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Dynamics of a spin qubit in an optical dipole trap
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We present a theoretical investigation of coherent dynamics of a spin qubit encoded in hyperfine sublevels
of an alkali-metal atom in a far off-resonant optical dipole trap. The qubit is prepared in the “clock transition”
utilizing the Zeeman states with zero projection of the spin angular momentum. We focus on various dephasing
processes such as the residual motion of the atom, fluctuations of the trapping field and its incoherent scattering,
and their effects on the qubit dynamics. We implement the most general fully quantum treatment of the atomic
motion, so our results remain valid in the limit of close-to-ground-state cooling with a low number of vibrational
excitations. We support our results by comparison with an experiment showing reasonable correspondence with

no fitting parameters.
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I. INTRODUCTION

Recent progress in laser-cooled atoms, confined in far
off-resonance optical dipole potentials, has given rise to
the development of an excellent experimental platform for
quantum computing [1,2] and quantum simulation [3-5]. A
possible quantum machine based on optically trapped neutral
atoms relies on coherent manipulation of qubits, in which
information is encoded in Zeeman-insensitive clock states.
The coherence time of the neutral atom hyperfine qubits is
a crucial parameter to judge the usefulness of the system for
achieving high fidelity in single- and two-qubit gates. More-
over, long coherence times are of great importance for scaling
the number of atomic qubits without limiting gate fidelities.

The atomic hyperfine coherence would never degrade in an
ideal scenario of a closed quantum system cooled down to its
ground vibrational state. However, such conditions can never
be perfectly achieved. A spin qubit based on an alkali-metal
atom trapped in an optical dipole trap is thus an open quantum
system, characterized by its residual motion and the coupling
to the environment [6]. This coupling is responsible for atomic
heating and decoherence, which results in the decay of a
pure superposition state to a statistical mixture. Fundamental
sources of heating by the trapping light are the spontaneous
scattering of trap photons [7,8] as well as laser intensity noise
and beam-pointing fluctuations [9], which can also cause de-
phasing of hyperfine coherences of trapped atoms. Currently
many important aspects of spin-qubit decoherence are under-
stood, explained, and discussed in a number of experimental
and theoretical works [10—12]. Convenient methods for coher-
ently addressing and manipulating single atoms in an optical
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tweezer and neutral atoms stored in optical lattices with single
site resolution were developed in recent experiments [13—15].
In a number of experimental works, high-fidelity single-qubit
gates based on neutral atoms trapped in two-dimensional (2D)
and 3D arrays were performed and characterized [16—18].
However, even higher fidelities and better control of individual
atomic qubits states are required for effective implementation
of two-qubit entangling gates, which still poses a challenge in
these systems.

In this paper, we analyze the dynamics of an atomic qubit
localized in an optical dipole trap. The case of an atom moving
in a tweezer potential raises a question of how the trapping
field affects the qubit dynamics due to the intensity fluctu-
ations and incoherent scattering effect. We assume that in
a typical experimental scenario, the microtrap is originally
loaded from an atomic ensemble, prepared in a magneto-
optical trap, and after a stage of molasses cooling still has
a relatively high temperature and, as a consequence, a high
mean vibrational number v > 1 for each mode. This residual
thermal motion results in Doppler broadening of the Ryd-
berg excitation lasers, and therefore it limits the fidelity of
two-qubit Rydberg gates which ideally require ground-state
cooling for effective operation. It also affects single-qubit
gates due to differential light-shift of the qubit levels [19].

Recent works show impressive experimental progress in
ground-state cooling of a single atom by the Raman sideband
cooling (RSC) technique [20-23]. A set of critical require-
ments for the parameters of the RSC protocol was suggested,
and the Raman passage was simulated numerically in a three-
dimensional configuration in [24]. RSC allows one to reach
the regime of low vibrational excitation, where the atomic
motion has to be described quantum mechanically. At the
same time, most of the models of motional decoherence in
a microscopic dipole trap are based on a classical treatment
of the atomic motion [11,25]. This motivates us to develop
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a numerical approach to describe spin qubit dynamics with a
fully quantum treatment of the atomic motion. Such a model
would be applicable when the trap oscillator is weakly excited,
v ~ 1, which is of the most practical interest for implementa-
tion of high-fidelity multiqubit gates.

The paper is organized as follows. In Sec. II we perform
a general description of our numerical treatment of coherence
dynamics of an atomic qubit confined with a dipole trap. In
our theoretical approach, we follow the parameters of our
experimental setup. Details of the experiment are described in
Sec. III. In Sec. IV we illustrate the results of our numerical
simulations, and we compare them with the experiment. In
Appendixes A and B, we introduce our formalism of coherent
dynamics of the trapped atom and some dephasing mecha-
nisms arising from its interactions with the environment in
more details.

II. THEORETICAL FRAMEWORK

A. Basic assumptions

Imagine a collection of alkali-metal atoms localized in mi-
croscopic optical dipole traps and configured as an ordered 2D
lattice in space. In a typical setup, such a lattice of tweezers
can be prepared with a separation of about a few microns
and with a typical atomic lifetime of a few seconds. Each
of the atoms can be deterministically pumped onto the clock
transition between the two Zeeman states |F_, My = 0) = |a)
and |F}, My =0) = |b), where Fr =1+ 1/2 are the total
spin angular momenta for the upper and lower hyperfine
sublevels, respectively;  is the nuclear spin. These specific
states have a zero value of the angular momentum projection
to the quantization axis My = 0 and no first-order Zeeman
shifts of their energy levels. So the qubit levels are separated
by approximately the same reference hyperfine splitting liwpyf
[Figs. 1(a) and 1(b)] for all the atoms.

The pair of states |a) and |b) are perfectly adjusted for
the preparation of superposition states, which can be done
by a short 7 /2 microwave pulse (in quantum information
theory commonly referred to as a Hadamard gate). In an
ideal scenario, if any atom, isolated from the environment, is
superposed between these spin states, such a qubit system will
never degrade. Indeed, the natural decay rate is given by the
magnetic dipole transition probability [26]

4Ig2 w}3lpfl'L2B
T3Q20+1) ke

, 2.1)

where pup is the Bohr magneton, g = —2 is the electron g-
factor, and whpr = wpe = 2 x6.83 ... GHz is the frequency
of the ground-state hyperfine splitting, taken for 8’Rb in
our example. This calculates to T'g ~ 10~!3 Hz, which is,
in fact, an effectively zero rate for any duration of quantum
processing. However, this fantastically slow rate could never
be approached in reality since a number of other dephasing
mechanisms affect the spin dynamics and restrict the exper-
imentally attained coherence time by a few seconds [18].
Below we clarify these mechanisms and show how their neg-
ative role could be partly overcome.

