
PHYSICAL REVIEW A 103, 062425 (2021)

Introducing structure to expedite quantum searching

Marcin Briański ,* Jan Gwinner,† Vladyslav Hlembotskyi,‡ Witold Jarnicki ,§ Szymon Pliś ,‖ and Adam Szady¶

BEIT, Mogilska 43 31-545 Kraków, Poland

(Received 15 December 2020; accepted 7 June 2021; published 28 June 2021)

We present a quantum algorithm for solving the unstructured search problem with one marked element. Our
algorithm allows generating quantum circuits that use asymptotically fewer additional quantum gates than the
famous Grover’s algorithm and may be successfully executed on noisy intermediate-scale quantum devices. We
prove that our algorithm is optimal in the total number of elementary gates up to a multiplicative constant. As
many NP-hard problems are, in fact, not unstructured, we also describe the partial uncompute technique which
exploits the oracle structure and allows a significant reduction in the number of elementary gates required to
find the solution. Combining these results allows us to use an asymptotically smaller number of elementary
gates than Grover’s algorithm in various applications, keeping the number of queries to the oracle essentially
the same. We show how the results can be applied to solve hard combinatorial problems, for example, Unique
k-SAT. Additionally, we show how to asymptotically reduce the number of elementary gates required to solve
the unstructured search problem with multiple marked elements.

DOI: 10.1103/PhysRevA.103.062425

I. INTRODUCTION

In the quantum unstructured search problem, the task is to
find one marked element out of N elements corresponding to
the computational basis. We want to accomplish that by the
least possible number of queries to a given phase oracle, the
only action of which is changing the signs of the coordinates
corresponding to the marked elements. For more details, see
Sec. II.

The celebrated Grover’s algorithm [1] is one of the
main achievements of quantum computing. It locates a
marked element using only O(

√
N) queries to the oracle and

O(
√

N log N) additional (i.e., nonoracle) elementary gates.
Grover’s result has been used extensively as a subroutine in
many quantum algorithms (for examples, see [2–4]). We show
how to reduce the average number of additional gates per
oracle query while keeping the number of oracle queries as
close to the optimum as we wish. We also prove that our
algorithm is optimal up to a multiplicative constant.

A. Prior work

Since the invention of Grover’s algorithm, there were sev-
eral attempts to improve it further. In [5] the author improves
the number of nonoracle quantum gates. Using a simple
pattern of small diffusion operators the following result is
obtained.

*marbri@beit.tech
†jan.gwinner@beit.tech
‡vlad@beit.tech
§witek@beit.tech
‖szymon@beit.tech
¶adsz@beit.tech

Theorem 1 ([5]). For every α > 2 and any sufficiently
large N there exists a quantum algorithm that finds the unique
marked element among N with probability tending to 1, using
fewer than π

4

√
N (1

1−(log2 N)1−α) oracle queries and no more

than 9
8πα

√
N log2 log2 N nonoracle gates.

Later, in [6] the authors reduce the number of nonoracle
gates even further.

Theorem 2 ([6]). For any integer r > 0 and sufficiently
large N of the form N = 2n, there exists a quantum algorithm
that finds the unique marked element among N with probabil-
ity 1, using [π

4 + o(1)]
√

N queries and O(
√

N logr N) gates.
For every ε > 0 and sufficiently large N of the form N = 2n,
there exists a quantum algorithm that finds the unique marked
element among N with probability 1, using π

4

√
N (1 + ε)

queries and O(
√

N log (log∗ N)) gates.
In the same paper, the authors raise questions regarding

removing the log (log∗ N) factor in gate complexity, which
we answer in the affirmative in Theorem 3, and dealing with
oracles that mark multiple elements. Note that both aforemen-
tioned results assume that the given oracle marks only a single
element.

The concept of benefits arising from the use of local diffu-
sion operators has been studied in other papers, e.g., Ref. [7].

B. Our results

We present an algorithm which uses only O(
√

N) nono-
racle gates while making only O(

√
N) oracle queries.

Additionally, to remedy the objections against optimizing
the average number of additional elementary gates per or-
acle query mentioned in [6], we introduce the concept of
partial uncompute, a technique that achieves asymptotical
improvement in the total number of elementary gates in many
combinatorial problems, such as Unique k-SAT (see, e.g., [8]

2469-9926/2021/103(6)/062425(18) 062425-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1695-0188
https://orcid.org/0000-0002-6696-2240
https://orcid.org/0000-0003-0966-1545
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.062425&domain=pdf&date_stamp=2021-06-28
https://doi.org/10.1103/PhysRevA.103.062425

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

for the definition of Unique k-SAT). The high-level idea of
the technique is to utilize the structure of the given oracle and
store some intermediate information on ancilla qubits when
implementing the oracle. If between two consecutive oracle
queries we applied elementary gates only on a small number
of qubits, we expect that the most of intermediate information
has not changed at all. Leveraging this phenomenon, we can
reduce the asymptotic number of gates needed to implement
the circuit.

In Grover’s algorithm the diffusion operator is applied on
O(log N) qubits, so we cannot benefit from partial uncompute.
We need to have an algorithm that on average affects only a
small subset of qubits between consecutive oracle queries. To
handle this problem we introduce an algorithm for generating
quantum circuits that drastically reduces the average number
of additional gates. The algorithm can be used to generate cir-
cuits that work for any number of qubits and can be potentially
implemented on noisy intermediate-scale quantum (NISQ)
devices. Moreover, the algorithm improves on the results of
[5,6] and can be summarized as follows.

Theorem 3. Fix any ε ∈ (0, 1), and any N ∈ N of the form
N = 2n. Suppose we are given a quantum oracle O operat-
ing on n qubits that marks exactly one element. Then there
exists a quantum circuit A which uses the oracle O at most
(1 + ε)π

4

√
N times and uses at most O(log (1/ε)

√
N) nonor-

acle basic gates, which finds the element marked by O with
certainty.

It is important to note that the constant hidden by O nota-
tion in Theorem 3 is independent of both N and ε. Moreover,
any quantum algorithm tackling this problem must perform at
least π

4

√
N oracle calls (see [9]).

The algorithm A can be, in broad strokes, explained as
follows. We build a quantum circuit recursively according to
some simple rules. The resulting circuit concentrates enough
amplitude in the marked element. After that, we apply am-
plitude amplification [10] to it. The main idea in A is to
explore small diffusion operators (diffusion operators applied
on a small subset of qubits). They are obviously easier to im-
plement than large ones and require fewer elementary gates.
Moreover, if they are applied wisely, they can be extremely
efficient in concentrating amplitude in the marked element.

If we combine the partial uncompute technique with Theo-
rem 3 to solve a Unique k-SAT problem, we get the following
corollary.

Corollary 1. Consider the Unique k-SAT problem with n
variables and c clauses. There exists a quantum circuit that
uses O[c log(c)2n/2/n] total (oracle and nonoracle) gates and
solves the problem with certainty.

It worth mentioning that it is a slight improvement over the
naïve application of Grover’s algorithm to solve the Unique
k-SAT problem because Grover’s algorithm requires O[(n +
c)2n/2] elementary gates to solve the problem with certainty.

By result of [9], the optimal number of queries to the
oracle required for solving unstructured search problem with
certainty is π

4

√
N . We show that the tradeoff between the

number of oracle queries and nonoracle gates from Theorem
3 is optimal up to a constant factor.

Corollary 2. There exists a number δ > 0 such that for any
ε ∈ (0, 1) and for any quantum circuit A the following holds.
If A uses at most δ log (1/ε)

√
N nonoracle gates and finds the

element marked by O with certainty, then A uses the oracle O
at least (1 + ε) π

4

√
N times.

Last but not least, following the approach of [11], we
asymptotically reduce the overhead incurred when reducing
the unstructured search problem with multiple marked ele-
ments to the unstructured search problem with exactly one
marked element. We modify the oracle in a classical ran-
domized way so that the modified oracle marks exactly one
element with constant probability. This is achieved by ran-
domly choosing an affine hash function that excludes some
elements from the search space. If the number of marked
elements K is known in advance, we will sample a hash func-
tion from such a set so that the expected number of marked
elements after combining the oracle with the function is equal
to one. We formulate this result as the following theorem.

Theorem 4. Let N ∈ N be of the form N = 2n. Assume
that we are given a phase oracle O that marks K elements, and
we know the number k given by k = 1 + �log2 K�. Then one
can find an element marked by O with probability at least 1

16 ,

using at most O(
√

N
K) oracle queries and at most O(log K

√
N
K)

nonoracle basic gates.
What is more, we can extend this approach to the case

when the number of marked elements is unknown by trying
different values of K and applying the same algorithm. This
can be done in such a way that the number of oracle queries
and the average number of additional elementary gates per
oracle query are asymptotically the same as in the case of
known K .

C. Further remarks

While our results describe asymptotic behavior, the tech-
niques used to achieve them are quite practical. As described
in [12], they may be applicable for achieving the improve-
ments in implementations of unstructured search on existing
and near-future NISQ devices. The previous implementations
of unstructured search beyond spaces spanned by 3-qubits
were unsuccessful [13]; perhaps techniques described here
can allow searching larger spaces on current hardware.

Organization

In Sec. II we briefly discuss the computational model and
notation used throughout this paper. In Sec. III we describe
our main algorithm for constructing quantum circuits. Next,
in Sec. IV we prove that our algorithm is optimal (up to a
constant factor) in the number of additional elementary gates.
Later, in Sec. V we introduce the partial uncompute technique
and show an example application to a hard combinatorial
problem. Finally, in Sec. VI we proceed to reduce the un-
structured search problem with multiple marked elements to
the unstructured search problem with one marked element.

II. PRELIMINARIES

In the unstructured search problem we are given a function
f : {0, 1}n → {0, 1} for some n ∈ N and we wish to find x ∈
{0, 1}n such that f (x) = 1. We will call such x marked. The
function can be evaluated at N points in total, where N = 2n,
and the goal is to find a marked element while minimizing

062425-2

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

the total number of evaluations of f . In the quantum version
of the problem the function f is given as a phase oracle O,
i.e., a unitary transformation given by O|x〉 = (−1) f (x)|x〉 for
every computational basis vector |x〉. We still want to query
O the least possible number of times to find a marked ele-
ment. Sometimes this problem is called the database search
problem. We use the standard gate model of quantum com-
putations. We assume that our elementary operations are the
universal set of quantum gates consisting of CNOT and arbi-
trary one-qubit gates. We will refer to these gates as basic
gates. We note that this gate set can simulate any other uni-
versal gate set with bounded gate size with at most constant
overhead; the details can be found in [14].

In all following equations all operators are to be understood
as applied right to left (i.e., as in standard operator composi-
tion), while in figures the application order is left to right, as
is the standard when drawing quantum circuits.

Given a positive integer k, the uniform superposition
state on k qubits, denoted |uk〉, is defined as |uk〉 =

1
2k/2

∑
b∈{0,1}k |b〉. We extend this definition to the special case

of k = 0 by setting |u0〉 = 1. A useful identity which we will
use throughout the derivations to come is |ua〉|ub〉 = |ua+b〉 for
a, b ∈ N.

