simulator without using a noise model are shown with triangles. The
curve for E1 almost completely overlaps that of E0 in the case of
the results obtained using the simulator with noise (filled circles)
and the curve for E2 almost completely overlaps that of E0 in the
case of the results obtained using the simulator without noise (filled
triangles), The solid lines are fits to the expression σ (fit)

n = AnN−1/2
shots ,

where An are constants whose numerical values are given in Table II.

of the excitation energies. For the Fermi resonance pair, we
obtain E2 = E2 − E0 = 1307 cm−1 and E3 = E3 − E0 =
1381 cm−1, while the experimental excitation energies are
E expt

2 = 1285 cm−1 and E expt
3 = 1388 cm−1 [28,29,32].

Finally, we investigate the dependence of the uncertainty
σn, defined in Eq. (34), on the number of shots Nshots. We
expect that σn should depend on Nshots approximately as σn =
AnN−1/2

shots , where An is a constant, but the constant An depends
on the details of the quantum computer and the depth of the
circuits and has to be estimated from the simulation. In Fig. 4,
we show the uncertainty σn for the energy histograms E (i)

n as
a function of Nshots. We also show the result of a simulation
using the qasm_simulator without including an error model,
which means that the statistical uncertainty only arises from
the finite number of Nshots and, in the limit Nshots → ∞, we
obtain the exact eigenenergies E exact

n (θ = 0.04).
The data shown in Fig. 4 demonstrate that the presence of

noise simulated by the noise model increases the statistical
uncertainty σn by approximately a factor of 6 for E0 and E1

and a factor of 3 for E2 and E3. In order to estimate the re-
quired value Nshots to obtain a given value of σn, we have fitted
the curves shown in Fig. 4 to the expression σ (fit)

n = AnN−1/2
shots ,

where An is a constant. The numerical values for An are shown
in Table II.

Using the obtained values of An we can estimate the re-
quired value of Nshots for obtaining the uncertainty σn = u in
the presence of noise as Nshots(σn = u) = (u/An)2. For u =
0.2 cm−1, we obtain Nshots(σ0,1 = 0.2 cm−1) ≈ 8 × 106 for
E0 and E1 and Nshots(σ2,3 = 0.2 cm−1) ≈ 3 × 106 for E2 and
E3. These values are consistent with the statistical uncertainty
of 0.2 cm−1 obtained for the average energies shown in the
first row of Table I, because the average energies are obtained
as an average of M = 1000 evaluations of the Hamiltonian
matrix and each quantum circuit is executed Nshots = 8192
times, resulting in an effective number MNshots ≈ 8 × 106

executions.

TABLE II. Numerical values of An for n = 0, . . . , 3 in units
of cm−1. “Simulator (noise)” refers to results obtained using the
qasm_simulator including a noise model and “Simulator (no noise)”
refers to results obtained using the qasm_simulator without a noise
model.

Simulator (noise) Simulator (no noise)

A0 566.04 99.71
A1 558.55 82.05
A2 354.79 98.72
A3 327.67 103.86

IV. SUMMARY

We have shown how vibrational energy levels of a model
CO2 molecule can be obtained on a quantum computer. By
employing a modified version of the MC-VQE method, com-
bining four different error mitigation methods, and evaluating
the quantum circuits a total of Nshots × M ≈ 8 × 106 times,
we obtain the energy eigenvalues with an accuracy of better
than 1 cm−1. The most important error mitigation method is
the correction of the constant shift of the Hamiltonian ma-
trix caused by noise. Our results demonstrate that vibrational
eigenvalues can be reliably evaluated on a quantum computer
even for strong anharmonic resonances by which unperturbed
vibrational levels are strongly mixed.
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APPENDIX A: MAPPING OF THE HAMILTONIAN
TO QUBIT FORM

In the compact mapping, which is also called the binary
mapping, we use the binary representation of the vibrational
quantum numbers v1 and v2 and map a harmonic-oscillator
basis state to a qubit basis state according to

|v2, v1〉 = |bin(v2) bin(v1)〉, (A1)

where bin(v) = p1 p0 with pi satisfying
∑1

i=0 2i pi = v. For
example, |2, 1〉 = |10 01〉. The compact mapping requires a
total of four qubits given that we employ vmax = 2.