The main mathematical object of our consideration is the
density operator p = p(¢) for a single atom confined with a
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FIG. 1. Schematic of the qubit preparation: (a) The alkali-metal
atom is loaded into the dipole trap and localized near the focal point
of the laser beam. It is optically pumped onto one of the clock
states |a) = |F_;0) and |b) = |F,, 0). The clock transition is driven
by a microwave field having a Rabi frequency €2(¢) and linearly
polarized along the quantization axis z; (b) the trapping potentials
are slightly different for the spin states, which induces dephasing
in the qubit dynamics; (c) the example of Rabi oscillations on the
|a) — |b) transition recorded (points with error bars) and calculated
(curve) for the beginning stage of the coherent dynamics driven by
the stationary microwave field for the well depth |Uy| ~ 300 uK and
for the temperature 7 = 40 uK.

particular trap, which implies a quantum description of both
the spin and spatial degrees of freedom of the atom. It obeys
the following master equation:

dp LB b LA D 9p 22

i ﬁ[ 0, P(1)] ﬁ[ mw (1), ()] + <§)m, (22)
where the trap Hamiltonian Hj is responsible for the natu-
ral dynamics of the atom inside the trap. The second term
describes the interaction with the external microwave field,
which is treated classically and assumed to be switched
on for short durations at specific time moments. The pure
Hamiltonian dynamics is violated by the relaxation symbol-
ically introduced by the last term in (2.2) expressing the
Lindblad-type transform of the density operator disturbed by
the environment. Physically the interaction with the envi-
ronment includes the stochastic disturbance of the trapping
potential, induced by the fluctuations of the laser field con-
fining the atom, and by the random process of incoherent
scattering of this field by the atom.

B. The trap Hamiltonian

The alkali-metal atom, having high oscillator strength for a
single valence electron, can be effectively coupled with a laser
field even in a far off-resonant spectral domain. This coupling
induces ac Stark shifts of the atomic energy levels, which
depend on the atom’s location, with a minimum at the central
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point of the laser beam, and it creates a certain potential well
restricting its spatial motion. If the initial kinetic energy of the
atom is low enough, it will experience an additional mechan-
ical force originating in this barrier, and it can be trapped by
such an optical tweezers system. Eventually the motion of the
atom can be visualized as periodic oscillations inside the trap.

To describe such mechanical motion, we have to take into
consideration the fact that the atomic polarizabilities depend
on the atomic spin variables because of hyperfine interac-
tions. As a consequence, the coupling of the atom with a
far off-resonance trapping light can be described by means
of adiabatic dressed-state-dependent forces; see [27]. In the
subspace of the |a) and |b) spin states, the undisturbed dynam-
ics of the atom inside the trap is described by the following
effective Hamiltonian:

12
Hy=—>"0+ Ua(B)la)(al + [hanpt + Up(#)]10) (D]

+ Uap(t)|a) (b] + Upa(F)|b) (al, (23)

where by putting a “hat” over the atom’s position f we empha-
size its operator nature in the consistent quantum description.
For the dipole trap prepared with the linearly polarized
light, the off-diagonal terms U,,(¥) and Up,(¥) are extremely
small and can be safely neglected, which justifies the above-
mentioned adiabatic approximation. So for the defined spin
states, the spatial motion of the atom is driven by two
potentials,

Ua(t) = Up(F) + 1 AG(F),

Up(®) = Up(F) + 1A, (F), (2.4)

where we have specified the mean profile of the trap potential
Uy(t) and linked the deviations with the additional light shifts
A,(F) and A,(f) of the spin energy levels.

If the kinetic energy of the trapped atom is much smaller
than the potential depth, then near the bottom of the potential
well the profiles can be approximated by a parabolic shape.
In this case, the Hamiltonian (2.3) has the following sets of
eigenfunctions:

vevyvzia) = YiPm)la) = [¥¥;a) = |v;a),

[wewywz; by = P (0)|b) = |y b) = [wib),  (2.5)

where for the sake of convenience we have denoted the sets
of vibrational numbers in the potentials U,(r) and U,(r) by
symbolic vectors v = (v, vy, v;) and w = (w,, wy, w;), re-
spectively. The vibrational functions w‘(,“)(r) and wv(vb)(r), con-
sidered in the position representation, obey the Schrodinger
equations

hZ
[——A + Ua(r)i| Y(r) = 6 ¥(r),

2m

2
[—f—mA + Ub(r)} V@) = e (@), (26)
where €, = €vevyv. and &y = Ewwyw, AIE the vibrational ener-
gies in the potentials U,(r) and U(r), respectively. Each of
these equations generates a complete set of mutually orthog-
onal and normalized functions, but there is no orthogonality
between the sets, such that (wv(vb)hﬁv(“)) #0forw #v.

Let us make the following important remark for our further
derivation scheme. For eigenfunctions of harmonic oscil-
lators and for the realistic parameters associated with our
setup, we have verified that (Y?|y{@) ~ 0 if w# v and
(WP |y @) ~ 1if w = v with very high accuracy. So for most
of the further transformations, we can ignore the nonorthogo-
nality between the eigenfunctions of different sets. However,
the difference between the energies fdwy = ew|w=y — €y is
not negligible and is a crucially important parameter for cor-
rect description of the decoherence process.

C. The qubit control by a microwave field

The on-resonant interaction of the atom with the mi-
crowave radiation is given by the following Hamiltonian:

a h . h .
Hinw (1) = —EQ(I)e_"”’IbHaI - EQ*(t)eJ”""Ia) (ol, (2.7)

where w is a carrier frequency and 2 = €2(¢) is the time-
dependent Rabi frequency. Following the concept of the
Hadamard gates, the qubit can be prepared by a 7 /2-pulse
excitation. Then its coherent dynamics can be controlled via
observation of the Ramsey resonance with a second 77 /2-pulse
transferring the system to the state opposite to the initial one.
Alternatively, the evidence of coherency can be justified by
Rabi oscillations of the occupation probabilities of either |a)
or |b) states once the stationary microwave field is turned on
at an initial time, as shown in Fig. 1(c).

For implication to the quantum data processing, the former
scenario with the pulse excitation and free qubit precession
is preferable. In this particular case, even for a collection of
relatively warm atoms, their mutual decoherence could be
essentially suppressed with the use of the spin-echo protocol.
We clarify such an option in Appendix A and further confirm
it by our experimental data.

We can point out an important property of the excitation
process adjusted by an infinitely short §-type mw-pulse. Sup-
pose that before excitation the atom occupies any spin state
and exists in an arbitrary vibrational state |Y;,). Then, as
shown in Appendix A, this vibrational state cannot be changed
by chirping the system by the spectrally broad mw-pulse
having short duration, such that

Ep(0)[Yrin) = % Q1) calt) [Voin).

