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Multiple-qubit quantum logic gates are an important element in the implementation of quantum computers.
The direct construction of multiple-qubit quantum logic gates in an efficient way has important values compared
to the construction of multiple-qubit gates using a series of two-qubit and single-qubit gates. We propose a
scheme to construct a multiple-qubit CkU gate (k denotes the number of control qubits and U means the arbitrary
universal operation performed on the target qubit) in a neutral atom platform through the Rydberg blockade effect
by successively exciting them to Rydberg states. This scheme takes advantage of the shortcut to adiabaticity of
inverse engineering, geometric quantum operations, as well as optimized control theory. The geometric quantum
computation considered in this manuscript guarantees the robustness to operational errors. Meanwhile, inverse
engineering-based shortcut to adiabaticity provides a further advantage in terms of the speed of the system
evolution compared to adiabatic processes. An additional feature of our multiple-qubit quantum logic gate is that
arbitrary operation on the target atom can be realized by adjusting the amplitude and phase of the laser fields.
Numerical simulation of the master equation based on the full Hamiltonian demonstrates the high fidelity of the
proposed scheme and its robustness to operational errors and spontaneous emission.
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I. INTRODUCTION

Rydberg atoms, by exciting the neutral atoms into the high
principal quantum number state, have provided a promising
platform in the past decade for the processing of quantum
information due to their various excellent properties, e.g.,
strong and long-range interaction, long lifetime, and giant
polarizability [1–7]. The strong interaction between Rydberg
atoms induces the Rydberg blockade effect [8–13], which can
be applied to construct fast, high-fidelity, and stable quantum
logic gates [14–23]. Recent experimental developments have
demonstrated the great potential of Rydberg atoms in quantum
information processing [24–29].

Geometric quantum computation (GQC) has strong resis-
tance to local interference since the Abelian or non-Abelian
geometric phase of the quantum state is dependent only on
the cyclic evolution for the path of the Hilbert space [30–34].
In previous studies, GQC has often been used for the adia-
batic evolution accompanied by a long duration and results
in a great decoherence [35–37]. In order to overcome this
defect, it is applied to nonadiabatic evolution to build a nona-
diabatic holonomic quantum computation (NHQC) based on
the non-Abelian geometric phases [38,39]. After that, various
theoretical and experimental schemes via NHQC emerge one
after another [40–52]. However, there are still many strict
restrictions on the Hamiltonian. In recent years, many ef-
forts have been carried out to expand NHQC by utilizing
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different methods, such as the dynamic decoupling (DD)
[53,54], single-shot-shaped (SSSP) [49,55–58], and single
loop [59–62] methods. Furthermore, combining with differ-
ent quantum systems is also an important research direction,
for example, superconducting [63–65], NV-center [66], and
nuclear magnetic resonance (NMR) [67,68] systems.

Stimulated Raman adiabatic passage is insensitive to the
fluctuation of parameters [69–72], such as the shape, in-
tensity, and frequency of the laser pulse, and requires long
evolution time, which would enhance the influence of deco-
herence. To address this issue, shortcut to adiabaticity (STA)
is proposed and has attracted much attention in recent years
[73–81], which keeps the advantage of the adiabatic method
but with a shortened evolution time. A variety of methods has
been found to implement STA in past studies, such as tran-
sitionless quantum driving [82,83], Lewis-Riesenfeld (LR)
invariant-based inverse engineering method [84–91], and dig-
itized adiabatic quantum computing [92].

Multiple-qubit quantum logic gates as the foundation of
quantum computation have been constructed in the past
few decades by using different methods through combin-
ing the several single- and two-qubit logic gates [72,93–
97]. However, with an increasing number of qubits, the re-
quired number of single- and two-qubit gates will increase
exponentially [97]. The straightforward construction of a
multiple-qubit logic gate greatly reduces the difficulty of gate
operation and shortens the operation time since the num-
ber of operations grows polynomially with the increase of
qubits, which can save the quantum resources effectively. The
Rydberg atoms are ideal candidates for the development of
straightforward multiple-qubit gates due to their special prop-
erties [29,98–102].
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FIG. 1. (a) One-dimensional and two-dimensional configuration
for realizing a multiple-qubit CkU gate (k represents the number of
control atoms and T represents the target atom). (b) Energy level of
the control and target qubits for the CkPG gate (�1 = 0, �2 = �0;
the case in Sec. II A) and CkU gate (the case in Secs. II B and II C).
The qubit consists of the ground states |0〉 and |1〉, and |r〉 denotes
the Rydberg state of atoms with the parameters. �0,1,2 denotes the
Rabi frequency of the lasers. Every two atoms have the strength Vi j

