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Self-testing of binary Pauli measurements requiring neither entanglement nor any dimensional
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Characterization of quantum devices received from unknown providers is a significant primary task for any
quantum information processing protocol. Self-testing protocols are designed for this purpose of certifying
quantum components from the observed statistics under a set of minimal assumptions. Here we propose
a self-testing protocol for certifying binary Pauli measurements employing the violation of a Leggett-Garg
inequality. The scenario based on temporal correlations does not require entanglement, a costly and fragile
resource. Moreover, unlike previously proposed self-testing protocols in the prepare and measure scenario, our
approach requires neither dimensional restrictions, nor other stringent assumptions on the type of measurements.
We further analyze the robustness of this hitherto unexplored domain of self-testing of measurements.
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I. INTRODUCTION

It is hard to overemphasise the role of emerging quantum
technology in recent times. Various real life applications,
such as quantum key distribution [1], quantum sensing [2],
quantum metrology [3], quantum internet [4], and machine
learning [5] have been investigated with great prospects. For
such prospects to materialize in practice, it becomes of utmost
importance to design experiments which can test whether the
quantum components of the required devices function prop-
erly. To this end, various certification or verification protocols
have been employed, such as those based on tomography
and benchmarking [6], as well as self-testing protocols based
essentially on observed statistics [7,8].

Among several certification protocols generic quantum to-
mography is the most powerful, but at the same time it is the
most resource consuming. Randomized benchmarking refers
to a collection of methods that aim at reliably estimating the
figure of merit of the overlap between the physical quantum
process and its ideal counterpart. For both randomized bench-
marking or quantum tomography, trusted measurements are
required to certify quantum devices. On the other hand, self-
testing of quantum components based on statistics, collected
from lesser number of measurements and minimal physical
assumptions, require lesser trust on the measurement devices
and are experimentally more efficient and less resource con-
suming [6].
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Self-testing based on the Bell test was proposed initially
in the context of quantum cryptography [7,8], where it was
shown that maximum violation of the Bell-CHSH inequality
[9,10] implies that the underlying quantum state is maxi-
mally entangled and the local measurements performed by
two distant parties are anticommuting [11]. In such self-
testing protocols one can uniquely identify quantum states and
measurements (up to some local isometries) by observing ex-
treme correlations in measurement statistics. The underlying
assumptions are the same as those required for the implemen-
tation of loophole-free Bell tests [12–15]. Since then all pure
bipartite entangled states and certain multipartite quantum
states, such as graph states, have been self-tested [8,16] in
this scenario. Self-testing of pure entangled bipartite states has
also been investigated [17–20] employing Einstein-Podolski-
Rosen steering [21]. Self-testing using steering is weaker in
the sense that it requires more assumptions compared to that
based on Bell tests, but the self-testing is easier to verify
experimentally [22].

In this regard, it is worthwhile to mention that self-testing
based on maximal violation of some nonclassicality revealing
criterion is very fragile as idealized situations in the lab-
oratory rarely occur. Therefore, a self-testing statement is
useful for practical purposes if it has reasonable robustness
[23–26]. For instance, there are robust self-testing protocols
for which, given a certain level of violation of a Bell in-
equality (but not necessarily maximal), the nontrivial lower
bound on the fidelity between the initially unknown state
and a given target state has been shown. Robust self-testing
of higher-dimensional state has also been studied [27–29].
Apart from various special classes of quantum states, different
types of measurements including maximally incompatible ob-
servables [11], entangling Bell-measurement [30,31], binary
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observables [32], more than two dichotomic observables
[33,34], and nonmaximally anticommuting observables [25]
have also been self-tested (see Ref. [35] for a review).

Apart from the above schemes of self-testing of measure-
ments based on the use of quantum correlations in entangled
states, some certification methods for self-testing have been
proposed that do not require entanglement [36–39]. A pair of
anticommuting Pauli observables have been self-tested in the
prepare and measure scenario [40], employing the quantum
advantage of 2 �→ 1 random access code (RAC) [41,42]. Such
approaches in the context of self-testing of local states and
measurements are more resource efficient and experimentally
feasible compared to schemes based on nonlocal quantum cor-
relations since they do not require entanglement, an expensive
resource. However, the assumption of an upper bound on the
system dimension has been crucial for such approaches, and
hence, the verifier needs to trust the measurement devices
more.

Another self-testing protocol has been constructed for
three-dimensional states and measurements [43] based on the
contextuality of quantum theory [44], which requires cer-
tain restrictive assumptions such as the compatibility between
subsequent projective measurements [35]. Recently, an ex-
tension of the scheme has been proposed based on the sum
of squares decomposition of a family of noncontextual in-
equalities [45], relaxing some of the above restrictions [46].
Self-testing of arbitrary high-dimensional local quantum sys-
tems using contextuality has also been proposed where the
assumption of projective measurement is necessary [47]. The
above protocols pertain to local measurements in three and
above dimensions. On the other hand, among all measure-
ments in quantum information processing, the measurements
with dichotomic settings and outcomes are the most widely
used ones. Hence, the design of resource efficient self-testing
protocols for such measurements with minimal assumptions
is necessary for practical purposes.

