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Simulating hadronic physics on noisy intermediate-scale quantum devices using
basis light-front quantization

Michael Kreshchuk ,1 Shaoyang Jia ,2,3 William M. Kirby ,1 Gary Goldstein,1 James P. Vary ,2 and Peter J. Love1,4

1Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
2Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

3Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
4Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 30 November 2020; revised 7 April 2021; accepted 26 April 2021; published 3 June 2021)

The analogy between quantum chemistry and light-front quantum field theory, first noted by Wilson, serves as
motivation to develop light-front quantum simulation of quantum field theory. We demonstrate how calculations
of hadron structure can be performed on noisy intermediate-scale quantum devices within the basis light-front
quantization (BLFQ) framework. Within BLFQ, relativistic quantum field theories take a form that permits
direct application of methods for digital quantum simulation of quantum chemistry, which can be readily scaled
into the quantum advantage regime. We calculate the light-front wave functions of pions using an effective
light-front Hamiltonian in a basis representation on a current quantum processor. We use the variational quantum
eigensolver to find the ground-state energy and the corresponding wave function, which is subsequently used to
calculate pion mass radius, decay constant, elastic form factor, and charge radius.
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I. INTRODUCTION

In [1], Feynman was first to suggest that general quan-
tum systems could only be efficiently simulated by machines
obeying quantum laws themselves. The best-known classi-
cal algorithms for simulating multiparticle systems arising
in quantum chemistry and solid-state physics already require
resources growing exponentially with either the problem size
or the numerical precision. Simulation of quantum field theory
raises the complexity bar even further, owing to the formally
infinite number of degrees of freedom per unit volume [2].

Quantum simulation has long been proposed as a promis-
ing application of quantum computing [3–9]. In the past
five years there has been substantial progress both in opti-
mal algorithms for large-scale quantum computers [10–14],
and in hybrid quantum-classical algorithms suitable for noisy
intermediate-scale quantum (NISQ) computers [15–18].

Quantum simulation of quantum field theory (QFT) has
experienced a recent surge of interest, since Jordan, Lee,
and Preskill proposed the first digital quantum algorithms for
simulation of QFT [2,19,20]. Approaches based on analog
quantum simulations using trapped ions [21] and cold atoms
have been well established [22–26]. There also exist proposals
for simulation of QFT using continuous variable quantum
systems [27,28], as well as a large number of works using
NISQ devices [29–35].

Widely explored techniques, based on the lattice discretiza-
tion [2,36–38], were shown to be asymptotically efficient.
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However, these proposals require qubit counts several orders
of magnitude larger than those estimated in the large-scale ar-
chitectural studies of Shor’s algorithm [39,40]. Consequently,
new methods in simulating QFT with a practical number of
qubits are merited.

In our previous work [41] we demonstrated that the light-
front (LF) quantization of quantum field theory provides a
natural framework for ab initio digital quantum simulation
of QFT in the second-quantized formulation. In this paper,
we continue our program of investigating quantum simula-
tion in the light-front (LF) formulation [42] by developing
an approach to simulating field theory based on the basis
light-front quantization (BLFQ) [43,44] technique. The basis-
function expansion allows us to further reduce the need for
computational resources estimated in [41] making calcula-
tions accessible for existing quantum devices.

In [41] we developed quantum algorithms based on sim-
ulating time evolution and adiabatic state preparation in
the discretized light-cone quantization (DLCQ) formalism.
In the current work, we instead aim for near-term de-
vices by adopting the variational quantum eigensolver (VQE)
paradigm [15]: This allows us to implement a demonstra-
tion on the IBM Vigo quantum processor. VQE is a hybrid
quantum-classical algorithm. The classical computer mini-
mizes the expectation value of the Hamiltonian with respect to
some parametrized Ansatz state, and the quantum computer is
used only to repeatedly evaluate the expectation value. The re-
sulting parametrized quantum circuit approximately prepares
the ground-state wave function of the Hamiltonian. Thus,
once the VQE procedure is complete, we can compute the
expectation values of other observables in this approximate
ground state.

The DLCQ and BLFQ paradigms provide alternative ap-
proaches to describing relativistic interactions. While both
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are, in principle, ab initio frameworks, DLCQ studies the
system starting from the light-front Hamiltonian quantized in
the traditional free-field basis placed on a discrete momentum
grid. BLFQ starts from the same light-front Hamiltonian but
quantizes it in terms of modes tailored to the symmetries of
the system under consideration in order to construct a com-
putationally efficient representation of the Hamiltonian. Since
each represents a choice of basis spaces for the fields, they
should yield the same results in fully converged calculations,
i.e., in their respective continuum limits.

Having much in common with ab initio methods in both
quantum chemistry and nuclear theory the BLFQ formula-
tion provides an ideal framework for benchmarking NISQ
devices and testing existing algorithms on physically relevant
problems such as the calculation of hadronic spectra [45–48]
and parton distribution functions (PDFs) [49–51]. In essence,
BLFQ amounts to (1) choosing the effective field theory most
efficiently describing the problem of interest, (2) quantizing
the system in the light-cone coordinates, (3) nonperturbatively
solving the theory in the most suitable basis. This results in
an efficient representation of the QFT problem under study.
One typically starts with a fixed-particle-number formulation,
effectively reducing the QFT setting to a quantum-mechanical
many-body problem. In many cases, already at this level
one can obtain results with suitable precision to make mean-
ingful comparisons with experimental results [46–52]. An
alternative approach, which also bears much in common with
quantum chemistry, based on conformal truncation was pro-
posed in [35].

In this article, we consider the dynamics of light mesons,
which are described as relativistic strongly-interacting sys-
tems of quarks and gluons. We therefore encounter an infinite
number of degrees of freedom in the corresponding QFT,
whose treatment, upon truncation, requires classical resources
exponential in cutoffs. However, being able to increase cutoffs
is crucial to approach the continuum limit. We suggest an
efficient approach (i.e., polynomial in all input parameters)
for this problem, based on the synthesis of BLFQ and VQE
paradigms.

While the computational methods we develop apply to
simulations of multiparticle systems, in order to match the ca-
pabilities of existing devices and demonstrate the efficiency of
the BLFQ formulation, we illustrate our approach by consid-
ering the dynamics of valence quarks for light mesons on the
light front using the Hamiltonian from [52]. This Hamiltonian
includes the kinetic energy, the confinement potential in both
the longitudinal and the transverse directions [46], and the
Nambu–Jona-Lasinio (NJL) interaction [53] to account for the
chiral interactions among quarks. The dependence of the light-
front wave functions for these valence quarks on the relative
momentum is expanded in terms of orthonormal basis func-
tions. After implementing finite cutoffs in this expansion, the
light-front Hamiltonian becomes a Hermitian matrix in this
basis representation. We use the same scheme as in Ref. [52]
to fix our model parameters at each choice of basis cutoffs. To
find the lowest eigenvalue of this BLFQ Hamiltonian, the pion
mass squared, we run the VQE minimization on the IBM Vigo
machine. Using the resulting wave function, we subsequently
calculate decay constant, mass radius, electromagnetic form
factor, and charge radius of the pion.

The two different Ansätze we consider in this paper are
based on different ways of encoding physical states on the
quantum computer. Within the direct encoding one stores the
occupancies of the second-quantized states in the unary form
and uses the unitary coupled cluster Ansatz for state prepa-
ration. Within a more efficient compact encoding, one stores
the occupancies in the binary form, which requires logarith-
mically fewer qubits and allows one to prepare an Ansatz state
using algorithms for arbitrary state preparation [54,55], given
that the particle number is fixed and small.

While no quantum simulations on NISQ machines to date
exceed the capabilities of classical computers, these are small
examples of problems that rapidly grow out of reach for classi-
cal computers as more degrees of freedom are included [43].
As quantum resources grow, we will be able to expand the
Hilbert space to include the dynamical gluons of QCD which
are necessary to fully describe strong-interaction phenomena.
With that basis expansion, we will be able to improve the
treatment of chiral symmetry breaking provided by the phe-
nomenological NJL model. An initial demonstration of BLFQ
applied to heavy mesons, including a dynamical gluon, with-
out the NJL model, also presents a successful nonperturbative
renormalization method [56].

In Sec. II, we provide a summary of the BLFQ formal-
ism and a representation of basis functions, which we used
throughout the paper. In Sec. III, we derive expressions for
various observables in the chosen basis. In Sec. IV we de-
scribe two variations of the VQE algorithm, and show the
results of running it on an existing quantum computer.

II. BASIS LIGHT-FRONT QUANTIZATION

A. Overview

The light-front quantization approach specifies the com-
mutation relation of fields at equal light-front time [57]. In
contrast to the Lagrangian formulation of equal-time quanti-
zation, the field-theory dynamics after light-front quantization
is governed by a light-front Hamiltonian [57] responsible
for the light-front time evolution of the system. Quantiz-
ing a QFT on the light front has the following advantages:
Triviality of the vacuum, absence of ghost fields in the light-
cone gauge, Hamiltonian sparsity, and the simple form of
observables in terms of the wave functions. Within this Hamil-
tonian approach, the bound-state masses and associated wave
functions are solvable from the light-front time-independent
Schrödinger equation.

In [41] we developed a simulation algorithm based on
the DLCQ, allowing one to achieve optimal scaling with the
DLCQ parameters for ab initio quantum simulation of QFT.
In this work, we bring the computational requirements into
the range of the capabilities of existing quantum devices. We
achieve this by efficiently representing the Hamiltonian in the
framework of BLFQ [43,44].

Within BLFQ, a field is expanded in terms of second-
quantized Fock states representing occupancies of modes
(first-quantized basis functions), and there is no a priori limit
on the number of the degrees of freedom [43,58]. Accord-
ingly, our algorithms are designed to efficiently simulate QFT
applications where particle number needs not to be conserved.
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TABLE I. Flow of growing complexity and computational resources (left to right) for quantum simulation of quantum field theory on
the light front. Basis light-front quantization (BLFQ) may be considered to encapsulate discrete light-cone quantization (DLCQ). However,
we use the distinct terms here to emphasize that classical preprocessing is used in BLFQ with minimal bases for the purpose of obtaining
approximations using relatively few quantum resources. The goal is to accelerate convergence to the continuum limit for bound-state
observables and, hence, to optimally use existing quantum resources in the NISQ era for these problems. Treatment of open systems, such as
resonances and strong decays, will likely require DLCQ to be implemented on future fault-tolerant quantum computers.

VQE Fault-tolerant

Two-body sector Valence sector Multiparticle Multiparticle
BLFQ, relative BLFQ, single- BLFQ, single- DLCQ, single-

Regime coordinate basis coordinate basis coordinate basis coordinate basis

Encoding Compact Compact or direct Compact

State preparation
Arbitrary state
preparation

Arbitrary state preparation or
unitary coupled cluster or QITE

Adiabatic
state preparation

Measurement Pauli Pauli or sparse Sparse

However, for QFTs at low resolution, BLFQ is often restricted
to the valence degrees of freedom. This allows us to simulate it
on an existing quantum chip. These experiments represent the
first stage shown in Table I, which illustrates a progression of
methods that scale towards fault-tolerant simulation of QFTs
in the quantum supremacy regime. Notice that the methods we
propose in this article apply to the first three stages in Table I.
The final stage was discussed in [41].