of Rydberg-Rydberg interaction with each other. Due to the Rydberg
blockade effect, only one atom can be excited to the Rydberg state
|r〉. (c) Geometric illustration of the gate with a cyclic evolution for
the orange-slice-shaped path on a Bloch sphere, where the bright
state |b〉 is the superposition state of |0〉 and |1〉.

In this manuscript, we use shortcut to adiabaticity, geomet-
ric quantum operations, as well as optimized control theory
to construct the fast and robust multiple-qubit CkU quantum
logic gate in the Rydberg atomic system. In contrast to the
existing theoretical and experimental schemes, the present
one has the following characteristics: (i) The influence of the
decay is reduced in contrast to the stimulated Raman adiabatic
passage by taking advantage of the shortcut to adiabaticity
method and the influence of the operational error is minimized
through the geometric quantum operation, which has inherent
noise resistance to parameter fluctuation. (ii) The scheme is
compatible with the optimal control method, which can be
used for obtaining higher fidelity and robustness. (iii) The
desired CkU can realize arbitrary single-qubit operation U on
the target qubit conditioned on the k control qubits by mod-
ulating the laser parameters, which includes not only CkNOT
and CkPhase gates (CkPG), but also more general gates that
have extensive application in quantum circuit and quantum
Fourier transformation [97].

The article is organized as follows. In Sec. II, fast and
robust multiple-qubit CkU gates are constructed based on
the shortcut to adiabaticity and optimized geometric quantum
operation in a Rydberg atoms system; then we evaluate the
performance of the gate. In Sec. III, we discuss some aspects
of the experimental considerations, including the realization
of pulse, actual Rydberg atomic level structure, and error
analysis. Section IV is for the discussion and conclusion.

II. MODEL AND REALIZATION OF THE GATES

As shown in Fig. 1, the quantum gate consists of N atoms
including k control qubits and one target qubit in our scheme.
Each atom consists of two ground states |0〉, |1〉 and one

Rydberg state |r〉. The interaction Hamiltonian between the
Rydberg states is HI = ∑N

i< j Vi, j σ
rr
i ⊗ σ rr

j , where Vi, j de-
notes the Rydberg-Rydberg interaction between the ith and
jth atoms with the strength Vi, j � �0 and the operators
σ rr

m = |r〉m〈r| (m = i, j). Without loss of generality, in the
following we suppose Vi, j = V for the sake of analysis. When
the laser pulse excites the ground state |1〉 of one atom to
the Rydberg state, other qubits can no longer be excited to
the |r〉 state due to the Rydberg blockade effect [1–3]. In
the following, we will introduce our multiple-qubit quantum
gate by considering the target qubit in a different coupling
configuration.

A. The C2PG gate

For simplicity, we consider a three-atom situation in our
scheme, where the Hamiltonian of the control and target
atoms can be rewritten as (h̄ = 1)

H0 = �0ei�0 |1〉m〈r| + H.c. (m = 1, 2, T ). (1)

The evolution of the system under the Hamiltonian H0 is
governed by the Schrödinger equation

i
∂

∂t
|�(t )〉 = H0(t )|�(t )〉. (2)

In the computation subspace of |1〉 and |r〉, the state |�(t )〉 can
be parameterized as

|�(t )〉 = e−ig

(
cos χ

2 e−iϕ/2

sin χ

2 eiϕ/2

)
. (3)

Inserting |�(t )〉 into Eq. (2), we can obtain the following
equations:

ġ = − ϕ̇/(2 cos χ ),

χ̇ = −2�0 sin(�0 + ϕ), (4)

ϕ̇ = − 2�0 cot χ cos(�0 + ϕ).