In the present work, we develop a scheme of self-testing
binary Pauli measurements in a hitherto unexplored scenario,
i.e., employing nonclassicality of temporal correlations ex-
hibited via violation of the Leggett-Garg inequality (LGI)
[48,49] and predictability [50,51], which does not require
any entanglement. LGI has been employed to probe macro-
scopic coherence and to study quantum to classical transition
[48–50,52–57]. Various aspects of temporal correlations have
been investigated [51,58–66] and experimentally realized
[67–72]. Here, we employ the violation of LGI, and invoke
a minimal set of assumptions which can be easily met in a
real experiment, in order to provide a self-testing statement
for binary Pauli measurements without any need to restrict
the dimension of the Hilbert space accessed by the quantum
devices. We further perform the robustness analysis of our
self-testing protocol by deriving a lower bound on the fidelity
of the measured observables with that of ideal ones.

II. DESCRIPTION OF THE SCENARIO

We start with a brief description of the Leggett-Garg (LG)
test (Fig. 1) which enables self-testing of Pauli measurements
whenever extremal correlations of LGI are observed. In a
LG test, a single system is measured sequentially at different

FIG. 1. Sequential-measurement setup. The joint probability dis-
tribution P(ai, bj | Ai, Bj ), i.e., the probability of obtaining outcome
ai and bj when Alice measures Ai in an arbitrary input state at some
instant tm and Bob performs measurement Bj at some later instant
tm+1, respectively, is observed to obtain the violation of LGI (3).

instants of time to obtain temporal correlations. Two sequen-
tial binary measurements are performed (by Alice and Bob,
respectively) on an identical initial state prepared by the ex-
perimenter in every run of the experiment. In contrast to the
sequential measurement scenario of self-testing using contex-
tuality [43], here subsequent measurements are not required
to commute with each other.

Alice and Bob have two choices of binary measurements,
say, {A1, A2} and {B1, B2} to perform in each run. The proba-
bility of obtaining outcome ai and b j is denoted by P(ai, b j |
Ai, Bj ), when Alice measures Ai at time tm and Bob mea-
sures Bj at some later instant tm+1, with i, j ∈ {1, 2} and
ai, b j ∈ {0, 1}. Let us denote, Pai|Ai , Pb j |Bj as projectors so
that

∑
ai
Pai|Ai = I,

∑
b j
Pb j |Bj = I. The two-time joint prob-

ability can be obtained using Bayes’ rule as

P(ai, b j | Ai, Bj )

= P(ai | Ai )P(b j | ai, Ai, Bj )

= Tr[Pai|Aiρin]Tr

[
Pb j |Bj

Pai|AiρinP†
ai|Ai

Tr
[
Pai|AiρinP†

ai|Ai

]
]
. (1)

The two-time correlation is defined as

Ci j =
∑
ai,b j

(−1)ai⊕b j P(ai, b j | Ai, Bj ), (2)

where ⊕ denotes addition modulo 2. The four-term LGI in
terms of the above correlators is given by

K4 = C11 + C21 + C22 − C12 � 2. (3)

Any model compatible with classical theory predicts that the
maximal value of the above expression is 2, whereas the quan-
tum theory can violate this inequality up to 2

√
2. Suppose, in

a single run, Alice performs a projective qubit measurement,
A1 ≡ â1.�σ (to make the preliminary discussion simple, but it
can be any general measurement too) on an arbitrary input
state, ρin at time t1, and Bob performs a qubit measurement,
B1 ≡ b̂1 · �σ at some later time t2, where â1 and b̂1 are the
Bloch vectors denoting Alice’s and Bob’s measurement di-
rections, respectively, and �σ is the vector of Pauli matrices.
Then the maximum quantum violation, 2

√
2, can be achieved
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by the following measurement settings:

Aideal
1 = σz,

Aideal
2 = σx,

Bideal
1 = σx + σz√

2
,

Bideal
2 = σx − σz√

2
, (4)

up to some local unitary. In the context of self-testing, all the
four measurements are a priori unknown to Alice and Bob.
Our goal is to certify above measurements from the observed
statistics, under some suitable and minimal assumptions.

III. DERIVATION OF LEGGETT-GARG INEQUALITY

LGI has been earlier derived using the assumptions of non-
invasive measurement and realism [54,55]. However, those
assumptions are at an ontological level, and hence, cannot
be verified individually. Rather a conjunction of them can be
verified in an experiment. On the other hand, in Ref. [51],
LGI was derived from some operational assumptions called
predictability and no signaling in time (NSIT) [50]. Subse-
quently, the NSIT condition has been experimentally observed
on a variety of input states [73]. Here we present the essential
features of the LGI derivation [51]. Let us first state the two
assumptions in precise mathematical form.

