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Quantum metrology is the use of genuinely quantum properties such as entanglement as a resource to
outperform classical sensing strategies. Typically, entanglement is created by implementing gate operations or
inducing many-body interactions. However, existing sensing schemes with these approaches require accurate
control of the probe system such as switching on and off the interaction among qubits, which can be challenging
for practical applications. Here, we propose an entanglement-enhanced sensing scheme with an always-on
nearest-neighbor interaction between qubits. We adopt the transverse field Ising chain as the probe system,
making use of the so-called quantum domino dynamics for the generation of the entangled states. In addition
to the advantage that our scheme can be implemented without controlling the interactions, it only requires
initialization of the system, projective measurements on a single qubit, and control of the uniform magnetic
fields. We can achieve an improved sensitivity beyond the standard quantum limit even under the effect of
realistic decoherence.
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I. INTRODUCTION

The improvement of the sensitivity is a key objective for
sensing technologies. Recent developments have enabled us
to perform high-precision sensing in variety of areas such as
in life science [1,2], investigation of semiconductor devices
[3], and study of condensed matter physics [4]. In particular,
the detection of a weak magnetic field with the use of quantum
technologies has been attracting much attention.

Quantum metrology using qubits [5–8] is an essential tech-
nique to improve the estimation precision. Typical sensing
scheme consists of three procedures: preparing the probe
qubits in a specific quantum state, exposing the state to the
target magnetic field, and performing a measurement for the
readout. It is well known that the standard quantum limit
(SQL) bounds the sensitivities when we prepare separable
states for the probe qubits [6]. On the other hand, by ex-
ploiting quantum properties of entanglement among the probe
qubits, the bound can be relaxed to the Heisenberg limit (HL)
[7,9,10].

The challenge of the entanglement-enhanced sensing is to
develop a practical method for preparing useful entangled
states between the probe qubits. For the entanglement-
enhanced sensing of a magnetic field, we need both the strong
coupling with the target magnetic field and controllability
of the qubits. The former is essential to achieve a better
sensitivity, while the latter is crucial for the creation of the
entangled states. However, as the coupling with the target
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magnetic field is increased, decoherence rate of the qubit due
to the unavoidable coupling with the environment typically
increases, resulting in poor controllability of the qubit. This
means that it is difficult to accurately control the qubits for the
magnetic field sensing. Because of this difficulty, although a
great number of methods requiring high controllability have
been proposed, practical entanglement-enhanced sensing is
still challenging in this area.

The typical entangled state for quantum metrology is
the Greenberger-Horne-Zeilinger (GHZ) state [11,12]. The
GHZ state can be created by using a sequence of gate op-
erations [13–19]. However, entangling gate operations such
as controlled-NOT (CNOT) gates require an accurate control
of the interaction between qubits. Such a requirement for
high controllability could be a bottleneck for the practical
entanglement-enhanced sensing.

In the present paper, we propose an entanglement-
enhanced sensing protocol to measure a magnetic field with an
always-on nearest-neighbor interaction. Our scheme does not
require either entangling gate operations or switching on-off
the interaction among qubits. More specifically, we consider
the one-dimensional spin chain with a nearest-neighbor ferro-
magnetic Ising interaction accompanied by the homogeneous
transverse magnetic field for control. In our protocol, per-
forming a single-qubit measurement on one of the edges of
the chain at equilibrium induces unitary dynamics due to
the intrinsic Hamiltonian of the system, and this generates
an entangled state suitable for quantum metrology. When
we expose our probe qubits to the target magnetic field, the
interaction is still on; we just need to turn on or off global
magnetic fields. Furthermore, the readout for the estima-
tion of the target magnetic field can be implemented with a
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single-qubit measurement on the edge of the chain. Our pro-
tocol does not require complicated operations such as turning
on and off the interaction, which is in stark contrast to the
conventional scheme with GHZ states that requires precise
control of the interaction.

This paper is organized as follows. In Sec. II, we review
concepts of the Ramsey-type quantum sensing protocol and
the transverse field Ising chain. In Sec. III, we illustrate our
protocol in an analytical way and compare it with the con-
ventional protocol. In Sec. IV, we then numerically calculate
the uncertainty to estimate the target magnetic field in our
protocol without the presence of noise. In Sec. V, we con-
sider the effect of dephasing and numerically investigate the
performance of our protocol with dephasing. We summarize
our paper in Sec. VI.

II. SETTING

A. Quantum sensing with separable states

We here briefly review the Ramsey-type quantum sensing
protocol with L separable qubits to probe a magnetic field
along the z axis [8]. Throughout the paper, we take h̄ = 1.
First, prepare qubits in a separable state

⊗L
n=1 |+〉n, where

|+〉n denotes the eigenstate of σ̂ x
n with the eigenvalue +1.

Here, σ̂ ν
n , ν ∈ {x, y, z} denotes Pauli spin operator on site n.