In order to make the initial state of the system cyclically
evolved along the projection subspace under the drive of the
H0, a set of suitable parameters ϕ and χ can be selected to
obtain �0 and �0 according to the conditions of Eq. (4), i.e.,

�0 = arctan

(
χ̇

ϕ̇
cot χ

)
− ϕ, �0 = − χ̇

2 sin(�0 + ϕ)
.

(5)
If the parameters satisfy the above equations, a pure geometric
phase will be obtained after the cyclic evolution. The specific
operation steps are described as follows.

Step (i): In order to achieve the goal of cyclic evolution, the
boundary condition should be satisfied first,

χ (0) = χ (t f ) = 0. (6)

Subsequently, we choose a set of parameters to make
the initial state evolve from |1〉 to itself, and produce a
phase factor which includes the dynamic phase and the
geometric phase, where the dynamic phase is γd (t1, t2) =
− ∫ t2

t1
〈�(t )|H0|�(t )〉dt , and the geometric phase is γg(t1, t2) =

i
∫ t2

t1
〈�̃(t )| d

dt |�̃(t )〉dt [30,34] with |�̃(t )〉 = eig|�(t )〉. In order
to get a pure geometric phase, we select the appropriate χ

and ϕ to make the overall dynamic phase equal to zero in
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FIG. 2. The evolution steps of the C2PG gate contain two control
atoms (black) and one target atom (red). It should be noted that step
(i) means the sequential driving on the control atoms one by one.
In other words, step (i) actually consists of k (here, k = 2) small
steps. And only the first atom in the |1〉 state can be excited to a
Rydberg state. Step (ii) is the operation to achieve the geometric
phase operation on the target atom. Step (iii) is the reverse operation
of step (i).

steps (i)–(iii). In step (i), the laser should successively couple
with the control atoms one by one. Step (i) can be divided
into two small steps for the C2PG gate. In the first small step
t ∈ (0,

t f

2 ], we illuminate the control atom 1 with the laser
pulse determined by

χ1,c1 = π sin2

(
πt

t f

)
, ϕ1,c1 = −π

4
sin

(
2πt

t f

)
. (7)

The corresponding evolution operator is obtained as U1,c1 =
eiγ1 |r〉1〈1| + e−iγ1 |1〉1〈r| + |0〉1〈0|, where γ1 = γd (0,

t f

2 ) +
γg(0,

t f

2 ) denotes the achieved phase on the control atom 1
after this small step. In the second small step t ∈ ( t f

2 , t f ], we
use the same pulse parameters,

χ1,c2 = π sin2

[
π

(
t − t f

2

)
t f

]
,

ϕ1,c2 = −π

4
sin

[
2π

(
t − t f

2

)
t f

]
, (8)

to couple control atom 2, and the same operator, i.e., U1,c2 =
eiγ1 |r〉2〈1| + e−iγ1 |1〉2〈r| + |0〉2〈0|, would be achieved on
atom 2 if atom 1 is not excited, where γ1 = γd ( t f

2 , t f ) +
γg( t f

2 , t f ) = γd (0,
t f

2 ) + γg(0,
t f

2 ) denotes the achieved phase
on control atom 2 after this small step. Otherwise, the op-
eration on control atom 2 would be blocked due to the
Rydberg-Rydberg interaction. That is, at most, only one con-
trol atom can obtain the transformations |1〉 → eiγ1 |r〉 [see
Fig. 2, step (i)].

Step (ii): The laser is turned on to illuminate the target
atom to couple |1〉 with |r〉 in the time t ∈ (t f , 2t f ], with the
parameters

χt = π sin2

[
π (t − t f )

t f

]
, t ∈ (t f , 2t f ],

ϕt =
{

−π
4 sin

[ 2π (t−t f )
t f

]
, t ∈ (

t f ,
3t f

2

]
π
4 sin

[ 2π (t−t f )
t f

] − γ , t ∈ ( 3t f

2 , 2t f
]
,

(9)

where γ can be an arbitrary angle. If any of the control atoms
is not excited to a Rydberg state, the evolution operator in
step (ii) can be obtained as U2,T = eiγ |1〉T 〈1| + e−iγ |r〉T 〈r| +
|0〉T 〈0| [103]. Otherwise, the evolution of the target atom
would be blocked [see step (ii) in Fig. 2].