Ca(D)vin) = %Q*(I)Ch(t) [Vvib)» (2.8)

where c¢,(t) and c,(¢) are the probability amplitudes for the
spin wave function superposed between |a) and |b). So the
spin and vibrational subsystems stay disentangled after such
a short pulse excitation. It makes a difference if the atom
initially exists in an entangled composition of the spin and vi-
brational degrees of freedom. Then, as shown in Appendix A,
the short m-pulse initiates a flip of the spin and vibrational
states of the atom. This option gives us an example of the
spin-echo protocol, and it can be used to reverse the system
dynamics toward a revival of its initial state.
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D. Interaction with environment

The evolution of an individual atom in a far off-resonant
optical dipole trap (optical tweezers) is described by a
Schrodinger equation with the following extra term added to
the atomic Hamiltonian:

N a . E(_) m'n a ‘ E(+) nm
= Z [ ()Ll ()]

h(wL - a)nm)

|m'y(m|. (2.9)

n,m',m

This correction occurs due to the dipole interaction contribut-
ing in the second order of the perturbation theory; see [28,29].
Here d is the atomic dipole moment operator, and E)(r)
and EC)(r) are the operators of the positive and negative
frequency components of the field taken at the position of the
atom. Under steady-state conditions, the Hamiltonian can be
approximated by its mean value such that the field operators
can be substituted by the complex amplitudes of the laser field
Eo(r) and Efj(r), which in a paraxial limit have a Gaussian
mode proﬁle That simplifies the problem to coherent cou-
pling of the atom with the laser mode, and we obtain

Z [d E; (r)]mn[d EO(r)]nm

h(a)L Wnm )

Im') (m!|

n,m',m

= Y Up(®) |m')(m].

nmm

(2.10)

For the far off-resonant laser frequency w; , the denominator in
(2.10) becomes insensitive to the upper state energy structure
and eventually transforms to

Um’m(r) ~ Um(r)am/mv

where U,,(r), with m = a, b defining the trap potentials U, (t)
and Up(f) with the position variable treated as an operator in
Egs. (2.3) and (2.4).

In reality, the above arguments are valid only approxi-
mately since the electromagnetic field has an intrinsically
stochastic nature. There are two basic physical mechanisms
of interaction with the environment which have to be taken
into consideration. First, the laser radiation is not stable. The
profile potential will fluctuate randomly due to the intensity
fluctuation in the trapping light beam [9]. Even if it is stable
from the classical point of view, it will possess the quantum
fluctuations in the photon flux at the Poissonian level of un-
certainty. In our numerical simulations, we consider classical
fluctuations, which are described as a classical Wiener-type
stochastic process. We used the experimentally measured val-
ues of relative intensity noise, which in our case is much
larger than the shot noise, justifying its classical treatment;
see Appendix B for details. The potentially interesting quan-
tum effects associated with the sub-Poisson statistics or light
squeezing are beyond our consideration here. Second, the
laser light can be incoherently scattered from the atom via
Raman scattering channels [7]." These two mechanisms dis-
turb the mechanical confinement of the atom with the profile

@2.11)

' As we comment in Appendix B, the Rayleigh scattering preserves
the spin coherence.

potentials (2.10) and have to be added to the Hamiltonian for
treating the atom as an open quantum system.

The deviation of (2.9) from (2.10) incorporates both the
processes

W = Het = D Upn(x) [m') (m]

n,m',m

~ Z |:[d E( )(I') mn[d E(+)(r)]nm

h(wp — wo)

- Uo(r)} m) (ml,

2.12)

where in the second equality we have assumed that for this
perturbation term and in Eq. (2.11) any relativistic effects for
the atomic valence electron can be ignored. Such a simplifica-
tion is justified by the considered far off-resonant conditions
when an alkali-metal atom can be approximated by a two-level
atom with the mean transition frequency wy = 2w, + w;1)/3,
where w; and w; are the respective frequencies of D; and
D, lines of the atom. That, in turn, is justified by the in-
equality |wp — wo| > wy — wy, which is satisfied under our
experimental conditions. The relativistic effects are very im-
portant for the correct description of the evolution of the
trapped atom driven by the microwave radiation, but they
can be safely neglected in the estimate (2.12). Thus (i) the
interaction Hamiltonian (2.12) is diagonal and independent
on the spin variables in the basis (2.5), and (ii) for any of
its matrix elements there is no difference between vibrational
wave functions (2.6) belonging to different spin states, such
that the trap potential can be approximated by its mean profile
Uo(l‘).

III. EXPERIMENT

In the experiment, the microscopic dipole trap is formed
by a beam of an 852 nm diode laser, tightly focused with
an 0.77 NA aspheric lens installed inside a UHV chamber
with a base pressure below 107! mbar. A detailed description
of the setup may be found in [30]. Focusing of the trapping
laser to a 1/ intensity waist around 1.4 um allows us to
trap atoms, ensuring single-atom occupation by collisional
blockade in the presence of MOT light [31]. The waist size
was estimated from the analysis of vibrational frequencies
of the trap. The values of the longitudinal and transverse
vibrational trap frequencies were found to be 9.6 and 72 kHz,
respectively. The shape and position of the traps are con-
trolled by a spatial light modulator, which is also used to
control the beam power and therefore the trap depth. The
effective temperature of the trapped atoms is determined by
probing the energy distribution of the trapped atom with an
adiabatic trap depth lowering method, described in [32]. In
this method, the trap depth is slowly reduced to some value
Unin and then brought back to its initial value, and the proba-
bility for the atom to remain in the trap is measured. Fitting the
dependence of this probability on Uy, with a simple model
assuming an initially thermal motional state of the atom and
adiabaticity results in an estimate of temperature. In our case,
the temperature is measured to be 40 =7 pK under typical

062426-4



DYNAMICS OF A SPIN QUBIT IN AN OPTICAL DIPOLE ...

PHYSICAL REVIEW A 103, 062426 (2021)

® 32 ¢ 72
puwave puwave
(b)
Probability (%)
1007,

20" | ‘ | |
4

5 t (ms)

FIG. 2. (a) Pulse sequence, and (b) population of the |a)-state
recorded by the Ramsey resonance (points with error bars) vs its
theoretical estimate (solid curves). The slight oscillations on the
experimental dependence indicate the residual imperfection of the
microwave pulses; see the text. The curve color is associated with
the temperature of a trapped atom 7" = 1, 15, and 40 uK.

experimental conditions. This temperature level corresponds
to the typical values which can be attained via the polarization
gradient cooling mechanism in MOT. Further cooling is a next
step, and in our future work we are planning to slow down the
atomic vibrational motion with the RSC protocol.

The experimental sequence starts by optically pumping the
atom to |a) = |F_ = 1, My = 0) with a w-polarized laser at
|F- = 1) — |F’ = 1) of the D1 line acting together with a
cooling laser in a presence of a 1.8 G bias magnetic field
collinear with the dipole trap axis. We estimate the efficiency
of pumping to a particular hyperfine manifold of 95% with
push-out measurements. The push-out technique allows us to
implement hyperfine state selective measurements, and it is
performed by applying a strongly focused circularly polarized
push-out beam at the |F, =2) — |F’ = 3) closed cycling
transition, removing the atom from the trap if it is in the
F; =2 manifold. The action of the push-out beam is fol-
lowed by exciting fluorescence with the MOT beams, which
is detected with an sSCMOS camera (Tucsen Dhyana 400 bsi
v2). Successful fluorescence detection indicates the atomic
state F_ = 1 prior to push-out, thus the whole sequence cor-
responds to a projective measurement of the hyperfine state.