Predictability: A model is said to be predictable if the joint
statistics P(ai, b j | Ai, Bj ) ∈ {0, 1} ∀ai, b j, Ai, Bj [74].

NSIT: NSIT is defined by the condition that measurement
statistics is not influenced by the earlier measurements. Math-
ematically, P(b j | Bj ) = P(b j | Ai, Bj ) ∀Ai, Bj, b j .

To derive LGI from the above two assumptions, our aim is
to show that

NSIT ∧ Predictability ⇒ LGI. (5)

Suppose λ denotes some underlying variable at the ontolog-
ical level, averaging over which we obtain joint probabilities
observed in an experiment, i.e.,

P(ai, b j | Ai, Bj ) =
∫

λ

dλp(λ)P(ai, b j | Ai, Bj, λ).

LGI follows in a straightforward way when the joint probabil-
ity at the ontological level gets factorized, or in other words,
we have to show that predictability together with NSIT leads
to

P(ai, b j | Ai, Bj, λ) = P(ai | Ai, λ)P(b j | Bj, λ). (6)

As further conditioning does not change the determinis-
tic probability distribution, we have from the predictability,
P(ai, b j | Ai, Bj, λ) = P(ai, b j | Ai, Bj ). Using Bayes’ rule
one has

P(ai, b j | Ai, Bj ) = P(ai | Ai, Bj, b j )P(b j | Ai, Bj ).

The condition of NSIT implies P(bj | Ai, Bj ) = P(b j | Bj ).
Also, as physically reasonable and broadly accepted, a later
measurement cannot influence the past measurement result,
and hence P(ai | Ai, Bj, b j ) = P(ai | Ai ). With the above im-
plications, one can construct a theory at the ontological level

where P(ai | Ai, λ) = P(ai | Ai ), P(b j | Bj, λ) = P(b j | Bj ),
which lead to Eq. (6). Now, a straightforward calculation leads
us to derive the four-term LGI (3) which is bounded by 2.

Despite some structural similarities, the LG test is essen-
tially different from the Bell test [75], and also has some
loopholes which are different from that of the Bell test [76].
The approach adopted in this paper for the derivation of
LGI is based on the conjunction of Predictability and NSIT.
In the present scenario it is ensured that NSIT condition is
satisfied, as we see in the next section. This means that if
LGI is violated, then predictability must have to be violated.
Thus, the violation of predictability naturally guarantees non-
classicality which is required for the purpose of self-testing.

IV. SELF-TESTING OF MEASUREMENTS USING
LEGGETT-GARG INEQUALITY

The above derivation of LGI with the assumptions of pre-
dictability and NSIT helps us to devise a self-testing protocol
for binary Pauli measurements (4) whenever extremal non-
classical temporal correlations are observed. We formulate the
self-testing protocol in such a way that the NSIT condition
is satisfied so that maximal violation of the LGI will imply
the violation of the predictability condition, and hence, no
classical strategy is able to reproduce the statistics. We now
make a minimal assumption which is again very natural in the
sequential measurement scenario, since otherwise, a classical
model may simulate the quantum violation of LGI.

Assumption. The measurement device of Alice acts only
on the input state prepared by the experimenter, and the mea-
surement device of Bob acts only on the state produced by
Alice’s measurement, with both returning only the respective
post-measurement states.

A similar assumption was also considered in Ref. [46]
for the purpose of self-testing of local three-dimensional
measurements using the sum-of-squares decomposition of a
family of noncontextual inequalities [45]. However, in our
approach using LGI we are interested here in the self-testing
of binary qubit measurements. Employing the maximum vi-
olation of LGI along with NSIT condition we can self-test
the binary qubit measurements given by Eq. (4) up to some
local unitaries. Our self-testing protocol does not depend on
the input state. However, for the sake of a formal proof of
self-testing, we first consider a general qubit state (in lemma
1). Then, making use of this proof, we extend our result
for states in any dimension (lemma 2). Our formal proof of
self-testing is thus accomplished in the following two steps
(lemmas 1 and 2), and finally we present the proof of isometry
in Theorem 1.

Lemma 1. The maximum violation of LGI (i.e, Kmax
4 =

2
√

2) implies implementation of the qubit measurement ob-
servables given by equation (4) upto some local unitaries,
satisfying the NSIT condition.

Proof. Maximum quantum violation of LGI can only
be achieved if the measurements are taken to be projec-
tive. We maximize the LGI considering the most general
positive-operator-valued measure (POVM) with two out-
comes. Maximizing the four-time LGI expression numerically
over all the POVM parameters, it is found that the maximum
value 2

√
2 can only be achieved if the measurements are
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taken to be projective (the details of the proof are given in
Appendix A). Hence, without any loss of generality, we re-
strict ourselves to projective measurements only.