Step (iii): This step is the reverse of step (i). Concretely, in
this step, the parameters for the pulse coupled with atom 2 for
t ∈ (2t f ,

5t f

2 ] are set as

χ2,c2 = π sin2

[
π

(
t − 3t f

2

)
t f

]
,

ϕ2,c2 = π

4
sin

[
2π

(
t − 3t f

2

)
t f

]
− γ ′. (10)

The parameters for the pulse coupled with control atom 1 for
t ∈ ( 5t f

2 , 3t f ] are set as

χ2,c1 = π sin2

[
π (t − 2t f )

t f

]
,

ϕ2,c1 = π

4
sin

[
2π (t − 2t f )

t f

]
− γ ′. (11)

Then, in step (iii), the evolution operator for control atoms
1 and 2 are, respectively, U3,c1 = eiγ3 |1〉1〈r| + e−iγ3 |r〉1〈1| +
|0〉1〈0|, U3,c2 = eiγ3 |1〉2〈r| + e−iγ3 |r〉2〈1| + |0〉2〈0|, where
γ3 = γd (2t f ,

5t f

2 ) + γg(2t f ,
5t f

2 ) = γd ( 5t f

2 , 3t f ) + γg( 5t f

2 , 3t f )
denotes the achieved phase on control atoms 2 and
1, respectively, in step (iii). Combining steps (i) with
(iii), the evolution operator for control atoms 1 and 2
is Uc1 = ei(γ1+γ3 )|1〉1〈1| + e−i(γ1+γ3 )|r〉1〈r| + |0〉1〈0| and
Uc2 = ei(γ1+γ3 )|1〉2〈1| + e−i(γ1+γ3 )|r〉2〈r| + |0〉2〈0|. One can
get γ1 + γ3 = γ ′, and set γ ′ = γ .

After the above three steps, we can obtain
the multiple-qubit quantum controlled phase gate
eiγ (|001〉〈001| + |010〉〈010| + |100〉〈100| + |110〉〈110| +
|011〉〈011| + |101〉〈101| + |111〉〈111|) + |000〉〈000|, which
is equivalent to realizing an arbitrarily geometric phase gate
e−iγ |000〉〈000| + |001〉〈001| + |010〉〈010| + |100〉〈100| +
|110〉〈110| + |011〉〈011| + |101〉〈101| + |111〉〈111| [see step
(iii) in Fig. 2].

B. The C2U gate

As shown in Fig. 1(b), the Hamiltonian of the control and
target atoms is obtained as

H = 1
2 (�1ei�1 |0〉m +

√
2�2e−i�2 |1〉m)〈r| + H.c. (12)

Setting m = 1, 2, T and � =
√

�2
1 + 2�2

2/2, we can ob-

tain the bright state |b〉 = sin α|0〉 − cos αe−i�|1〉 and the
decoupled dark state |d〉 = − sin α|1〉 − cos αei�|0〉, where
� = �1 + �2 + π and tan α = �1/(

√
2�2). It should be

noted that although �1 and �2 are time dependent, α =
arctan[�1/(

√
2�2)] could be a constant when the ratio be-

tween �1 and �2 is invariant. Meanwhile, although �1 and �2

are time dependent, the parameter � can be time independent
when �1 + �2 is a constant. After setting α and � as time-
independent parameters, |b〉 and |d〉 are time independent. On
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FIG. 3. The diagram shows the evolution steps of the CkU (k =
2) gate containing two control atoms (black) and one target atom
(red), where |b〉 is the superposition state of |0〉T and |1〉T . Step
(i) means the sequential driving on control atoms one by one, i.e.,
step (i) actually consists of k (k = 2) small steps. And only the first
atom in the |1〉 state can be excited to Rydberg state |r〉. Step (ii) is
the operation to achieve the geometric phase operation on the target
atom. Step (iii) is the reverse operation of step (i).

that basis, Eq. (12) can be simplified to

H = �ei�1 |b〉m〈r| + H.c. (m = 1, 2, T ). (13)

Similar to Eq. (1), the parameters in Hamiltonian (13) should
also satisfy certain relation and boundary conditions similar to
that in Eqs. (4)–(6). However, the involved bases are |b〉, |r〉,
and |d〉 (|d〉 is time independent and does not evolve). That is,
if the parameters in Eq. (13) are set the same as in Eq. (1), the
evolution operator for |b〉, |r〉, and |d〉 in this section is similar
to that for |1〉, |r〉, and |0〉 in Sec. II A. Here we also divide the
execution for the CkU (k = 2) gate into three steps.