The mixing operator of size k (alternatively also called
the diffusion operator, or simply the diffuser), denoted Gk ,
is defined as Gk = 2|uk〉〈uk| − Idk , where Idk is the identity
matrix of size 2k . From [14] we know that we can implement
Gk using O(k) basic gates (and this is best possible).

To prove optimality of our results and to define the partial
uncompute technique we consider what happens when opera-
tors do not act on some subset of qubits. Intuitively, it means
that we do not need to use these qubits when implementing
this operator using basic gates. We say that a unitary matrix A
operating on n qubits (here denoted {q1, . . . , qn}) does not act
on the qubit qi if

A = SWAP(qi, qn)(A′ ⊗ Id1)SWAP(qi, qn),

where A′ is some unitary matrix operating on n − 1 qubits,
and

SWAP(a, b) = CNOT(a, b)CNOT(b, a)CNOT(a, b). Other-
wise, we say that A acts on qubit qi. We say that operator
A may act on qubits qi1 , . . . , qim if it does not act on qubits
{q1, . . . , qn} \ {qi1 , qi2 , . . . , qim}.

In the proof of Theorem 3 we will need the following result
from [10], which we will refer to as amplitude amplification.

Theorem 5 ([10], p. 7, Theorem 2). Let A be any quantum
algorithm operating on n qubits that uses no measurements,
and let f : {0, 1}n → {0, 1} be any Boolean function with a
corresponding phase oracle O. Let a be the probability that
measuring A|00 . . . 0〉 yields |t〉 such that f (t) = 1, and as-
sume that a ∈ (0, 1). Let θ ∈ (0, π/2) be such that (sin θ)2 =
a, and let s = π

4θ
�. Then measuring (−AF0A†O)sA|00 . . . 0〉

yields |t〉 such that f (t) = 1 with probability at least max{1 −
a, a}, where

F0|t〉 =
{|t〉, if t �= 0

−|t〉, if t = 0.

FIG. 1. W2 for k = (4, 3).

Note that this result requires us to know the value of a
precisely. However, this is not a problem for us, as we shall
later see.

There is a simple corollary one can obtain from the proof of
Theorem 5 (it is noted as Theorem 4 in [10], however, the au-
thors do not make the constants explicit in their formulation).
The precise formula one gets for the probability of success
when measuring (−AF0A†O)mA|00 . . . 0〉 is in fact equal to
sin2[(2m + 1)θ]. If it were to happen that r = π/(4θ) − 1/2
was an integer, then we could simply set the number of itera-
tions to r and obtain a solution with certainty. Now it remains
to note that we can easily modify A to lower θ slightly so
that the new value of r is indeed an integer. It is important for
our results that the number of iterations is in fact bounded by
 π

4θ
� + 1, which is formulated as the theorem below.
Theorem 6 ([10], Theorem 4 restated). Let A be any

quantum algorithm operating on n qubits that uses no
measurements, and let f : {0, 1}n → {0, 1} be any Boolean
function. Let a be the probability that measuring A|00 . . . 0〉
yields |t〉 such that f (t) = 1, and assume that a ∈ (0, 1). Let
θ ∈ (0, π/2) be such that (sin θ)2 = a. Then, there exists a
quantum algorithm that uses A and A† at most π

4θ
� + 2 times

each, which upon measurement yields |t〉 such that f (t) = 1
with certainty.

Note that the bound π
4θ

� + 2 follows from the extra A
applied at the beginning of the amplitude amplification (as we
are counting the applications of A and A† and not iterations).

III. STRUCTURE OF THE Wm CIRCUIT

Definition 1. Let k = (k1, . . . , km) be a sequence of pos-
itive integers and let n :=∑m

j=1 k j . Given a quantum oracle
O, for j ∈ {0, . . . , m} we define the circuit Wj recursively as
follows:

W0 := Idn, Wj := Wj−1
(
Idk1+···+k j−1 ⊗ Gkj ⊗ Idk j+1+···+km

)
× W †

j−1OWj−1, j ∈ {1, 2, . . . , m}.

For an example of how the circuits Wm look like, see
figs. 1 and 2. Observe that the circuit Wm uses the oracle O
exactly (3m − 1)/2 times. Moreover, as the mixing operator
Gk can be implemented using O(k) basic quantum gates, for a
given k, one can implement Wm for these diffuser sizes using
O(
∑m

j=1 k j3m− j) basic quantum gates, not including the gates
necessary for the implementation of the oracle.

062425-3

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

FIG. 2. Graphical representation of the Wj circuit. Note that the
oracle in Wj−1 manipulates all of the qubits, however, no other gate
does so. In this picture s = k1 + · · · + k j−1 and t = k j+1 + · · · + km.

A. Obtaining the recurrence for amplitude in the target

In this section we aim to derive a recurrence formula that
will allow us to compute the amplitude our circuit Wm con-
centrates in the unique marked state. We assume we are given
a phase oracle O operating on n qubits, that marks a single
state denoted target. We have also fixed a vector of positive in-
tegers k = (k1, . . . , km), such that k1 + · · · + km = n. For the
duration of this section, we introduce the following notational
conveniences. We split the marked state |target〉 according to
k as

|target〉 = |target1〉|target2〉 . . . |targetm〉,
where target1 consists of bits of target numbered 1 to k1,
target2 of the bits numbered k1 + 1 to k1 + k2, etc. Moreover,
for given i, j we define the following product:∣∣target j

i

〉 = |targeti〉|targeti+1〉 . . . |target j〉.
If the interval [i, j] happens to be empty, we understand
|target j

i 〉 to be the scalar 1. To shorten the derivations about
to follow, we will also use these shorthands

|target j〉 = 1

2k j/2

∑
b∈{0,1}k j

b�=target j

|b〉,

∣∣u j
1

〉 = |us〉,
where s = k1 + · · · + k j with the additional convention that
|u0

1〉 = 1. Observe that we have the equations |ukj 〉 =
|target j〉 + 2−k j/2|target j〉 and 〈target j |target j〉 = 0.

We begin by introducing two simple lemmas.
Lemma 1. Fix any m ∈ N+, and any k = (k1, . . . , km) ∈

Nm
+ , and let n =∑m

j=1 k j . Assume that we are given a phase
oracle O that operates on n qubits and marks a single vector
of the standard computational basis denoted target. Then for
any j ∈ {0, . . . , m − 1}, and any vector |φ〉 ∈ (C2)⊗t (where
t = k j+1 + · · · + km) such that 〈φ|targetm

j+1〉 = 0 we have

Wj
(∣∣u j

1

〉|φ〉) = ∣∣u j
1

〉|φ〉.
Proof. Observe that as 〈φ|targetm

j+1〉 = 0 the vector |us〉|φ〉
is an eigenvector of the operator O with eigenvalue 1. Thus,
the lemma’s assertion will be proved, if we show that it is also

an eigenvector (with eigenvalue 1) of each diffusion opera-
tor that appears in Wj , that is (Ida ⊗ Gb ⊗ Idn−b−a)|u j

1〉|φ〉 =
|u j

1〉|φ〉 whenever a + b � k1 + k2 + · · · + k j , which we
quickly verify by the direct calculation below:

(Ida ⊗ Gb ⊗ Idn−b−a)
(∣∣u j

1

〉|φ〉)
= (Ida ⊗ Gb ⊗ Idn−b−a)

(|ua〉|ub〉|uk1+···+k j−a−b〉|φ〉)
= (Ida|ua〉)(Gb|ub〉)

(
Idn−b−a|uk1+···+k j−b−a〉|φ〉)

= |ua〉|ub〉|uk1+···+k j−b−a〉|φ〉 = ∣∣u j
1

〉|φ〉.
�

Lemma 2. Fix any m ∈ N+, and any k = (k1, . . . , km) ∈
Nm

+ , and let n =∑m
j=1 k j . Assume that we are given a phase

oracle O that operates on n qubits and marks a single vector
of the standard computational basis denoted target. Then for
any j ∈ {1, . . . , m} we have

Wj−1
(
Ids−k j ⊗ Gkj ⊗ Idn−s

)
W †

j−1|target〉

=
(

2

2k j
− 1

)
|target〉 + |ϑ〉,

where s = k1 + · · · + k j , and |ϑ〉 is some state orthogonal to
|target〉.

Proof. Observe that each diffusion operator in Wj−1

(and thus also in W †
j−1) operates on the qubits numbered

{1, . . . , k1 + · · · + k j−1}, thus, there exists a vector |η〉 ∈
(C2)⊗(k1+···+k j−1) such that

W †
j−1|target〉 = |η〉∣∣targetm

j

〉
.

Equipped with this observation, we proceed to directly com-
pute the desired result

Wj−1
(
Ids−k j ⊗ Gkj ⊗ Idn−s

)
W †

j−1|target〉
= Wj−1

(
Ids−k j ⊗ Gkj ⊗ Idn−s

)|η〉∣∣targetm
j

〉
= Wj−1

(
Ids−k j ⊗ Gkj ⊗ Idn−s

)|η〉∣∣target j

〉|targetm
j+1〉

= Wj−1
[|η〉(Gkj |target j〉

)∣∣targetm
j+1

〉]
= Wj−1

[
|η〉
(

2

2k j/2

∣∣ukj

〉− ∣∣target j

〉)∣∣targetm
j+1

〉]
= Wj−1

(
2

2k j
− 1

)
|η〉∣∣targetm

j

〉
+ Wj−1

2

2k j/2
|η〉〈target j〉

∣∣targetm
j+1

〉
=
(

2

2k j
− 1

)
|target〉 + |ϑ〉

and observe that |ϑ〉 is orthogonal to |target〉, as their respec-
tive preimages under Wj−1 were orthogonal. �

Lemma 3. Fix any m ∈ N+, and any k = (k1, . . . , km) ∈
Nm

+ , and let n =∑m
j=1 k j . Assume that we are given a phase

oracle O that operates on n qubits and marks a single vector
of the standard computational basis denoted target. Define the
numbers

α j = 〈target|(Wj

∣∣u j
1

〉∣∣targetm
j+1

〉)
062425-4

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

for j ∈ {0, 1, . . . , m}. Then, α j satisfy the recurrence

α j =
{

1, if j = 0

2−k j/2(3 − 4 × 2−k j)α j−1, if j > 0.