Second, let the state interact with the static and homogeneous
target magnetic field. The Hamiltonian to describe the inter-
action with the target magnetic field is

Ĥω = ω

2

L∑
n=1

σ̂ z
n , (1)

where ω denotes a frequency shift due to the target mag-
netic field and n denotes the sites of the probe qubits. Third,
perform a projective measurement P̂+

n,μ = (σ̂ μ
n + 1)/2 (μ ∈

{x, y}) with μ = y on each qubit. Finally, repeat these three
steps, and we estimate the frequency shift ω due to the target
field from the distribution of the outcomes.

The uncertainty of the estimated ω for each qubit is ob-
tained as

δω =
√

P(1 − P)∣∣ ∂P
∂ω

∣∣√M
, (2)

where P denotes a probability of inducing the projection
of P̂+

1,y, and M denotes the experimental repetition number
[8,20]. This probability is calculated as P = (1 + sin ωTint )/2,
where Tint denotes the duration time for which we expose
the probe to the target field. For a total available time Tall,
the number M is calculated as M = Tall/Tsensing, where Tsensing

denotes a combined time of the three procedures of a sens-
ing protocol, i.e., Tsensing := Treset + Tprep + Tint + Tread. Here,
Treset denotes the duration time for initializing the probe sys-
tem, Tprep denotes the time that is required for creating a
metrologically useful state from this initial state, and Tread

denotes the time to read out the phase information acquired in
the quantum state during the exposure to the magnetic field.

Since the state is separable and consists of L individual
qubits, the uncertainty δω scales as L−1/2 because of the
central limit theorem. We assume that the interaction time
accounts for a large fraction of the sensing time, i.e., Tsensing �

Tint . Actually, we obtain δω = (LTallTint )−1/2, which shows
the SQL. The scaling of δω can be improved to L−1 if we
appropriately exploit an entanglement among the qubits, as
we describe below.

B. Quantum sensing with the GHZ state

Next, we illustrate quantum sensing protocol with the en-
tangled state [8,21]. For the sake of the notation, we define
a CNOT gate between qubits on site n and site n + 1 as
CNOTn,n+1 := [1 − σ̂ z

n + (1 + σ̂ z
n )σ̂ x

n+1]/2. A typical protocol
to create the GHZ state by gate operations is summarized as
follows: (i) Prepare an L-qubit state

⊗L
n=1 |0〉n, where |0〉n

(|1〉n) denotes the eigenstate of σ̂ z
n with the eigenvalue −1

(+1). (ii) Implement a Hadamard gate on the first qubit and
perform a sequence of CNOT gates between adjacent qubits in
order to create the GHZ state |ψ〉, i.e.,

|ψ〉 = 1√
2

(
L⊗

n=1

|0〉n +
L⊗

n=1

|1〉n

)
. (3)

Here, the gates of CNOT1,2, CNOT2,3, . . . , and CNOTL−1,L are
performed in sequence. (iii) Expose the state to the target
magnetic field (1) for a time Tint , and obtain the state with
a phase shift, i.e.,

|ψ (Tint )〉 = eiωLTint/2

√
2

(
L⊗

n=1

|0〉n + e−iωLTint

L⊗
n=1

|1〉n

)
. (4)

(iv) Implement a sequence of CNOT gates again on the qubits
and obtain a disentangled state

|ψ ′(Tint )〉 = eiLωTint/2

√
2

(|0〉1 + e−iLωTint |1〉1) ⊗
L⊗

n=2

|0〉n. (5)

Here, the CNOT gates are performed in a reverse order
compared with the case in the step (ii). More specifi-
cally, the gates of CNOTL−1,L, CNOTL−2,L−1, . . . , and CNOT1,2

are performed in sequence. (v) Measure the first qubit in the
σ̂

y
1 basis and obtain an outcome of either +1 or −1. The

combination of the steps (iv) and (v) effectively measures the
probability of projecting |ψ (Tint )〉 in Eq. (4) to (

⊗L
n=1 |0〉n +

i
⊗L

n=1 |1〉n)/
√

2.
By repeating these steps, we obtain a distribution of the

outcomes, and we can estimate the value of ω. The proba-
bility of obtaining an outcome of +1 in the σ̂

y
1 basis is then

calculated as

P = 〈ψ ′(Tint )|P̂+
1,y|ψ ′(Tint )〉

= 1
2 + 1

2 sin LωTint. (6)

Using Eq. (2), the uncertainty of ω is now obtained as δω =
L−1(TintTall )−1/2. This is the HL, which is L−1/2 times smaller
than the SQL. The probability P is linear in ω for LωTint 	 1,
which is suitable for measuring a weak magnetic field ω 	 1.

Let us estimate the required time for the GHZ state gen-
eration when we use gate operations. To implement a gate of
CNOTn,n+1 to qubits in a system with nearest-neighbor Ising
interactions and magnetic fields, we can use Hadamard gates
and a CZ (CPHASE) gate. These correspond to the unitary dy-
namics induced by Hamiltonians of Ĥ (n)

H := hH(σ̂ x
n + σ̂ z

n )/
√

2
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FIG. 1. Schematic picture of required operations in the con-
ventional protocol (i)–(v). Initial state |φ0〉 in the picture denotes
|φ0〉 := ⊗L

n=1|0〉n. We assume that the system has nearest-neighbor
Ising interactions and gate operations consist of a sequence of CNOT

gates, which can be expressed as in Eq. (7).

and Ĥ (n,n+1)
CZ := (JCZ/4)[1 − σ̂ z

n + (1 + σ̂ z
n )σ̂ z

n+1], where JCZ

denotes the interaction strength and hH denotes the strength
of the magnetic field. More specifically, the CNOT gate can be
described as

CNOTn,n+1 = exp
(

i
π

2hH
Ĥ (n+1)

H

)
exp

(
i

π

JCZ
Ĥ (n,n+1)

CZ

)
× exp

(
i

π

2hH
Ĥ (n+1)

H

)
. (7)

Hence, the necessary time is π/hH + π/JCZ. We show a
schematic picture of the conventional protocol in this system
in Fig. 1.