Step (i): Similarly to step (i) in Sec. II A, in this step we
can get the evolution operator for control atom 1 as U1,c1 =
eiγ1 |r〉1〈b| + e−iγ1 |b〉1〈r| + |d〉1〈d| when t ∈ (0,

t f

2 ] and for
control atom 2 as U1,c2 = eiγ1 |r〉2〈b| + e−iγ1 |b〉2〈r| + |d〉2〈d|
when t ∈ ( t f

2 , t f ].
For all control atoms, setting α = 0, and then |b〉 ≡

ei(π−�)|1〉, |d〉 ≡ ei(π+�)|0〉. And the evolution operators are
simplified as U ′

1,c1 = eiγ ′
1 |r〉1〈1| + e−iγ ′

1 |1〉1〈r| + |0〉1〈0| when

t ∈ (0,
t f

2 ] and for control atom 2 as U ′
1,c2 = eiγ ′

1 |r〉2〈1| +
e−iγ ′

1 |1〉2〈r| + |0〉2〈0| when t ∈ ( t f

2 , t f ], in which γ ′
1 = γ1 +

� − π [see step (i) in Fig. 3].
Step (ii): Similarly to step (ii) in Sec. II A, if the parameters

� and �1 in Hamiltonian (13) are the same as �0 and �0 in
Eq. (1), which are determined by Eq. (9), then the evolution
operator would be U2,T = eiγ |b〉T 〈b| + e−iγ |r〉T 〈r| + |d〉T 〈d|
when t ∈ (t f , 2t f ] [see step (ii) in Fig. 3].

Step (iii): Similarly to step (iii) in Sec. II A, if the pa-
rameters � and � in Hamiltonian (13) are the same as
�0 and �0 in Eq. (1), which are determined by Eqs. (10)
and (11), then the evolution operator for control atoms 1
and 2 is U3,c1 = eiγ3 |b〉1〈r| + e−iγ3 |r〉1〈b| + |d〉1〈d|, U3,c2 =
eiγ3 |b〉2〈r| + e−iγ3 |r〉2〈b| + |d〉2〈d|, respectively.

For all control atoms, setting α = 0, the evolution operator
in this step is simplified to U3,c1 = eiγ ′

3 |1〉1〈r| + e−iγ ′
3 |r〉1〈1| +

FIG. 4. The diagram shows the evolution steps of the CkU gate
containing k control atoms (black) and one target atom (red), where
|b〉 is the superposition state of |0〉T and |1〉T . Step (i) means the
sequential driving on control atoms one by one, i.e., step (i) actually
consists of k small steps. And only the first atom in the |1〉 state can
be excited to Rydberg state |r〉. Step (ii) is the operation to achieve
the geometric phase operation on the target atom. Step (iii) is the
reverse operation of step (i).

|0〉1〈0|, U3,c2 = eiγ ′
3 |1〉2〈r| + e−iγ ′

3 |r〉2〈1| + |0〉2〈0|, respec-
tively, in which γ ′

3 = γ3 + π − �.
Combining steps (i) with (iii), the evolution operator

for control atoms 1 and 2 is Uc1 = ei(γ1+γ3 )|1〉1〈1| +
e−i(γ1+γ3 )|r〉1〈r| + |0〉1〈0| and Uc2 = ei(γ1+γ3 )|1〉2〈1| +
e−i(γ1+γ3 )|r〉2〈r| + |0〉2〈0|. γ1 + γ3 = γ ′ and we set γ ′ = 0
for the C2U gate [see step (iii) in Fig. 3]. After the above three
steps, the gate eiγ |00b〉〈00b| + |00d〉〈00d| + |010〉〈010| +
|100〉〈100| + |110〉〈110| + |011〉〈011| + |101〉〈101| + |111〉
〈111| can be accomplished, which means CkU (k = 2) is
constructed if one reexpands the states |b〉 and |d〉 into the
computational basis |0〉 and |1〉 [38,39].