To obtain the two-time correlation Ci j we have to calculate
joint probabilities P(ai, b j | Ai, Bj ) given in Eq. (1). Con-
sidering the general qubit input state ρin = I+n̂.�σ

2 , the first
term of Eq. (1) can be simplified to Tr[Pai|Aiρin] = 1

2 (1 +
(−1)ai âi · n̂). The postmeasurement state after obtaining out-

come ai is given by
Pai |Ai ρinP†

ai |Ai

Tr[Pai |Ai ρinP†
ai |Ai

]
= 1

2 [I + (−1)ai âi.�σ ]. Now,

the term, Tr[Pb j |Bj

Pai |Ai ρinP†
ai |Ai

Tr[Pai |Ai ρinP†
ai |Ai

]
] can be simplified to 1

2 [1 +
(−1)ai+b j âib̂ j]. So, the joint probability distribution of getting
outcomes ai and b j when measurements Ai and Bj are per-
formed, respectively, is given by

P(ai, b j | Ai, Bj ) = 1
4 [1 + (−1)ai âi · n̂][1 + (−1)ai+b j âi · b̂ j].

(7)

After simplification, we get, Ci j = âi · b̂ j . Then, the four-time
LGI in terms of four correlators will be

K4 = â1 · b̂1 + â2 · b̂1 + â2 · b̂2 − â1 · b̂2 � 2. (8)

It follows that the maximum value of K4 is 2
√

2 when all
|âi · b̂ j | = 1√

2
[58], which can be obtained for the settings

described in Eq. (4) or their local unitary rotation.
Here, one can verify that the NSIT condition is also sat-

isfied in case of maximum LGI violation when |âi.b̂ j | =
1√
2
. The NSIT condition on the probabilities, P(b j |

Ai, Bj ) = P(b j | Bj ) ∀b j, Ai, Bj , implies (−1)a1+b1 â1 · b̂1 =
(−1)a2+b1 â2 · b̂1 = (−1)a1+b2 â1 · b̂2 = (−1)a2+b2 â2 · b̂2. Thus
clearly, when maximum violation of K4 is observed along
with the NSIT condition, it is obvious that the predictability
condition does not hold anymore. �

We now show how maximal violation of LGI can also
be used to self-test the Pauli measurements even if the mea-
surement operators act on a higher-dimensional Hilbert space.
Let the initial state be ρin in an arbitrary dimensional Hilbert
space, and the measurements Ai, Bj both act on this space.

Lemma 2. The maximum violation of LGI (i.e.,
Kmax

4 = 2
√

2) implies implementation of the block diago-
nal measurement, i.e., A1 = ⊕iσ

i
z , A2 = ⊕iσ

i
x, B1 = ⊕ j (σ

j
x +

σ
j

z )/
√

2, B2 = ⊕ j (σ
j

x − σ
j

z )/
√

2.
Proof. Suppose {Pai|Ai} and {Pb j |Bj } are two dichotomic

measurements which act on an arbitrary-dimensional Hilbert
space. Then, according to Jordan’s lemma [26], Pai|Ai =
⊕mPm

ai|Ai
and Pb j |Bj = ⊕nPn

b j |Bj
, where Pm

ai|Ai
and Pn

b j |Bj
are

projectors on Hd with d � 2 (here, in view of our proof of
lemma 1, we again stick to projective measurements without
any loss of generality). Therefore, one has

P(ai, b j | Ai, Bj )

=
∑
m,n

pmTr
[
Pm

ai|Ai
ρm

]
Tr

[
Pn

b j |Bj

Pm
ai|Ai

ρmPm†
ai|Ai

Tr
[
Pm

ai|Ai
ρmPm†

ai|Ai

]
]

where pm = Tr(ρin�m), with �m = ∑
ai
Pm

ai|Ai
, and ρm =

(�mρin�m)/pm, which is at most a qubit state. Now, the oper-
ators of the above equation acting on Hd with d = 2 implies

that

P(ai, b j | Ai, Bj )

=
∑

m

pm
1

4
[1 + (−1)am

i âm
i · r̂][1 + (−1)ai+b j âm

i · b̂n
j].

From the above equation it follows that

Ci j =
∑
m,n

pmâm
i · b̂n

j (9)

The above expectation implies C11 + C21 + C22 − C12 = 2
√

2
if and only if â1

m = ẑ, â2
m = x̂, b̂1

n = (ẑ + x̂)/
√

2, b̂2
n =

(ẑ − x̂)/
√

2 and
∑

m pm = 1. This is achieved if and only
if A1 = ⊕mσ m

z , A2 = ⊕mσ m
x , B1 = ⊕n(σ n

x + σ n
z )/

√
2, B2 =

⊕n(σ n
x − σ n

z )/
√

2 and ρin = ⊕m pmρm.
The above two lemmas enables us to present the following

theorem. �
Theorem 1. If Kmax

4 = 2
√

2 is observed in LG-test under
Assumption 1, with the measurements of Alice, Ai acting on

Hd , producing the post measurement states { Pai |Ai ρinP†
ai |Ai

Tr[Pai |Ai ρinP†
ai |Ai

]
}

a
,

and the measurements of Bob Bj acting on these post mea-
surement states, then there exists an isometry � : Hd → C2 ⊗
Hd such that

�

(
Bj

Pai|AiρinP†
ai|Ai

Tr
[
Pai|AiρinP†

ai|Ai

]
)

�†

= Bideal
j

∣∣ψideal
a|Ai

〉〈
ψideal

a|Ai

∣∣ ⊗ |junk〉〈junk|,
where |ψ ideal

a|Ai
〉 are the eigenstates of Alice’s ideal measure-

ments and Bideal
j are Bob’s ideal measurements given by

Eq. (4), respectively, and |junk〉 is a junk state acting on Hd .
Proof. The details proof are given in the Appendix B.