C. Transverse field Ising chain

We now introduce the transverse field Ising chain [22,23].
The Hamiltonian is described as follows:

ĤTFI = ĤIsing + Ĥx, (8)

ĤIsing = −J

4

L−1∑
n=1

σ̂ z
n σ̂ z

n+1, (9)

Ĥx = hx

2

L∑
n=1

σ̂ x
n , (10)

where J > 0 denotes the strength of the ferromagnetic interac-
tion and hx denotes the magnitude of the transverse magnetic
field. Without loss of generality, we assume hx > 0. The
model exhibits a quantum phase transition at hx/J = 1/2 at
the zero temperature in the thermodynamic limit and shows
ferromagnetic order in the z direction for hx/J < 1/2. For a
finite L and hx/J < 1/2, the system has two almost degenerate
ground states with an exponentially small energy difference.
More specifically, the ground state and the first excited state
can be approximated as (

⊗L
n=1 |0〉n ± ⊗L

n=1 |1〉n)/
√

2, with
the energy difference which is exponentially small in L [24].
The excited states are separated from them by a finite energy
gap ∼J/2 − hx.

Throughout of this paper, we assume that we use ther-
mal equilibrium states as initial states unless specifically
mentioned. For a finite system at equilibrium with an in-
verse temperature β, the thermal equilibrium state ρ̂β :=
e−βĤTFI/Tr[e−βĤTFI ] can be well approximated by the mixed

state

ρ̂β � ρ̂mix :=1

2

(
L⊗

n=1

|0〉n

)(
L⊗

n=1

〈0|n
)

+ 1

2

(
L⊗

n=1

|1〉n

)(
L⊗

n=1

〈1|n
)

(11)

for hx/J 	 1/2 and 1/β 	 J/2 − hx. More specifically, we
should decrease 1/β as we increase L because the proba-
bility of having the ground states in ρ̂β becomes extremely
small for a large L. In Sec. III, we will assume that the
temperature is sufficiently low in our protocol so that the con-
dition of ρ̂β ∼ ρ̂mix should approximately hold. To illustrate
how low the temperature should be for satisfying the con-
dition ρ̂β ∼ ρ̂mix, we calculate a fidelity F = F (ρ̂β, ρ̂mix) =
Tr[(ρ̂1/2

β ρ̂mixρ̂
1/2
β )1/2], and obtain F = 87% for β = 10, hx =

0.1, and L = 12. We can prepare the thermal equilibrium
state just by using the energy relaxation process from the
environment, and so precise control is not required.

D. Quantum domino dynamics

We review a concept of “quantum domino” dynamics in the
transverse field Ising chain, which was theoretically discussed
in Refs. [25–28] and demonstrated in Ref. [29]. It is observed
when we prepare a state |1〉1 ⊗ ⊗L

n=2 |0〉n as the initial state
and let the state evolve according to the Hamiltonian (8) with
a weak transverse magnetic field, the qubit flip on the first site
propagates, and this induces a sequence of flipping across the
system up to the (L − 1)-th qubit.

In short, quantum domino dynamics can approximately
realize the following transformation when we appropriately
tune the evolution time:

Û

(
|1〉1 ⊗

L⊗
n=2

|0〉n

)
�

(
L−1⊗
n=1

|1〉n

)
⊗ |0〉L, (12)

Û

(
|0〉1 ⊗

L⊗
n=2

|1〉n

)
�

(
L−1⊗
n=1

|0〉n

)
⊗ |1〉L, (13)

where Û denotes the unitary dynamics due to the Hamiltonian
(8). On the other hand, if all qubits are initialized in the same
direction, for instance,

⊗L
n=1 |0〉n, the system stays almost in

the same state, i.e., Û
⊗L

n=1 |0〉n � ⊗L
n=1 |0〉n. Therefore, we

can approximately generate the GHZ state of (L − 1) qubits if
we induce the quantum domino dynamics with an initial state
of |+〉1 ⊗ ⊗L

n=2 |0〉n [27].
Importantly, the quantum domino dynamics can also occur

in the opposite direction, i.e.,

Û

[(
L−1⊗
n=1

|1〉n

)
⊗ |0〉L

]
� |1〉1 ⊗

L⊗
n=2

|0〉n, (14)

Û

[(
L−1⊗
n=1

|0〉n

)
⊗ |1〉L

]
� |0〉1 ⊗

L⊗
n=2

|1〉n. (15)

These equations now imply that the entangled state Û (|+〉1 ⊗⊗L
n=2 |0〉n) can go back to the initial state approximately by
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FIG. 2. Quantum domino dynamics induced by the Hamiltonian (16) with the initial state |1〉1 ⊗ ⊗L
n=2 |0〉n. Black bars show the

magnetization at each site n with time steps of t = 0, t∗
ideal/2, t∗

ideal, 3t∗
ideal/2, and 2t∗

ideal. We choose L = 20 and hxt∗
ideal = 1.05L here.

applying Û again. We will refer to the dynamics (14) and (15)
as well as (12) and (13) as ideal domino dynamics.