Proof. Clearly, α0 = 1 giving the base case. Now, let us
assume that j > 0, and we will proceed to compute α j by
expanding the circuit Wj according to Definition 1. To main-
tain legibility we will split this computation into several steps.
Let us define the intermediate states |w1〉, . . . , |w5〉 by the

following equations:

|w1〉 = Wj−1
(∣∣u j

1

〉∣∣targetm
j+1

〉)
,

|w2〉 = O|w1〉,
|w3〉 = W †

j−1|w2〉,
|w4〉 = (Ids−k j ⊗ Gkj ⊗ Idn−s

)|w3〉,
|w5〉 = Wj−1|w4〉,

where s = k1 + · · · + k j ;

|w1〉 = Wj−1
(∣∣u j

1

〉∣∣targetm
j+1

〉) = Wj−1

(
1

2k j/2

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉〈target j〉
∣∣targetm

j+1

〉)
= 1

2k j/2
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉〈target j〉
∣∣targetm

j+1

〉
, (1)

where in Eq. (1) we relied on Lemma 1. Plugging this equation into the definition of |w2〉 we obtain

|w2〉 = O

(
1

2k j/2
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉〈target j〉
∣∣targetm

j+1

〉)
= 1

2k j/2

(
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉− 2α j−1|target〉)+ ∣∣u j−1
1

〉〈target j〉
∣∣targetm

j+1

〉
, (2)

|w3〉 = W †
j−1

(
1

2k j/2
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉− 2

2k j/2
α j−1|target〉 + ∣∣u j−1

1

〉〈target j〉
∣∣targetm

j+1

〉)
= 1

2k j/2

∣∣u j−1
1

〉∣∣targetm
j

〉− 2

2k j/2
α j−1W

†
j−1|target〉 + ∣∣u j−1

1

〉〈target j〉
∣∣targetm

j+1

〉
(3)

= ∣∣u j
1

〉∣∣targetm
j+1

〉− 2

2k j/2
α j−1W

†
j−1|target〉, (4)

|w4〉 = Ids−k j ⊗ Gkj ⊗ Idn−s

(∣∣u j
1

〉∣∣targetm
j+1

〉− 2

2k j/2
α j−1W

†
j−1|target〉

)
= ∣∣u j

1

〉∣∣targetm
j+1

〉− 2

2k j/2
α j−1

(
Ids−k j ⊗ Gkj ⊗ Idn−s

)
W †

j−1|target〉,

|w5〉 = Wj−1

(∣∣u j
1

〉∣∣targetm
j+1

〉− 2

2k j/2
α j−1

(
Ids−k j ⊗ Gkj ⊗ Idn−s

)
W †

j−1|target〉
)

= 1

2k j/2
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉〈target j〉
∣∣targetm

j+1

〉− 2

2k j/2
α j−1Wj−1

(
Ids−k j ⊗ Gkj ⊗ Idn−s

)
W †

j−1|target〉 (5)

= 1

2k j/2
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉〈target j〉
∣∣targetm

j+1

〉− 2

2k j/2
α j−1

[(
2

2k j
− 1

)
|target〉 + |ϑ〉

]
. (6)

Note that in Eq. (2) we used the definition of α j−1, in Eq. (3) we applied Lemma 1, Eqs. (4) and (5) follow from the definition
of |target j〉, while Eq. (6) we applied Lemma 2. Keeping in mind that |ϑ〉 is orthogonal to |target〉 and equipped with Eq. (6) we
may finally compute α j as

α j = 〈target|w5〉 = 1

2k j/2
〈target|

[
Wj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ 2α j−1

(
1 − 2

2k j

)
|target〉

]
= 1

2k j/2

[
α j−1 + 2α j−1

(
1 − 2

2k j

)]
= 1

2k j/2
(3 − 4 × 2−k j)α j−1.

�

B. Proof of Theorem 3

Proof of Theorem 3. It clearly suffices to prove the theorem
under assumption that ε is small enough; let us assume that is
indeed the case.

Let k = (k1, . . . , km) be some sequence of positive in-
tegers to be determined later, such that

∑m
j=1 k j = n. We

will use the circuit Wm with these diffuser sizes, and utilize
Theorem 6 on top of this circuit. To estimate the number of

062425-5

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

iterations made by amplitude amplification, we need a precise
formula for amplitude in the marked state that the circuit
WmH⊗n (the Walsh-Hadamard transform is only necessary
because we assumed our circuit to be fed the state |un〉, while
amplitude amplification assumes that the state |00 . . . 0〉 is the
one we work with) yields, denoted αm. To this end we use the
recurrence we have obtained in Lemma 3, to which we can
provide a solution as a product1

αm =
m∏

j=1

[2−k j/2(3 − 4 × 2−k j)] = 2−n/2
m∏

j=1

(3 − 4 × 2−k j)

= 2−n/23m
m∏

j=1

(
1 − 4

3
× 2−k j

)
. (7)

Let us now consider the case of particular choice of k, namely,
k j = (x + 1) j, where x ∈ N+ is some fixed constant. We will
for now assume, for the sake of simplicity, that the number
of qubits n is precisely equal to (x + 1) + 2(x + 1) + · · · +
m(x + 1) = (x + 1)m(m + 1)/2. We will later argue that this
assumption is not necessary. Observe that in particular we
have

m ∈
(
√

n/x). (8)

Thus, we can lower bound the product in αm as follows:

m∏
j=1

(
1 − 4

3
× 2−(x+1) j

)
�

m∏
j=1

(1 − 2−x j) �
∞∏
j=1

(1 − 2−x j).

We recall the identity due to Euler [15], which relates the in-
finite product on the right-hand side with pentagonal numbers

∞∏
j=1

(1 − z j) = 1 +
∞∑
j=1

(−1) j (z(3 j−1) j/2 + z(3 j+1) j/2)

which we use to lower bound the product for z ∈ [0, 1) as

∞∏
j=1

(1 − z j) � 1 − z − z2

by grouping latter terms in the series in consecutive pairs and
observing that each such pair has a positive sum. This gives
us the inequality

αm � 2−n/23m(1 − 2−x − 2−2x). (9)

Using Theorem 6, we need at most⌊ π

4θm

⌋
+ 2

applications of our circuit Wm and its conjugate, where θm =
arcsin αm. Using the standard inequality for z ∈ (0, 1]

sin z � z

1It is interesting to note that setting each k j = 2 yields αm = 1 in
which case amplitude amplification is not necessary, thus giving a
simple algorithm solving the unstructured search problem with each
diffuser size bounded by a constant. However, the number of oracle
queries it makes is O(3n/2).

which we can restate as
1

arcsin z
� 1

z
. (10)

Inequalities (9) and (10) together imply that the number
of applications of Wm and W †

m in amplitude amplification is
bounded by

π

4

1

1 − 2−x − 2−2x
2n/2 × 3−m + 2.

Observe that each Wm (and thus also W †
m) uses (3m − 1)/2

oracle calls. Thus, the total number of oracle calls is bounded
by

π

4

1

1 − 2−x − 2−2x
2n/2 + 2 × 3m − 2,

thus, we are only a factor of 1
1−2−x−2−2x away from optimal

number of oracle calls, as by Eq. (8) the additive term is
negligible.

Let us count the number of nonoracle gates used by our
algorithm. Note that the overhead of operations used by ampli-
tude amplification other than applications of Wm is negligible
compared to the cost of the Wm circuit. Each Wm can be
implemented using

O

(
m∑

j=1

x j × 3m− j

)
nonoracle gates, giving us at most

O

[(
m∑

j=1

x j × 3m− j

)
2n/2 × 3−m

]

= O(x × 2n/2
m∑

j=1

j3− j) = O(x × 2n/2)

nonoracle gates used by the entire algorithm. Now, setting x ∈

[log (ε−1)] concludes the proof in this special case.

Now, we briefly explain how to deal with arbitrary number
of qubits. We wish to get a suitable sequence k for specific
positive integers x and n. We do it as follows: let m = max{k :∑

j�k (x + 1) j � n}, and define for j ∈ {1, . . . , m}

k j =
{

(x + 1) j, if j < m

n −∑k<m(x + 1)k, if j = m.

By the choice of m, we easily get that km ∈ [(x + 1)m, 3(x +
1)m]. Observe that the number of gates necessary to imple-
ment Wm goes up by a factor of at most 3, thus, that part of
the calculation does not change. Next, observe that in Eq. (7),
the final expression is monotonically increasing in k j , thus our
lower bound in inequality (9) still holds. Thus, further analysis
also does not change, concluding the proof. �

Remark 1. The above analysis could be generalized to the
setting of underlying space being decomposable into a tensor
product as

H1 ⊗ H2 ⊗ · · · ⊗ Hm,

where of course the time complexity of the algorithm will
depend on the relative dimensions of Hj . However, this would
not improve the proof’s clarity, and does not really provide a

062425-6

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

significantly wider scope of applications, so we refrain from
including it.

IV. OPTIMALITY

In this section we show the following lower bound for the
number of oracle queries.

Theorem 7. Fix p ∈ (0, 1), n ∈ N, and N = 2n. Let T =
T (N, p) be the number of oracle queries in the optimal (i.e.,
minimizing the number of oracle queries) search algorithm
that is needed to find the marked element with probability at
least p. There exists a constant C > 0, which possibly depends
on p but does not depend on N , such that for any η > 0
and any algorithm A the following holds. If A uses at most
ηT additional basic gates and finds the marked element with
probability at least p, then A needs to query oracle at least
T + 2−CηT � times.

As a by-product we reprove the Zalka’s estimation from [9]
(Corollary 3) and at the end of the section we shortly explain
how the above theorem implies Corollary 2.

Let m � n be the number of qubits which we use. Assume
that we have at our disposal a phase oracle Oy operating on n
qubits with one marked element y. Any quantum algorithm
that solves unstructured search problem has the following
form: we start with some initial quantum state |s〉 and apply
the alternating sequence of oracle queries Oy and unitary
operators U1, . . . ,UR (each of which acts on m qubits). Thus,
as a result we get a state

|t〉 = UROyUR−1Oy . . .U1Oy|s〉.
It is convenient to investigate the algorithm’s behavior for
all possible y ∈ {0, 1}n simultaneously. For this purpose we
consider the following sphere and its subset. Let

S = {z ∈ ((C2)⊗m)N : |z| =
√

N}
and

Ŝ = {(z1, . . . , zN) ∈ S : z1 = . . . = zN }.
Let y j for j ∈ {1, . . . , N} be a sequence of all elements of
{0, 1}n. We use the following two actions of unitary group on
the sphere S. For U ∈ U(2m) and z in S we put

Uz = (Uz1,Uz2, . . . ,UzN)

and

OU z = (UOy1 z1,UOy2 z2, . . . ,UOyN zN).

By straightforward calculations we get the following observa-
tion.

Observation 1. For z in Ŝ we have

|OU z − Uz| = 2.

We consider the following sequences of points on the
sphere S:

s̃ = (|s〉, . . . , |s〉) and si = OUR . . . OUi+1Ui . . .U1s̃.

Let us recall the inequality proved in [16] (see also [9]) which
is crucial for our considerations.

Lemma 4. If the algorithm finds marked element with
probability at least p, then

|sR − s0|2 � h(p), (11)

where h is a function given by the formula

h(p) = 2N − 2
√

N
√

p − 2
√

N
√

N − 1
√

1 − p.

The advantage of working on the sphere is that the distance
between points on the sphere S is connected with the angle
between them. For a, b ∈ S let ϕa,b be the angle between them,
i.e.,

ϕa,b = 2 arcsin

(|a − b|
2
√

N

)
∈ [0, π]. (12)

Such angle is proportional to the length of the shortest arc
on S connecting a and b, so in particular it satisfies triangle
inequality:

ϕa,b + ϕb,c � ϕa,c.

Put

α = 2 arcsin (1/
√

N). (13)

Now let us consider distances between elements of
sequence si.