After the initial state |a) = |F_ = 1, My = 0) is prepared
by optical pumping, we apply a linearly polarized radiofre-
quency (RF) field with an antenna installed outside the
vacuum chamber. Let us note that due to the presence of
metallic parts of the lens holder inside the vacuum chamber,
which form a subwavelength aperture for the RF radiation, the
RF field polarization at the position of the atom is unknown.
We drive the clock transition with the Rabi frequency of
1.5 kHz and vary the pulse sequences as required for Ramsey
or spin-echo interferometry. The corresponding RF pulse se-
quences are shown in Figs. 2(a) and 3(a), respectively. Finally,
the projective measurement in the logical basis is performed
using the push-out technique.

@ /2 t Vg t /2

pwave

(b)

Probability (%)
100

20- : : "t (ms)
0 10 20 30 40 50

FIG. 3. (a) Pulse sequence, (b) same as in Fig. 2 but measured
with the spin-echo detection protocol. We insert a m-pulse in the
middle of the gap between the 7 /2-control pulses, such that time
t=ty —lyp = ty’r/z —t;, where t; 5, t,, and t;/z are the arrival times
of the pulses.

IV. RESULTS

In this section, we present the results of our numerical
simulations and compare them with the experimental data.
The measurement protocol is based on observation of the
Ramsey resonance, when the qubit dynamics is initiated and
controlled by a sequence of two short microwave pulses of
37 /2 and 7 /2 types delayed in time, such that in the ideal sce-
nario the microwave radiation induces the population transfer
to the initial state |a). In Fig. 2 we show the response sig-
nal, up to a given time 7, in the population of the initial
atomic state, which was experimentally measured and inde-
pendently calculated numerically. The fidelity of the stored
qubit, expressed by the efficiency of recovering the original
atomic state, degrades from its preparation level within a few
milliseconds. This kind of coherence damping is associated
with the inhomogeneous dephasing under the internal system
dynamics without environment losses. The observed dynam-
ics is primarily driven by the Hamiltonian Ay + Hpy (1), and
the dephasing time in Fig. 2 can be scaled by the inverse
value of the mean difference between vibrational frequen-
cies belonging to the different basis spin states (Swy) x T
[see (AT)].

For unambiguous comparison with the measured data
(points with error bars), in Fig. 2 we present our calculations
(solid lines) reproducing the exact measurement conditions
with varying the temperature of the thermal distribution. The
temperature of a loaded atom was independently measured
in the experiment, and the presented data give an unbi-
ased theoretical estimate of the qubit characteristics with no
fitting parameters. Let us note that a large number of resonant
transitions arise for a relatively warm atom driven by a spec-
trally broadband pulse. The process of population transfer was
optimized by microwave carrier frequency w scanning to max-
imize the observed Rabi oscillations contrast [see Fig. 1(c)].
A similar procedure was followed to find the optimal carrier
frequency w in our numerical simulations. The imperfections
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of this method result in a slight signature of time beats in the
experimental data shown in Fig. 2.

The strong influence of the atomic motion on the spin
dynamics makes the detection scheme sensitive to the duration
parameters of the microwave pulses. In an ideal scenario they
have to be infinitely short such that their spectral band would
significantly overlap with the mean difference between the
energies of the excited vibrational modes for a given tem-
perature. For a relatively warm atom this condition cannot
be perfectly fulfilled, since the respective frequency mismatch
(dwy) o T is increasing with the temperature 7. However, we
observe a negligible imperfection of the Ramsey protocol with
resonant microwave pulses with a duration of 7,y ~ 100 us
and for the atom prepared at temperatures of tens of wK, such
that 7! > (Swy). Our calculations of the Ramsey signal were
done for the 7 /2 pulses with finite duration as well as for their
infinitely short §-type approximations. There is a negligible
difference between these two theoretical estimates within the
graph resolution.

The decoherence process, associated with the thermal mo-
tion of the atom, has a clear signature of nonexponential
behavior. That is confirmed by our experimental data as well
as by our theoretical estimates. Let us note that the conven-
tional dephasing time parameter “7,*” can only be introduced
in the case of exponential decay of the Ramsey fringes. So it
is of limited value here and cannot realistically capture some
features of the observed behavior. The theory predicts even
more—for longer time and in the absence of other relaxation
processes, besides the inhomogeneous dephasing due to the
thermal motion, the qubit has the ability to revive its initial
state. Unfortunately, for the attained temperatures this would
happen at a waiting time much longer than the unavoidable
homogeneous decoherence caused by environment losses. But
if the trapped atom was slowed down to its ground vibrational
mode, the process of inhomogeneous relaxation could be com-
pletely eliminated.

Intuitively it might seem that the problem with the atomic
motion could be resolved by applying a spin-echo detection
protocol. However, the potential of this option has to be
critically analyzed in the context of qubit preparation as an
element of a quantum register. The spin-echo concept implies
an idea of time-reversal symmetry and suggests an additional
excitation of the system by a short w-type pulse just in the
middle point of time when the Ramsey resonance would be
detected. Then up to this detection time the qubit accumulates
an equal phase independently of its vibrational mode. In Fig. 3
we show the signal of the Ramsey resonance detected with the
spin-echo protocol, which indicates the significantly improved
coherency in the qubit dynamics.

As in the previous case, in experiment the control pulses
excite the atom resonantly. Both the experimental data and
theoretical simulations demonstrate nonexponential decay. In
Appendix B, we explain it and describe two physical mech-
anisms of the homogeneous decoherence associated with (i)
the intensity fluctuations and (ii) incoherent scattering of the
trapping light.

The specific dependencies in Fig. 4, calculated for zero
temperature, predict that with slowing the atom down to its
ground vibrational state and for a tight dipole trap, having
a small Lamb-Dicke parameter, both of these mechanisms

Probability (%)
100

80 [Up|=0.5mK

60 -

40
20

% 4 stO

FIG. 4. Ramsey signal calculated for an atom at zero temperature
in a Lamb-Dicke regime, in which its motional state does not change
in the process of trap photons scattering. We set the carrier frequency
in resonance with the shifted hyperfine transition: @ = wyps + dwy;
see (A7). The signals are plotted for trap depths of |Uy| >~ 0.5 mK
(gray), |Up| =~ 1 mK (blue), and |Up| >~ 5 mK (red). In a lower trap
depth, the photon scattering rate decreases and spin coherence is
shown to degrade slower.

could be strongly suppressed. In this case, the coherence de-
molishing would be limited by relativistic corrections in the
scattering process of the trapping light, and the prepared qubit
could remain coherent for a few seconds [7,33].