The emergence of the quantum domino dynamics in the
transverse field Ising chain can be explained as follows. Re-
garding Ĥx as a perturbative term, the Hamiltonian in the
interaction picture is described as eiĤIsingt Ĥxe−iĤIsingt . By using
a secular approximation to ignore oscillating terms with a high
frequency of J [25], we obtain the following Hamiltonian,

Ĥsecular = hx

4

L−1∑
n=2

σ̂ x
n

(
1 − σ̂ z

n−1σ̂
z
n+1

)
, (16)

as the effective Hamiltonian in the interaction picture. This
Hamiltonian shows that the qubit flip on the site n by the
operator σ̂ x

n occurs only when its two adjacent qubits are in
the opposite direction. Suppose that the qubits at the sites n =
1, 2, . . . , k are aligned up while the other qubits are aligned
down. In this case, only the kth and (k + 1)-th qubits could flip
while the other qubits remain in the original state. Therefore,
a system which is initialized in the state |1〉1 ⊗ ⊗L

n=2 |0〉n

exhibits a sequence of qubit flip from the second to the
(L − 1)-th qubits.

We show in Fig. 2 quantum domino dynamics accord-
ing to the Hamiltonian (16). Starting from the state |1〉1 ⊗⊗L

n=2 |0〉n, the qubit flip propagates forward until a time t =
t∗
ideal, and then this propagates backward for t∗

ideal < t < 2t∗
ideal,

where t∗
ideal denotes the optimal time to maximize the total

magnetization density of the time-evolved state according to
the Hamiltonian (16).

Strictly speaking, there is still a small difference between
the unitary dynamics induced by the Hamiltonian (16) and the
ideal quantum domino dynamics (12)–(15). As the flipping
propagates further, the difference between the ideal domino
dynamics and the dynamics by the Hamiltonian (16) becomes
larger, as shown in Fig. 2. In the ideal domino dynamics, the
total magnetization density, i.e., Mz/L := (1/2L)

∑L
n=1〈σ̂ z

n 〉,
would be Mz/L = 1/2 − 1/L for the right-hand side of
Eq. (12). On the other hand, for the real dynamics, it is
not trivial whether the maximum total magnetization density
converges to a finite value as we increase the system size
L. Fortunately, it has been found that when we prepare an
initial state |1〉1 ⊗ ⊗L

n=2 |0〉n and let this state evolve by the
Hamiltonian (16) for a certain time, we can obtain a finite
magnetization density Mz/L ≈ 0.37 for a large L [25]. The
optimal time t∗

ideal is also numerically estimated as t∗
ideal ≈

1.06L/hx in Ref. [25]. We will estimate the appropriate time
of the duration time for the original Hamiltonian (8) with a
finite L and hx in Sec. IV.

III. OUR QUANTUM SENSING PROTOCOL WITH
ALWAYS-ON INTERACTION

A. Description of our sensing protocol

Here, we present our sensing protocol with an always-on
interaction between the nearest-neighbor qubits in the probe
chain. In the following protocol, the only necessary operations
are to initialize the system, to perform projective measure-
ments on the first qubit, and to turn on and off global magnetic
fields.

Our protocol can be summarized as follows (see also
Fig. 3): (i)’ Prepare a thermal equilibrium state of the
Hamiltonian (8) with hx/J < 1/2; (ii)’ perform a projective
measurement on the first qubit along the x direction at t = 0,
and then let the system evolve according to the same Hamil-
tonian (8) until t = t∗; (iii)’ turn off the transverse magnetic
field in Eq. (8) and instead let the system interact with the
target magnetic field (1) for a time Tint; (iv)’ let the system
evolve according to (8) again for the time t∗; and (v)’ perform
a projective measurement on the first qubit in the σ̂

y
1 basis. By

repeating these steps, we obtain the probability distribution of
the outcomes.

For our protocol, Treset, Tprep, and Tread are expressed as
Treset = T1,init , Tprep = t∗ + tmeasure, and Tread = t∗ + tmeasure,

FIG. 3. Schematic picture of our protocol. The upper figure rep-
resents a prescription of our scheme. The middle figure shows how
we apply global magnetic fields. The lower figure shows the proce-
dure (i)’–(v)’ and the duration time for each step. During the step
(iii)’, we turn off the transverse magnetic field and expose the probe
to the target magnetic field. We assume that the interaction time Tint

is much longer than the other times involved.
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where tmeasure denotes the time required for the projective
measurements and T1,init denotes the relaxation time of the
system to thermalize, i.e., the time for step (i)’. In the present
paper, we assume that T1,init and tmeasure are much shorter than
t∗ and Tint. In general, the interaction time Tint needs to be
comparable with Tall (T2) to maximize the sensitivity without
(with) noise (where T2 denotes the dephasing time).