C. The implementation of CkU gate

The C2U gate of the above scheme can be easily extended
to the CkU gate with the similar three steps. All the control
and target atoms contain three levels of |0〉, |1〉, |r〉, as shown
in Fig 1(b). As shown in Fig. 4, the first step is sequentially
driving the control atoms one by one (note that α is still
set as zero for all control atoms). The first control qubit in
the |1〉 state will be excited to the |r〉 state, which means
the remaining control atoms in the |1〉 state will no longer be
excited due to the blockade effect. Meanwhile, the |0〉 state
is decoupled in the whole process of the first step because α

is set to zero. If there is no atom excited after the first step,
the second step is the cyclic evolution of the target atom.
Otherwise, if any of the control atoms are excited, there is
no evolution of the target atom. The third step is the reverse
process of the first step. The Hamiltonian of each atom can be
written as

HN = �ei�1 |b〉m〈r| + H.c. (m = 1, 2, · · · k, T ), (14)

where the definition of |b〉 is the same as that in Sec. II B.
Considering Eq. (14) and the atom interaction HI mentioned
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FIG. 5. (a) The fidelity of the C2PG, C2NOT, and C2Hadamard
gates; decay rate is � = 1 KHz. (b) The C3PG, C3NOT, and
C3Hadamard gate fidelity of the three-level case with � = 1 KHz.
(c) The C4PG, C4NOT, and C4Hadamard gate fidelity with � =
1 KHz. For (a)–(c), γ is set as π . (d) The pulse parameters corre-
sponding to Eq. (1) and Eq. (14) during evolution and �1(�0) for
the target atom of CkPG.

above, with the condition Vi j � �, the N-qubit CkU gate

eiγ | 0 · · · 0︸ ︷︷ ︸
k

b〉〈0 · · · 0︸ ︷︷ ︸
k

b| + (ÎN − | 0 · · · 0︸ ︷︷ ︸
k

b〉〈0 · · · 0︸ ︷︷ ︸
k

b|) (15)

would be constructed, where N = k + 1 stands for k control
atoms and one target atom. Here, γ can be an arbitrarily
geometric phase angle.

If we expand the states of the target atom |b〉 and |d〉 into
the basis |0〉 and |1〉, the multiple-qubit universal quantum
logic gate can be constructed. After using the master equation
for simulation, the fidelity of the C2U, C3U, and C4U (U
= PG, NOT, Hadamard) gates is shown in Figs. 5(a)–5(c),
respectively, which show the feasibility and scalability of the
scheme.

D. Performance of multiple-qubit gates

The performance of the CkU gate can be evaluated by the
Lindblad master equation

ρ̇ = −i[H, ρ] +
k∑

m=1

�

2
(2LmρL†

m − L†
mLmρ − ρL†

mLm), (16)

where H and ρ are the Hamiltonian and the density ma-
trix of the system, respectively, and Lm = |0〉m〈r| + |1〉m〈r|
are the Lindblad operators. Here, we set the fidelity of
the gate to F = |〈�ideal|�t 〉|2, where |�ideal〉 denotes the
ideal final state calculated by performing the ideal quan-
tum logic gate on the initial state. |�t 〉 denotes the
practical state at time t calculated by numerically solv-
ing the master equation. The initial state of the CkU gate
is set to −∑

μ1···μk ,T =0,1(−1)�(μ1+···+μk+T )/(k+1)�|μ1 · · ·μkT 〉,
where “� �” is a mathematical symbol for rounding up,
i.e., �x1� = 0(−1 < x1 � 0), �x2� = 1(0 < x2 � 1). The de-
cay rate is chosen as � = 1 kHz and the duration of evolution
is t f ≈ 51.6 ns. As shown in Figs. 5(a)–5(c), one can get dif-
ferent gates by choosing different parameters; for example, if
α = π/2, � = 0, we can obtain the CkNOT gate, and the pa-
rameters of α = π/4, � = 0 and α = 0, � = 0 correspond
to the CkHadamard gate and CkPG gate, respectively. As for
the fidelity of the gates, the C2PG, C2NOT, and C2Hadamard

FIG. 6. Pulse and phase of ZSS-optimal scheme in Sec. II E.

gates can, respectively, reach 0.99839, 0.99847, and 0.99842,
and the C3PG, C3NOT, and C3Hadamard gates can, respec-
tively, reach 0.99831, 0.99826, and 0.99841. Significantly,
when the control atoms are expanded to four, the fidelity
decreases slightly, and the C4PG, C4NOT, and C4Hadamard
gates can, respectively, reach 0.9977, 0.9979, and 0.9978. The
corresponding parameters of �(�0) and �1(�0) are shown
in Fig. 5(d) in which �Max = 2π × 16 MHz. The Rydberg-
Rydberg interaction strength is set as V = 2π × 400 MHz,
and V � �Max guarantees the Rydberg blockade effect of the
system.