After having mapped the harmonic-oscillator basis func-
tions to qubits, we can map the Hamiltonian to a sum of
products of Pauli matrices according to the procedures de-
scribed in Ref. [56]. By rewriting a single-qubit operator |i〉〈 j|
in terms of the Pauli matrices σx, σy, σz and the identity matrix
I as

|0〉〈0| = 1
2 (I + σz ), |0〉〈1| = 1

2 (σx + iσy),

|1〉〈0| = 1
2 (σx − iσy) |1〉〈1| = 1

2 (I − σz ), (A2)
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a general many-qubit operator can be mapped to sums of Pauli
matrix products. For two qubits we have

|v′
2, v

′
1〉〈v2, v1| = |q′

3q′
2 q′

1q′
0〉〈q3q2 q1q0|

= |q′
3〉〈q3| ⊗ |q′

2〉〈q2| ⊗ |q′
1〉〈q1| ⊗ |q′

0〉〈q0|.
(A3)

The Hamiltonian matrix is expressed as

H =
vmax∑

v′
2,v

′
1,v2,v1=0

Hv′
2v

′
1v2v1 |v′

2, v
′
1〉〈v2, v1| =

L∑
i=1

uiPi, (A4)

where Pi is a product of Pauli matrices acting on the qubits
(for example, σz ⊗ σz ⊗ σy ⊗ σy) and ui is a numerical coeffi-
cient. In Eq. (A4), Hv′

2v
′
1v2v1 = 〈v′

2, v
′
1|H |v2, v1〉 are the matrix

elements of the Hamiltonian (1). The numerical evaluation
of Hv′

2v
′
1v2v1 is most conveniently done by first rewriting the

Hamiltonian (1) in terms of creation and annihilation opera-
tors. We obtain a total number of L = 40 terms in the qubit
Hamiltonian.

The qubit Hamiltonian matrix can be written as a sum of
the uncoupled harmonic-oscillator Hamiltonian H0 and the
anharmonic coupling Hamiltonian HI :

H = H0 + H I =
L0∑

i=1

u0iP0i +
LI∑

i=1

uIiPIi. (A5)

We obtain

H0/cm−1 = 1140.28IIII + 380.09IIIσz

− 127.77IIσzI + 127.77σzIII

+ 380.09IσzII − 887.96IIσzσz

− 42.59IσzσzI − 295.99Iσzσzσz

+ 126.7IσzIσz + 42.59σzIIσz

− 126.7σzIσzI − 211.88σzIσzσz

− 632.41σzσzII − 210.8σzσzIσz

− 41.52σzσzσzI + 380.09σzσzσzσz (A6)

and

H I/cm−1 = 11.51IIIσx + 11.51IIσzσx

− 9.47IIσxσx − 9.47IIσyσy

+ 3.84IσzIσx − 9.37σzIIσx

+ 9.34σxIIσx + 9.34σxIσzσx

+ 3.84Iσzσzσx − 9.37σzIσzσx

+ 9.34σxσzIσx + 9.34σxσzσzσx

− 3.16Iσzσxσx − 3.16Iσzσyσy

− 21.84σzIσxσx − 21.84σzIσyσy

+ 13.21σxIσxσx + 13.21σxIσyσy

− 17.05σzσzIσx − 17.05σzσzσzσx

− 15.52σzσzσxσx − 15.52σzσzσyσy

+ 13.21σxσzσxσx + 13.21σxσzσyσy, (A7)

1√
2

(|00 01 + |01 00 ) =

|q0

|q1

|q2 H X

|q3

FIG. 5. Circuit for the creation of the superposition state
(|00 01〉 + |01 00〉)/

√
2. The circuit diagram is drawn using the

QUANTIKZ package [57].

where we have omitted the direct product symbols ⊗ for
brevity. The rightmost Pauli matrix acts on qubit 0, the second
operator to the right acts on qubit 1, and so on.