For a noiseless case, we can set Tint to be much longer than
the other timescales. On the other hand, when there is de-
phasing, we need more careful consideration. For a long-lived
qubit, T2 can be much longer than t∗ and treadout. However,
in most of the solid-state systems, the natural energy relax-
ation time, which we denote T1,relax, becomes longer than T2

[30–36]. For example, nitrogen vacancies in diamond have
an energy relaxation time of T1 � 45 s [30], while the de-
phasing time is around T2 � 2 ms [37]. Fortunately, there are
experimental techniques that temporarily decrease the energy
relaxation time [38–41]. We call such an artificial and short
energy relaxation time T1,init . To reset or thermalize the sys-
tem, we assume that such resetting techniques are available.

The key idea of the protocol is the use of the quantum
domino dynamics. Although the state is mainly described
by the Schrödinger picture in this paper, we use the inter-
action picture ρ̂I(t ) = eitHIsing ρ̂S(t )e−itHIsing in this paragraph
to avoid cumbersome expressions; i.e., the state ρ̂S in the
Schrödinger picture is obtained after considering a time evo-
lution according to the Hamiltonian ĤIsing (see also Sec. II D).
The state after the measurement in step (ii)’ is approx-
imated as |+〉1 1〈+| ⊗ (

⊗L
n=2 |0〉n n〈0| + ⊗L

n=2 |1〉n n〈1|)/2
from Eq. (11) for the case in which the measurement outcome
is +1, and this state evolves into

ρ̂I(t
∗) = 1

2

(
L−1⊗
n=1

|0〉n +
L−1⊗
n=1

|1〉n

)(
L−1⊗
n=1

n〈0| +
L−1⊗
n=1

n〈1|
)

⊗ 1

2
(|0〉L L〈0| + |1〉L L〈1|) (17)

under the ideal domino dynamics (12) and (13), which is
approximately induced by the Hamiltonian (8) in step (ii)’.
After obtaining a phase shift at step (iii)’, i.e.,

ρ̂I(t
∗ + Tint ) =1

2

(
L−1⊗
n=1

|0〉n + e−iω(L−1)Tint

L−1⊗
n=1

|1〉n

)

×
(

L−1⊗
n=1

n〈0| + eiω(L−1)Tint

L−1⊗
n=1

n〈1|
)

⊗ 1

2
(|0〉L L〈0| + |1〉L L〈1|), (18)

the state evolves into

ρ̂I(2t∗ + Tint )

= 1

2
(|0〉1 + e−iω(L−1)Tint |1〉1)(1〈0| + eiω(L−1)Tint

1〈1|)

⊗ 1

2

(
L⊗

n=2

|0〉n n〈0| +
L⊗

n=2

|1〉1 1〈1|
)

, (19)

in step (iv)’, which replaces the disentangling procedure (iv)
in the conventional scheme in Sec. II B by the time evolution
with the Hamiltonian (8). In this case, the Hamiltonian (8)
approximately induces the ideal domino dynamics (14) and
(15). Here, the combination of steps (iv)’ and (v)’ effectively
measures the probability of projecting (L − 1)-qubit state of
ρ̂I(t∗ + Tint ) in Eq. (18) to (

⊗L−1
n=1 |0〉n + i

⊗L−1
n=1 |1〉n)/

√
2.

The probability P of obtaining +1 as the measurement
outcome in step (v)’ is written as

P = Tr[Ûprotocolρ̂0Û
†
protocolP̂

+
1,y], (20)

where

ρ̂0 :=P̂+
1,xρ̂β P̂+

1,x/Tr[P̂+
1,xρ̂β], (21)

Ûprotocol :=e−iĤTFIt∗
e−i(ĤIsing+Ĥω )Tint e−iĤTFIt∗

. (22)

Hereafter, we assume that the measurement outcome in step
(i)’ is +1 without loss of generality. For the case in which
the outcome in step (i)’ is −1, we exchange the measurement
basis in step (v)’ from σ̂

y
1 to −σ̂

y
1 .

Let us derive a sensitivity in our scheme by using some
approximations. In Sec. IV, we will numerically calculate
the sensitivity without approximations by directly calculating
Eq. (20). Assuming the validity of the approximation (11) and
the ideal domino dynamics (12)–(15), we can estimate the
probability (20) as

P � 1

2
+ 1

2
cos

[
J
(

t∗ + Tint

2

)]
sin [(L − 1)ωTint]. (23)

The oscillating part cos [J (t∗ + Tint/2)] in Eq. (23), which did
not appear in Eq. (6), represents the effect of the presence of
the Ising interaction. By tuning t∗, the probability becomes the
same as that with the GHZ state composed of (L − 1) qubits;
see Eq. (6). Therefore, we can achieve the HL in this case,
similar to the case in Sec. II B. We emphasize here that even
though Eq. (23) is an approximation, the effect of the presence
of the Ising interaction at step (iii)’ can always be canceled out
by setting Tint = m4π/J , where m denotes a natural number.