Observation 2. For i ∈ {0, . . . , R − 1} we have

|si − si+1| = 2 and ϕsi,si+1 = α.

Proof. By Observation 1 we have

|si − si+1| = |OU z − Uz| = 2,

where U = Ui+1 and z = Ui . . .U1s0. The second part follows
trivially from Eq. (12) and the choice of α. �

Observation 3. For any i, c ∈ N such that i + c � R, the
following inequality holds:

ϕsi,si+c � cα.

Proof. The inequality holds by the Observation 2 and the
triangle inequality for angles. �

If we look at Grover’s algorithm we can notice the follow-
ing facts.

Observation 4. In case of Grover’s algorithm we have
equality in the inequality given by Observation 3 for i + c �
(π

α
− 1)/2.
Observation 5. In case of Grover’s algorithm all points

s0, . . . , sR lie on a great circle of the sphere S.
Lemma 5. For a given R � (2π

α
− 1)/2 the expression

|sR − s0| is maximized by Grover’s algorithm.
Proof. Since in the case of Grover’s algorithm points

s0, . . . , sR lie on the great circle we get ϕs0,sR = Rα and thus
the distance between s0 and sR is maximized. �

Let us here recall the result of Zalka. By the above lemma,
Observation 4, and Lemma 4 we get the following.

Corollary 3 (Zalka’s lower bound for search algorithm).
Let R � (2π

α
− 1)/2. The Grover’s algorithm that makes

R oracle queries gives maximal probability of measuring
marked element among all quantum circuits that solve
unstructured quantum search problem using at most R
queries.

062425-7

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

Note that for large N the number π
2α

is close to π
4

√
N . Now

let us see what happens after two steps of the algorithm. Put
dK = 16(K − 1)/K for K � 1.

Observation 6. If z ∈ Ŝ, then |OId OU z − Uz|2 � dN . In
particular for i ∈ {0, . . . , R − 2} we have

|si − si+2|2 � dN .

Proof. It is the direct consequence of Observation 3
for c = 2. �

The key observation for our lower bound is better esti-
mation for unitary operators that act on bounded number of
qubits. From this point of view, we consider that each oracle
query can be performed on arbitrary qubits in arbitrary order
(or we can think that we just add SWAP gates). To stress this
we use here the symbols O and O′ for oracle operators.

Lemma 6. Let z = (|z〉, . . . , |z〉) ∈ Ŝ. If U acts at most on
k qubits, then |O′

Id OU z − Uz|2 � dK2 where K = 2k .
Proof. Let AU be the set of k qubits on which U acts.

Oracle O acts on qubits Q1, . . . , Qn and O′ on Q′
1, . . . , Q′

n
(here of course the order of qubits is important). Let JO be
a set of all such indices i that Qi ∈ AU , and JO′ be a set
of all indices j that Q′

j ∈ AU . Without loss of generality we
can assume that J = JO ∪ JO′ = {n + 1 − a, . . . , n}. Note that
a � 2k since |JO|, |J ′

O| � |AU | � k. Put

B = AU ∪ {Qn+1−a, . . . , Qn} ∪ {Q′
n+1−a, . . . , Q′

n}.
Let B′ be a set of all other qubits. By the assumption above, it
is a prefix of the set of all qubits.

Let us fix for a moment y = (y1, . . . , yn) ∈ {0, 1}n. Let
q = (y1, . . . , yn−a) ∈ {0, 1}n−a and r = (yn−a+1, . . . , yn) ∈
{0, 1}a. We will also write qr in place of y. With these notions
introduced, we can write |z〉 as

|z〉 =
∑

|x〉∈B′
αx|x〉|Sx〉,

where B′ is a computational basis in the space related to qubits
from B′, αx are complex numbers, and |Sx〉 are states in the
space related to qubits in B. It is clear that∑

|x〉∈B′
|αx|2 = 1.

We group elements of B′ into four disjoint sets. Let Bq
1 be the

set of all |x〉 that agree with y j on qubits Qj and Q′
j for all j �

n − a. Let Bq
2 (respectively Bq

3) be the set of all |x〉 that agree
with p j on qubits Qj (respectively Q′

j) for all j � n − a but
differs on at least one qubit Q′

j (respectively Qj) for some j �
n − a. And, finally, we put Bq

4 = B′ \ (Bq
1 ∪ Bq

2 ∪ Bq
3). Now

we have

|z〉 =
4∑

i=1

∣∣zq
i

〉
,

where ∣∣zq
i

〉 = ∑
|x〉∈Bq

i

αx|x〉|Sx〉.

We have1
U
∣∣zq

i

〉 = ∑
|x〉∈Bq

i

αx|x〉U |Sx〉,

O′yUOy
∣∣zq

1

〉 = ∑
|x〉∈Bq

1

αx|x〉O′rUOr |Sx〉,

O′yUOy
∣∣zq

2

〉 = ∑
|x〉∈Bq

2

αx|x〉UOr |Sx〉,

O′yUOy
∣∣zq

3

〉 = ∑
|x〉∈Bq

3

αx|x〉O′rU |Sx〉,

O′yUOy
∣∣zq

4

〉 = U
∣∣zq

4

〉
,

where Or (and respectively O′r) are oracles on a qubits that
mark element of the computational basis if for k > n − a on
Qk (respectively on Q′

k) this element is yk . We get

|O′yUOy|z〉 − U |z〉|2 =
∑

|x〉∈Bq
1

|αx|2|(U − O′rUOr)|Sx〉|2

+
∑

|x〉∈Bq
2

|αx|2|(1 − Or)|Sx〉|2

+
∑

|x〉∈Bq
3

|αx|2|(1 − O′r)U |Sx〉|2.

Now we are ready to sum up above expression with respect
to r. For a fixed q, by applying Observation 1, we get∑

r

|O′qrUOqr |z〉 − U |z〉|2

=
∑

|x〉∈Bq
1

|αx|2
∑

r

|(O′rUOr − U)|Sx〉|2

+ 4
∑

|x〉∈Bq
2

|αx|2 + 4
∑

|x〉∈Bq
3

|αx|2

� d2a

∑
|x〉∈Bq

1

|αx|2 + 4
∑

|x〉∈Bq
2∪Bq

3

|αx|2

� dK2/2

⎛⎝ ∑
|x〉∈Bq

1∪Bq
2

|αx|2 +
∑

|x〉∈Bq
1∪Bq

3

|αx|2
⎞⎠.

The inequality in the fourth line holds by applying Observa-
tion 6 in case of N = 2a.

The next step is sum the bound above with respect to q.
Notice that ⋃

q

Bq
1 ∪ Bq

2 =
⋃

q

Bq
1 ∪ Bq

3 = B′,

since if for a fixed q one oracle marks some state |z〉 ∈ B′,
then the other oracle either agrees with it (putting |z〉 in Bq

1) or
not (putting it in Bq

2 or Bq
3 , respectively). Because of that and

the fact that for different q’s oracle marks disjoint |z〉’s, the ∪
symbol is to be understood as disjoint set union. Therefore,
we have

|z〉 =
∑

q

∑
|x〉∈Bq

1∪Bq
2

αx|x〉|Sx〉 =
∑

q

∑
|x〉∈Bq

1∪Bq
3

αx|x〉|Sx〉

and thus∑
q

∑
|x〉∈Bq

1∪Bq
2

|αx|2 =
∑

q

∑
|x〉∈Bq

1∪Bq
3

|αx|2 = 1.

062425-8

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

Finally, we can conclude

|O′
Id OU z − Uz|2 =

∑
y

|O′yUOy|z〉 − U |z〉|2

=
∑

q

∑
r

|O′qrUOqr |z〉 − U |z〉|2 � dK2 .

�
Proof of Theorem 7. Let us choose k = 8η. Note that if k >

n/4 then for any C � 32 we get T 2−Cη � (π
√

N/4 + 1)/N <

1 and we are done, so we can assume that k � n/4.
By Observation 3 for all i ∈ {0, . . . , R − 2} we have

ϕsi,si+2 � 2α = 2 arcsin
(√

dN/2
√

N
)
,

and by Lemma 6, if operator Ui+1 acts on at most k qubits then

ϕsi,si+2 � 2 arcsin

(√
dK2

2
√

N

)
.

We will use either of these bounds depending on whether
an operator acts on more than k qubits or not. Note that
the second bound is always better than the first one, as we
assumed that k � n/4.

Since arcsin has the derivative greater or equal to one, for
Ui+1 acting on at most k qubits we can bound

ϕsi,si+2 � 2 arcsin

(√
dN

2
√

N

)
− 2

√
dN − √

dK2

2
√

N

� 2α − D

K2
√

N
,

where the constant D (as well as constants D′ and C below)
does not depend on N and K . The inequality arcsin x � 2x for
x = 1/

√
N combined with Eq. (13) yields

ϕsi,si+2 � 2α(1 − D/8K2).

From the triangle inequality for angles we can now establish
the following bound:

ϕsR,s0 � α̂ +
∑

t∈{l∈N:2l+2�R}
ϕs2t ,s2t+2 ,

where

α̂ =
{
α, if R is an odd number

0, if R is an even number.

Note that, since each basic gate acts on at most two qubits, at
least half of operators U2t+1 act on at most k qubits. Therefore,
we can bound half of the angles by 2α(1 − D/8K2) and the
rest by 2α, which gives us

ϕsR,s0 � Rα − D′R
K2

α � αR(1 − 2−Cη).

On the other hand, by Lemma 4 and Observation 4 we have

ϕsR,s0 > (T − 1)α,

and thus

R > (T − 1)/(1 − 2−Cη) � T − 1 + 2−CηT,

and the theorem follows. �
Proof of Corollary 2. One can see that any algorithm needs

more than π
4

√
N − 1 steps to find the marked element with

certainty (compare Corollary 3). Using Theorem 7 we get the
result for δ = 1/C and for large enough n. If necessary, we
may decrease δ so that δ log (1/ε)

√
N < 1 for smaller values

of n. �
Remark 2. Note that we do not allow measurements before

the end of the algorithm. It is not clear to the authors how mea-
surements performed inside a circuit can reduce the expected
number of oracle queries made. In particular, how Zalka’s
results about optimality of Grover’s algorithm applies to this
more general class of quantum algorithms is far from obvious.
Example of measurements speeding up quantum procedures
can be found in Sec. 4 of [16] or in the last section of this
paper.

V. PARTIAL UNCOMPUTE

A. Motivation and intuition

The motivation for this section comes from the fact that
many natural implementations of phase oracles mimic parallel
classical computation by the following pattern of operations.

(1) We perform a long series of operations that do not alter
the original n qubits (or alter them temporarily), but modify
some number of ancilla qubits that were initially zero, usually
by CCX gates.

(2) We perform a Z gate operation to flip the phase on the
interesting states.

(3) We undo all the operations from step 1, not to hinder
the amplitude interference in the subsequent mixing operators.

Step 3 offers the benefit of being able to reuse the (now
cleared) ancilla qubits, but it is not the main motivation of
performing it.

If a mixing operator used only acts on a subset of qubits,
maybe not all gates from step 1 interfere with proper ampli-
tude interference? It turns out that very often it suffices to
undo only a fraction of gates. We will establish the proper
language to express that in Sec. V B.