Choosing the eigenbasis of A1 as the computational basis,
from lemmas 1 and 2, it follows that the postmeasure-

ment states of Alice can be written as
Pai |Ai ρinP†

ai |Ai

Tr[Pai |Ai ρinP†
ai |Ai

]
=

⊕m pm|ψm
a|Ai

〉〈ψm
a|A1

|, with |ψm
0|A1

〉 = |2m〉 and |ψm
1|A1

〉 = |2m +
1〉. We append an ancilla qubit prepared in the state |0〉 and
look for an isometry � such that

�

(
Bj

Pai|AiρinP†
ai|Ai

Tr
[
Pai|AiρinP†

ai|Ai

] ⊗ |0〉〈0|
)

�†

= Bideal
j

∣∣ψideal
a|Ai

〉〈
ψideal

a|Ai

∣∣ ⊗ |junk〉〈junk|.
This can be achieved for � defined by the map

�|2m, 0〉 → |2m, 0〉,
�|2m + 1, 0〉 → |2m, 1〉.

�

V. ROBUST SELF-TESTING OF MEASUREMENTS

Robustness of self-testing of measurements is quantified as
how the actual observables which are to be self-tested differ
from the ideal ones. Hence, characterization of the fidelities
between the real measurements and the ideal measurements is
warranted. Let us first perform the robustness analysis of the
measurements on Alice’s side, i.e., {Pai|Ai}. Given an arbitrary
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set of measurements {Pai|Ai}, the average fidelity with the ideal
measurements are

S({Pai|Ai}) = max�

∑
i,ai

F
(
P ideal

ai|Ai
,�

[
Pai|Ai

])/
4. (10)

Here � is a quantum channel and the fidelities are defined as
usual, F (ρ, σ ) = Tr(

√√
ρσ

√
ρ ). The fidelities between the

real and the ideal measurements F (P ideal
ai|Ai

,�[Pai|Ai ]) simplify
to Tr(�[Pai|Ai ]P ideal

ai|Ai
). The lower bound on the smallest possi-

ble value of the average fidelity S, given a particular violation
of the four-time LGI K4, can be found by minimizing over all
sets of four measurements of Pai|Ai ,

F (K4) = minPai |Ai
S(

{
Pai|Ai

}
). (11)

To obtain a lower bound for F as a function of LGI-
violation K4, we use the operator inequality approach given
in Refs. [26,40]. Rewriting K4 in terms of an operator Wiai

and Pai|Ai , where Wiai = 1
2 [(−1)ai (PB1 + (−1)i−1PB2 )], PBi ≡

P0|Bi − P1|Bi , we have

K4 =
∑
i,ai

Tr
[
WiaiPai|Ai

]
. (12)

Let us now define another operator Kiai (PB1 ,PB2 ) ≡
�†(PB1 ,PB2 )[P ideal

ai|Ai
]. Considering an operator inequality of

the form

Kiai

(
PB1 ,PB2

)
� sWiai + μiai

(
PB1 ,PB2

)
I, (13)

with s and μiai (PB1 ,PB2 ) being real coefficients, the average
fidelity S (and hence F) can be lower bounded as

F � S � 1

4

∑
i,ai

F
(
P ideal

ai|Ai
,�

[
Pai|Ai

]

= 1

4

∑
i,ai

Tr
[
KiaiPai|Ai

]

� s

4

∑
i,ai

Tr
[
WiaiPai|Ai

] + 1

4

∑
i,ai

μiai

= s

4
K4 + μ, (14)

where μ ≡ 1/4 minPB1 ,PB2

∑
i,ai

μiai (PB1 ,PB2 ).
Since we can use Jordan’s lemma to write the observables

of Alice in a block-diagonal form with block of size at most
2 × 2, it suffices for our purpose to focus on each block as
in Ref. [26] to find the constants s and μ for lower bounding
the fidelity. The goal of the robustness analysis is to obtain a
self-testing bound as tight as possible. Following the authors
of Ref. [40], adoption of the dephasing channel �, as an ex-
traction map suffices to achieve our aim of finding an optimal
self-testing bound

�θ (ρ) = 1 + ξ (θ )

2
ρ + 1 − ξ (θ )

2
�(θ )ρ�(θ ); (15)

where ξ (θ ) ∈ [−1, 1] and

�(θ ) =
{
σz for θ ∈ [

0, π
4

]
,

σx for θ ∈ (
π
4 , π

2

]
.