When the probe qubits interact with the target field, they
can be affected by an additional Hamiltonian (such as residual
interactions between qubits). The effect of such an additional
Hamiltonian has been discussed in some studies. It was shown
in Ref. [42] that, when one prepares an optimal state for sens-
ing the target field in the presence of additional Hamiltonian,
this term cannot enhance the sensitivity anymore compared
to the case where there is no such terms. Reference [43]
considered estimation of the target longitudinal magnetic field
in the transverse Ising chain, where the interaction is of XX
type, and showed that the sensitivity can still achieve the
Heisenberg limited scaling if an appropriate GHZ-type state is
used. On the other hand, in our case, the sensitivities with and
without residual interactions are the same. Here, we take an
advantage of the fact that the Ising interaction commutes with
the target magnetic field and we can cancel out the additional
phase shift by tuning the interaction time. We hence can obtain
the HL if we could prepare and disentangle the GHZ state
perfectly.

Equation (23) also shows that the probability approaches to
1/2 as ω goes to 0. Although we derived Eq. (23) with several
approximations, we can derive this from a more general setup
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as follows. The Hamiltonian ĤTFI and the measurement P̂+
1,x,

as well as the initial state ρ̂β commutes with the parity sym-
metry Ûx := �L

n=1σ̂
x
n , while σ̂

y
1 in P̂+

1,y anticommutes with Ûx.
From these relations and Eqs. (20)–(22), the expectation value
of σ̂

y
1 = 2P̂+

1,y − 1 always vanishes for ωTint = 0. This shows
that the probability distribution of the measurement outcome
for the case of the vanishing ω always takes the same value.

B. Comparison with the conventional protocol

Here we summarize the difference between our protocol
and the conventional one introduced in Sec. II B.

First, there is a difference in state preparation. We use the
time evolution according to the time-independent Hamiltonian
Eq. (8) in preparing a metrologically useful state. Importantly,
since we use the natural dynamics induced by the Hamiltonian
for these processes, our protocol does not require any tem-
poral control over the individual Ising interactions between
qubits. This is in stark contrast to the conventional protocol
that uses gate operations for the entanglement generation,
which typically requires turning on and off the interaction.

Second, the way to read out the state is different. We use
the Hamiltonian dynamics to transform the entangled probe
state into an almost separable state so that we could extract
the information of the target magnetic field from the single-
qubit measurement. On the other hand, in the conventional
approach, a combination of gate operations and projective
measurements are required.

Finally, we compare the time required for our scheme
which uses the quantum domino dynamics and that for the
conventional scheme which uses the gate operations. When a
system has Ising interactions with strength of JCZ, an oper-
ation time for implementing one CNOT gate is (π/JCZ + 2τH)
from our estimation in Sec. II B, where τH denotes a necessary
gate time to implement the Hadamard gate. On the other hand,
it takes ≈1.06/hx for flipping single qubit on average in the
domino dynamics. In Secs. IV and V, we demonstrate that
our protocol beats the SQL by a constant factor, where we
set J = 1 and hx = 0.1. This shows that even if we ignore
the operation time for the Hadamard gates, the preparation
time for the case of using the quantum domino dynamics
is only around three times longer than that for the case of
using a sequence of CNOT gates, under the assumption that
the Ising interaction strength is the same, i.e., JCZ = J . As
long as the coherence time is long, it is more advantageous
to use quantum domino dynamics than gate-type operations.
Therefore, our protocol can be a practical way to realize
entanglement-enhanced sensing in a qubit system with fixed
Ising interaction.

IV. NUMERICAL RESULTS ABOUT THE SENSITIVITY
WITHOUT ENVIRONMENTAL NOISE

We now present numerical results to show the performance
of our protocol without noise. We calculate the uncertainty (2)
using Eqs. (20)–(22). We here take the interaction strength and
the transverse magnetic field to be J = 1 and hx = 0.1.

For each size L, we numerically find the optimal duration
time t∗

opt in order to obtain the smallest uncertainty δω. In
Fig. 4, we show the size dependence of t∗

opt, which takes

FIG. 4. The optimal duration time t∗
opt which we use in steps (ii)’

and (iv)’ when we numerically simulate our protocol. The blue points
show t∗ at which δω can be minimized for hx = 0.1 and β = 10. The
broken line shows the function t∗

opt = 1.06L/hx . All parameters are
normalized by J = 1.

the value around t∗
opt ∼ 1.06L/hx � t∗

ideal, as we mentioned in
Sec. II D. Throughout the paper, we use these values of t∗

opt as
t∗ when we plot δω and Tint for each L. We have numerically
checked that t∗

opt does not depend on β in the parameter sets
which we use in the present paper. In order to take into account
the effect of the preparation time on the uncertainty, we take
Tsensing = Tint + 2t∗

opt (and ignore the other times involved for
simplicity) although Tint is much longer than t∗

opt in the follow-
ing calculations.

In Fig. 5, we observe an oscillation in ∼Jt∗ with the prob-
ability (20), as we have discussed in Eq. (23). The oscillation
frequency is almost the same as J = 1, which is consistent
with our approximate analytical expression (23). The optimal
time t∗

opt which provides the smallest uncertainty δω corre-
sponds to the minimal point of the oscillation.