It turns out that the state that allows safe application of the
mixing operator is much closer (in the metric of number of
gates) to the state from after step 1 that to the base state with
all ancilla qubits zeroed. Our approach will initially compute
all the ancilla qubits, perform all the mixing “close” to this
state, and finally uncompute the ancillas.

Intuitively, we shall follow the following scheme:
(1) Compute all the ancilla qubits.
(2) For all mixing operators,

(a) perform the phase flip,
(b) undo the ancilla computation that would interfere

with the upcoming mixing operator,
(c) perform the mixing,
(d) redo the computation from step 2(b).

(3) Uncompute all the ancilla qubits.
The last step 2(d) and step 3 could be even skipped, if

the ancilla computation does not modify the original qubits.
However we are not doing this optimization in the formal
approach, as the benefits are minimal. Naturally, this is a very
imprecise description. Full details are presented in Sec. V C.

We are aware that many (if not all) of these operations
are performed by modern quantum circuit optimizers and
preprocessors. The aim is to give structure to the process and

062425-9

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

understand how many gates are guaranteed to be removed
from the circuit.

B. Definitions

Recall from Sec. II that a phase oracle O of a function f :
{0, 1}n → {0, 1} is a unitary transformation given by O|x〉 =
(−1) f (x)|x〉 for all vectors |x〉 in the computational basis.

Definition 2. We will say that a phase oracle O admits an
uncomputable decomposition (Ou, Op) if O = O†

u ◦ Op ◦ Ou.
We call Ou and Op the uncomputable part and the phase part,
respectively.

Remark 3. Note that neither Ou nor Op need to be phase
oracles themselves. Naturally, every phase oracle O on n
qubits admits a trivial decomposition (Idn, O). However, in
practice, many real-life examples give more interesting de-
compositions. The intuitive goal is to make the phase part as
simple as possible. The more gates needed to implement O we
manage to move to the uncomputable part, the more gates we
can hope to cancel out. A common pattern in many settings is
to use an ancilla to mark the sought state by a bit flip, apply
Z gate on said ancilla, followed by uncomputing the ancilla.
In such case, there is a natural uncomputable decomposition
of O.

Definition 3. Let A1, . . . , A� be a chronologically ordered
sequence of unitary matrices corresponding to the gates in
a quantum circuit operating on n qubits (ties being broken

arbitrarily). We will define the fact that Aj depends on qubit
qi, i ∈ {1, . . . , n}, by induction on j ∈ {1, . . . , �}.

We say that Aj depends on qi if Aj acts on qi or if there
exist i0 ∈ {1, . . . , n} and j0 ∈ {1, . . . , j − 1} such that the fol-
lowing hold:

(i) Aj0 depends on qi.
(ii) Aj0 acts on qi0 .
(iii) Aj acts on qi0 .
In this section, by P (X) we will denote the powerset of X ,

that is, the set of all subsets of X .
Definition 4. Let O be a phase oracle on n qubits, � ∈

N, d : {1, . . . , �} −→ P ({q1, . . . , qn}), and U : {1, . . . , �} �
j �−→ Uj ∈ U (n). Assume that Uj is an arbitrary unitary op-
erator acting on the qubit set d (j), j ∈ {1, . . . , �}. We define
a generic oracle circuit V (�, d,U, O) by the following for-
mula (the product is to be understood as right-to-left operator
composition):

V (�, d,U, O) :=
�∏

j=1

(Uj ◦ O).

Remark 4. Observe that Wm from Definition 1 is a generic
oracle circuit.

Proof. For j ∈ {1, . . . , m} put � j := (3 j − 1)/2 and define
dj : {1, . . . , � j} �−→ P ({1, . . . , k1 + · · · + k j}) recursively as
follows:

d j (i) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
d j−1(i), 1 � i � � j−1

{k1 + · · · + k j−1 + 1, . . . , k1 + · · · + k j}, i = � j−1 + 1

d j−1(2� j−1 + 2 − i), � j−1 + 2 � i � 2� j−1 + 1

d j−1(i − 2� j−1 − 1), 2� j−1 + 2 � i � � j .

We then set Uj to be the mixing operator G|dm (j)| applied
onto the qubits in the set dm(j), j ∈ �m. Observe that Wm =
V (�m, dm,U, O). �

C. Reducing the number of gates

Theorem 8. Let (Ou, Op) be an uncomputable decomposi-
tion of O and let Du, and Dp, be the total number of gates
used in Ou, and Op, respectively. Let Ds denote the number of
gates within Ou that depend on any of the qubits in s, for all
s ∈ P ({1, . . . , n}).

For a given generic oracle circuit V (�, d,U, O) one can
implement an equivalent circuit Ṽ that uses a total of 2Du +
�Dp + 2

∑�
j=1 Dd (j) gates for oracle queries. This results in no

more than the following average number of gates per oracle
query:

Dp + 2
Du

�
+ 2

∑�
j=1 Dd (j)

�
.

Proof. Let Os (respectively Õs) be the in-order composition
of all gates in Ou that depend (respectively do not depend) on
any of the qubits in s, for all s ∈ P ({1, . . . , n}).

First, let us observe that, for a fixed s ∈ P ({1, . . . , n}),
every gate in A ∈ Os commutes with every gate in Õs that
originally appears later than A, as there are no common qubits
that they act on. This implies that Ou = Os ◦ Õs, for all s ∈
P ({1, . . . , n}). Similarly Uj and Õd (j) commute, as there are
no common qubits that they act on, j = 1, . . . , �.

We now proceed to apply these properties to V (�, d,U, O)
in order to obtain Ṽ . This will happen in the following five
steps.

(1) Append an identity O†
u ◦ Ou operation to each factor of

V (�, d,U, O) (see Fig. 3).

FIG. 3. Graphical representation of the jth factor after applying
step 1. For simplicity we assumed that d (j) consists of first |d (j)|
qubits.

062425-10

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

FIG. 4. Graphical representation of the jth factor after applying
step 2. For simplicity we assumed that d (j) consists of first |d (j)|
qubits.

(2) Express Ou (respectively O†
u) occurring next to Uj as

Od (j) ◦ Õd (j) (respectively Õ†
d (j) ◦ O†

d (j)) in the jth factor, j ∈
{1, . . . , �} (see Fig. 4).

(3) Swap Õd (j) and Uj in the jth factor, j ∈ {1, . . . , �} (see
Fig. 5).

(4) Remove the identity operation Õ†
d (j) ◦ Õd (j) in the jth

factor, j ∈ {1, . . . , �} (see Fig. 6).
(5) Remove the identity operation Ou ◦ O†

u on the bound-
ary between each two consecutive factors (see Fig. 7).

More concisely, we put

Ṽ := O†
u ◦

�∏
j=1

(
Od (j) ◦ Uj ◦ O†

d (j) ◦ Op
) ◦ Ou.

As discussed above V (�, d,U, O) and Ṽ are equal as unitary
operators. The desired gate count follows directly from the
definition. �

Corollary 4. Let (Ou, Op) be an uncomputable decompo-
sition of O and let Du and Dp be the total number of gates
used in Ou and Op, respectively. Let Di be the number of gates
within Ou that depend on the ith qubit, i ∈ {1, . . . , n}, and let
D j be the average of Di taken over the qubits i ∈ d (j), i.e.,
the average number of gates within Ou that depend on a single
qubit from the d (j), j = 1, . . . , �.

For a given generic oracle circuit V (�, d,U, O) one can
implement an equivalent circuit Ṽ that uses no more than the
following average number of gates per oracle query:

Dp + 2
Du +∑�

j=1 |d (j)|D j

�
.

Proof. This follows directly from Theorem 8 and the fact
that the number of gates that depend on any of the qubits from
a given set is no greater that the sum of the numbers of gates
that depend on individual qubits from this set. �

FIG. 5. Graphical representation of the jth factor after applying
step 3. For simplicity we assumed that d (j) consists of first |d (j)|
qubits.

FIG. 6. Graphical representation of the jth factor after applying
step 4. For simplicity we assumed that d (j) consists of first |d (j)|
qubits.

Corollary 5. Let (Ou, Op) be an uncomputable decomposi-
tion of O and let Du, and Dp, be the total number of gates used
in Ou, and Op, respectively. Let Di be the number of gates
within Ou that depend on the ith qubit, i ∈ {1, . . . , n}, and let
D be the average of Di taken over all qubits i ∈ {1, . . . , n}.

For a given generic oracle circuit V (�, d,U, O) one can
implement an equivalent circuit Ṽ that uses no more than the
following average number of gates per oracle query:

Dp + 2Du

�
+ 2D

∑�
j=1 |d (j)|

�
.

In particular, one can implement a circuit equivalent to Wm

that uses an average of no more than the following number of
gates per oracle query:

Dp + 4Du

3m − 1
+ 4D

∑m
j=1 k j3m− j

3m − 1
.

Using the notation of Theorem 3, this asymptotic average
number of gates is O[Dp + log(1/ε)D].

Proof. Without loss of generality, we may assume that
(Di)n

i=1 is nondecreasing. Similarly, without loss of generality,
we may assume that the weights wi = |{ j ∈ {1, . . . , �} : i ∈
d (j)}|/�, i = 1, . . . , n, of subsequent qubits form a nonin-
creasing sequence. Then a weighted average of Di’s,∑n

i=1 wiDi∑n
i=1 wi

=
∑�

j=1

∑
i∈d (j) Di

�
∑n

i=1 wi
=
∑�

j=1 |d (j)|D j∑�
j=1 d (j)

,

will not be greater than their arithmetic mean D. This com-
pletes the first part of the proof. To obtain bound for circuit
Wm, recall from Sec. III that � = (3m − 1)/2 and that jth

FIG. 7. Graphical representation of the jth factor after applying
step 5. For simplicity we assumed that d (j) consists of first |d (j)|
qubits. Notice that this picture is only valid for 1 < j < � as the first
factor will retain O†

u, while the last one will retain Ou.

062425-11

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

diffuser (of size k j) appears in Wm exactly 3m− j times, so∑�
j=1 |d (j)| =∑m

j=1 k j3m− j .
For the asymptotic result, recall from the proof of The-

orem 3 [Eq. (8)] that (after setting x ∈
[log(1/ε)] as
in the proof) we have m =
(

√
n/ log(1/ε)) and we in-

voke the Wm circuit O(2n/2/3m) times with parameters k j �
3�log2(1/ε)� j, j ∈ {1, . . . , m}. Additionally, observe that

m∑
j=1

j3m− j =
m∑

j=1

3m− j+1 − 1

2
= 3

4
(3m − 1) − m

2

= O(3m − 1).

As each amplitude amplification step requires additional
O(n + Dp + Du) gates, we get that the asymptotic average
number of gates is

Dp + O(Du/3m) + log(1/ε)O(D) + O[(n + Dp + Du)/3m]

= O[Dp + log(1/ε)D].

�
Corollary 6. Let K ∈ N and consider all Unique k-SAT

instances, each with n variables and c clauses. For each such
an instance there exists a circuit equivalent to Wm that uses an
average of no more than the following number of gates per
query:

1 + 12Kc + 8c − 4

3m − 1

+ 4Kc(4 + �log2 K� + �log2 c�)

n

∑m
j=1 k j3m− j

3m − 1
.