Previous development of BLFQ for the heavy mesons is
partially based on the holographic confinement potential be-
tween the valence quark and antiquark in the holographic
transverse directions [46–48]. This potential is supple-
mented by a longitudinal confinement potential to attain a
three-dimensional spherical confinement potential in the non-
relativistic limit. These potentials are constructed independent
of the spins for the quark and the antiquark and they are gov-
erned by a single overall strength parameter. In addition to the
kinetic energy and the confinement potentials, they form the
baseline Hamiltonian that is analytically solvable and defines
our basis functions [46,52]. These basis functions possess
desired spatial symmetries and boost invariances. The derived
effective one-gluon exchange interaction based on the gauge
dynamics serves as the spin-orbit interaction and incorporates
a running coupling [46].

In this article we adopt the Hamiltonian in Ref. [52] for
the light mesons. Specifically, the same confinement potential
forms as those in Ref. [46] are implemented. However, we do
not include the one-gluon exchange because the interactions
for light quarks manifest from the chiral symmetry, which
is insufficiently accounted for by a perturbative expansion
of the gauge interaction. Instead, we resort to the Nambu–
Jona-Lasinio (NJL) model for the chiral interaction of these
quarks [53,59,60]. Within our basis representation, the matrix
elements of the NJL interaction can be calculated analyti-
cally [52]. We compute the lowest mass eigenvalue and its
corresponding eigenvector, its light-front wave function, using
the algorithm to be described in Sec. IV. We then calculate
observables based on this eigenvector.

B. Effective Hamiltonian of the BLFQ-NJL model

The light-front wave functions (LFWFs) of the valence
quarks for the π+ meson and the K+ meson have been solved

from Ref. [52] in the basis light-front quantization (BLFQ)
framework using Nambu–Jona-Lasinio interactions [53,59–
61] on a classical computer. Specifically, one first truncates
the light-front wave function for the mesons to the valence
quark Fock sector such that the state vector is expressed as

|�(P+, �P⊥
)〉 =

∑
r,s

∫ 1

0

dx

4πx(1 − x)

×
∫

d �κ⊥

(2π )2
ψrs(x, �κ⊥)b†

r (xP+, �κ⊥ + x�P⊥
)

× d†
s [(1 − x)P+,−�κ⊥ + (1 − x)�P⊥

]|0〉, (1)

where P = k + p is the total momentum of the meson, x =
k+/P+ is the longitudinal momentum fraction carried by the

valence quark, and �κ⊥ = �k⊥ − x�P⊥
is the relative transverse

momentum.
In order to solve for the LFWFs for the valence quarks

inside light mesons, we adopt the effective Hamiltonian that
can be represented as a basis-diagonal term and the NJL
interaction:

Heff = H0 + H eff
int . (2)

The basis-diagonal term H0 contains the kinetic energy of the
valence quarks, the transverse confinement potential, and the
longitudinal confinement potential. In the valence Fock sector
of mesons, this term takes the form of

H0 = (�κ⊥)2 + m2

x
+ (�κ⊥)2 + m2

1 − x

+ b4x(1 − x)�r2
⊥ − b4

(m + m)2
∂xx(1 − x)∂x, (3)

where x is the longitudinal momentum fraction carried by the
valence quark and �κ⊥ is the relative transverse momentum
of the valence quarks. The masses of the valence quark and
the valence antiquark are given by m and m, respectively. In
addition, b specifies the strength of the confinement potentials.
This part of the Hamiltonian has analytic solutions that con-
stitute the basis states for the BLFQ approach as will be seen
in detail in Sec. II C.

When quarks in the confinement region are the only re-
tained degrees of freedom, the strong interaction among them
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can be understood to arise from the global chiral symme-
try, an approximate symmetry of quantum chromodynamics.
To model this chiral interaction, we employ the interaction
in the scalar-pseudoscalar channel of the color-singlet NJL
model [53]. Specifically, we ignore both the instantaneous
interaction and the self-energy correction from the NJL inter-
action to obtain the following term in the total Hamiltonian:

H eff
int = H eff

NJL,π =
∫

dx−
∫

d�x⊥
(

−GπP+

2

)
× [(ψψ )2 + (ψ iγ5�τψ )2]. (4)

Here ψ is the fermion field operator, Gπ is the NJL coupling
constant, and P+ is the total light-front longitudinal momen-
tum of the system. We then expand Eq. (4) into relevant
combinations of ladder operators for the quark fields. In the
basis representation, this term further takes the form of a
Hermitian matrix, the elements of which can be calculated
analytically [52].

In this work, we solve the eigenvalue problem defined by
Eq. (2) in the total angular momentum Jz = 0 block with the
lowest eigenstates of H0 forming the longitudinal and radial
basis states for the interacting Hamiltonian.

In this representation, the effective Hamiltonian takes the
form of a 4 × 4 matrix indexed by the basis quantum num-
ber θ that specifies the angular and spin excitations. The
explicit expressions for elements in this matrix are given in
Appendix A 2.

C. Basis-function representations of wave functions
for valence quarks of mesons

We adopt the following expansion of the light-front wave
function for the valence quarks given by Eq. (1):

ψrs(x, �κ⊥) =
∑
nml

ψnmlrs φnm

( �κ⊥
√

x(1 − x)
; b

)
χl (x), (5)

where ψnmlrs is the expansion coefficient, φnm is a two-
dimensional (2D) harmonic oscillator (HO) eigenfunction,
and χl is the longitudinal basis function. Here r and s are the
spin indices of the quark and the antiquark, respectively. Each
term in Eq. (5) is an eigenfunction of H0 in Eq. (3). Explicitly,
φnm is defined as

φnm
(
�q⊥; b

) = 1

b

√
4πn!

(n + |m|)!
( |�q⊥|

b

)|m|

× exp

(
−�q⊥2

2b2

)
L|m|

n

( �q⊥2

b2

)
eimϕ, (6)

with tan(ϕ) = q2/q1 and L|m|
n being the associated Laguerre

function. The parameter b sets the scale of the harmonic os-
cillator eigenfunction, which we choose to be identical to the
confining strength in the light-front Hamiltonian. Meanwhile,

χl (x) is given by

χl (x; α, β ) =
√

4π (2l + α + β + 1)

×
√

�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

×xβ/2(1 − x)α/2 P(α,β )
l (2x − 1), (7)

with P(α,β )
l (z) being the Jacobi polynomial and

α = 2m(m + m)/κ2, (8a)

β = 2m(m + m)/κ2. (8b)

When we solve the eigenvalue problem defined by the
BLFQ-NJL Hamiltonian, the following cutoffs on the basis
quantum numbers following Ref. [52] are imposed:

0 � n � Nmax, −Mmax � m � Mmax, 0 � l � Lmax.

(9)
Sensitivity of observable results to basis cutoffs in BLFQ has
been explored in, for example, [62].

Because truncations on different basis quantum numbers
are independent, we call this truncation scheme the or-
thogonal enumeration. Such a scheme allows us to solve
simultaneously for eigenstates with different azimuthal an-
gular momentum projection Jz, since it is a good quantum
number in this basis. The size of the Hamiltonian in the basis
representation with this orthogonal enumeration is nH × nH,
with

nH = 4(Nmax + 1)(2Mmax + 1)(Lmax + 1). (10)

However, the capacity of NISQ devices motivates further
reduction in the dimension of the Hilbert space spanned by
our basis representation. Specifically, because eigenfunctions
of this Hamiltonian have fixed azimuthal angular momentum
projection Jz, the basis quantum number θ indexes specific
combinations of the spin and orbital bases in the orthogonal
enumeration as specified in Appendix A 1. Each basis state in
the fixed Jz block is then given by the basis quantum numbers
n, l , and θ . In the limit of Mmax = 2, the unitary transformation
that relates the bases in the fixed Jz blocks to those in the
orthogonal enumeration is given by Table VI. The degeneracy
in the basis quantum number θ in each Jz block is apparent
in Table VI. For example, when Jz = 0, this degeneracy is
dθ = 4. With a given set of (n, l, θ ) in a given Jz block,
we take the convention such that the index of this basis is
given by

a(n, l, θ ) = [n (Lmax + 1) + l] dθ + θ. (11)

For a given index, the corresponding basis quantum numbers
can be easily calculated. Consequently, the size of the Hamil-
tonian for a fixed Jz in this new enumeration becomes

nH0 = dθ (Nmax + 1)(Lmax + 1), (12)

which is smaller than nH given by Eq. (10). This provides an
example of how one may exploit the symmetries embedded in
the chosen BLFQ Hamiltonian to achieve gains in computa-
tional efficiency.
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III. COMPUTING OBSERVABLES FROM
THE VALENCE LFWF

One of the many advantages of the light-front approach to
quantum field theories is that observables for bound states can
be easily extracted from light-front wave functions. Explicitly,
measurement operators corresponding to physical observables
usually take a simple form, resulting in efficient measure-
ments on a quantum computer (see Sec. IV and Appendix D).
In this section, we demonstrate how to calculate the decay
constant, mass radius, valence parton distribution function,
and elastic form factor.

A. Decay constant

The meson decay constants are defined as the matrix el-
ements of current operators between the vacuum and the
meson wave functions [46]. They correspond to amplitudes
of the wave functions at the coordinate-space origin. Specifi-
cally, the decay constants for scalar mesons ( fS), pseudoscalar
mesons ( fP), vector mesons ( fV), and axial vector mesons ( fA)
are defined as

〈0|ψ γ μ ψ |S(p)〉 = pμ fS, (13a)

〈0|ψ γ μγ5 ψ |P(p)〉 = i pμ fP, (13b)

〈0|ψ γ μ ψ |V(p)〉 = ε
μ
λ (p) mV fV, (13c)

〈0|ψ γ μγ5 ψ |A(p)〉 = ε
μ
λ (p) mA fA, (13d)

respectively. Here the polarization vector for the vector
mesons is defined as

ε
μ

λ (p) =
⎧⎨⎩
(

p+
mV,A

,
�p⊥2−m2

V,A

mV,A p+ , �p⊥

mV,A

)
for λ = 0,(

0,
2�e⊥

λ ·�p⊥

p+ , �e⊥
λ

)
for λ = ±1

(14)

with �e⊥
± = (1,±i)/

√
2.

In terms of the valence-sector light-front wave functions,
expressions for these decay constants are reduced into [46]

fP,A = 2
√

Nc

∫ 1

0

dx

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2

× [ψ+−
(
x, �κ⊥)− ψ−+

(
x, �κ⊥)]∣∣∣∣

mJ=0

, (15a)

fS,V = 2
√

Nc

∫ 1

0

dx

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2

× [ψ+−(x, �κ⊥) + ψ−+(x, �κ⊥)]

∣∣∣∣
mJ =0

, (15b)

with the condition mJ = m + s1 + s2 = 0 specifying that only
the states with zero angular momentum projections are used in
the calculation. Here Nc = 3 is the number of colors.