Note that in Fig. 4 longer decay times were obtained in
lower trap depths |Uy| [Uy = U,(r = 0) = Uy(r = 0)], since
the atom in a red-detuned dipole trap is localized in an
intensity maximum, and thus a higher scattering rate of
trap photons occurs for higher |Up|. Reaching the strong
Lamb-Dicke regime in a shallow trap with small |Uy| can
be problematic. However, one may hope that both the re-
quirements of the small Lamb-Dicke parameter and the low
scattering rate can be met in a blue-detuned trap, where
the potential depth Uy > 0 is determined by the height of
the repulsive walls surrounding the center of the trap [8].
In this case, a potential minimum corresponds to an inten-
sity minimum, which in an ideal case means zero intensity,
hence negligible homogeneous dephasing due to trap photon
scattering.

An important consequence of such optimal conditions is
that there would be no need to make use of the spin-echo
protocol since the inhomogeneous dephasing would vanish in
this case. We would also point out that the spin-echo protocol
seems to be not so convenient for manipulation with a multi-
qubit system, which implies the controllable entanglement of
particular qubits in the quantum register at intermediate stages
of the entire cycle of quantum simulations.

The schemes of Raman sideband cooling (RSC) adjusted
for the optical tweezers systems give us a tool for further
optimization; see [22,24]. To make the most effective use
of the RSC protocol and reach an ideal three-dimensional
ground-state cooling, one needs to meet the requirements of
the strong Lamb-Dicke regime. For typical parameters of a
dipole trap with axial oscillator frequency w; < T, the mean
value of the vibrational number can be estimated as v ~ 100.
This can be an important constraint for the RSC protocol that
requires additional optimization of its parameters during the
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cooling procedure. However, there are certain difficulties for
experimental preparation of a dipole trap, which would be suf-
ficiently tight in the axial direction. Hence a two-dimensional
scheme of RSC with the cooling of transverse vibrational
atomic motion only is more convenient to implement in a
real experimental setup. Since the temperature is a critical pa-
rameter of the system, even suppressing transverse vibrational
motion only may lead to a notable improvement of coherence
time and may allow us to resolve the motional decoherence
problem in a multiatomic system.

V. CONCLUSION

In the paper, we have presented a theoretical analysis and a
numerical simulation that treat the various decay mechanisms
of the hyperfine coherence of an optically trapped neutral
atom. The realistic modeling of dephasing processes due to
the atomic residual motion, trap light intensity fluctuations,
and incoherent scattering has been performed. The numerical
results reliably reproduce the experimentally observed shapes
of Ramsey and spin-echo signals with no fitting parameters.

Our theoretical and experimental observations have con-
firmed the notable improvement of coherency in the qubit
dynamics detected using the spin-echo technique. However,
certain homogeneous dephasing mechanisms still limit the co-
herence time measured with the spin-echo detection protocol.
As we have shown and highlighted throughout our discussion,
to achieve significantly longer coherence times one has to
quench the motion of an atom down to its vibrational ground
state in the potential well and further optimize the parameters
of the optical dipole trap. This would imply sufficiently tight
confinement and trapping of atoms at the minimum of electric
fields.

In our numerical simulations, we treat the atomic motional
degrees of freedom quantum mechanically, which allows us
to correctly describe a weakly excited atomic oscillator. It
was shown that the coherence time of an atomic qubit having
zero temperature in a tight dipole trap under conditions of a
strong Lamb-Dicke regime is limited by the scattering process
accompanied by the Raman transitions, changing the atomic
spin states, which occur only through the relativistic fine-
structure interaction. This process is strongly reduced in the
case of a far detuned optical dipole trap, and thus the coher-
ence decay time exceeding several seconds could be achieved.
Experimental exploration of this regime is an important topic
for future work.
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APPENDIX A: COHERENT DYNAMICS OF THE TRAPPED
ATOMS DRIVEN BY THE MICROWAVE RADIATION

To find the solution of the dynamical part of Eq. (2.2)
only, without loss of generality, it is sufficient to construct
it for the separable density operator factorized to a projector
onto a specific pure state described by a time-dependent wave
function. Its dynamical evolution involves any pairs of the
vibrational states associated with |a) and |b), and it can be
expressed by the sets of probability amplitudes

) = (W) (W),
(W) = [ean(®)e 7!

V,W

V{9 a)

+ Cpw(@) e [P b)], (Al

which obey the Schrodinger equation written in the energy
representation

nnl) = 5 20 3 (W[} (),
A\

a0 = 5 27O T (YO O ¢, 1),
w

(A2)

It is an intriguing point that the expansion (A1), considered at
an arbitrary moment of time, is an entangled state even if the
dynamics is free and the spin state was initially disentangled
with the vibrational motion. That is just the consequence of
the difference between the trap potentials U,(f) and U ().
Nevertheless, the atom could be prepared in one of the spin
states and therefore would have a separate vibrational wave
function |Yyip).>

Let the atom be prepared in a spin state |a). If Q(¢) con-
tributes as a short §-type pulse, then all the vibrational modes
in the upper states can be equally excited. Due to complete-
ness of the set of oscillator functions

2 ) = ) (A3)

w

and to a similar relation with replacement @ = b, we obtain
that the excitation of the spin coherency does not influence
the vibrational motion of the atom. Indeed, to verify this, one
needs to multiply the first equation of (A2) on |¢) and
the second line on |{?) and add the sums over w and v,
respectively. So for an infinitely short pulse, the equations can
be rewritten as

() Prin) = %Q(t)ca(t) Vi)

Ca(t) [Yvin) = %Q*(I)Cb(t) [¥vib) (A4)

2One can imagine the atom to be prepared in a disentangled state
between the spin and vibrational degrees of freedom |s) ® |y;,) at
zero time. But it is not an eigenstate of the Hamiltonian, so it would
transform to an entangled state at arbitrary time.
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and coefficients c,y(¢) and ¢, w(¢) can be searched in the

form c,y(t) = ca(t)ay and Y, cpwOIYP) = () 1Y),
where

[Win) = D ay [¥4?). (AS5)

It makes evident that the system transforms to the conven-
tional two-level problem for any (conserved) vibrational state
[Yvib). As a consequence, an arbitrary collection of trapped
atoms, even if they are mutually mobile, can be converted to
the coherent register state given by the product of qubits via
the Hadamard transform initiated by a short 7 /2 microwave
pulse, and this can be done with ideal fidelity.