E. Optimal control

In order to make our scheme more robust to systematic
errors, we adopt the zero systematic-error sensitivity (ZSS)-
optimal protocol to further eliminate the errors; in particular,
we consider the existence of a random static system error
[104]. To begin with, we assume � → (1 + ε)�, where ε is
a small influence representing a systematic error, and then the
Hamiltonian given by Eq. (14) can be rewritten as

Hε = (1 + ε)�ei�1 |b〉m〈r| + H.c. (17)

Since the evolution path is symmetric, we take the evolution
of stage (0,

t f

2 ) as an example to study. According to the
perturbation theory, we can obtain

P = |〈�(t f /2)|�ε(t f /2)〉|2 = 1 + O1 + O2 + · · · , (18)

where |�ε〉 is the state with the static error, and On denotes the
term of the perturbation at the nth order. Here we only con-
sider second-order perturbations, i.e., P2 = 1 + O1 + O2 =
1 − ε2qs. According to Eqs. (3), (4), and (13), we can obtain
the expression of qs = | ∫ t f /2

0 dte−2igχ̇ sin2 χ |2, where qs rep-
resents the sensitivity of the system error. In order to eliminate
the system error, one can set g(χ ) = n

2 [2χ − sin(2χ )], and qs

can be further reduced to qs = sin(nπ )2

4n2 . The zero systematic
error is realized when n is a positive integer. In the numerical
simulation, we uniformly set the maximum value of � as
�Max = 2π × 16 MHz, which is the same as the nonoptimiza-
tion scheme, and thus the improvement of the gate fidelity can
only be attributed to optimal control.

In this article, we take the CkNOT (k = 2) gate of the target
atom of a three-level couple as an example. Then we set ϕ =
−4n sin3 χ/3 and χ = π sin2( πt

t f
). The optimized pulse pa-

rameters are shown in Fig. 6. Next, we need to find the optimal
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FIG. 7. The performance of the C2NOT gate under the three-
level case with optimization compared with the conventional scheme
(� is a time-independent pulse scheme [98]). (a) The fidelity with
different values n under the static error without decoherence. (b) The
fidelity with different values n under the static error with � = 1 KHz.
(c) Fidelity of gates at different decay rates and the static error with
n = 1. (d) The fidelity of C2NOT in two schemes (conventional
scheme and our scheme) and C2PG gate under different decoherence
rates.

value of n under decoherence. As shown in Fig. 7, we simulate
the C2NOT gate fidelity under the systematic error from −0.1
to 0.1 and change n from 0 to 1. In this way, we find that
n = 1 is always an optimal value, whether or not decoherence
exists. Under the same parameters �Max = 2π × 16 MHz and
V = 2π × 400 MHz, we compare the fidelity and robustness
of the C2NOT gates between our scheme and the conventional
pulses scheme in Ref. [98]. In Fig. 7(b), when � = 1 KHz,
the laser parameter δ� fluctuates in the range of −0.1 to 0.1.
Figure 7(d) shows the variation of the fidelity for the CkU
and conventional C2NOT gate under the different spontaneous
emission decay rates, where the decay rate � is modulated
from 0.2 to 4 KHz. In total, the fidelity under the parameter
fluctuation demonstrates that our scheme is indeed robust, and
the speed of the gate is also certain, according to the adoption
of STA.