APPENDIX B: EVALUATION OF MATRIX ELEMENTS

As described in Ref. [20], a matrix element 〈χm|H |χn〉 can
be obtained by evaluating the expectation values of H in the
states

|χ±
mn〉 = U (θ)|φ±

mn〉, (B1)

where

|φ±
mn〉 = 1√

2
(|φm〉 ± |φn〉). (B2)

We have

〈χm|H |χn〉 = 1
2 (〈χ+

mn|H |χ+
mn〉 − 〈χ−

mn|H |χ−
mn〉). (B3)

Quantum circuits representing the |φ±
mn〉 states can be con-

structed by combining a Hadamard gate and a CNOT gate. An
example of the creation of the state (|0, 1〉 + |1, 0〉)/

√
2 =

(|00 01〉 + |01 00〉)/
√

2 is displayed in Fig. 5.

APPENDIX C: SCALING

In this Appendix, we present estimates for the scaling of
the number of terms in the qubit Hamiltonian and the number
of gates required in the MC-VQE method for a large molecule
with many vibrational modes. In the discussion below, K de-
notes the number of qubits, N denotes the number of atoms in
a molecule, V (= 3N − 6) denotes the number of vibrational
modes, and κ denotes the number of basis functions by which
each vibrational mode is expanded, that is, the same number
of basis functions κ is employed for each vibrational mode.
In deriving the V and κ dependence of the scaling relations
below, we treat both the highest order p of the anharmonic
coupling term in the Hamiltonian and the excitation order c
of the unitary coupled-cluster operator as constants, which
means that we do not consider the form of the p- and c-
dependent prefactors.

In the compact mapping, the number of qubits K required
to describe a vibrational wave function having κV amplitudes
is given by

K = V log2 κ, (C1)

because each mode can be represented by log2 κ qubits.
The Hamiltonian (1) having third-order terms in the an-

harmonic potential contains O(V 3) terms. A Hamiltonian
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having anharmonic coupling terms up to order p contains
O(V p) terms and each term in the Hamiltonian can be
mapped to O(κ2p) number of sigma-matrix strings [56],
so that a total number of terms in the qubit Hamiltonian
becomes

NqH = O(V pκ2p). (C2)

The single-excitation coupled-cluster operator T (θ) −
T †(θ) defined in Eq. (11) is composed of O(V κ2) terms of
the form |v′〉〈v|
, where v and v′ denote respectively the
vibrational quantum numbers before and after the excita-
tion and 
 labels the vibrational mode. Each term can be
mapped to O(κ ) sigma-matrix strings, each of which con-
tains log2 κ sigma matrices. For a unitary coupled-cluster
operator exciting c modes, we get O(V cκ2c) terms com-
posed of O(κc) sigma-matrix strings, each of which contains
c log2 κ sigma matrices. One measure of the complexity
of a quantum circuit is the number of CNOT gates in-
cluded in the circuit. In the case of the unitary operator
U (θ) = eT (θ)−T †(θ), we need to implement the exponentiation
of sigma-matrix strings of length c log2 κ , which requires
O(log2 κ ) CNOT gates [56]. Therefore, the total number
of CNOT gates required for the implementation of U (θ)
becomes

NU (θ)CNOT = O(V cκ3c log2 κ ). (C3)

The number of CNOT gates required for the implementation
of the |φ±

mn〉 states defined in Eq. (B2) is N|φ±
mn〉CNOT = O(K ) =

O(V log2 κ ) because we can create a two-state superposition
state of two arbitrary qubit states using O(K ) CNOT gates.
For large κ , NU (θ)CNOT � N|φ±

mn〉CNOT. The total number of CNOT

gates required for the preparation of the circuit representing
the trial state |χ±

mn(θ)〉 = U (θ)|φ±
mn〉 is therefore

NCNOT = NU (θ)CNOT = O(V cκ3c log2 κ ). (C4)

Each circuit has to be measured NqH times to evaluate one ma-
trix element. Note that both NCNOT and NqH scale polynomially
with respect to the number of modes V .

In the MC-VQE method, we evaluate all matrix ele-
ments 〈φm|U †(θ)HU (θ)|φn〉 between single-mode excited
basis functions |φm〉. This means that we have to evaluate

Nmatrix = O(V 2κ2) (C5)

number of matrix elements to obtain the eigenenergies. There-
fore, in order to obtain the eigenvalues in the MC-VQE
method, we have to evaluate

Ncirc = NmatrixNqH = O(V p+2κ2p+2) (C6)

circuits, each of which contains NCNOT CNOT gates.
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