Using the notation of Theorem 3, the asymptotic average
per-oracle-query number of gates of a quantum circuit solving
Unique k-SAT with certainty is O[log(1/ε)c log(c)/n].

Proof. A straightforward implementation of the phase or-
acle O consists of Du � 3Kc + 2c − 1 gates (each being an
X , a CX , or a CCX) in the uncomputable part and one Z gate
(Dp = 1) in the phase part. More precisely, we introduce the
following ancilla qubits and the gates to compute them:

(1) c-qubit groups of K qubits corresponding to negation
of all clause literals, each computed by one CX and at most
one X .

(2) c-qubit groups of K − 1 qubits corresponding to con-
junctions of qubits from 1, each computed by one CCX . They
are arranged into a binary tree, so that only �log2 K� gates
depend on every qubit of 1.

(3) c qubits corresponding to all clauses, each computed
by one CX and one X from a top-level qubit of 2.

(4) c − 1 qubits corresponding to conjunctions of qubits
from (3), each computed by one CCX . Again, they are ar-
ranged into a binary tree, so that only �log2 c� gates depend
on every qubit from 3.

For a variable v appearing in cv clauses, the number
of gates depending on v is at most cv (2 + �log2 K� + 2 +
�log2 c�), so we get the average D � Kc(4 + �log2 K� +
�log2 c�)/n. By Corollary 5 we get both claims. �

Corollary 1. Consider the Unique k-SAT problem with n
variables and c clauses. There exists a quantum circuit that
uses O[c log(c)2n/2/n] total (oracle and nonoracle) gates and
solves the problem with certainty.

Proof. This follows directly from Theorem 3 and
Corollary 6. �

VI. MULTIPOINT ORACLE

We now proceed to the unstructured search problem with
multiple marked elements. As in previous sections we assume
that number of qubits in the input of the oracle is n. Let S
be the set of elements marked by oracle O and let K = |S| >

0. For convenience we mostly refer to the number k = 1 +
�log2 K�. We begin our investigation with the assumption that
k is known in advance and later proceed to consider the harder
case of unknown k.

A. Known number of marked elements

In this section we assume that value k is known. It is
weaker assumption than knowing K but it is sufficient for our
purposes. We use the algorithm from Theorem 3 as a sub-
routine in algorithms in this section. By SinglePoint(O, n)
we denote the algorithm from Theorem 3 that solves unstruc-
tured search problem for oracle O which marks exactly one
element and acts on n qubits. We want to reduce the problem
of unstructured search with possibly many elements marked
to the unstructured search with one marked element. To do
this we construct a family of hash functions that allows us
to effectively parametrize a subset of {0, 1}n which with high
probability contains only one element from S. This technique
is nearly identical to reduction from SAT to Unique SAT
presented in [11]. Next, we improve some aspects of this
reduction, so that methods of partial uncompute may be used
to reduce the number of additional nonoracle basic gates.

Let us recall that family U of hash functions from X to Y ,
both being finite is called pairwise independent if for every
x ∈ X and every y ∈ Y we have

Ph∈RU [h(x) = y] = 1

|Y |
and for every x1, x2 ∈ X , x1 �= x2 and every y1, y2 ∈ Y we have

P [h(x1) = y1 ∧ h(x2) = y2] = 1

|Y |2 .

We use the following formulation of results from [11] that
can be found in [17, p. 9.10 (180)].

Lemma 7 (Valiant-Vazirani). For any family of pairwise-
independent hash functions H from {0, 1}n to {0, 1}k and
S ⊂ {0, 1}n such that 2k−2 � |S| � 2k−1 we have that

Ph∈RH (|{x ∈ S : h(x) = 0}| = 1) � 1
8 .

A function h : {0, 1}m → {0, 1}l is called affine if we may
represent it as h(x) = Ax + b for some A ∈ {0, 1}l×m and b ∈
{0, 1}l . All arithmetical operations are performed modulo 2.
The kernel of the affine function h : {0, 1}m → {0, 1}l of the
form h(x) = Ax + b is defined as ker h = h−1(0). Whenever
the kernel of the affine function h is not an empty set, we
define the dimension of this kernel as dim ker h = dim ker A,
where ker A is the null space of the matrix A. Whenever
function h is clear from the context we will use d = dim ker h
for brevity. Our choice of the family of hash functions is as
follows.

062425-12

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

Definition 5. Define a family of hash functions Hn,k as the
set of all affine maps from {0, 1}n to {0, 1}k:

Hn,k := {hA,b : A ∈ {0, 1}k×n, b ∈ {0, 1}k, hA,b(x) = Ax + b}.
The first mention of this family is in [18], more detailed

considerations can be found in [19]. The following standard
result will be of use to us.

Observation 7 (Folklore). The family Hn,k is pairwise in-
dependent.

We would like to run algorithm SinglePoint on the set
ker h. To do so we parametrize ker h by some injection g :
{0, 1}dim ker h → ker h and build a quantum oracle Og defined
as follows.

Definition 6. Given a quantum oracle O : (C2)⊗n →
(C2)⊗n, and any function g : {0, 1}d → {0, 1}n we define the
g-restricted oracleOg as

Og = D−1
g (Idd ⊗ O)Dg,

where Dg is a unitary operator on (C2)⊗(d+n) whose action on
states |i〉|0 . . . 0〉 for i ∈ {0, 1}d is defined as

Dg|i〉|0 . . . 0〉 = |i〉|g(i)〉.
Observation 8. If oracle O admits uncomputable decom-

position (Ou, Op), then for any function g : {0, 1}d → {0, 1}n

the g-restricted oracle Og admits an uncomputable decompo-
sition ((Idd ⊗ Ou)Dg, Idd ⊗ Op).

Proof. It follows directly from definition

Og = D−1
g (Idd ⊗ O)Dg

= D−1
g (Idd ⊗ O−1

u)(Idd ⊗ Op)(Idd ⊗ Ou)Dg

= ((Idd ⊗ Ou)Dg)−1(Idd ⊗ Op)((Idd ⊗ Ou)Dg).

�
Lemma 8. For an affine injective function g : {0, 1}d →

ker h of the form g(x) = Cx + p, where C = (ci j), we can
construct Dg using basic quantum gates so that the number
of gates that depend on jth qubit of the first register is exactly
equal to |{i : ci j = 1}|.

Proof. It is easy to see that Dg can be implemented using
gates CX (f j, si) where f j is the jth qubit of the first register
and si is the ith qubit of the second register for each i, j such
that ci j = 1 and using gates X (si) for all i such that pi > 0. �

Now we are ready to construct g which effectively
parametrizes ker h.

Lemma 9. Given an affine function h : {0, 1}n → {0, 1}k of
the form h(x) = Ax + b with ker h �= ∅ we may construct in
polynomial time an injective function g : {0, 1}d → {0, 1}n of
the form g(x) = Cx + p for some C ∈ {0, 1}n×d , p ∈ {0, 1}n,
and d , where d = dim ker h, such that Img = ker h. Moreover,
we may choose C so that each of its columns has at most
n − d + 1 ones.

Proof. We begin by obtaining an arbitrary affine
parametrization of ker h. To this end, fix some basis of ker A,
arrange it as columns into the matrix C′, and any solution p
to the equation Ax = −b. All of this can be accomplished
in polynomial time using Gaussian elimination [20]. Setting
f (x) = C′x + p gives us the desired parametrization.

To reduce the number of ones in the matrix C′, we can
change basis of domain of f by an invertible matrix Q ∈

{0, 1}d×d . As function f is an injection, matrix C′ has d rows
which are linearly independent and they form an invertible
submatrix C′′. By picking Q = (C′′)−1 we ensure that for
each column of matrix C′Q at most one row among those d
picked previously has one which is contained in this column.
After these steps we end up with a function g of the form
g(x) = C′Qx + p, where each column of C = C′Q has at most
n − d + 1 nonzero entries. �

As we parametrize the kernel of random affine map we
want to make sure that dimension of this kernel is not too big,
as the number of oracle queries and the number of nonoracle
basic gates used by SinglePoint depends exponentially on
the dimension of the searched space.

Lemma 10. If k < n − 2, then Ph∈RHn,k (dim ker h � n −
k + 2) � 1

16 .
Proof. We prove the more general inequality

Ph∈RHn,k (dim ker h � n − k + c) � 1
2c2 for n > 4, k < n − 2,

and any natural c � 2. Set δ = k − c. If δ < 0, then
the conclusion follows trivially. Otherwise, the event
dim ker h � n − k + c is equivalent to n − δ = n − k + c �
dim ker h = dim ker A = n − rankA so we conclude
rankA � δ, meaning that vector subspace spanned by rows of
matrix A must have dimension at most δ.

As vectors that span subspace of dimension at most δ are
contained in some δ-dimensional subspace of {0, 1}n we can
consider the probability of all k vectors being contained in
a particular δ-dimensional subspace. Then we apply union
bound by multiplying this probability by the number of δ-
dimensional subspaces. The probability of choosing all k

vectors from a single δ-dimensional space is (1
2n−δ)

k
, as δ-

dimensional space contains 2δ elements and we choose those
vectors independently from each other. Let us recall that a
number of δ-dimensional subspaces of n-dimensional space
over F2 equals

∏δ−1
i=0

2n−2i

2δ−2i , this can be found in [21].
So, using the union bound the probability that k vectors

span at most δ-dimensional subspace is bounded from above
by

PhA,b∈Hn,k (dim ker h � n − δ)

�
(

1

2n−δ

)k (δ−1)∏
i=0

2n − 2i

2δ − 2i

=
(

1

2n−δ

)k−δ(1

2n−δ

)δ (δ−1)∏
i=0

2n − 2i

2δ − 2i

=
(

1

2n−δ

)k−δ (δ−1)∏
i=0

2δ − 2i−n+δ

2δ − 2i

�
(

1

2n−δ

)k−δ (δ−1)∏
i=0

2δ

2δ − 2i

=
(

1

2n−δ

)k−δ (δ−1)∏
i=0

2δ−i

2δ−i − 1

�
(

1

2n−δ

)k−δ ∞∏
j=1

2 j

2 j − 1

062425-13

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

Algorithm 1 Probabilistic algorithm for solving unstructured
search with known k

1: procedure MULTIPOINT (O, n, k)
2: if k � n − 2 then
3: x ← element from {0, 1}n selected uniformly at random
4: if x is marked then
5: return x
6: end if
7: return null
8: end if
9: h ← random affine transformation from Hn,k

10: d ← dim ker h
11: if d � n − k + 2 then
12: return null
13: end if
14: Og is built as described in Definition 6 using g from Lemma 9
15: return SinglePoint(Og, d)
16: end procedure

=
(

1

2n−δ

)k−δ 1∏∞
j=1 (1 − 2− j)

�
(

1

2n−δ

)k−δ 1

1 − 1
2 − 1

4

= 4

(
1

2n−δ

)k−δ

= 4

(
1

2n−k+c

)c

= 4

(
1

2n−k

)c(1

2c

)c

,

where the last inequality follows from Euler’s pentagonal
numbers theorem [15]. The final expression is less than 1

2c2

for c � 2 and n − k > 2. �
Now, we may describe the algorithm for solving unstruc-

tured search problem with known value k = 1 + �log2 K�
where K is the number of marked elements.
Theorem 4. Let N ∈ N be of the form N = 2n. Assume that

we are given a phase oracle O that marks K elements, and
we know the number k given by k = 1 + �log2 K�. Then one
can find an element marked by O with probability at least 1

16 ,

using at most O(
√

N
K) oracle queries and at most O(log K

√
N
K)

nonoracle basic gates.
Proof. To prove that Algorithm I finds a marked element

with constant probability, let us see that if k � n − 2, then
selecting a random element succeeds with probability at least
1

16 . Otherwise, from Lemma 7 with probability at least 1
8 we

have that |K ∩ ker h| = 1. From Lemma 10 with probability
at least 15

16 we have that d < n − k + 2. Combining those
facts we obtain that with probability at least 1

16 oracle Og

marks exactly one element and the number of qubits of its
input does not exceed n − k + 1. So, Algorithm 1 succeeds
with probability at least 1

16 , as from Theorem 3 we know
that SinglePoint solves the unstructured problem with one
marked element with certainty.