FIG. 5. The oscillation of δω in the duration time t∗. Three blue
points show the minimum of T 1/2

all δω at t∗
opt for each size L with L =

4, 7, and 10. The dotted line and the broken line show the uncertainty
of the SQL for L qubits and the HL for (L − 1) qubits, respectively.
The parameters are hx = 0.1, β = 10, ω = 10−6, and Tint = 500π .
All parameters are normalized by J = 1.
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FIG. 6. Size dependence of the uncertainty δω in our protocol.
The dotted line and the broken line show the SQL for L qubits and
the HL for (L − 1) qubits, respectively. The other symbols in the
figure show δω for the cases in which the initial states are ρ̂β with
β = 5, 10, and 20, and

⊗L
n=1 |0〉n, respectively. The parameters are

hx = 0.1, ω = 10−6, and Tint = 500π . All parameters are normalized
by J = 1.

Figure 6 shows the uncertainty against the number of the
qubits with different initial states. These results demonstrate
that our protocol achieves the high-precision sensing beyond
the SQL by a constant factor. However, when we increase L
with a fixed β, the uncertainty starts to saturate, as a tendency
of which can be observed in the plot for β = 5 in Fig. 6. This
is due mainly to the breakdown of the approximation (11),
which requires β to be large. We will discuss this point again
in Sec. VI.

In the conventional quantum domino dynamics, the initial
state is assumed to be pure, namely

⊗L
n=1 |0〉n. For compar-

ison, we calculate the uncertainty when the initial state is⊗L
n=1 |0〉n. Interestingly, the uncertainty with this pure initial

state is almost the same as that with the thermal equilibrium
states ρ̂β with β = 10 and 20, as shown in Fig. 6. Therefore,
the use of the thermal states does not necessarily degrade the
sensitivity compared with the case of using a pure state.

V. SENSING UNDER TIME-INHOMOGENEOUS
DEPHASING

Next, we include the effect of dephasing during the in-
teraction with the target magnetic field and also show that
our protocol beats the SQL by a constant factor even in this
case. For the Ramsey protocol which uses the GHZ state as
the probe state, it has been found that improved sensitivity
with the scaling δω = O(L−3/4) can be achieved with an
interaction time of Tint = O(L−1/2) when the noise is time-
inhomogeneous dephasing [44–50], which is also referred to
as non-Markovian dephasing [44,45,48,51]. This scaling is
called the Zeno limit. On the other hand, no improvement of
scaling over the SQL is realized in the presence of Marko-
vian noise [21,52]. Time-inhomogeneous dephasing can be
observed when the correlation time τc of the environment is
longer than a coherence time of the qubits. Solid-state systems

that have a strong coupling with magnetic fields such as a su-
perconducting flux qubit [31,53,54], a spin qubit in a quantum
dot [55,56], and an NV center in diamond [13,18,57,58] are
typically subject to such time-inhomogeneous dephasing, and
the correlation time of these systems is much longer than the
coherence time in these systems. In this section, we consider
the effect of time-inhomogeneous dephasing acting on each
qubit independently.

We assume that the dephasing time T2 and the relaxation
time T1,relax of the qubits satisfy T1,init, tmeasure, t∗ 	 T2 	
T1,relax 	 τc. This implies the following: First, the necessary
condition of our noise model T2 	 τc is satisfied; second,
the relaxation time of the probe qubits T1,relax is much longer
than T2 during the exposure; and third, the total sensing time
Tsensing is well approximated by Tint. For most of the solid-state
systems, T1,relax is much longer than T2, especially at a low
temperature [30–36]. Therefore, we assume that the effect of
the energy relaxation is negligible compared to that of the
dephasing during the exposure of the probe qubits to the target
magnetic field.

We specifically consider the following master equation of
the system during step (iii)’;

d

dt
ρ̂(t ) = −i[ĤIsing + Ĥω, ρ̂(t )] − t

2T2
2

L∑
n=1

[
σ̂ z

n ,
[
σ̂ z

n , ρ̂(t )
]]

.

(24)

This kind of model has been used to describe noise in many
solid-state systems [31,48,53,54,57–62]. Solving the above
equation provides us with the following solution:

ρ̂(Tint ) = ε1(ε2(· · · εL(ρ̂I (0)) · · · )), (25)

εn(ρ̂) := 1 + e−(Tint/T2 )2

2
ρ̂ + 1 − e−(Tint/T2 )2

2
σ̂ z

n ρ̂σ̂ z
n , (26)

ρ̂I (0) := e−i(ĤIsing+Ĥω )Tint ρ̂(0)ei(ĤIsing+Ĥω )Tint . (27)

We numerically calculate δω using Eqs. (25)–(27). As in
the noiseless case, we take Tsensing = Tint + 2t∗

opt in the calcu-
lation. In contrast to the case in Sec. IV, where the probability
(20) is the function of ωTint, the slope |dP/dω| depends non-
trivially on Tint in the presence of noise [44,45,51]. We thereby
numerically tune the interaction time Tint , so that the uncer-
tainty (2) takes a minimum value. The size dependence of the
interaction time Tint is shown in Fig. 7. This size dependence
is consistent with the previous results using the GHZ state for
sensing under the effect of time-inhomogeneous dephasing
[21,44,45,51]. We stress here that the interaction time Tint is
much longer than the duration time t∗

opt with the parameter
sets we choose in Figs. 7 and 8.