For the interval 0 � θ � π/4

K10 = �†[P0|A1 ]

= 1 + ξ (θ )

2

[
I + σz

2

]
+ 1 − ξ (θ )

2

[
σz
I + σz

2
σz

]

= I + σz

2
,

and similarly K20 = I+ξ (θ )σx

2 , K21 = I−ξ (θ )σx

2 , K11 = I−σz

2 ,
whereas, for the interval π/4 � θ � π/2,

K10 = I + ξ (θ )σz

2
, K20 = I + σx

2

K11 = I − ξ (θ )σz

2
, K21 = I − σx

2
.

We can, without loss of generality, represent the two mea-
surements in the x-z plane as

PB1 = cos(θ )σz + sin(θ )σx,

PB2 = cos(θ )σz − sin(θ )σx, (16)

and therefore, W10 = cos(θ )σz, W20 = sin(θ )σx, and W21 =
− sin(θ )σx, W11 = − cos(θ )σz.

We analyze the operator inequality in the interval 0 � θ �
π/4 and π/4 � θ � π/2 separately. One can see that the
effective number of inequalities may be reduced since there
are symmetries in the expression of Kiai and Wiai , and hence,
without loss of generality we can choose μo ≡ μ20 = μ21 and
μe ≡ μ10 = μ11. After simplification we get

μe � 1 − s cos(θ ),

μe � s cos(θ ), (17)

and

μo � 1
2 + 1

2ξ (θ ) − s sin(θ ),

μo � 1
2 − 1

2ξ (θ ) + s sin(θ ). (18)

To obtain the strongest bound, we have to choose the largest
value of μo and μe consistant with their respective constraints,
i.e., in the first interval,

μe = min{1 − s cos(θ ), s cos(θ )},
μo = min

{
1
2 + 1

2ξ (θ ) − s sin(θ ), 1
2 − 1

2ξ (θ ) + s sin(θ )
}
.

(19)

A similar procedure in the second interval leads to

μo = min{1 − s sin(θ ), s sin(θ )},
μe = min

{
1
2 + 1

2ξ (θ ) − s cos(θ ), 1
2 − 1

2ξ (θ ) + s cos(θ )
}
.

(20)

The expressions in the two intervals are related to each other
by the transformations μo ↔ μe and sin(θ ) ↔ cos(θ ).

Hence, the lower bound in fidelity becomes

F (K4) � s

4
K4 + minPB1 ,PB2

μ(PB1 ,PB2 ), (21)
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where μ(PB1 ,PB2 ) = (μe + μo)/2. To compute this value, we

fix s = 1+√
2

2 , and choosing the dephasing function as ξ (θ ) =
min{1, 2s sin(θ )} in the interval θ ∈ [0, π/4], and ξ (θ ) =
min{1, 2s cos(θ )} in the interval θ ∈ (π/4, π/2]. After sim-
plification, we get, μ = 2−√

2
4 which gives the lower bound

F (K4) � (1 + √
2)

8
K4 + 2 − √

2

4
. (22)

This provides robust self-testing of Alice’s measurements.
Clearly, the maximal quantum violation of the LGI, i.e., K4 =
2
√

2 implies F (K4) = 1, which suggests that the measure-
ments must be the ideal ones. For K4 = 2, F (K4) � 3/4. This
bound can be obtained by A1 = A2 = B1 = B2 = σz. There-
fore, we see that our bound is optimal.

We now quantify the average fidelity of the measurements
on Bob’s side with respect to the ideal ones: S ′({Pbi|Bi}) =
max�

∑
i,bi

F {(Pbi|Bi )
ideal�[Pbi|Bi ]}/4, where � must be a

unital channel. Now, define

F ′(K4) = min{Pbi |Bi }S
′({Pbi|Bi}). (23)

First, we rewrite K4 = ∑
i,bi

Tr[Pbi|Bi Zibi ] where Zibi =
1
2 (−1)bi [PA1 + (−1)i−1PA2 ] and PAi ≡ P0|Ai − P1|Ai .

Let us take an operator inequality of the form

Kibi ({PA1 ,PA2}) � sZibi + μibi ({PA1 ,PA2})I, (24)

with Kibi = �†[P ideal
bi|Bi

]. Similar to the previous case

F ′(K4) � minPA1 ,PA2

1

4

∑
i,bi

Tr[KibiPbi|Bi ]. (25)

Using the same map and the same technique, we have
ξ (θ ) = min{1, 2s sin(θ )} in interval θ ∈ [0, π/4] and ξ (θ ) =
min{1, 2s cos(θ )} θ ∈ (π/4, π/2]. If we repeat the same
procedure as in Alice’s measurements, we get the bound,

F ′(K4) � (1+√
2)

8 K4 + 2−√
2

4 . This provides robust self-testing
of Bob’s measurements, which is again optimal.