From Lemmas 9 and 8 we deduce that at most O(k) addi-
tional basic gates from circuit Dg depend on each qubit. So,
from Corollary 5 we deduce that on average we use O(k)
additional nonoracle basic gates per oracle query. There are

O(2
d
2) = O(2

n−k
2) = O(

√
N
K) oracle queries in SinglePoint

Algorithmic 2 Probabilistic algorithm for solving unstructured
search problem without an estimate of the number of marked
elements

1: procedure MULTIPOINTUNKNOWN (O, n, p)
2: for i ← n + 2 to 2 do
3: for j ← n + 2 to i do
4: x ← MultiPointAmplified(O, n, j, p)
5: if x is marked then
6: return x
7: end if
8: end for
9: end for
10: end procedure

procedure so we need O(k2
n−k

2) = O(log K
√

N
K) nonoracle

gates to implement it. �
Proposition 1. For any p ∈ (0, 1) by repeating Algorithm I

O(log 1
1−p) number of times we ensure that we find a marked

element with probability at least p.
Proof. We may deduce that from the fact that all runs of

this algorithm are independent and each finishes successfully
with constant, nonzero probability. �

Let us for any probability p < 1 define an algorithm
MultiPointAmplified(O, n, k, p) which runs algorithm
MultiPoint(O, n, k) minimal number of times to ensure
probability of success higher than p.

B. Unknown number of marked elements

The technique presented next is similar to one used in [16],
which finds element marked by an oracle O using on average
O(2

n−k
2) calls to oracle O and on average O(n2

n−k
2) additional

basic gates. We improve those results and propose the fol-
lowing algorithm that finds marked element using O(k2

n−k
2)

nonoracle gates in expectation and makes O(2
n−k

2) queries to
oracle O also in expectation.

Before we analyze Algorithm II, we note an observation:
Observation 9. For natural numbers x and m, and any real

number r, such that x � m and r > 1, we have

x∑
l=0

(m − l)rl/2

= (m − x)
x∑

l=0

rl/2 +
x∑

l=0

(x − l)rl/2

= (m − x)rx/2
x∑

l=0

r (l−x)/2 + rx/2
x∑

l=0

(x − l)r (l−x)/2

� (m − x)rx/2
∞∑

i=0

r−i/2 + rx/2
∞∑

i=0

ir−i/2

= C1(m − x)rx/2 + C2rx/2,

where C1,C2 are positive constants which depend only on r.

062425-14

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

Observation 10. For natural numbers x and m, and any real
number r, such that x � m and r < 1, we have

x∑
l=0

(m − l)rl/2 � Cm,

where C is a positive constant which depends only on r.
Theorem 9. For p satisfying 2(1 − p)2 < 1 the Algorithm

2 finds marked element with probability at least 1 − (1 − p)k .

Its expected number of oracle queries is O(
√

N
K) and its

expected number of nonoracle basic gates is O(log K
√

N
K),

where N = 2n is the size of the search space and K is the num-
ber of elements marked by the oracle and k = 1 + �log2 K�.

Proof. In the complexity analysis we consider two
phases of the Algorithm II. The first phase is when
i > k. During this phase we never run algorithm
MultiPointAmplified(O, n, j, p) with j = k, so let us
assume that this algorithm never finds marked element in this
phase.

In the second phase, i.e., for i < k in each inner loop we
run the procedure

MultiPointAmplified(O, n, j, p) with j = k once, so
during this loop we find marked element with probability at
least p. So the probability that outer loop proceeds to the
next iteration is at most 1 − p. So, the overall bound on the
expected number of oracle queries of this algorithm is given
below, we also note that all constants hidden under big O
notation depend either only on p or are universal:

O

(
n+2∑

i=k+1

n+2∑
j=i

2(n− j)/2 +
k∑

i=2

(1 − p)k−i
n+2∑
j=i

2(n− j)/2

)

= O

(
n∑

i=k

n∑
j=i

2(n− j)/2 +
k∑

i=0

(1 − p)k−i
n∑

j=i

2(n− j)/2

)

= O

(
n∑

i=k

n−i∑
l=0

2l/2 +
k∑

i=0

(1 − p)k−i
n−i∑
l=0

2l/2

)

= O

(
n∑

i=k

2(n−i)/2 +
k∑

i=0

(1 − p)k−i2(n−i)/2

)

= O

(
n−k∑
s=0

2s/2 + 2(n−k)/2
k∑

s=0

(2(1 − p)2)s/2

)
= O

(
2(n−k)/2

)
.

To estimate the second summand we use the fact that 2(1 −
p)2 < 1. Using Observations 9 and 10 we calculate the similar

bound for the number of additional nonoracle basic gates, also
take a note that hidden constants below depend only on p or
are universal: :

O

(
n+2∑

i=k+1

n+2∑
j=i

j2(n− j)/2 +
k∑

i=2

(1 − p)k−i
n+2∑
j=i

j2(n− j)/2

)

= O

(
n∑

i=k

n∑
j=i

j2(n− j)/2 +
k∑

i=0

(1 − p)k−i
n∑

j=i

j2(n− j)/2

)

= O

(
n∑

i=k

n−i∑
l=0

(n − l)2l/2 +
k∑

i=0

(1 − p)k−i
n−i∑
l=0

(n − l)2l/2

)

= O

(
n∑

i=k

i2(n−i)/2 +
k∑

i=0

i(1 − p)k−i2(n−i)/2

)

= O

(
n−k∑
s=0

(n − s)2s/2 + 2(n−k)/2
k∑

s=0

(k − s)(2(1 − p)2)s/2

)
= O

(
k2(n−k)/2

)
.

So the complexity of the algorithm does not change even if
the number of elements is not known beforehand. To calculate
the probability of successfully finding the marked element, let
us see that the outer loop runs less than n + 1 times only when
the marked element was found. From the above considerations
we know that this probability is bounded from below by
1 − (1 − p)k . �

ACKNOWLEDGMENTS

The following work has been partially supported by NCBR
grant number POIR.01.01.01-00-0568/16-00.

APPENDIX: ANALYSIS OF THE TREE CIRCUIT

Due to limited nature of existing hardware, for small search
spaces the circuits Wm are outperformed by a similar family of
circuits, which we denote by Dm. The circuits were experi-
mentally evaluated on current generation of superconducting
quantum computers. The results are presented in [22]. For the
sake of completeness we prove an analog of Theorem 3 that
utilizes the Dm family of circuits.

Definition 7. Let k = (k1, . . . , km) be a sequence of pos-
itive integers and let n :=∑m

j=1 k j . Given a quantum oracle
O, for j ∈ {0, . . . , m}, we define the circuit Dj recursively as
follows:

Dj =
{

Idn, if j = 0

Dj−1
(
Idk1+···+k j−1 ⊗ Gkj ⊗ Idk j+1+···+km

)
ODj−1, if j �= 0.

Lemma 11. Let m ∈ N+ and k ∈ Nm
+ be fixed, and let n =∑m

j=1 k j . Assume we are given a phase oracle O that operates
on n qubits and marks a single vector of the standard compu-
tational basis, which we then use in the circuits Dj . Then for

any j ∈ {0, . . . , m} we have

DjODj = O.

062425-15

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

Proof. We proceed by induction on j. For j = 0 the claim
is trivial. For j > 0 we expand Dj according to Definition 7
as follows

DjODj = Dj−1(Ids−k j ⊗ Gkj ⊗ Idn−s)ODj−1ODj−1

× (Ids−k j ⊗ Gkj ⊗ Idn−s)ODj−1

= Dj−1
(
Ids−k j ⊗ Gkj ⊗ Idn−s

)
OO

×(Ids−k j ⊗ Gkj ⊗ Idn−s)ODj−1 (A1)

= Dj−1(Ids−k j ⊗ Gkj ⊗ Idn−s)

×(Ids−k j ⊗ Gkj ⊗ Idn−s)ODj−1

= Dj−1ODj−1 = O, (A2)

where in Eqs. (A1) and (A2) we used the inductive hypothesis. �
Lemma 12. Let m ∈ N+ and k ∈ Nm

+ be fixed, and let n =∑m
j=1 k j . Assume we are given a phase oracle O that operates on

n qubits and marks a single vector of the standard computational basis denoted target. Define the numbers

β j = 〈target|(Dj

∣∣u j
1

〉∣∣targetm
j+1

〉)
for j ∈ {0, . . . , m}. Then, β j satisfy the recurrence

β j =
{1, if j = 0

1
2(k1+···+k j)/2

(
1 − 2

2k j

)+ 1
2k j /2

(
2 − 2

2k j /2

)
β j−1, if j > 0.