In a general case, the system (A2) cannot be solved
analytically. But it can be simplified and reliably approx-
imated by a two-level system if we keep only the pairs
of states with w = v so that the evolution operator takes
the form of a block matrix. For each elementary block, we

J

have

. i oS0
Enn(D) = 5 Qe oo =0w)l ¢ (1),

ban(t) = % Q¥ (1) @ em e ) (1), (A6)

where we have assumed that (y{?|¢{®) ~ 1, and we denoted
dwy = (eywlw=y — &)/1
=+ vy, + D[0P — @14 (v, + 1/2)[w|(|b) - wﬁ“)],
(AT)

which clarifies the difference between the energies of the
same vibrational excitations but in different potentials. Here
a)(f), a)f) and a)ﬁ“) s a)l(h) are, respectively, the transverse and
axial oscillators’ frequencies in these potentials. The evolution
operator [a fundamental solution of (A6)] can be found in a
closed form for the case of a rectangular pulse with 2 = const
within its duration, and in that case it is expressed by the

following matrix:

p [cos (%) + i sin (L) ] e~iav/? 121 sin (L) eio—inw/2
= ' ) : A8
v(t) i% sin (ﬁ) e i+iAV/2 [COS (Qz‘t) _ ié_: sin (%)] £iOv/2 (A8)

where Ay = 0 — wppr — Sy, 2 = |Qe®, and we have de-
fined the generalized Rabi frequency as

Qy =,/I127 + A (A9)
Then the solution of (A6) is given by
Cpv(t) 7 cpv(0)
[ca,vm] = ”V(’)[ca,v«))}' (A10)

The complete evolutionary operator can be compiled as a
block structured matrix,

Uo.0.0(1) 0 0 0

R 0 Z/?l,qu(l) 0 0

Ur) = 0 0 Uo.1.0(1) 0
0 0 0

Uo.0.1(1)

(Al1)

The tricky point is that each block in the spin subspace is asso-
ciated with the dyadic operator in the vibrational subspace of
the two potentials U, (£) and U, (f), parametrized by one set of
vibrational numbers but having slightly different vibrational
excitations belonging to the different spin states.
Transformation of an arbitrary density operator p(¢) (NB!:
being considered in the interaction representation) after the
interaction with a microwave pulse of duration At is given by

Pt + A ZTUAD) pOYU (A, (A12)

where p(¢) can be an arbitrary either separable or entangled
quantum state shared between the vibrational and spin subsys-
tems of the atom. We can use this basic solution to manipulate
qubits by a pulse sequence. Let us point out once again that

(

the constructed solution only approximates the true dynamics
of an atom driven by a microwave radiation, which becomes
more valid as the difference between the trap potentials U, (r)
and U, (r) reduces.

As an important example of application of (A12), consider
the situation with Ramsey resonance and a spin-echo protocol.
Let the atom initially occupy the lower spin state |a) with a
thermal distribution over its vibrational modes such that

pO0) = " exp[B(F — elIv;a)(v;al, (A13)

where f is the inverse temperature and F = F(f) is its free
energy. At the initial moment #; » = 0, the atom is excited by
a short  /2-pulse. Then after the stage of free dynamics at
a given time ¢ = t; — t 2, let the atom be excited by a short
m-pulse, where t, 5, t; are the arrival times of the pulses. As
we see from the fundamental solution (AS8), (A10), and (A11),
such specific excitation transposes the probability amplitudes
for any pairs of the |v; a) and |w; b) states with w = v. If after
acertaindelay t =t; —typ =1, ) — 1 at the time ' =21 =
1., ;» the atom was excited by another 7 /2 pulse, it would come
back to its initial state with the original density operator. As
a result of all the transformations at the time " = 2t we get
p(t") = p(0). It justifies that for an arbitrary number of spin
qubits, such a spin-echo protocol suggests preparation of the
quantum register up to any given time t' = 2¢ even in an array
of relatively warm and mobile trapped atoms.

APPENDIX B: MASTER EQUATION
FOR THE DENSITY MATRIX

Let us associate the environment with a fast recovering
external reservoir unaffected by the atomic subsystem and
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uncoupled with it at any moment of time. Then the entire
system has a density matrix py = px(¢) = p(t)pr, i.€., its
density operator factorizes to a product of the atomic p(¢) and
reservoir (environment) pg components. The latter should be
independent of time. Rigorously this assumption is not exactly
valid and can be only approximately fulfilled and applicable
for a smoothed behavior on a “coarse-grained” time scale (i.e.,
for increments longer than the correlation time of the driv-
ing Wiener-type stochastic process displaying the reservoir
inertia).

The joint dynamics is described by the following quantum
Liouville equation:

Pr _ _Lify, pe] - SO0, ps(o)]
i n =, Px 7 » Px s
Hs = Hy + H, (B1)

where the atomic Hamiltonian H is defined by (2.3), Hg is
the internal Hamiltonian of the reservoir, and the interaction
term W is given by (2.12). This equation is a precursor of (2.2)
specified for the extended density operator.

Let us transform (B1) to the interaction representation gen-
erated by the undisturbed Hamiltonian ﬁz,

W(t) = e W el

pr(t) = et py(r)e it

. I -

pr(t) = =W (). p(1)]. (B2)

Then after subsequent iteration up to second order and with
partial tracing over the environment variables, the last equa-
tion leads to the following increment of the atomic density
operator:

p(t + Ar) — p(1)
iN2 [t t 5 »
~ (_E) / dr' / dt"[(W (W (") p(t)

— (W) pYyW ")) — (W) p() W)
+BOWEHW )], (B3)

where the angular brackets denote the partial trace (---) =
Tr'pg - - - and the contribution of the first order in the iteration
process has vanished because of (W (t')) = 0. Here the time
increment At has to be much longer than the correlation
time for the reservoir fluctuations but at the same time is
sufficiently short to provide only a small increment for the
atomic density matrix.

As was noted in Sec. IID, there are two physical mech-
anisms initiating irreversible decoherence, which do not
interfere with each other and can be separately described.
Addressing the master equation (2.2) introduced in a symbolic
form, we can decompose the relaxation term into the sum of
two contributions,

9P ap ap
G).=Go) () o
0t J ot /g or )

where on the right-hand side the first contribution is initiated
by the intensity fluctuations of the laser light confining the
atom, and the second term is the decoherence due to incoher-
ent scattering of this light from the atom.

Intensity fluctuations

The former process can be accurately modeled by classical
stochastic fluctuations of the trap potential as follows:

W = 8Uy(#, 1) = £(1) Up(®),
W) = &) Up((1)), (BS)

where £(¢) is a classical Wiener-type stochastic process fluc-
tuating near zero level with £2 « 1. So we have assumed
that only the total flux of the laser radiation can fluctuate
preserving the potential shape.’

In the steady-state regime, we define the correlation
function

(E@HEM)) = g —1"), (B6)

where the angular brackets are now understood as a classical
averaging. The spectral density of this stochastic process is
given by

oo
€0 = / dr g(v) e, (B7)
—0o0

which in our estimates has an infinitely broad spectrum in
comparison with the trap oscillator frequencies contributing
to (A7), so the function g = g(7) has an infinitely short cor-
relation time. We experimentally measured the intensity noise
spectrum of the diode laser utilized in our dipole trap. The
noise spectrum was observed in a spectral band between 0
and 500 MHz and shown to have a flat shape with relative
intensity noise value estimated as (&%), ~ 10~!3 Hz™!. The
shot noise contribution is of order 10~'® Hz™! at an optical
power of several mW and is negligible.

Under the assumption of the zero-correlation time in (BS)
and after evaluation of the time integrals in (B3), we arrive to
the following contribution to (B4):

(a_p> G
at S

2

—2Up(}) p(1) Up(R) + p()Us (})],  (BB)
where, as was pointed above, the spectral density (£2),—o
can be independently measured in experiment. Here, as in
(2.2) and (B4), we have assumed the original Schrédinger
representation.