To provide an operational analysis of robustness, let us
choose a dephasing channel �θ (ρ) = 1+ξ (θ )

2 ρ + 1−ξ (θ )
2 σzρσz.

It keeps the measurement A1 = σz as it is and dephases
the measurement A2 = σx to ξ (θ )σx. Let us consider
Bob’s measurements as B1 = cos(φ)σz + sin(φ)σx and B2 =
cos(φ)σz − sin(φ)σx. Taking ξ (θ ) = tan(φ), we get

K4 = 2
√

1 + tan2(φ) and F = 1
4 [3 + tan(φ)].

The above expressions provide a parametric curve as a func-
tion of φ ∈ [0, π/4], which is the dashed (blue) line in Fig. 2.
The straight (red) line represents the lower bound of fidelity
as given by Eq. (22). A straightforward calculation shows that
the robustness analysis for Bob’s measurements (F ′) produces
a matching parametric curve.

VI. CONCLUSION

With the rapid development of quantum technologies, it
is important to first characterize and certify various quantum
devices. Among various certification protocols, self-testing
protocols are designed for the purpose of certifying quan-
tum components from the observed statistics under a set of

FIG. 2. The average fidelity F (F ′), for Alice’s (Bob’s) measure-
ment as a function of K4 is plotted. The red (solid) line represents the
lower bound of average fidelity obtained analytically from Eq. (22).
The blue (dotted) line is the average fidelity under dephasing noise.

minimal assumptions. Self-testing is regarded to be more
resource efficient, and requires lesser trust on measure-
ment devices. Previously, self-testing of measurements has
been performed mainly employing nonlocal spatial quantum
correlations [8,16,28,30,31,35], as exhibited by the viola-
tion of Bell-type inequalities, which require entanglement, a
costly resource. Schemes of self-testing measurements with-
out entanglement proposed earlier require either dimensional
restrictions [40,42], or other stringent assumptions like com-
patibility and projectivity of the measurements [43,47] in the
case of approaches based on contextuality, though it may be
possible to relax some of these assumptions for local measure-
ments in three and higher dimensions [46].

In this work our purpose is to self-test binary measure-
ments with dichotomic settings and outcomes without using
entangled states. To this end we exploited another fundamen-
tal property of quantum mechanics, viz., temporal quantum
correlations exhibited by violation of Leggett-Garg inequali-
ties together with violation of predictability [48–51,54]. We
presented a scheme of self-testing of binary Pauli measure-
ments through LGI violation using a minimal assumption
that is inevitable in the present context. We showed how
the maximum quantum violation of the four-term LGI along
with the NSIT condition can be used to provide a self-testing
statement of binary measurements without entanglement,
which requires neither compatibility or projectivity, nor any
dimensional restriction. Moreover, we have formulated the
robustness bound of our self-testing protocol, and analysed
it with an example of dephasing noise.

Before concluding, we would like to highlight certain
salient features of our analysis. First, it is evident from our
analysis that the proposed self-testing protocol for binary
qubit measurements does not depend on the input state.
Second, though in the present work we have not discussed
self-testing of quantum states, once the measurement devices
are characterized through our approach of self-testing through
the LGI framework, any subsequent certification of quantum
states using such devices may reduce essentially to the task of
decoherence control. Finally, the NSIT condition used here
is experimentally implementable, as shown recently, for a
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variety of states [73]. Experimental viability of our protocol
is ensured in the backdrop of several recent LG tests [67–73].
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APPENDIX A: MAXIMAL VIOLATION OF THE
LGI WITH POVMS

Here we obtain the maximal of the Leggett-Garg inequality
for POVMs [64,77], which are a set of positive operators
that add to identity, i.e., E ≡ {Ei|

∑
i Ei = I, 0 < Ei � I}.

Each of the operators Ei, called effect operator determines
the probability Tr[ρEi] of obtaining the ith outcome when
applied on the state ρ. The most general POVM with two out-
comes are defined by two parameters: the sharpness parameter
and biasedness parameter. Let us consider that γa, γb are the
biasedness parameter and λi and μ j are the sharpness parame-
ters for Alice’s ith and Bob’s jth measurements, respectively.
The most general effect operators with two outcomes can be
written as

Eλi
ai

= λiPai|Ai + (1 ± γa − λi )
I2

2
,

E
μ j

b j
= μ jPb j |Bj + (1 ± γb − μ j )

I2

2
. (A1)

The post measurement state can be derived using generalized

von Neumann-Lüders transformation rule,

√
E

λi
ai ρ

√
E

λi
ai

Tr[E
λi
ai ρ]

.