Proof. By defintion of Dj we have β0 = 1 giving the base case. For j > 0, we proceed to compute β j by expanding the circuit
Dj according to the recursive definition. We split the computation into stages as follows:

|w1〉 = Dj−1
(∣∣u j

1

〉∣∣targetm
j+1

〉)
, |w2〉 = O|w1〉,

|w3〉 = (Ids−k j ⊗ Gkj ⊗ Idn−s
)|w2〉, |w4〉 = Dj−1|w3〉,

where s = k1 + · · · + k j ,

|w1〉 = Dj−1

(
1

2k j/2

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉∣∣target j

〉∣∣targetm
j+1

〉) = 1

2k j/2
Dj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉∣∣target j

〉∣∣targetm
j+1

〉
,

|w2〉 = O

(
1

2k j/2
Dj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉∣∣target j

〉∣∣targetm
j+1

〉)
= 1

2k j/2
ODj−1

∣∣u j−1
1

〉∣∣targetm
j

〉+ ∣∣u j−1
1

〉∣∣target j

〉∣∣targetm
j+1

〉 = 1

2k j/2
|η〉∣∣targetm

j

〉+ ∣∣u j−1
1

〉∣∣target j

〉∣∣targetm
j+1

〉
,

where |η〉 is some state in (C2)⊗(k1+···+k j−1). We can write so, as all diffusers within Dj−1 operate only on the prefix consisting of
first k1 + · · · + k j−1 qubits, while O only changes relative phases:

|w3〉 = Ids−k j ⊗ Gkj ⊗ Idn−s

(
1

2k j/2
|η〉∣∣targetm

j

〉+ ∣∣u j−1
1

〉∣∣target j

〉|targetm
j+1〉
)

= 1

2k j/2
|η〉(Gkj |target j〉

)∣∣targetm
j+1

〉+ ∣∣u j−1
1

〉(
Gkj

∣∣target j

〉)∣∣targetm
j+1

〉
= 1

2k j/2
|η〉
(

2

2k j/2
|u j〉 − |target j〉

)∣∣targetm
j+1

〉+ ∣∣u j−1
1

〉[(
1 − 2

2k j

)
|u j〉 + 1

2k j/2
|target j〉

]∣∣targetm
j+1

〉
= 1

2k j/2

[(
2

2k j
− 1

)
|η〉 +

(
2 − 2

2k j

)∣∣u j−1
1

〉]∣∣targetm
j

〉+ [2

2k j
|η〉 +

(
1 − 2

2k j

)∣∣u j−1
1

〉]|target j〉
∣∣targetm

j+1

〉
,

|w4〉 = Dj−1|w3〉 = 1

2k j/2

[(
2

2k j
− 1

)
O
∣∣u j−1

1

〉∣∣targetm
j

〉+ (2 − 2

2k j

)
Dj−1

∣∣u j−1
1

〉∣∣targetm
j

〉]
+
[

2

2k j
|η〉 +

(
1 − 2

2k j

)∣∣u j−1
1

〉]|target j〉
∣∣targetm

j+1

〉
.

062425-16

INTRODUCING STRUCTURE TO EXPEDITE QUANTUM … PHYSICAL REVIEW A 103, 062425 (2021)

Note that we used Lemma 11 when applying Dj−1 in the first summand. Now we can plug |w4〉 into the expression defining
β j . Observe that the second summand in the final expression is orthogonal to |target〉, thus can be safely discarded. We obtain

β j = 〈target|
{

1

2k j/2

[(
2

2k j
− 1

)
O
∣∣u j−1

1

〉∣∣targetm
j

〉+ (2 − 2

2k j

)
Dj−1

∣∣u j−1
1

〉∣∣targetm
j

〉]}

= 1

2k j/2

[(
1 − 2

2k j

)
1

2(s−k j)/2
+
(

2 − 2

2k j

)
β j−1

]
= 1

2(k1+···+k j)/2

(
1 − 2

2k j

)
+ 1

2k j/2

(
2 − 2

2k j/2

)
β j−1

concluding the proof. �
Theorem 10. Fix any ε > 0, and any N ∈ N of the form N = 2n. Suppose we are given a quantum oracle O operating on n

qubits that marks exactly one element. Then there exists a quantum circuit A which uses the oracle O at most (1 + ε)π
4

√
N times

and uses at most O(log (1/ε)
√

N) nonoracle basic gates, which finds the element marked by O with certainty.
Proof. We first begin by choosing a particular sequence of sizes for diffusers in the circuit Dm, namely, k j = (x + 1) j where

x ∈ N+ is some parameter, and let us assume that the number of qubits we work with is precisely (x + 1) + (x + 1) × 2 + · · · +
(x + 1)m = (x + 1)m(m + 1)/2. From Lemma 12, we get that the amplitude the circuit Dm in the marked state is given by the
following recurrence

β j =
{

1, if j = 0
1

2(x+1) j(j+1)/4

(
1 − 2

2(x+1) j

)+ 1
2(x+1) j/2

(
2 − 2

2(x+1) j/2

)
β j−1, if j > 0.

To simplify the analysis of this recurrence, let us begin by substituting γ j = β j2(x+1) j(j+1)/4 × 2− j , which yields

γ j =
{

1, if j = 0

(1 − 2 × 2−(x+1) j)2− j + (1 − 2−(x+1) j)γ j−1, if j > 0.

We easily obtain the following inequality for j > 0:

γ j � (1 − 2−x j)(2− j + γ j−1).

We may thus set

δ j =
{

1, if j = 0

(1 − 2−x j)(2− j + δ j−1), if j > 0

and we easily obtain the inequality γ j � δ j . We can express
the solution to this recurrence as a sum

δm =
m−1∑
j=0

2 j−m
m∏

k=m− j

(1 − qk) +
m∏

k=1

(1 − qk),

where q = 2−x.
For a ∈ N ∪ {∞}, let

P (a) =
a∏

k=1

(1 − qk).

In terms of P (a), we can lower bound δm, as each term in our
product is strictly less than 1, thus,

δm �
m−1∑
j=0

2−m+ jP (m) + P (m)

=
m∑

j=0

2− jP (m) = (2 − 2−m)P (m) � (2 − 2−m)P (∞).

We now need a lower bound on P (∞), which we can obtain
via Euler’s Pentagonal Number Theorem [15], which states

that

P (∞) =
∞∏

k=1

(1 − qk)

= 1 +
∞∑

k=1

(−1)k (q(3k−1)k/2 + q(3k+1)k/2)

from which one can easily derive the inequality

P (∞) � 1 − q − q2.

Combining these inequalities we get

βm � (2 − 2−m)(1 − 2−x − 2−2x) × 2m × 2−n/2. (A3)

Using the same reasoning as in the proof of Theorem 3, the
inequality (A3) allows us to bound the number of iterations of
amplitude amplification by

π

4

1

2 − 2−m

1

1 − q − q2
× 2−m × 2n/2.

Each Dm has exactly 2m − 1 oracle calls, so one iteration has
2m+1 − 1 oracle calls (tree, its conjugate, and 1 extra call).
Thus, the number of oracle calls is at most

π

4

1

2 − 2−m

1

1 − q − q2
2−m × 2n/2(2m+1 − 1)

= π

4

1

1 − q − q2
2n/2

so we are only a factor of 1
1−2−x−2−2x away from optimal

number of oracle calls.

062425-17

MARCIN BRIAŃSKI et al. PHYSICAL REVIEW A 103, 062425 (2021)

Dm can be implemented with O(
∑m

k=1 ky × 2m−k) gates.
So we get at most

O

[(
m∑

k=1

kx × 2m−k

)
2−m × 2n/2

]
= O

[(
m∑

k=1

kx2−k

)
2n/2

]
nonoracle gates used by our algorithm. We use the following
simple observation

m∑
k=1

kx2−k �
∞∑

k=1

kx2−k = 2x

to get that the total number of nonoracle gates used by our
algorithm is bounded by O(x2n/2). Thus, for any ε > 0 that is
sufficiently small, we obtain an algorithm that makes at most

(1 + ε)
π

4
2n/2

oracle calls, and uses at most

O[log(ε−1)2n/2]

nonoracle gates by setting x ∈
[log (ε−1)]. �

[1] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-eighth Annual
ACM symposium on Theory of Computing (Association for
Computing Machinery, New York, 1996), pp. 212–219.

[2] G. Brassard, P. Høyer, and A. Tapp, Quantum cryptanalysis of
hash and claw-free functions, Lect. Notes Comput. Sci. 1380,
163 (1998).

[3] C. Durr and P. Høyer, A quantum algorithm for finding the
minimum, arXiv:quant-ph/9607014.

[4] C. Dürr, M. Heiligman, P. Høyer, and M. Mhalla, Quantum
query complexity of some graph problems, SIAM J. Comput.
35, 1310 (2006).

[5] L. K. Grover, Trade-offs in the quantum search algorithm, Phys.
Rev. A 66, 052314 (2002).

[6] S. Arunachalam and R. de Wolf, Optimizing the number of
gates in quantum search, Quantum Inf. Comput. 17 (2015).

[7] K. Zhang and V. E. Korepin, Depth optimization of quantum
search algorithms beyond Grover’s algorithm, Phys. Rev. A
101, 032346 (2020).

[8] C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi, The
complexity of unique k-sat: An isolation lemma for k-cnfs,
J. Comput. Syst. Sci. 74, 386 (2008).

[9] C. Zalka, Grover’s quantum searching algorithm is optimal,
Phys. Rev. A 60, 2746 (1999).

[10] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, Quantum am-
plitude amplification and estimation, Contemp. Math. 305, 53
(2002).

[11] L. G. Valiant and V. V. Vazirani, Np is as easy as detecting
unique solutions, in Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, STOC ’85 (Associa-
tion for Computing Machinery, New York, 1985), pp. 458–463.

[12] W. Burkot, J. Tułowiecki, V. Hlembotskyi, and W. Jarnicki,
Quantum circuit and methods for use therewith, March 2020,
US patent application No. 62990122.

[13] A. Mandviwalla, K. Ohshiro, and B. Ji, Implementing grover’s
algorithm on the ibm quantum computers, in 2018 IEEE Inter-
national Conference on Big Data (Big Data) (IEEE, Piscataway,
NJ, 2018), pp. 2531–2537.

[14] M. A. Nielsen and I. Chuang, Quantum computation and quan-
tum information, Am. J. Phys. 70, 558 (2002).

[15] L. Euler, Evolutio producti infiniti (1 − x)(1 − xx)(1 − x3)(1 −
x4)(1 − x5)(1 − x6) etc. in seriem simplicem, Acta Academiae
Scientarum Imperialis Petropolitinae (1783), pp. 47–44.

[16] M. Boyer, G. Brassard, P. Høyer, and A. Tapp, Tight
bounds on quantum searching, Fortschr. Phys. 46, 493
(1998).

[17] S. Arora and B. Barak, Computational Complexity: A Modern
Approach, 1st ed. (Cambridge University Press, New York,
2009).

[18] J. L. Carter and M. N. Wegman, Universal classes of hash
functions, J. Comput. Syst. Sci. 18, 143 (1979).

[19] Y. Mansour, N. Nisan, and P. Tiwari, The computational com-
plexity of universal hashing, Theor. Comput. Sci. 107, 121
(1993).

[20] M. T. Nair and A. Singh, Linear Algebra (Springer, Berlin,
2018), pp. 107–161.

[21] J. Goldman and G.-C. Rota, On the foundations of combi-
natorial theory iv finite vector spaces and eulerian generating
functions, Stud. Appl. Math. 49, 239 (1970).

[22] J. Gwinner, M. Briański, W. Burkot, Ł. Czerwiński, and V.
Hlembotskyi, Benchmarking 16-element quantum search algo-
rithms on ibm quantum processors, arXiv:2007.06539.

062425-18

https://doi.org/10.1007/BFb0054319
http://arxiv.org/abs/arXiv:quant-ph/9607014
https://doi.org/10.1137/050644719
https://doi.org/10.1103/PhysRevA.66.052314
https://doi.org/10.26421/QIC17.3-4-4
https://doi.org/10.1103/PhysRevA.101.032346
https://doi.org/10.1016/j.jcss.2007.06.015
https://doi.org/10.1103/PhysRevA.60.2746
https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1119/1.1463744
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1002/sapm1970493239
http://arxiv.org/abs/arXiv:2007.06539