Figure 8 shows the uncertainty δω in the presence of the
time-inhomogeneous dephasing at step (iii)’ in our protocol
with three values of β. They demonstrate that our protocol
beats the SQL by a constant factor except when the tem-
perature of initial state is β = 5. However, we find that the
improvement of δω in our scheme over the SQL of the con-
ventional scheme becomes smaller compared with the case
without dephasing (see Fig. 6).
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FIG. 7. The optimal interaction time Tint in the presence of noise.
We numerically obtained Tint at which the minimum uncertainty is
achieved in our protocol under the time-inhomogeneous dephasing.
The broken line shows the function Tint = (1/2)T2(L − 1)−1/2 at
which the minimum uncertainty is achieved when the probe is in the
GHZ state of (L − 1) qubits [44,45,51]. The parameters are hx = 0.1,
β = 10, ω = 10−6, and T2 = 104. All parameters are normalized by
J = 1.

VI. DISCUSSION

Finally, let us discuss the metrological advantage of our
protocol in a large system. As we have seen in Fig. 6, the
uncertainty begins to saturate as we increase L with a fixed β,
and eventually our protocol may give no advantage over the
conventional protocol with separable L-qubit states. However,
as long as there is at least one length L∗ at which our protocol
with the initial state ρ̂β beats the SQL, one can make use of

FIG. 8. Size dependence of the uncertainty δω in our protocol
under the time-inhomogeneous dephasing. The dotted line shows
the SQL for L qubits, i.e., T 1/2

all δω = √
2 exp(1/4)(LT2)−1/2, and the

broken line shows the Zeno limit for (L − 1) qubits, i.e., T 1/2
all δω =√

2 exp(1/4)(L − 1)−3/4T −1/2
2 [21,44,45,51]. The other symbols in

the figure show δω for the cases in which the initial states are ρ̂β with
β = 5, 10, and 20, and

⊗L
n=1 |0〉n, respectively. The parameters are

hx = 0.1, ω = 10−6, and T2 = 104. All parameters are normalized
by J = 1. The interaction time Tint is chosen so that δω achieves the
smallest value (see Fig. 7).

FIG. 9. For a large number N (
 L∗) of qubits, improved sensi-
tivity by a constant factor can be maintained by separating the qubits
into the chains of length L∗. In this case, the probe consists of N/L∗

copies of the transverse field Ising chain.

our protocol to obtain an improved sensitivity by taking the
length of the chain as L∗. For an N-qubit probe, using N/L∗
copies of the transverse field Ising chain of length L∗ allows
us to obtain a sensitivity which is δωSQL(L∗)/δω(L∗, β ) times
better than the SQL (see Fig. 9), where δωSQL(L) denotes the
SQL with L qubits and δω(L, β ) denotes the uncertainty in
our protocol with L-qubit equilibrium state ρ̂β . This constant-
factor improvement can be maximized by tuning the length of
each chain under the restriction that δω(L, β ) < δωSQL(L). A
similar technique was discussed in Ref. [63].

Summarizing the above, the uncertainty in our protocol
can beat the SQL as we show in Figs. 6 and 8, as long
as the the following assumptions (a) and (b) in addition to
the validity of the secular approximation (16) are valid: (a)
The temperature of the initial state 1/β is small enough for
a fixed chain length L so that the approximation Eq. (11)
becomes good. (b) The decoherence times T1 and T2 are long
enough compared to T1,init , tmeasure, and t∗

opt for a fixed chain
length L so that Tint dominates the sensing time Tsensing. (When
the noise is present, Tint � (1/2)T2(L − 1)−1/2 is needed for
achieving the minimum uncertainty [21,52], see Fig. 7, and
hence T2 should also be much longer than 2(L − 1)1/2.) We
note that if we keep increasing the length of the chain of
qubits while keeping β, T1, and T2 fixed, the sensitivity in our
protocol will be eventually degraded with the increase of L.
However, if we increase the number of chains as the number of
available qubits grows, while keeping the length of the chains
fixed but large enough, we can achieve scaling of the SQL
with an improved constant.

In conclusion, we have proposed a way for qubit-based
magnetic field sensing with always-on nearest-neighbor inter-
action. Our protocol consists of three operations: initialization
of the system in a thermal equilibrium state, switching on
and off global magnetic fields, and projective measurements
on a single qubit at the start and the end of the protocol.
Specifically, we approximately create the GHZ state from the
equilibrium of the transverse field Ising chain by inducing
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the quantum domino dynamics. We have numerically shown
that our protocol beats the SQL by a constant factor even in
the presence of time-inhomogeneous dephasing. Since nei-
ther an accurate control of the qubits such as the entangling
gate operations nor long-range interaction between qubits is
required in the whole process, our protocol may provide an
experimentally feasible way to realize entanglement enhanced
sensors.
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