Now, to derive the LGI we shall follow the same scenario
and procedure as discussed in the main text. The two-time
joint probability is obtained using Bayes’s rule

P(ai, b j | Ai, Bj )

= P(ai | Ai )P(b j | ai, Ai, Bj )

= Tr
[
Eλi

ai
ρin

]
Tr

⎡
⎣E

μ j

b j

√
Eλi

ai ρ

√
Eλi

ai

Tr[Eλi
ai ρ]

⎤
⎦. (A2)

The two-time correlation is defined as

Ci j =
∑
ai,b j

(−1)ai⊕b j P(ai, b j | Ai, Bj ), (A3)

where ⊕ denotes addition modulo 2. The four-term LGI in
terms of the above correlators is given by

K4 = C11 + C21 + C22 − C12 � 2. (A4)

For a general input state ρin = I+n̂.�σ
2 , the first term (probabil-

ity obtained by Alice) reduces to

Tr
[
Eλi

ai
ρin

] = 1
2 [(1 ± γa) + (−1)aiλiâin̂]

Similarly, one can calcultate Tr[Eμ j

b j

√
E

λi
ai ρ

√
E

λi
ai

Tr[E
λi
ai ρ]

] One can now

calculate K4 and maximize it numerically. It can be found that
the maximum quantum value of K4 is 2

√
2 when all |âi · b̂ j | =

1√
2

along with λi = μ j = 1 and γa = γb = 0. Hence, the max-
imum value of LGI can only be achieved if Alice and Bob
perform sharp-projective measurements.

APPENDIX B: DETAILS OF PROOF OF THEOREM 1

Appending an ancilla qubit prepared in the state |0〉, let us
show that there exists an isometry � defined by the map

�|2m, 0〉 → |2m, 0〉,
�|2m + 1, 0〉 → |2m, 1〉, (B1)

such that

�

(
Bj

Pai|AiρinP†
ai|Ai

Tr
[
Pai|AiρinP†

ai|Ai

] ⊗ |0〉〈0|
)

�†

= Bideal
j

∣∣ψideal
a|Ai

〉〈
ψideal

a|Ai

∣∣ ⊗ |junk〉〈junk|
holds.

We present here the calculation for one term (say,

�(B1
Pa1 |A1 ρinP†

a1 |A1

Tr[Pa1 |A1 ρinP†
a1 |A1

]
⊗ |0〉〈0|)�†) explicitly. Other terms can

be calculated in a similar fashion.
Choosing the eigenbasis of A1 as the computational basis,

from lemmas 1 and 2, it follows that the postmeasure-

ment states of Alice can be written as
Pai |Ai ρinP†

ai |Ai

Tr[Pai |Ai ρinP†
ai |Ai

]
=

⊕m pm|ψm
a|A1

〉〈ψm
a|A1

|, with |ψm
0|A1

〉 = |2m〉 and |ψm
1|A1

〉 = |2m +
1〉. The measurement B1 on Bob’s side is ⊕n(σ n

x + σ n
z )/

√
2.

Expanding the sum for a = 0 leads to

⊕n
σ n

x + σ n
z√

2
⊕m pm|2m〉〈2m|

=
( |0〉〈0| − |1〉〈1| + |0〉〈1| + |1〉〈0|√

2
+ |2〉〈2| − |3〉〈3| + |2〉〈3| + |3〉〈2|√

2
+ · · ·

+ |2m〉〈2m| − |2m + 1〉〈2m + 1| + |2m〉〈2m + 1| + |2m + 1〉〈2m|√
2

)
· (p0 |0〉 〈0| + p1 |2〉 〈2| + · · · + pm |2m〉 〈2m|)

=
(

p0
|0〉 + |1〉√

2
〈0| + p1

|2〉 + |3〉√
2

〈2| + · · · + pm
|2m〉 + |2m + 1〉√

2
〈2m|

)
. (B2)
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Now, for the map defined above,

�

(
⊕n

σ n
x + σ n

z√
2

⊕m pm|2m〉〈2m| ⊗ |0〉 〈0|
)

�†

= |0〉 + |1〉√
2

〈0| ⊗ ⊕m pm|2m〉〈2m|

= Bideal
1

∣∣ψideal
0|A1

〉〈
ψideal

0|A1

∣∣ ⊗ |junk〉〈junk|, (B3)

with |junk〉〈junk| = ∑
m pm|2m〉〈2m|.

Next, for a = 1, we have

⊕n
σ n

x + σ n
z√

2
⊕m pm|2m + 1〉〈2m + 1|

=
(

p0
|0〉 − |1〉√

2
〈0| + p1

|2〉 − |3〉√
2

〈2| + · · · + pm
|2m〉 − |2m + 1〉√

2
〈2m|

)
. (B4)

Hence, for the map defined above,

�

(
⊕n

σ n
x + σ n

z√
2

⊕m pm|2m + 1〉〈2m + 1| ⊗ |0〉 〈0|
)

�†

= |0〉 − |1〉√
2

〈0| ⊗ ⊕m pm|2m〉〈2m|

= Bideal
1

∣∣ψideal
1|A1

〉〈
ψideal

1|A1

∣∣ ⊗ |junk〉〈junk|. (B5)
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