In our basis representation, the integrals over the longitudi-
nal momentum fraction and the relative transverse momenta in
Eq. (15) can be evaluated exactly. Details of this calculation
can be found in Appendix B 1. Since the decay constant is
linear in the wave function, we only need to calculate these

integrals for each basis function. Subsequently, the decay
constants in the basis representation are given by

fP,A = 2

√
Nc

π

∑
n,l

(−1)n Ll (1/2, 1/2; α, β )

× (ψn0l+− − ψn0l−+)|mJ=0, (16)

fS,V = 2

√
Nc

π

∑
n,l

(−1)n Ll (1/2, 1/2; α, β )

× (ψn0l+− + ψn0l−+)|mJ=0, (17)

where the longitudinal integrals Ll (a, b; α, β ) are defined and
given analytically in Appendix B 3. Because the overall phase
of the LFWF remains undetermined by the Hamiltonian, only
the absolute value of the decay constant carries physical sig-
nificance. Once the LFWF |ψ〉 in our basis representation is
known on a quantum computer, the calculation of the cor-
responding decay constant can be thought of as computing
|〈v|ψ〉| for some fixed |v〉.

B. Mass radius

The mass radius is the square root of the expectation value
for the relative transverse separation of the valence quarks. It
can be calculated from the valence two-body wave function
based on Eq. (33) of Ref. [46]. Specifically for the pseu-
doscalar mesons, we have

〈
r2

m

〉 = 3

2

∑
r,s

∫ 1

0

dx

4π

∫
d�r⊥ x(1 − x)�r⊥2

× ψ̃∗
rs(x, �r⊥)ψ̃rs(x, �r⊥), (18)

where ψ̃rs(x, �r⊥) is the light-front wave function depending
on the longitudinal momentum fraction x and the relative
transverse coordinate �r⊥. It is related to the momentum-space
wave function by the Fourier transform in the transverse mo-
menta �κ⊥. Explicitly, we have

ψ̃rs(x, �r⊥) =
√

x(1 − x)
∑
nml

ψnmlrsφ̃nm(
√

x(1 − x)�r⊥)χl (x),

(19)

with

φ̃nm(�r⊥) = b

√
n!

(n + |m|)!π (b|�r⊥|)|m|

× exp

[
−b2�r⊥2

2

]
L|m|

n (b2�r⊥2)

× exp[imφr + i(n + |m|/2)π ], (20)

and tan φr = r2/r1.
To calculate the mass radius in terms of expansion co-

efficients ψnmls1s2 , we first need to evaluate the following
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dimensionless integrals of the basis functions:

Im(n′, m′, l ′; n, m, l )

≡
∫ 1

0
dx χl ′ (x)χl (x)

×
∫ +∞

0
d|�r⊥|2

∫ 2π

0

dφr

8π
x2(1 − x)2 b2|�r⊥|2

× φ̃∗
n′,m′ (

√
x(1 − x)�r⊥)φ̃n,m(

√
x(1 − x)�r⊥). (21)

We then have the square of the radius given by〈
r2

m

〉 = 3

2b2

∑
rs

∑
n′m′l ′nml

ψ∗
n′m′l ′rsIm(n′, m′, l ′; n, m, l ) ψnmlrs.

(22)

The explicit expression for the matrix Im(n′, m′, l ′; n, m, l ) is
available in Appendix B 2, which takes the form of a Hermi-
tian matrix in our basis representation.

C. Parton distribution function of valence quarks

The probability of finding a quark inside a meson carrying
momentum fraction x is given by

f (x) = 1

4π x(1 − x)

×
∑

rs

∫
d �κ⊥

(2π )2
ψ∗

rs(x, �κ⊥) ψrs(x, �κ⊥)

= 1

4π

∑
n,m,l ′, l,r,s

ψ∗
nml ′rs ψnmlrs χl ′ (x)χl (x), (23)

which is interpreted as the PDF for the valence quark. The
PDF for the valence antiquark is given by f (1 − x) [49–51].
We use the solutions of ψnmlrs defined in Eq. (5) to calculate
the valence PDFs of mesons.

Notice that Eq. (23) defines a bilinear of the light-front
wave functions in the basis representation. To compute the
PDF with the LFWFs obtained from a quantum computer, let
us rewrite Eq. (23) as

f (x) = 1

4π

∑
l ′, l

ρl ′, l χl ′ (x)χl (x), (24a)

ρl ′, l =
∑

n,m,r,s

ψ∗
nml ′rs ψnmlrs. (24b)

Elements of the density matrix ρl ′, l defined in Eq. (24b) can be
evaluated as the expectation value of the corresponding pro-
jection operators on a quantum computer, and subsequently
used to calculate the PDF in Eq. (24a).

D. Elastic form factor for pseudoscalar mesons

To calculate the elastic form factors from the light-front
wave functions within the impulse approximation where the
photon interacts with the meson through the quark-photon
vertex, we apply the following formula [63,64] within the

Drell-Yan frame P′+ = P+:

Im′
J ,mJ (Q2) = 1

2P+ 〈�(P′, m′
J )|

×
∑

f

ef ψ f (0)γ +ψf (0)|�(P, mJ )〉

=
∑

rs

∫
dx

4πx(1 − x)

∫
d2k⊥

(2π )2

× {eq ψ∗ mJ′
rs (x, �k⊥ + (1 − x)�q⊥)

− eq ψ∗ mJ′
rs (x, �k⊥ − x�q⊥)}ψmJ

rs (x, �k⊥
), (25)

with q = P′ − P and Q2 = −q2. The operator inside the Dirac
bracket is the charge density operator on the light front, with ef

being the charge carried by the quark of flavor f in units of the
elementary charge and the summation running over all quark
flavors. Additionally, eq is the charge of the quark (eu = + 2

3
for an up quark). While eq is the charge of the antiquark (ed =
− 1

3 for an anti-down quark). Detailed derivation of Eq. (25) is
given in Appendix C 1.

In the basis representation, we apply the Talmi-Moshinsky
transform to simplify the integrals in the transverse mo-
mentum, leaving the longitudinal integral to be evaluated
numerically for each Q2. Following steps in Appendix C 2, we
rewrite the electromagnetic form factors into a bilinear form
of the valence wave function:

Im′
J ,mJ (Q2) =

∑
n′m′l ′

∑
n,m,l

∑
r,s

ψ∗
n′m′l ′rs

× C̃(n′, m′, l ′; n, m, l; Q2) ψnmlrs. (26)

The operator C̃ is defined according to Eq. (C19). At a given
Q2, the form factor can be calculated using the LFWFs ob-
tained from a quantum computer by taking the expectation
value of the Hermitian operator C̃(n′, m′, l ′; n, m, l; Q2).

Specifically, the elastic form factors of the pseudoscalar
mesons are given by

FP(Q2) = I0,0(Q2). (27)

The charge radius is then specified by the first Taylor expan-
sion coefficient of the elastic form factor at the origin:〈

r2
c

〉 = −6 lim
Q2→0

d

dQ2
FP(Q2). (28)

IV. QUANTUM-COMPUTATIONAL METHODS

The approach to quantum simulation of Hamiltonian dy-
namics of QFTs taken in [65] is as follows: (a) initialize
the system in a certain state of the free Hamiltonian, (b)
adiabatically turn on the interaction, (c) if necessary, evolve
the system with time, and (d) measure the energy (or an-
other observable) of the system using the phase estimation
algorithm [3,8,65]. While measurements in certain cases
may have simpler form [37,41], the state preparation still
constitutes a major challenge not viable for near-term de-
vices due to limits in qubit numbers and in gate fidelities.
This motivates the variational quantum eigensolver (VQE),
an approach to finding Hamiltonian eigenvalues in which a
NISQ device is used as a part of a hybrid quantum-classical
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FIG. 1. Schematic of the variational quantum eigensolver
(VQE). The parameter vector �θ completely specifies the Ansatz wave
function.

algorithm [15,32,34,66,67]. In VQE, a quantum computer
prepares a given variational state and evaluates the Hamilto-
nian expectation value, which a classical computer performs
a gradient search to minimize (see Fig. 1). To prepare the
variational state, we adopt an Ansatz specified by parameters
�θ , which are controlled by the classical minimization.

While in [41] we focused on ab initio simulations which
are likely to become available in the fault-tolerant regime,
in this paper we investigate the use of NISQ devices for
high-energy nuclear physics calculations on the light front.
Therefore, unlike in [41], we formulate the problem as a VQE
instance.

We begin by briefly reviewing the VQE method. For the
VQE algorithm, as with classical variational algorithms, to
be efficient and accurate, it is essential to come up with a
parametrized Ansatz state |ψ (�θ )〉 that is easy to prepare and
is expected to have significant overlap with the true ground
state. In addition, the Ansatz should be based significantly on
the structure of the Hamiltonian under consideration. Ansatz
states that do not include problem structure can suffer from
barren plateaus that prevent convergence of the optimiza-
tion [68–70]. Even for structured Ansatz states, sufficient
noise may cause a noise-induced barren plateau to occur,
again frustrating the optimization [71]. In this case, one
can use other state preparation methods such as quantum
imaginary-time evolution [72,73]. Below we shall consider
different choices of Ansatz state preparation procedures, en-
codings of the physical states in a quantum computer, and
classical optimization algorithms.

While using VQE for simulating a Hamiltonian problem,
the major steps are as follows:

(1) Define the state and operator mapping, i.e., a corre-
spondence between the physical states and the multiqubit
states of a quantum computer, as well as the mapping between
the operators acting on these spaces.

(2) Choose a parametrized Ansatz state. One typically
writes the Ansatz state as

|ψ (�θ )〉 = U (�θ )|ψ0〉, (29)

where |ψ0〉 is a fixed reference state, and U (�θ ) is the VQE
Ansatz operator.

One possibility is to choose the form of U (�θ ) to resemble
the form of the Hamiltonian evolution operator [66].

(3) Once the state |ψ (�θ )〉 is prepared for a given set of
parameters �θ , one evaluates the cost function by measuring

the expectation value of the multiqubit Hamiltonian operator:

E (�θ ) = 〈ψ (�θ )|Ĥ |ψ (�θ )〉. (30)

The algorithm can only be considered efficient if the number
of measurements grows polynomially with the problem com-
plexity (discussed further below).

(4) The value of the cost function is then sent to the clas-
sical optimizer, which either determines the set of parameters
for the next iteration of the algorithm, or terminates the algo-
rithm if the desired precision has been achieved.

We shall explore two approaches to simulating problems
in the BLFQ formulation, based on two different encoding
schemes. The first of these is the direct encoding, widely
used in quantum chemistry [8,74]. In such an encoding
scheme, one assigns a particular set of qubit registers to each
physical (basis) degree of freedom. In application to purely
fermionic systems, one may use one qubit to encode one
fermionic second-quantized mode, which leads one to the
Jordan-Wigner (JW) encoding [75]. Thus, one needs N qubits
in order to encode N fermionic modes. The fermionic raising
and lowering operators are represented by N-local multiqubit
operators, due to the need to enforce anticommutation rela-
tions. One can alternatively employ the Bravyi-Kitaev (BK)
encoding [76–79] that uses N qubits to store N fermionic
modes, with operators being only log N local. Circuits im-
plementing VQE Ansatz operators are typically based on
Trotterization [66].