[UZ @) p(0)

Incoherent scattering

For the process of incoherent scattering, the perturbation
Hamiltonian (2.12) can be expressed by the scattering tensor
of a two-level atom. Each integrand term contributes to (B3)
in the interaction representation with exponential factors os-
cillating in time on the transition frequency for a particular
scattering channel. The time integrals can be evaluated and the
increment Af can be considered as long as we approximate
the result by a §-function providing the energy conservation

3We presume that the pointing noise of the trap position is negligi-
ble for our experimental setup, since typically for trap frequencies of
tens of kHz the corresponding heating rate is much smaller than that
due to intensity fluctuations [9].
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in the scattering process. Then each term in (B3) is treated
in terms of the Fermi golden rule, reproducing the transition
rates associated with either Rayleigh or Raman scattering
events.

There are two types of contributions to the kinetic balance,
namely out- and in-scattering terms. The out-scattering pro-
cess either leaves (Rayleigh) or takes the atom away (Raman)
from any state probabilistically occupied at a given time. Such
a process is parametrized by the total cross-section of light
scattering, which without any relativistic corrections coin-
cides with the scattering cross section for a free atom,

8mdy wy

3%t (0 — wp)?
where dj is the modulus of the dipole moment for the S — P
optical transitions of such a nonrelativistic alkali-metal atom.
Within the applied approximations, the total cross-section is
independent of the vibrational number for any occupied state.

The in-scattering process is parametrized by the differen-
tial cross section,

00 ~ op(wr) =

(B9)

doky,v,vV =k, v/, v")

2 do (o )V |7 E KTy (v KT ), (B10)

which transfers the vibrational coherence, associated with
dyad |v')(v|, to the coherence |v"’)(v”| as a result of the pho-
ton scattering from the laser mode Kk;, to the outgoing mode
k. The energy conservation dictates that €y» — €y = €y — €.
The outer factor of the angular distribution is the differential
cross section for a free atom, which in the case of the incident
light propagating along the z-direction and linearly polarized
along the x-direction is given by
do(w) = ao(a)L)%(l — sin” 0 cos® ¢)d S, (B11)

where {6, ¢} = Q is the solid angle for the scattered photon.
The cross section (B10) contributes to (B3) being integrated
over all the scattering directions parametrized by the solid
angle Q. Then the coherence itself cannot be spontaneously
induced in the system, and only population transfer survives
and contributes in the repopulation process initiated by the
incoherent scattering of the laser light.

Eventually, we arrive to the following contribution to the
master equation:

9 ]
— = —lop p(t
<8t>sc oo p(t)

+2.D /ida(kL,V, vV =k v,V

v,V vV V"

XYY IV myviml p(e) IVsm Y (v,

m=a,b m'=a,b

(B12)

where [ is the intensity of the photon flux (i.e., the number of
photons emitted per unit time and crossing a unit area) in the
focal point of the laser beam.

Similarly to the laser fluctuations (B8), the process of
incoherent scattering itself does not change the spin state of
the atom. Again we obtain that the spin decoherence appears

because of the difference in the oscillator energies (vibrational
frequencies) for the |a) and |b) spin states. It is also note-
worthy that in a tight trap and in conditions of the strong
Lamb-Dicke effect, when the exponent in (B10) could be
approximated by a unit factor, the right-hand side in (B12)
vanishes. In other words, the elastic Rayleigh scattering does
not disturb coherence in the spin dynamics, which was pointed
out earlier in [11].

Now the master equation (2.2) is presented in a closed
form, and we can clarify the solution procedure that we shall
follow. We will keep in mind the following two basic trans-
formations of the density operator: One is the qubit control
by a short microwave pulse. During this excitation there is
no decoherence, and we apply the transformation (A12) to a
currently existing value of the density operator. In the inter-
mediate stages between the rounds of the microwave chirping,
we solve the Cauchy problem for the master equation driven
by the system Hamiltonian and by interaction with the
environment.

For a solution we define the following slow-varying com-
ponents of the density matrix:

ﬁb,w;a,v(t) = eXp [+i(a)hpf + wwy )t] pb,w;a,v(t)’
Pa,vp,w(t) = €xp [+i(_whpf + @yw)t] Pavip,w(t),
ﬁa,v’;a.v(t) = exp [+i wv’,vl] pa,v’;a,v(t)s

Po,wibw(t) = exp [+i 0w wt] Pbwibw(t), (B13)
and substitute them into the master equation in its basic
form (2.2).

Here again we have distinguished the vibrational numbers
for the lower and upper hyperfine sublevels as the energy
difference is critically important for the description of a free
precession of the spin-vibrational coherences. Since the de-
coherence is expected to be a long developing process, we
can take into consideration that the transverse vibrational
modes are actually nondegenerate with slightly different
eigenfrequencies, which eliminates the generation of vibra-
tional coherency from the original thermal state (A13) via
the dissipative mechanisms, either (B8) or (B12). Thus when
keeping only diagonal elements of the density matrix with
respect to the vibrational numbers with v = w, we obtain

/
p ~ I8y ~
Pb,v;a,v(t) = _vab,v;a,v(t) + E etroew! Cyy Pb.v:a,v ),

V/#vV

. r.

ba,v;h,v(t) = _Fv:ba,v;b,v(t) + Z eilawwﬂ Fvv’ Iba,v’;b,v’ (t),
V'#V

. 1

Z)a,v;a,v(t) = _Fv:ba,v;a,v(t) + Z 1—1vv’ ba,v’;a,v’(t)7
v/#vV

< ~ / ~

pb,v;h,v(t) - _vab,v;b,v(t) + Z 1-‘vv’ pb,v’;h,v’(t)v (B14)
V' #V

where
Swyy = dwy — Swy (B15)

and dwy is defined by (A7).
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In accordance with (B4), the relaxation matrix consists of
two contributions,

Iy =T 41

Ty = T3 +T5), (B16)
where
(&%) . .
M = =2 (I @) — VU@,
() i
IW = = I0U@IV)F, (B17)
and
sc T —i(k—k; )t 2
P = Too[1 = (| (vle™ ™ w) ]
sc 3 —i(k—K; )-B 2
T8 = Too(|(v]e ® kT vy |7), (B18)

where the outer angular brackets denote the angle averaging
over the scattering directions in accordance with (B11).

As one can see, Eqs. (B14) evidently fulfill the following
steady-state solution:

Ibb,v;a,v(oo) - Iba,v;b,v(oo) = 07

Pa,v:a,v(00) = consty, (B19)

Ob,v:b,v(00) = constp,

which constitutes that the laser noise, converted into the
parametric heating process, as well as the incoherent Raman
emission increase the atom’s temperature up to infinite level.
But both processes were developed in such a way that the
repopulation of the vibrational states does not influence the
occupation probabilities of the spin states. It is also evident
that in an ideal case, if dwyyy — O the equations (B14) can
be traced over the vibrational degrees of freedom, and both
processes would not affect the spin dynamics at all. This
option can be approximately adjusted with extra cooling of
the atom down to the ground state of the oscillator well. For
such an optimal scenario, it becomes important to take into
account the relativistic corrections to the scattering process,
which would extend the coherence times up to seconds, as
shown in Fig. 4 [7,33].