III. EXPERIMENTAL CONSIDERATIONS

A. Realization of the pulse

We suppose d as the distance of two identical Ryd-
berg atoms which are trapped in optical tweezers, and the
strength of the van der Waals interaction (vdWI) is V =
C6/d6 [105]. Furthermore, we apply an amplitude-modulation
field of the Rabi frequency, � = �(t )ei�(t ) , to atoms to drive
the ground state |1〉 or |b〉 to Rydberg state |r〉. Such an
amplitude-modulation field could be fulfilled by an acousto-
optic modulator (AOM) with the assistance of the arbitrary
waveform generator [22], and the laser phase could be mod-
ulated by a spatial light modulator (SLM). One of the most
commonly used spatial light modulators is the liquid crystal
spatial light modulator (LC-SLM) [106,107].

B. Rydberg atomic level structure

We choose |r〉 ≡ |83S, J = 1/2, mJ = 1/2〉 for a rubid-
ium atom as the Rydberg state and the vdWI coefficient
of this atom is C6 = 9.7 × 103 GHz μm6 [108]. According

to Refs. [24,109], the Rydberg state lifetime is about τ =
696.35 μs at a temperature of 0 K, and the correspond de-
cay rate is � = 1/τ = 0.0014 MHz. Two stable ground states
can be chosen as |0〉 ≡ |5S1/2, F = 1, mF = 0〉 and |1〉 ≡
|5S1/2, F = 2, mF = 0〉, respectively [110]. The excitations
from the two ground states to Rydberg states are realized
by a two-photon process via the intermediate state |5P1/2〉 or
|5P3/2〉. The Rabi frequency can be obtained as � = 2π ×
10 MHz by setting the detuning of the two-photon process and
the coupling strength between the ground (Rydberg) state and
the intermediate state. The distance between the two identical
Rydberg atoms is d = 5.5 μm, and the Rydberg interaction
intensity is V = 2π × 350 MHz in this way. Considering the
above experimental parameters with the nonoptimized case,
the fidelity of the C2NOT, C2Hadamard, and C2PG gates
constructed by our scheme is 0.9981, 0.9981, and 0.9982,
respectively. If optimized again, the fidelity of the C2U gate
can still reach more than 0.999, which still has good fidelity
whether optimal or not. The C3PG, C3NOT, and C3Hadamard
gates can, respectively, reach 0.9970, 0.9971, and 0.9971, and
when the control atoms are expanded to four, the fidelity
decreases slightly, and the C4PG, C4NOT, and C4Hadamard
gates can, respectively, reach 0.99603, 0.99605, and 0.99603
under the above experimental parameters.

C. Error analysis

Inspired by the results in Ref. [98], here we give the
analytical result of the error by taking into account some inter-
nal errors, including spontaneous emission from the Rydberg
state and finite blockade shift errors. The total error of the
CkNOT error can be given as [98]

εopt � 3π2/3

21/3

k

(V τ )2/3
+ π4/3

28/3

k2

(V τ )4/3
. (19)

Here, k is the control qubit number and V is the strength of the
vdWI. It should be noted that the establishment of Eq. (19)
needs to meet certain conditions, including V � � � 1/τ

and V τ � k. All these conditions are satisfied in our scheme.
Then we obtain the maximum approximate error estimate of
0.0039 by taking k = 2 and V = C6/d6 = 2π × 350 MHz as
examples. In our scheme, the Rabi frequency � is time de-
pendent, but we use the value of �Max when we calculate the
maximum error. Considering the maximum approximate error
and spontaneous emission rate, the fidelity of the unoptimized
C2U gate fidelity is 0.9942.

D. Possible experimental configurations

With the development of quantum technology of Rydberg
atoms trapped in optical lattices or tweezer arrays, a number
of practical configurations of atomic arrays can be used to
realize the proposed multiple-qubit gates, which satisfy the
Rydberg blockade condition. Concretely, the one-dimensional
[29,111,112] and two-dimensional [113,114] atomic array
structures as well as the spherical structure [115] can be
considered for the experimental realization of the desired
gate.
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IV. CONCLUSION

In general, we use the Rydberg blockade effect combined
with shortcut to adiabaticity of inverse engineering and geo-
metric quantum operations to construct a CkU gate with high
fidelity and high speed. In addition, our scheme is further opti-
mized by the ZSS method and compared with the conventional
scheme with the same parameters; the results show that our
scheme is more robust and faster than the conventional and
nonadiabatic scheme, respectively. Finally, the experimental

implementation of the scheme is analyzed and the numerical
simulation is carried out to further verify the feasibility of the
scheme with the high fidelity and robustness.
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