The second encoding we employ is compact encoding, as
was explored in [41] for front-form physics, and also in the
context of quantum chemistry in [8]. The idea is to only store
the occupied modes of multiparticle Fock states. With this
encoding, future quantum computers will be able to simulate
time evolution using sparsity-based techniques that are opti-
mal in all parameters [11–13,41,80,81]. In our example, we
use arbitrary state preparation as a VQE Ansatz.

A. Direct encoding

In order to run a simulation on a current quantum device,
in this work we consider a scenario where the particle number
is fixed. However, since quantum advantage is likely to be
achieved only in the multiparticle regime, it is essential to
keep our methods extendable to this general regime.

A natural way of formulating a multiparticle problem is by
using the second-quantized formalism. Consider a Hamilto-
nian of the form

Ĥ = Ĥ1 + Ĥ2 + · · ·, (31)

where

Ĥ1 =
∑
i, j

hi ja
†
i a j, Ĥ2 =

∑
i, j,k,l

hi jkl a
†
i a†

j akal . (32)

Here hi j represents the single-body interactions, while hi jkl

and higher-order terms correspond to many-body interactions.
For the first experimental implementation, we restrict our-
selves to Ĥ = Ĥ1 (with hi j being the meson valence sector
BLFQ Hamiltonian matrix), for two reasons. First, owing
to the efficiency of the BLFQ formulation, considering the
single-body part of the Hamiltonian is oftentimes enough to
yield reasonable results [45,49,51,52,62]. Second, keeping the
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TABLE II. The multiqubit representation of the four physical
one-particle states in the direct and compact encodings.

Basis state index Direct encoding Compact encoding

1 |0001〉 |00〉
2 |0010〉 |01〉
3 |0100〉 |10〉
4 |1000〉 |11〉

particle number fixed is suitable for benchmarking, paralleling
state-of-the-art experimental results in quantum simulation of
chemistry [82].

In the light-front formulation, the gauge degrees of free-
dom are treated on equal footing with those of matter
fields, by restricting to the light-cone gauge and adding
the corresponding second-quantized interaction terms to
the Hamiltonian [43,57,83–86]. Methods we propose be-
low extend naturally to this scenario [87–89], using known
encodings of bosonic modes and creation and annihilation
operators [88,90–92].

Within the JW encoding, the multiqubit states | . . . f2 f1 f0〉
mimic the second-quantized fermionic states: The qubit fi

stores the occupancy of the (i + 1)th orbital (see Table II).
In order to enforce anticommutation relations, the fermionic
creation and annihilation operators are represented by N-local
multiqubit operators [75]. We shall use this encoding for the
rest of the section; simulation in the Bravyi-Kitaev encoding
is discussed in Appendix E.

Since one typically solves the problem in a basis found by
means of some classical approximation, the reference state
|ψ0〉 can be chosen to have a simple form in terms of basis
vectors; in the simplest case, it may coincide with one of
the basis vectors. Next, we would like to design an Ansatz
operator that acts on the reference state to prepare an Ansatz
state that ideally has large overlap with the exact ground state.
An example of such an operator is the unitary coupled cluster
(UCC) [66]. Choosing the form of the Ansatz operator to
resemble the form of the Hamiltonian ensures that one can
explore the regions of the Hilbert space that can be reached via
the Hamiltonian evolution, and also guarantees that the sym-
metries are preserved. For the Hamiltonian of the form (32)
one writes the UCC as [66]

U (�θ ) = eT −T †
, T = T1 + T2 + · · ·,

T1 =
∑

i ∈ occ
a ∈ virt

θ i
aa†

aai, T2 =
∑

i > j ∈ occ
a > b ∈ virt

θ
i j
aba†

aa†
baia j,

(33)

where occ and virt denote occupied and unoccupied orbitals in
the reference state |ψ0〉. Physically, the action of the UCC op-
erator allows one to transfer “some amplitude” from initially

occupied orbitals to the unoccupied ones. For real Hermitian
Hamiltonians, the coefficients in (33) are real.

We would now like to translate (33), which was written in
terms of the fermionic operators, into its qubit representation.
According to the JW transformation [75], the qubit operators
are obtained as

a†
j a1 − a†

1a j → i

2
Y1Z2 . . . Zj−1Xj − i

2
X1Z2 . . . Zj−1Yj, (34)

where Xi,Yi, Zi are the Pauli matrices acting on qubit i. Sub-
stituting (34) into (33) generates a mapping

U (�θ ) → ei
∑

j α j Pj , (35)

where Pj are the Pauli operators, while α j are the correspond-
ing real coefficients. Trotterization of the expression above
leads to

U (�θ ) →
(∏

j

ei
α j
ρ

Pj

)ρ

, (36)

where ρ is the Trotter number, which can be typically chosen
quite small in VQE [93], in contrast with the case of simulat-
ing time evolution.

The traditional approach to calculating the expectation
value as in (30) amounts to expanding the Hamiltonian in the
basis of Pauli operators using (34):

〈ψ (�θ )|Ĥ |ψ (�θ )〉 =
∑

i

hi〈ψ (�θ )|Pi|ψ (�θ )〉. (37)

The expectation values of individual Pauli terms on the right-
hand side of (37) can be efficiently measured via sampling
from the state |ψ (�θ )〉 [15].

The optimal parameters �θ∗, obtained upon successful ter-
mination of the VQE algorithm, allow one to prepare the VQE
approximation to the ground state of the system. By analogy
with (37), this can be used to calculate the expectation value
of any observable bilinear in the wave function [i.e., of the
form 〈ψ (�θ )|Ô|ψ (�θ )〉], such as mass radius, PDF, or elastic
form factor. Observables linear in the wave function [i.e., of
the form |〈v|ψ (�θ )〉|, where |v〉 is a constant vector], such as
the decay constant in Eq. (15b), can be calculated using the
simple circuit shown in Fig. 2.

Efficiency analysis

When proposing new algorithms for quantum simulations
on NISQ devices, it is essential to elicit their scaling properties
in order to distinguish aspects of a particular simulation that
may lead to quantum advantage from those that couldn’t. The
question relevant to this paper is which aspects of the few-
qubit calculations can we scale up to several hundred qubits.
Concomitantly, we would like to elucidate which aspects of
the few-qubit calculations are amenable to efficient classical
calculations and which are not.

TABLE III. Model parameters for the BLFQ-NJL model.

m, m κ , b Gπ Nmax Mmax Lmax

337.01 MeV 227.00 MeV 250.785 GeV−2 0 2 0
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FIG. 2. Estimating the magnitude of the inner product 〈v|ψ (�θ )〉
for fixed |v〉. Up to the first dashed line, the circuit prepares the
VQE Ansatz state by applying the Ansatz circuit U (�θ ) to the first
set of registers, resulting in the state |�1〉 = |ψ (�θ )〉 ⊗ |0〉. The next
rotation R|v〉→|1〉⊗n represents any unitary operator that maps the state
|v〉 to the state |1〉⊗n. Thus, the state |�2〉 at the second dashed line is
given by |�2〉 = 〈v|ψ (�θ )〉|v〉 ⊗ |1〉 + (|ψ (�θ )〉 − 〈v|ψ (�θ )〉|v〉) ⊗ |0〉.
The quantity |〈v|ψ (�θ )〉| =

√
|〈v|ψ (�θ )〉|2 is found as the square root

of the probability for the ancilla qubit to collapse into the state |1〉.

The stages of one shot of a VQE calculation are Ansatz
preparation and measurement of all Hamiltonian terms. Many
shots with fixed Ansatz parameters are required to obtain one
estimate of the expectation value of the Hamiltonian. Many
estimations of the expectation value of the Hamiltonian are
required to optimize the Ansatz parameters. Typically, the
resources required to optimize a given VQE Ansatz to a fixed
precision cannot be bounded theoretically. This is what makes
VQE a heuristic method. However we can determine the com-
putational cost of each step in a single shot and ensure that the
quantum gates and qubits required scale polynomially with
the problem size.

As a prototypical example, consider the problem of find-
ing a ground state in quantum chemistry using VQE. The
parameters describing the complexity of the problem are the
total number of orbitals N and the number of electrons in
the system M (i.e., the number of occupied orbitals). Using
the direct mapping requires N qubits for encoding physical
states. The second-quantized Hamiltonian operator can be
written as a polynomial in ladder operators. Those, in turn,
are each represented by a polynomial number of Pauli op-
erators, each of which is at most log N local. Therefore, the
measurement of the Hamiltonian operator can be replaced
with the measurement of a polynomial number of elementary
operators. Each of those can be measured with precision ε

using O(ε−2) samples [15,16].
All that remains is to quantify the operational resources

for preparing the Ansätze. In quantum chemistry in the direct
mapping, these are typically prepared using a unitary coupled
cluster (UCC) operator. The UCC Ansatz operator including
single and double excitations (UCCSD) contains O(N2M2)
free parameters. Application of the (Trotterized) Ansatz op-
erator to the initial state is realized by a circuit containing
a polynomial number of gates since the action of fermionic
ladder operators can be represented by a polynomial number
of gates in the case of direct encoding.

Let us now see how these arguments can be naturally
extended to the case of quantum field theory (QFT). First
of all, we note that unlike in quantum chemistry, where the
number of particles is conserved, QFT allows for processes of
creation and annihilation of particles. Nevertheless, light-front
QFT does have an operator similar to the nonrelativistic num-
ber operator, namely, the total momentum operator. Indeed,

since this relativistic momentum operator commutes with the
Hamiltonian, one can solve the problem within a Fock space
sector of a fixed total momentum.

This analogy extends to the terms in the Hamiltonian.
In quantum chemistry, the Hamiltonian operator can be
written as a polynomial of fermionic creation and annihi-
lation operators, containing O( poly(N )) terms. In QFT, the
second-quantized Hamiltonian operator can be written as
a polynomial of ladder operators, containing O( poly(�))
terms, where � is the momentum cutoff. As in chemistry, in
the direct encoding those can be represented by log � − local
Pauli operators, whose total number consequently also scales
as O( poly(�)). To obtain a finite-dimensional Hilbert space
in the equal-time quantization, one would have to impose an
additional cutoff on the number of excitations in each bosonic
mode. However, in the LF formalism the maximum number of
excitations is automatically limited by harmonic resolution K ,
the dimensionless light-cone momentum [41,57]. Within the
BLFQ, the role of � and K is played by Nmax, Mmax, and Lmax

cutoffs (introduced in Sec. II C). Therefore, all the resources
for a single VQE estimation of the QFT Hamiltonian expec-
tation value based on the direct encoding and UCC will grow
polynomially in momentum cutoffs and precision. Consider
as an example a Hamiltonian of the form (31), with both
single- and two-body interaction terms included. Simulating
a system with N modes would require measuring O(N3) Pauli
operators [94,95] and considering circuits with O(N4) gates
[[66], Sec. II A].