[1] T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang,
M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Phys. Rev.
Lett. 123, 230501 (2019).

[2] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang,
S. Ebadi, H. Bernien, M. Greiner, V. Vuleti¢, H. Pichler, and
M. D. Lukin, Phys. Rev. Lett. 123, 170503 (2019).

[3] H. Labuhn, D. Barredo, S. Ravets, S. De Léséleuc, T. Macri,
T. Lahaye, and A. Browaeys, Nature (London) 534, 667
(2016).

[4] A. Keesling, A. Omran, H. Levine, H. Bernien, H. Pichler, S.
Choi, R. Samajdar, S. Schwartz, P. Silvi, S. Sachdev et al.,
Nature (London) 568, 207 (2019).

[5] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).

[6] W. H. Zurek, Phys. Rev. D 26, 1862 (1982).

[7] R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen,
Opt. Lett. 19, 207 (1994).

[8] R. Grimm, M. Weidemiiller, and Y. B. Ovchinnikov, in
Advances in Atomic, Molecular, and Optical Physics, edited by
B. Bederson and H. Walther (Academic Press, London, 2000),
pp. 95-170.

[9] T. A. Savard, K. M. O’Hara, and J. E. Thomas, Phys. Rev. A 56,
R1095 (1997).

[10] C. W. Gardiner, J. Ye, H. C. Nagerl, and H. J. Kimble,
Phys. Rev. A 61, 045801 (2000).

[11] S. Kuhr, W. Alt, D. Schrader, 1. Dotsenko, Y. Miroshnychenko,
A. Rauschenbeutel, and D. Meschede, Phys. Rev. A 72, 023406
(2005).

[12] P. J. Windpassinger, D. Oblak, U. B. Hoff, J. Appel, N.
Kjergaard, and E. S. Polzik, New J. Phys. 10, 053032 (2008).

[13] E. Gerbier, A. Widera, S. Folling, O. Mandel, and 1. Bloch,
Phys. Rev. A 73, 041602(R) (2006).

[14] M. P. A. Jones, J. Beugnon, A. Gaétan, J. Zhang, G. Messin, A.
Browaeys, and P. Grangier, Phys. Rev. A 75, 040301(R) (2007).

[15] M. Karski, L. Forster, J.-M. Choi, A. Steffen, N. Belmechri,
W. Alt, D. Meschede, and A. Widera, New J. Phys. 12, 065027
(2010).

[16] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz,
L. Isenhower, and M. Saffman, Phys. Rev. Lett. 114, 100503
(2015).

[17] Y. Wang, A. Kumar, T.-Y. Wu, and D. S. Weiss, Science 352,
1562 (2016).

[18] C. Sheng, X. He, P. Xu, R. Guo, K. Wang, Z. Xiong, M. Liu, J.
Wang, and M. Zhan, Phys. Rev. Lett. 121, 240501 (2018).

[19] A. Derevianko, Phys. Rev. A 81, 051606(R) (2010).

[20] A. M. Kaufman, B. J. Lester, and C. A. Regal, Phys. Rev. X 2,
041014 (2012).

[21] J. D. Thompson, T. G. Tiecke, A. S. Zibrov, V. Vuleti¢, and
M. D. Lukin, Phys. Rev. Lett. 110, 133001 (2013).

[22] P. Sompet, Y. H. Fung, E. Schwartz, M. D. J. Hunter, J.
Phrompao, and M. F. Andersen, Phys. Rev. A 95, 031403(R)
(2017).

[23] L. R. Liu, J. D. Hood, Y. Yu, J. T. Zhang, K. Wang, Y.-W.
Lin, T. Rosenband, and K.-K. Ni, Phys. Rev. X 9, 021039
(2019).

[24] V. M. Porozova, L. V. Gerasimov, I. B. Bobrov, S. S. Straupe,
S. P. Kulik, and D. V. Kupriyanov, Phys. Rev. A 99, 043406
(2019).

[25] W. Rosenfeld, J. Volz, M. Weber, and H. Weinfurter, Phys. Rev.
A 84, 022343 (2011).

[26] V. Berestetskii, E. Lifshitz, and L. Pitaevskii, Quantum Electro-
dynamics, 2nd ed. (Butterworth-Heinemann, Oxford, 1982).

[27] J. Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 2, 1707
(1985).

[28] W. Happer, Rev. Mod. Phys. 44, 169 (1972).

[29] D. V. Kupriyanov, O. S. Mishina, I. M. Sokolov, B. Julsgaard,
and E. S. Polzik, Phys. Rev. A 71, 032348 (2005).

062426-11


https://doi.org/10.1103/PhysRevLett.123.230501
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.1038/nature18274
https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1103/PhysRevD.26.1862
https://doi.org/10.1364/OL.19.000207
https://doi.org/10.1103/PhysRevA.56.R1095
https://doi.org/10.1103/PhysRevA.61.045801
https://doi.org/10.1103/PhysRevA.72.023406
https://doi.org/10.1088/1367-2630/10/5/053032
https://doi.org/10.1103/PhysRevA.73.041602
https://doi.org/10.1103/PhysRevA.75.040301
https://doi.org/10.1088/1367-2630/12/6/065027
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1126/science.aaf2581
https://doi.org/10.1103/PhysRevLett.121.240501
https://doi.org/10.1103/PhysRevA.81.051606
https://doi.org/10.1103/PhysRevX.2.041014
https://doi.org/10.1103/PhysRevLett.110.133001
https://doi.org/10.1103/PhysRevA.95.031403
https://doi.org/10.1103/PhysRevX.9.021039
https://doi.org/10.1103/PhysRevA.99.043406
https://doi.org/10.1103/PhysRevA.84.022343
https://doi.org/10.1364/JOSAB.2.001707
https://doi.org/10.1103/RevModPhys.44.169
https://doi.org/10.1103/PhysRevA.71.032348

L. V. GERASIMOV et al. PHYSICAL REVIEW A 103, 062426 (2021)

[30] S. Samoylenko, A. Lisitsin, D. Schepanovich, I. Bobrov, S. [32] C. Tuchendler, A. M. Lance, A. Browaeys, Y. R. P. Sortais, and

Straupe, and S. Kulik, Laser Phys. Lett. 17, 025203 (2020). P. Grangier, Phys. Rev. A 78, 033425 (2008).
[31] N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, [33] D. Frese, B. Ueberholz, S. Kuhr, W. Alt, D. Schrader, V. Gomer,
Nature (London) 411, 1024 (2001). and D. Meschede, Phys. Rev. Lett. 85, 3777 (2000).

062426-12


https://doi.org/10.1088/1612-202X/ab6729
https://doi.org/10.1038/35082512
https://doi.org/10.1103/PhysRevA.78.033425
https://doi.org/10.1103/PhysRevLett.85.3777