B. Compact encoding

In our previous work [41] we explored the possibility of
using the compact encoding for simulating physics on the
light front. This amounts to only storing information about
occupied modes in the Fock states. In the simplified setting
considered in Sec. II B, due to the usage of relative coordi-
nates, the only information we store is the index of the single
occupied orbital. While in the direct mapping the index of the
occupied orbital was stored in the unary form, requiring N
qubits for N orbitals, in the compact mapping it is stored in the
binary form, requiring �log2 N� qubits for N orbitals. There-
fore, in the case when the single-body Hamiltonian matrix hi j

is of size N × N = 2n × 2n, one would use all the basis states
of the 2n-dimensional Hilbert space of n qubits (see Table II).

In the compact mapping, an equation analogous to (34)
would contain an exponential number of terms on the right-
hand side, thus making the usage of the UCC inefficient.
Instead, one may employ any of existing arbitrary state
preparation algorithms [54,55]. While their complexity is ex-
ponential in the number of qubits, in our case the number of
qubits is itself logarithmic in the problem cutoffs.

For the direct encoding, in order to measure the expectation
value of the Hamiltonian we can express the Hamilto-
nian in terms of Pauli operators. Any observable of size
N × N = 2n × 2n can be expanded in the basis of 4n = N2

Pauli operators defined on n qubits:

h =
N2∑

α=1

cαPα, cα = 1

2n
tr (hPα ), (38)

where cα are real.
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FIG. 3. Ansatz circuits for preparing an arbitrary superposition of single-particle Fock states with real coefficients. For the direct encoding
(a), we use a generalization of a circuit from [55] for preparation of WN states. For the binary encoding (b), we use arbitrary state preparation,
with all single-qubit rotations replaced by Ry(θ ) gates, where Ry(θ ) denotes a single-qubit rotation through an angle θ about the y axis. After
transpiling into native QISKIT gates, the circuits look as in Fig. 4.

It should be emphasized that the logarithmic scaling of
the number of qubits required as a function of the problem
cutoffs implies that the Hilbert space dimension is polynomial
in the cutoffs. This also implies that classical approaches to
this problem are efficient. We are considering these specific
initial problems as benchmarks, where the results obtained can
be compared to the known classical solution as an evaluation
of the NISQ device itself.

Efficiency analysis

Within the VQE regime, the approach to quantum simula-
tion based on the compact mapping is more efficient than the
one based on the direct encoding when solving a two-body
problem in the relative variable basis. As one starts to consider
the problem in the multiparticle setting, the number of qubits
required for storing physical states in the compact encoding is
nearly optimal [41]. Despite that, one faces serious problems
at the stages of state preparation and measurement. Since the
complexity of arbitrary state preparation algorithms scales
exponentially with the number of qubits, and the number of
qubits grows linearly with the number of occupied modes,
those algorithms can only be used if the number of parti-
cles is fixed and small. Of course, in principle, one could
use sparsity-based techniques for state preparation, but this
produces gate counts that are not feasible in the NISQ era.
Therefore, coming up with a good Ansatz for a multiparticle
state in the compact encoding is an important task, which we
leave for future work.

Another problem arises at the measurement stage: The
number of Pauli terms in the expansion of the Hamiltonian
grows exponentially with the number of qubits. However, the

Hamiltonian matrix in the basis of Fock states is sparse be-
cause it contains polynomially many creation and annihilation
operator monomials and each of these connects a Fock state
to at most one other Fock state. Therefore, we can use the
formulation of VQE for sparse Hamiltonians described in [96]
for the multiparticle compact encoding case.

V. RESULTS

In this section we describe numerical and experimental
results of implementing VQE for a sample QFT problem,
namely, simulation of a pion in the minimal BLFQ represen-
tation. In order to run our simulation on an existing device,
we shall use the 4 × 4 light meson BLFQ Hamiltonian from
Sec. II B corresponding to Jz = 0 sector in Table VI (see also
Appendix A 2), with the choice of model parameters specified
in Table III.

HBLFQ

=

⎛⎜⎝ 640323 139872 −139872 −107450
139872 346707 174794 139872

−139872 174794 346707 −139872
−107450 139872 −139872 640323

⎞⎟⎠,

(39)

in units of MeV2. In the notations of equation (32), we
assume that operators a†

i create two-particle states of the
form (1), and set hi j = HBLFQ and hi jkl = 0 (see also the
discussion in [42]). The two lowest eigenvalues correspond
to π and ρ meson squared masses: The ground state is
(0.34,−0.62,−0.62, 0.34)T , with m2

π = 139.62 MeV2.
We can analyze the VQE calculation in a few steps: (a)

Check that the classical optimizer is working correctly. To

FIG. 4. QISKIT circuits for (a) preparing a superposition of single-occupancy states with real amplitudes, (b) preparing a two-qubit state
with real amplitudes. Circuits before transpiling are shown in Fig. 3.
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FIG. 5. Precision vs number of samples for ground-state energy
obtained via sampling from the exact distribution. Fitting gives
n ≈ 382/ε2.04 (direct encoding) and n ≈ 46/ε2.1 in (compact encod-
ing), confirming the theoretical n ∼ O(1/ε2) dependence. Compact
encoding shows better convergence due to having shorter circuits on
fewer qubits [compare Figs. 3(a) and 3(b)].

eliminate any errors arising due to sampling, we begin with
evaluating the Hamiltonian expectation values exactly, using
the state vector representation. (b) Determine the number of
steps required to reach the desired precision when evaluating
the expectation value via sampling from the exact distribution.
This gives the lower bound on the number of samples, and
models the situation of using a “perfect quantum computer.”
(c) Evaluate expectation values on the IBM Vigo quantum
processor. (d) Use error mitigation techniques to postprocess
the results obtained on the quantum computer. We shall per-
form these steps using both the direct and compact encodings,
evaluating the Hamiltonian eigenstate as well as other observ-
ables discussed in Sec. III.

The multiqubit states representing the four physical basis
states are shown in Table II. The states in the direct encod-

FIG. 6. The results of the VQE minimization algorithm in the
compact and direct encodings. These were obtained from 8192 sam-
ples per term on IBM Vigo machine, with and without measurement
error mitigation. The results for the case when the expectation values
are evaluated using the state vector are not shown; they reach the
exact result after ∼15 steps.

ing can be thought of as JW-encoded states. Therefore, we
use the JW transformation for calculating the corresponding
multiqubit Hamiltonian:

HBLFQ
direct

= 987031IIII + 87397(IXXI + IYY I )

− 53725(Y ZZY + XZZX )− 320161(IIIZ+ ZIII )

− 173353(IZII + IIZI ) + 69936(IIYY + IIXX

+ Y ZY I+ XZXI− IY ZY − IXZX − YY II− XXII ),

(40)

where each term is a tensor product of single-qubit Pauli
matrices I, X,Y, Z . (In what follows, we use this convention

TABLE IV. Expectation values of various observables calculated in the ground state obtained by means of the VQE minimization. The
observables are pion mass squared (m2

π ), mass radius squared (〈rm〉2), and decay constant squared ( f 2
π ). These were obtained from 8192 samples

per term on IBM Vigo chip, with and without measurement error mitigation. Classical sampling means sampling from the exact probability
distribution. Observables are shown both including constant terms (the physically relevant values), and not including them (the measured
values). In the case of m2

π , the physically relevant observable is obtained as a result of a massive cancellation between a large positive constant
term and a large negative experimentally measured quantity [see Eqs. (40) and (41) and the first two rows of the table]. The fractional errors
for observables are shown in Fig. 7. The parameters of the model are chosen so that for minimal choice of cutoffs, adopted in this sample
calculation, the pion mass squared would match its experimental value.

Direct encoding Compact encoding

Exact
Classical
sampling

IBM Vigo
IBM Vigo,

err. mit.
Exact

Classical
sampling

IBM Vigo
IBM Vigo,

err. mit.

m2
π , MeV2, no constant −967550 −969199 −888630 −889465 −474034 −477417 −428465 −437639

m2
π , MeV2 19481 17832 98401 97567 19481 16099 65051 55876

〈rm〉2, fm2, no constant −2.52 −2.51 −2.39 −2.39 −0.56 −0.56 −0.46 −0.55
〈rm〉2, fm2 1.39 1.40 1.52 1.52 1.39 1.40 1.49 1.41
f 2
π , MeV2, no constant 1027 1019 485 501 1975 1988 1589 1895

fπ , MeV 54.1 54.0 48.8 49.0 54.1 54.2 50.4 53.3
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FIG. 7. Relative errors in estimates of various observables. These were obtained from 8192 samples per term on IBM Vigo machine, with
and without measurement error mitigation. Physically significant observables have a significant contribution from the constant term in their
multiqubit representation. Observables are shown with and without the contribution of the constant term. For the GS energy, the error was
calculated relative to the second lowest eigenvalue m2

ρ . For the compact encoding, measurement error mitigation consistently improves the
results.

when expanding Hermitian matrices in Pauli terms acting on
qubits.)

As an Ansatz operator, one could use the UCCS (no dou-
bles) operator. According to (33), T1 will contain N terms,
each of which is N local in the JW encoding and log N local
in the BK encoding. In the former case, the circuit will con-
tain O(N2) gates, while in the latter only O(N log N ) gates.
However, in order to further improve the gate count in the
direct encoding-based algorithm, instead of the UCCS Ansatz,
we design a simple parametrized circuit of depth O(log N )
using O(N ) gates shown in Fig. 3(a), which is capable of

preparing an arbitrary superposition (with real amplitudes) of
single-occupied states in the JW encoding. (This circuit is a
generalization of the circuit proposed in [55] for preparing
WN states). Upon transpiling into native QISKIT [97] gates, the
circuit shown in Fig. 3(a) looks as shown in Fig. 4(a). The
multiqubit representation of the Hamiltonian in the compact
encoding is obtained from (39), calculating the coefficients by
applying (38):

HBLFQ
compact = 493515II + 139872(ZX − XZ )

+ 33671XX + 141122YY + 146807ZZ. (41)

FIG. 8. Pion elastic form factor, as defined in Eq. (27). Pion elastic form factor is used to calculate the charge radius, obtaining the values
given in Table V [charge radius is defined in Eq. (28)]. Data points for the quantum simulation on the IBM Vigo processor used 8192 samples
per term, with and without measurement error mitigation. The results measured on the quantum computer are in good agreement with the exact
ones due to the strong contribution to the measurement operators from the identity term. The results for the compact mapping are not shown
as they are visually indistinguishable from the exact lines.
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TABLE V. Pion charge radius, as defined in Eq. (28), calculated
using the numerical results from Fig. 8.

Charge radius
√〈r2

c 〉, MeV−1

Encoding Direct Compact

Exact 6.31 × 10−3 6.31 × 10−3

Classical sampling 6.29 × 10−3 6.30 × 10−3

IBM Vigo 6.33 × 10−3 6.35 × 10−3

IBM Vigo (err. mit.) 6.34 × 10−3 6.31 × 10−3

The Ansatz state is prepared using the circuit shown in
Fig. 3(b), which prepares an arbitrary two-qubit state with
real amplitudes. For both encodings, we need to estimate
expectation values of Pauli operators. To do this, we first rotate
to a basis in which the desired Pauli operator is diagonal, then
measure single-qubit Z operators. The desired operator is a
product of some set of single-qubit Z operators in this basis.

The classical optimization was performed using various
algorithms from the python.scipy.optimize library. In
agreement with [66], the best convergence to the true ground
state was achieved with L-BFGS-B [98] and COBYLA [99]
methods. The latter showed better convergence, and it is used
in all the following calculations. Depending on the choice of
the initial guess state, the optimizer was typically reaching
four-digit precision after ∼101–102 steps [for a good initial
guess, such as (0,−1/

√
2, 1/

√
2, 0)T ] and up to a few hun-

dred steps for randomly chosen initial state. In rare cases,
the minimization was not converging. Next, we determined
the number of samples from the exact distribution required
to reach the desired precision, which is expected to scale as
O(1/ε2) [16]. To do so, we calculated the relative error for
determining the Hamiltonian’s expectation value in the true
ground state using the classical simulation (the corresponding
parameters of the circuits were obtained via the optimiza-
tion at the previous stage). We performed 1000 experiments
with a fixed number of samples, and calculated the root-
mean square relative errors in determining the ground-state
expectation value over each set of experiments. The results
on Fig. 5 indicate that on an ideal quantum computer we
would need to generate ∼106 samples per Pauli term in order
to reach 2% precision, and ∼4 × 106 samples to reach 1%
precision.

In Fig. 6 we show the results of the VQE minimization
procedure. Each Pauli term expectation value was estimated
from 8192 samples on the IBM Vigo processor. At each mini-
mization step we plot the resulting estimated energies, as well
as those obtained by classical sampling from the exact prob-
ability distributions (the latter illustrates the performance of
a noiseless quantum computer). The measurement error mit-
igation was performed with QISKIT’s CompleteMeasFitter,
which amounts to preparing and measuring all the 2n possible
n-qubit bitstrings (8192 shots each). These measurements al-
low one to define a calibration matrix of size 2n × 2n, which
is later used for postprocessing counts. This error mitigation
technique has cost exponential in the number of qubits and is
not efficient. In the multiparticle setting, it has to be replaced
with more complex noise models. The improvement due to
measurement error mitigation was significant only for the
compact encoding, and led to the best convergence to the

true ground-state energy out of all the experimental methods
tested.

Table IV shows the expectation values for the energy, de-
cay constant, and mass radius, evaluated in the approximate
ground state obtained via the VQE minimization procedure,
while Fig. 7 shows the relative errors. The expressions for all
observables are obtained from the corresponding BLFQ matri-
ces in analogy with Eqs. (40) and (41); the explicit expressions
can be found in Appendix D. Note that all the observables
have a dominant contribution from the unity term (IIII in
the direct encoding and II in the compact encoding), whose
expectation value is exactly 1. Therefore, in Fig. 7 we also
show the expectation values for observables from which this
term has been subtracted, which in certain cases improves the
relative precision of results. The expectation values without
the unit terms are the quantities actually measured on the
quantum computer, while those including the unit terms are
the physically relevant numbers, so the relative errors in both
are of interest. In order to calculate the decay constant, one
can use either the circuit shown in Fig. 2 or Pauli measure-
ments; we use the latter option to minimize the number of
gates.

The elastic form factors, Eq. (27), are shown in Fig. 8,
and the corresponding charge radii, Eq. (28), are presented in
Table V. In both cases, the results obtained on the quantum
computer are in good agreement with the exact ones. This
is to be expected because the corresponding measurement
operators have a large contribution from the identity operator.

Results in Figs. 6–8 motivate further development of com-
pact encoding simulation methods, such as those proposed
in [96]. Another takeaway is that, as can be seen from Figs. 7

TABLE VI. The unitary transformation from the orthogonal enu-
meration to blocks with fixed Jz. The other basis quantum numbers
n and l are identical in both representations. Here we only impose
the basis cutoff of Mmax = 2, while cutoffs in l and n can be freely
determined.

Jz θ m s1 s2

−3 1 −2 − −
−2 1 −2 + −
−2 2 −2 − +
−2 3 −1 − −
−1 1 −2 + +
−1 2 −1 + −
−1 3 −1 − +
−1 4 0 − −
0 1 −1 + +
0 2 0 + −
0 3 0 − +
0 4 1 − −
1 1 0 + +
1 2 1 + −
1 3 1 − +
1 4 2 − −
2 1 1 + +
2 2 2 + −
2 3 2 − +
3 1 2 + +
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and 8, relative errors for other observables can be comparable
to or even smaller than those for the ground-state eigenvalue.
Although our results are illustrative rather than general, they
suggest that using VQE to study observables other than the
Hamiltonian ground state alone will be fruitful in subsequent
work.

With our choice of cutoffs, the calculation of PDFs in the
compact encoding reduces to measurement of II , while in
the direct encoding, it reduces to the projector onto the com-
putational subspace (spanned by the single-occupancy Fock
states). Thus, in both cases, the quantity to be measured on the
quantum computer is trivial [i.e., ρ0,0 = 1, as in Eq. (23)], and
the resulting PDF is f (x) = ρ0,0χ

2
0 (x) = 1 × [2986 x4.4(1 −

x)4.4]2, because there is one single longitudinal mode due to
choices in basis truncations.

VI. DISCUSSION

In this paper, we simulated high-energy nuclear physics in
the light-front formulation on existing quantum processors.
We considered a detailed example in which we studied a
relativistic analog of hydrogen, the pion. We studied this prob-
lem in a fixed-particle-number formulation as a benchmarking
test for existing devices, and as a preparation for moving to-
wards the mixed-particle-number formulation. Using the basis
light-front quantization (BLFQ) formalism, we demonstrated
how small quantum computers can be used for calculating
hadronic spectra and various structural observables. Adopt-
ing an effective interaction (suggested by the anti-de Sitter
Space/quantum chromodynamics correspondence [100]) and

a set of basis functions (motivated by the particular problem
of interest [43]) allows one to significantly reduce the compu-
tational resources, and to obtain reasonable results for realistic
theories on devices having just a few qubits.

Within the VQE approach to quantum simulation, studied
in this work, we considered various encodings and state prepa-
ration procedures, some of which were naturally suggested
by our experience in quantum chemistry. Together with our
previous paper [41], this work defines a spectrum of meth-
ods for quantum simulation of quantum field theories. On
this spectrum, one can move from restricted models, to be
simulated on existing quantum devices, all the way to full ab
initio simulation of QCD in 3+1 dimensions [(3+1)D], to be
simulated on future fault-tolerant quantum computers. Future
work will expand and improve our methods on both ends of
the spectrum. The next step in near-term simulation will be
to switch to single-particle coordinates, providing the frame-
work for mixed-particle-number simulations where quantum
advantage is possible.
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APPENDIX A: HAMILTONIAN IN THE BASIS REPRESENTATION

1. Unitary transformation to the fixed Jz blocks

Because the light-front Hamiltonian conserves the angular momentum in the z direction, the Hamiltonian in our basis
representation can be diagonalized into blocks of fixed Jz. This is equivalent to combining the spin quantum numbers s1 and s2

with the magnetic quantum number m to form a new quantum number θ . Specifically, when Mmax = 2, the unitary transformation
from the original BLFQ basis to this block-diagonal form is given by Table VI.

2. BLFQ-NJL Hamiltonian in the Jz = 0 block

When Nmax = Lmax = 0, the light-front effective Hamiltonian in the Jz = 0 block takes the form of a 4 × 4 matrix HBLFQ.
The subscripts of the matrix then index the basis quantum number θ . The explicit expressions for these matrix elements are
given in the following equations. Here κ is strength of the confining potential which we set identical to the basis scale b. The
parameter Gπ is the coupling constant of the NJL interaction. Functions L′(a, b) and L(a, b) both stand for L0(a, b; α, β ) given
in Appendix B 3.

Explicitly, the matrix elements of this Hamiltonian in our basis representation are given by

HBLFQ
11 = (m + m)2 + 5κ2 + 8Gπb4

π
L′(0, 0)L(0, 0), (A1a)

HBLFQ
12 = 4Gπb3

π
{m{[L′(0, 1)L(1/2,−1/2) − L′(0, 0)L(1/2,−1/2)} + m L′(0, 0)L(−1/2, 1/2)}, (A1b)

HBLFQ
13 = −2Gπb3

π
L′(0, 0){m{2L(−1/2, 1/2) + L(−1/2, 3/2) + L(1/2, 1/2)} + 2m L(1/2,−1/2)}, (A1c)

HBLFQ
14 = −4Gπ b4

π
{L′(0, 1)L(1, 0) + L′(1, 0)L(0, 1) + L′(0, 1)L(0, 0) + L′(0, 0)L(0, 1) − 2L′(0, 1)L(0, 1)

+ 2L′(0, 0)L(0, 0)}, (A1d)

HBLFQ
21 = HBLFQ

12 , (A1e)
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HBLFQ
22 = (m + m)2 + 3κ2 − Gπb2

π
mm{L′(1/2, 1/2)L(−1/2,−1/2) + L′(−1/2, 1/2)L(1/2,−1/2)

+ L′(1/2,−1/2)L(−1/2, 1/2) + L′(−1/2,−1/2)L(1/2, 1/2) + L′(−1/2, 3/2)L(−1/2,−1/2)

− 2L′(−1/2, 1/2)L(−1/2, 1/2) + L′(−1/2,−1/2)L(−1/2, 3/2)}

− 2Gπb2

π
{m L′(−1/2, 1/2) + m L′(1/2,−1/2)}{m L(−1/2, 1/2) + m L(1/2,−1/2)}, (A1f)

HBLFQ
23 = 2Gπb2

π
[m L′(−1/2, 1/2) + m L′(1/2,−1/2)][m L(−1/2, 1/2) + m L(1/2,−1/2)], (A1g)

HBLFQ
24 = 2Gπb3

π
m{[L′(−1/2, 3/2) + 2L′(−1/2, 1/2)]L(0, 0) − L′(−1/2, 1/2)L(0, 1)}

+ 2Gπb3

π
m{[L′(1/2, 1/2) + 2L′(1/2,−1/2)]L(0, 0) + L′(1/2,−1/2)L(0, 1)}, (A1h)

HBLFQ
31 = HBLFQ

13 , (A1i)

HBLFQ
32 = HBLFQ

23 , (A1j)

HBLFQ
33 = (m + m)2 + 3κ2 − Gπb2

π
mm{L′(1/2, 1/2)L(−1/2,−1/2)

+ L′(−1/2, 1/2)L(1/2,−1/2) + L′(1/2,−1/2)L(−1/2, 1/2) + L′(−1/2,−1/2)L(1/2, 1/2)

+ L′(−1/2, 3/2)L(−1/2,−1/2) − 2L′(−1/2, 1/2)L(−1/2, 1/2) + L′(−1/2,−1/2)L(−1/2, 3/2)}

− 2Gπb2

π
[m L′(−1/2, 1/2) + m L′(1/2,−1/2)][m L(−1/2, 1/2) + m L(1/2,−1/2)], (A1k)

HBLFQ
34 = −4Gπ b3

π
{m{L′(1/2,−1/2)L(0, 1) + L′(1/2,−1/2)L(0, 0)} + m L′(−1/2, 1/2)L(0, 0)}, (A1l)

HBLFQ
41 = HBLFQ

14 , (A1m)

HBLFQ
42 = HBLFQ

24 , (A1n)

HBLFQ
43 = HBLFQ

34 , (A1o)

HBLFQ
44 = (m + m)2 + 5κ2 − 8Gπb4

π
L′(0, 0)L(0, 0). (A1p)

The model parameters are specified in Table III.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR INTEGRALS OF BASIS FUNCTIONS

1. Integrals for the calculation of the decay constant

When calculating the decay constants using the valence LFWFs of mesons, we encounter the following integral:

∫ 1

0

dx

4π
√

x(1 − x)

∫
d2κ⊥

(2π )2
φnm

( �κ⊥
√

x(1 − x)

)
χl (x) =

∫ 2π

0

dφ

2π
eimφ

∫ 1

0

dx

4π

√
x(1 − x)χl (x)

∫
ρ dρ

2πb

×
√

4πn!

(n + |m|)!
(q

b

)|m|
e−q2/(2b2 )L|m|

n (q2/b2)q|m|

= δm,0 Ll (1/2, 1/2; α, β )
b√
π

(−1)n, (B1)

where Ll (1/2, 1/2; α, β ) is given by Eq. (B7). We have also used∫ +∞

0

q dq

2πb

√
4πe−q2/(2b2 )L0

n (q2/b2) = b√
π

(−1)n (B2)

in deriving Eq. (B1).
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2. Integrals for the mass radius

To evaluate the transverse integrals in Eq. (21), we first define �ρ = b
√

x(1 − x)�r⊥. After this substitution of variables we
obtain ∫ +∞

0
d|�r⊥|2

∫ 2π

0

dφr

2
x2(1 − x)2 b2|�r⊥|2φ̃∗

n′,m′ (
√

x(1 − x)�r⊥)φ̃n,m(
√

x(1 − x)�r⊥)

= b−2
∫ +∞

0
dρ2

∫ 2π

0

dφr

2
ρ2φ̃∗

n′,m′ (�ρ⊥/b)φ̃n,m(�ρ⊥/b)

= (−1)n′+nδm′m

√
n′!n!

(n′ + |m|)!(n + |m|)!
∫ +∞

0
dρ2 (ρ2)|m|+1e−ρ2

L|m|
n′ (ρ2)L|m|

n (ρ2). (B3)

The integrals over the product of generalized Laguerre polynomials can be obtained by the orthonormality relations. In order to
apply such relations, we convert L|m|

n into L|m|+1
n using recurrence relations. From Eq. (22.7.30) of Ref. [101] we obtain

L|m|
n (ρ2) = L|m|+1

n (ρ2) − L|m|+1
n−1 (ρ2). (B4)

Here when n = 0, the second term drops out. We then have√
n′!n!

(n′ + |m|)!(n + |m|)!
∫ +∞

0
dρ2 (ρ2)|m|+1e−ρ2

L|m|
n′ (ρ2)L|m|

n (ρ2)

=
√

n′!n!

(n′ + |m|)!(n + |m|)!
∫ +∞

0
dρ2(ρ2)|m|+1e−ρ2[

L|m|+1
n′ (ρ2) − θn′−1L|m|+1

n′−1 (ρ2)
][

L|m|+1
n (ρ2) − θn−1L|m|+1

n−1 (ρ2)
]

=
√

n′!n!

(n′ + |m|)!(n + |m|)!
{

(n + |m| + 1)!

n!
δn′n − (n + |m|)!

(n − 1)!
δn′,n−1θn−1 − (n + |m| + 1)!

n!
δn′,n+1 + (n + |m|)!

(n − 1)!
δn′nθn−1

}
= (2n + |m| + 1)δn′n −

√
n(n + |m|)δn′,n−1 −

√
(n + 1)(n + |m| + 1)δn′,n+1 (B5)

with n ∈ N by default. Here θn = 1 when n � 0 and θn = 0 when n < 0.
The longitudinal integrals can be calculated by applying the orthonormal relation of the longitudinal basis function. Subse-

quently, we obtain the following expression for the Hermitian matrix that specifies the mass radius:

Im(n′, m′, l ′; n, m, l ) = δl ′l δm′m{(2n + |m| + 1)δn′n +
√

n(n + |m|)δn′,n−1 +
√

(n + 1)(n + |m| + 1)δn′,n+1}. (B6)

3. Longitudinal integrals

Let us define the following integral in the longitudinal basis functions:

Ll (a, b; α, β ) ≡
∫ 1

0

dx

4π
xb(1 − x)aχl (x; α, β )

=
√

2l + α + β + 1

4π

√
�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

∫ 1

0
dx xβ/2+b(1 − x)α/2+a P(α,β )

l (2x − 1)

=
√

2l + α + β + 1

4π

√
�(l + 1)�(l + α + β + 1)

�(l + α + 1)�(l + β + 1)

×
l∑

m=0

(
l + α

m

)(
l + β

l − m

)
(−1)l−mB

(
β

2
+ b + m + 1,

α

2
+ a + l − m + 1

)
, (B7)

where B(s, t ) = �(s)�(t )/�(s + t ) is the Euler beta function.
To evaluate Ll (a, b; α, β ) numerically, we first rewrite Eq. (B7) as

Ll (a, b; α, β ) =
√

2l + α + β + 1

4π

l∑
m=0

Cl,m(a, b; α, β ), (B8)

with

Cl,m ≡ (−1)l−m√
�(l + 1)�(l + α + β + 1)

�(m + 1)�(l + α − m + 1)

√
�(l + α + 1)�(l + β + 1)

�(l − m + 1)�(β + m + 1)

�(β/2 + b + m + 1)�(α/2 + a + l − m + 1)

�(β/2 + b + α/2 + a + l + 2)
.

(B9)

062601-16



SIMULATING HADRONIC PHYSICS ON NOISY … PHYSICAL REVIEW A 103, 062601 (2021)

We then obtain the following recurrence relations for Cl,m:

C0,0 =
√

�(α + β + 1)

�(α + 1)�(β + 1)

�(β/2 + b + 1)�(α/2 + a + 1)

�(β/2 + b + α/2 + a + 2)
, (B10a)

Cl,0

Cl−1,0
= −

√
(l + β )(l + α + β )

l (l + α)

α/2 + a + l

β/2 + b + α/2 + a + l + 1
(for l � 1), (B10b)

Cl,m

Cl,m−1
= − (l + α − m + 1)(l − m + 1)

m(β + m)(α/2 + a + l − m + 1)
(β/2 + b + m) (for l � m � 1). (B10c)

The longitudinal integral Ll (a, b; α, β ) can then be calculated by first generating and then summing the following sequences:

C0,0

↓
C1,0 + C1,1

↓
C2,0 + C2,1 + C2,2

↓
C3,0 + C3,1 + C3,2 + C3,3

↓
. . .

using Eq. (B10).

APPENDIX C: ELECTROMAGNETIC FORM FACTORS IN THE BASIS REPRESENTATION

1. Reduction of the formula for the electromagnetic form factors in the valence Fock sector of mesons

Let us first expand the quark current operator in terms of creation and annihilation operators. In agreement with the light-front
quantization condition, the Dirac field operator at a given light-front time x+ = 0 is expanded according to

ψ (x) =
∑

s=±1/2

∫
d p[bs(p)us(p)e−ip·x + d†

s (p)vs(p)eip·x]|x+=0, (C1)

where the flavor indices are implicit. Here us(p) and vs(p) are solutions of the Dirac equation for free fermions. Meanwhile, the
creation and annihilation operators satisfy these anticommutation relations:

{br (k), b†
s (p)} = δ(k − p)δrs, (C2)

{dr (k), d†
s (p)} = δ(k − p)δrs, (C3)

while other anticommutation relations all vanish. We have defined the integral measure in the momentum space as∫
d p =

∫ +∞

0

d p+

4π p+

∫ +∞

−∞

d p⊥
1

2π

∫ +∞

−∞

d p⊥
2

2π
. (C4)

The reduced delta function is defined according to

δ(k − p) = 4πk+θ (k+) δ(k+ − p+)(2π )2δ(�k⊥ − �p⊥). (C5)

These conventions ensure that one reduced delta function can be utilized to eliminate one momentum-space integration.
With these definitions, the charge density operator becomes

lim
x→0

ef ψ (x)γ +ψ (x) = lim
x→0

∑
s′s

∫
d p′
∫

d p[b†
s′ (p′)us′ (p′)eip′ ·x + ds′ (p′)vs′ (p′)e−ip·x]efγ

+[bs(p)us(p)e−ip·x + d†
s (p)vs(p)eip·x]

→
∑
s′s

∫
d p′
∫

d p{eq b†
s′ (p′)bs(p) us′ (p′)γ +us(p) − eq d†

s′ (p′)ds(p) vs′ (p′)γ +vs(p)}

=
∑

s

∫
d p′
∫

d p 2
√

p′+ p+[eq b†
s (p′)bs(p) − eq d†

s (p′)ds(p)]. (C6)
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Here we have made use of us′ (p′)γ +us(p) = 2
√

p′+ p+δs′s and vs′ (p′)γ +vs(p) = 2
√

p′+ p+δs′s. We have only kept terms of
relevance to the valence Fock sector of mesons. The form factors then become

Im′
J ,mJ (Q2) =

∑
r′s′

∫ 1

0

dx′

4πx′(1 − x′)

∫
d �κ ′⊥

(2π )2
ψ∗

r′s′ (x′, �κ ′⊥)〈0|ds′ (k′
2)br′ (k′

1)
∑

σ

∫
d p′
∫

d p

×
√

p′+ p+

P+
[
eq b†

σ (p′)bσ (p) − eq d†
σ (p′)dσ (p)

]∑
rs

∫ 1

0

dx

4πx(1 − x)

∫
d �κ⊥

(2π )2
b†

r (k1)d†
s (k2)|0〉ψrs(x, �κ⊥). (C7)

The anticommutation relation for the creation and annihilation operator can be used to deduce∑
σ

∫
d p′
∫

d p ds′ (k′
2)br′ (k′

1)b†
σ (p′)bσ (p)b†

r (k1)d†
s (k)

√
p′+ p+ →

√
k′+

1 k+
1 δr′rδs′sδ(k′

2 − k2), (C8)

∑
σ

∫
d p′
∫

d p ds′ (k′
2)br′ (k′

1)d†
σ (p′)dσ (p)b†

r (k1)d†
s (k)

√
p′+ p+ →

√
k′+

2 k+
2 δr′rδs′sδ(k′

1 − k1). (C9)

The expression for the form factors is then reduced to

Im′
J ,mJ (Q2) =

∑
rs

∫
dx′

4πx′(1 − x′)

∫
d �κ⊥

(2π )2
ψ∗

rs(x
′, �κ ′⊥)

∫
dx

4πx(1 − x)

∫
d �κ⊥

(2π )2
ψrs(x, �κ⊥)

×
{

eq

√
k′+

1 k+
1

P+ δ(k′
2 − k2) − eq

√
k′+

2 k+
2

P+ δ(k′
1 − k1)

}
, (C10)

where we have defined

k+
1 = xP+, (C11a)

�k⊥
1 = �κ⊥ + x�P⊥

, (C11b)

k+
2 = (1 − x)P+, (C11c)

�k⊥
2 = −�κ⊥ + (1 − x)�P⊥

,

and

k′
1 = x′P′+, (C11d)

�k′⊥
1 = �κ ′ + x′ �P′⊥

, (C11e)

k′+
2 = (1 − x′)P′+, (C11f)

�k′⊥
2 = −�κ ′⊥ + (1 − x′)�P′⊥

. (C11g)

Meanwhile, the following reductions of delta functions hold in the Drell-Yan frame:

δ(k′
2 − k2) = 4π (1 − x)δ(x′ − x) (2π )2δ2(−�κ ′⊥ + �κ⊥ + (1 − x)(�P′⊥ − �P⊥

)), (C12)

δ(k′
1 − k1) = 4πx δ(x′ − x) (2π )2δ2(�κ ′⊥ − �κ⊥ + x(�P′⊥ − �P⊥

)). (C13)

Therefore, the expression for the form factors is reduced to that given on the right-hand side of Eq. (25) with

�q⊥ = �P′⊥ − �P⊥
.

2. Electromagnetic form factors in the basis representation

In the basis representation, Eq. (25) becomes

Im′
J ,mJ (Q2) =

∑
n′m′l ′

∑
nml

∑
rs

ψ∗
n′m′l ′rs ψnmlrs

∫
dx

4πx(1 − x)
χl ′ (x)χl (x)

∫
d�k

(2π )2

×
{

eq φ∗
n′m′

( �k⊥ + (1 − x)�q⊥
√

x(1 − x)

)
−eq φ∗

n′m′

( �k⊥ − x�q⊥
√

x(1 − x)

)}
φnm

(
x, �k⊥)

=
∑
n′m′l ′

∑
nml

∑
rs

ψ∗
n′m′l ′rs ψnmlrs

∫
dx

4πx(1 − x)
χl ′ (x)χl (x)

∫
d�k

(2π )2
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×
{

eq φn′,−m′

( �k⊥ + (1 − x)�q⊥/2√
x(1 − x)

)
φnm

( �k⊥ − (1 − x)�q⊥/2√
x(1 − x)

)
− eq φn′,−m′

( �k⊥ − x�q⊥/2√
x(1 − x)

)
φnm

( �k⊥ + x�q⊥/2√
x(1 − x)

)}
,

(C14)

where we have applied shifts in the transverse momentum and φ∗
nm = φn,−m.

We then apply the Talmi-Moshinsky (TM) transform to simplify the integrals in the transverse momentum [62,102].
Specifically, we have

φn′,−m′ (�q1) φn,m(�q2) =
∑

NMnm

C(n′,−m′, n, m; N, M, n, m)φNM (�P) φnm(�p), (C15)

with all four harmonic oscillator functions sharing the same scale b and

�P = (�q1 + �q2)/
√

2, �p = (�q1 − �q2)/
√

2, (C16)

which corresponds to

�P =
√

2�k⊥
√

x(1 − x)
, �p =

√
1 − x

2x
�q⊥ (C17)

for the quark contribution and

�P =
√

2�k⊥
√

x(1 − x)
, �p = −

√
x

2(1 − x)
�q⊥ (C18)

for the antiquark contribution.
The coefficient C(n′,−m′, n, m; N, M, n, m) can be computed with established procedures [62,102]. The following observa-

tions made specifically for the valence Fock sector of mesons will be helpful in enumerating terms after in the TM transform.
(i) Because the TM transform cannot change the total magnetic projection of the orbital angular momentum, we must have

−m′ + m = M + m.
(ii) The integral in �k⊥

will select the terms with m = 0, leaving other values of m not contributing to the integral.
(iii) Because the mesons obtained from the light-front Hamiltonian have fixed magnetic projection for the sum of the spin

and orbital angular momenta, when the spins of the two wave functions in a bilinear are identical, so are their magnetic quantum
numbers m′ and m.

These observations further confine us to m = −m′ + m = 0, which is expected since the electromagnetic form factors have
no angular dependence.

The integrals over the momenta of the light-front wave functions then become

C̃(n′, m′, l ′; n, m, l; Q2) ≡
∫

dx

4πx(1 − x)
χl ′ (x)χl (x)

∫
d�k⊥

(2π )2

{
eq φn′,−m′

( �k⊥ + (1 − x)�q⊥/2√
x(1 − x)

)
φnm

( �k⊥ − (1 − x)�q⊥/2√
x(1 − x)

)

− eq φn′,−m′

( �k⊥ − x�q⊥/2√
x(1 − x)

)
φnm

( �k⊥ + x�q⊥/2√
x(1 − x)

)}

=
∫

dx

4πx(1 − x)
χl ′ (x)χl (x)

∑
NMnm

C(n′,−m′, n, m; N, M, n, m)
∫

d�k
(2π )2

φNM

( √
2�k⊥

√
x(1 − x)

)

×
{

eq φnm

(√
1 − x

2x
�q⊥
)

− eq φnm

(
−
√

x

2(1 − x)
�q⊥
)}

=
∫

dx

4π
χl ′ (x)χl (x)

∑
NMnm

(−1)N b

2
√

π
δM0C(n′,−m′, n, m; N, M, n, m)

{
eq φnm

(√
1 − x

2x
�q⊥
)

− eq φnm

(
−
√

x

2(1 − x)
�q⊥
)}

= δm′m

∑
Nn

C(n′,−m′, n, m; N, 0, n, 0)
∫

dx

4π
χl ′ (x)χl (x)

(−1)N b

2
√

π

×
{

eq φn0

(√
1 − x

2x
�q⊥
)

− eq φn0

(
−
√

x

2(1 − x)
�q⊥
)}
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= δm′m

∑
Nn

C(n′,−m′, n, m; N, 0, n, 0)
∫

dx

4π
χl ′ (x)χl (x) (−1)N

×
{

eq exp

(
−1 − x

2x

Q2

2b2

)
Ln

(
1 − x

2x

Q2

b2

)
− eq exp

(
− x

2(1 − x)

Q2

2b2

)
Ln

(
x

2(1 − x)

Q2

b2

)}
.

(C19)

With the aid of the TM transform, the electromagnetic form factors in the basis representation become

Im′
J ,mJ (Q2) =∑n′m′l ′

∑
n,m,l

∑
r,s ψ∗

n′m′l ′rsC̃(n′, m′, l ′; n, m, l; Q2) ψnmlrs. (C20)

APPENDIX D: MULTIQUBIT OBSERVABLES FOR THE
Jz = 0 SECTOR OF THE Nmax = Lmax = 0, Mmax = 2

HAMILTONIAN

Following, we provide the multiqubit expressions for ob-
servables discussed in Sec. III for the Jz = 0 sector of the
BLFQ pion Hamiltonian. The decay constant can be obtained
from Eq. (16) as

fπ = 61.6
∣∣〈v|ψ (�θ )〉∣∣,

|v〉 = (0, 1/
√

2,−1/
√

2, 0). (D1)

In order to reduce the gate count, rather than using the circuit
from Fig. 2, we expand the projector onto the |v〉 state in terms
of Pauli operators:

|v〉〈v| = 1

2

⎛⎜⎝0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞⎟⎠, (D2)

|v〉〈v|direct = 0.5IIII − 0.25(IXXI+ IYY I+ IZII+ IIZI ),

(D3)

|v〉〈v|compact = 0.25(II − XX − YY − ZZ ) (D4)

and calculate the decay constant using |〈v|ψ (�θ )〉| =√
〈ψ (�θ )|(|v〉〈v|)|ψ (�θ )〉.
The mass radius matrix is given by Eq. (22), which when

expressed in terms of qubit operators, is

3

2b2
Im =

⎛⎜⎝2.27 0 0 0
0 1.13 0 0
0 0 1.13 0
0 0 0 2.27

⎞⎟⎠, (D5)

FIG. 9. Converting a four-qubit state from Jordan-Wigner to
Bravyi-Kitaev encoding.

3

2b2
Im, direct = −1.30(IIIZ + ZIII ) − 0.65(IIZI + IZII )

+ 3.92IIII, (D6)

3

2b2
Im, compact = 1.96II + 0.65ZZ. (D7)

The ρl=0,l ′=0 density matrix of the parton distribution func-
tion is given by Eqs. (23)–(24b), which when expressed in
terms of qubit operators is

ρ =

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠, (D8)

ρdirect = 2IIII − 0.5(ZIII + IZII + IIZI + IIIZ ), (D9)

ρcompact = II. (D10)

We calculate the elastic form-factor matrix FP(Q2) [Eq. (27)]
by discretizing Q2 on the interval 0 � Q2 � 5 152 900, evalu-
ating the matrix C̃(n′, m′, l ′; n, m, l; Q2) for each value of Q2,
and expanding it in terms of Pauli operators. For the sake of
brevity, we do not include these explicit expressions for each
point.

APPENDIX E: BRAVYI-KITAEV ENCODING

Both Jordan-Wigner and Bravyi-Kitaev encoding allow
one to store the second-quantized fermionic states in a quan-
tum computer. Within the Jordan-Wigner encoding, each qubit
stores the occupancy of a particular orbital [75]. Within the
Bravyi-Kitaev encoding, the information about parity is dis-
tributed equally between the operators and states [76]. In
practice, one typically uses the more efficient BK encoding.
While a single fermionic orbital in BK encoding is represented
by up to O(log N ) qubits [instead of O(N ) in JW], the creation
and annihilation operators are represented now by log N-local
multiqubit operators [76].

The BK-encoded basis states | . . . b2b1b0〉 can be obtained
from the JW-encoded states by means of the linear transforma-
tion bi =∑i j Pi j f j [78], where the entries of Pi j are {0, 1},
and multiplication modulo 2 is implied. Such a transforma-
tion of states can be implemented efficiently on a quantum
computer. Since the matrix Pi j is lower triangular [78], mul-
tiplication modulo 2 can be performed on qubits using the
controlled-NOT (CNOT) gates, starting from the bottom row.
For example, in the case of four qubits, the encoded matrix
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has the form of

Pi j =

⎛⎜⎝1 0 0 0
1 1 0 0
0 0 1 0
1 1 1 1

⎞⎟⎠. (E1)

The corresponding circuit is shown on Fig. 9.

In order to perform the simulation in the BK encoding,
one adjusts the procedure outlined in Sec. IV A as follows:
(a) After preparing the JW-encoded initial state |ψ0〉, one
appends to the circuit a block converting JW-encoded states
to BK-encoded ones as on Fig. 9; (b) Eq. (34) is replaced with
its BK version which changes the coefficients α j in (35) and
hi in Eq. (37).
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