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The most general quantum object that can be shared between two distant parties is a bipartite channel, as it is
the basic element to construct all quantum circuits. In general, bipartite channels can produce entangled states,
and can be used to simulate quantum operations that are not local. While much effort over the last two decades
has been devoted to the study of entanglement of bipartite states, very little is known about the entanglement of
bipartite channels. In this work, we rigorously study the entanglement of bipartite channels as a resource theory
of quantum processes. We present an infinite and complete family of measures of dynamical entanglement, which
gives necessary and sufficient conditions for convertibility under local operations and classical communication.
Then we focus on the dynamical resource theory where free operations are positive partial transpose (PPT)
superchannels, but we do not assume that they are realized by PPT pre- and postprocessing. This leads to
a greater mathematical simplicity that allows us to express all resource protocols and the relevant resource
measures in terms of semidefinite programs. Along the way, we generalize the negativity from states to channels,
and introduce the max-logarithmic negativity, which has an operational interpretation as the exact asymptotic
entanglement cost of a bipartite channel. Finally, we use the non-positive partial transpose (NPT) resource
theory to derive a no-go result: it is impossible to distill entanglement out of bipartite PPT channels under
any sets of free superchannels that can be used in entanglement theory. This allows us to generalize one of the
long-standing open problems in quantum information—the NPT bound entanglement problem—from bipartite
states to bipartite channels. It further leads us to the discovery of bound entangled positive operator valued
measures.
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I. INTRODUCTION

Quantum entanglement [1,2] is universally regarded as the
most important aspect of quantum theory, making it radically
different from classical theory. Schrödinger himself summa-
rized this phenomenon as the fact that [3] “[...] the best
possible knowledge of a whole does not necessarily include
the best possible knowledge of all its parts.” Indeed, entan-
glement is a necessary ingredient for the nonlocal phenomena
observed in quantum theory [4–8]. The development of quan-
tum information theory has brought a new perspective on
quantum entanglement, seen as a resource in many protocols
that cannot be implemented in classical theory. Think, for
instance, of the paradigmatic examples of quantum teleporta-
tion [9], dense coding [10], and quantum key distribution [11].
The idea of entanglement concretely helping in information-
theoretic tasks can be made precise and rigorous using the
framework of resource theories [12–22].

Resource theories have been studied in great detail when
the resources involved are states (also known as static re-
sources) [19]. In this case, one wants to study the conversion
between states. This is the usual setting in which a rigorous
theory of entanglement can be put forward. The physical situ-
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ation is when there are two separated parties, and, because of
their spatial separation, they are restricted to performing local
operations (LOs), and exchanging classical communication
(CC) [1,2,23–25]. These free operations are called LOCC. In
this setting, free states are those that can be prepared from
scratch using an LOCC protocol; they are separable states.
Then one studies the conversion between bipartite states when
the two parties initially share a state, which they are tasked
to manipulate and transform into a target state using LOCC
channels. For pure entangled states, this conversion is fairly
easy to study [26], and for them the distillation of maximal
entangled states and the cost coincide. This is not the case
for entangled mixed states, for which the distillation can be
zero, yet the cost is strictly nonzero [27,28]. In other words,
for some states, we need to spend maximally entangled states
to create them, but, once created, we cannot get back any
maximal entanglement. This phenomenon is called bound
entanglement.

Despite being the natural choice dictated by the physical
setting for entanglement, working with LOCC protocols is,
in general, not easy [29]. For this reason, other choices of
free operations have been considered, which are structurally
and mathematically simpler to deal with. The first class is
that of separable operations (SEPs) [30–32], which are the
operations that send separable states to separable states, even
when tensored with the identity channel. In resource-theoretic
terminology they are completely resource nongenerating op-
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erations, i.e., the largest set of free operations (in the sense
of inclusion) transforming free states into free states, in a
complete sense [19]. LOCC channels (and even their topo-
logical closure [29]) have been shown to be a strict subset of
separable operations [30,33,34].

We can also consider positive partial transpose (PPT) op-
erations [32,35]. The definition of these operations is inspired
by the Peres-Horodecki criterion [36,37] for the separability
of bipartite states, based on partial transpose: a state is separa-
ble only if its partial transpose is still positive semidefinite.
In this resource theory, free states are states with positive-
semidefinite partial transpose (PPT states). They coincide
with separable states for bipartite systems of dimension 2 ⊗ 2
and 2 ⊗ 3, but in general there are also nonseparable PPT
states [27]. This is indeed the case for all known bound entan-
gled states [28]. In this non-positive partial transpose (NPT)
resource theory, the free operations are the channels that send
PPT states to PPT states even when tensored with the identity
channel. They are called PPT operations. Clearly both LOCC
and separable operations are subsets of PPT operations.

Despite not being so physically motivated, separable op-
erations and PPT operations are helpful for their greater
mathematical simplicity, and because they allow us to prove
no-go results: if a state conversion is not possible under sep-
arable or PPT operations, then it is not possible under LOCC
as well. Similarly, PPT and separable operations can provide
upper and lower bounds for conversions with LOCC channels.

If one looks closely at the first examples where entan-
glement proved to be a resource (e.g., quantum teleportation
and dense coding), one notices they involve the conversion
of a state into a particular channel, i.e., a static resource into
a dynamical one [38,39]. Therefore, the need to go beyond
conversion between static resources is built into the very
notion of entanglement as a resource. This is supported by
the fact that in physics everything, including a state, can be
viewed as a dynamical resource [40–42]. Therefore, it is really
necessary to phrase entanglement theory as a resource theory
of quantum processes. In these theories the agent converts
different dynamical resources by means of a restricted set
ofsuperchannels.

In light of this, in this article we expand the results origi-
nally announced in Ref. [43], formulating a rigorous treatment
of the resource theory of entanglement as a resource theory of
processes (an independent work in this respect is Ref. [44]).

The generic resource will be abipartite channel [45,46]
rather than a bipartite state. A bipartite channel, represented
in Fig. 1, is a channel with two inputs and two outputs. We
assume there is a spatial separation between the two inputs
(and also between the two outputs). This spatial separation
is associated with the presence of two spacelike separated
parties, Alice and Bob, as for bipartite states. The novelty
coming from the fact that we are considering channels rather
than states is that we also have a time separation between
the input side of the channel and its outputs. This makes
bipartite channels the most general resource for the study of
entanglement and, at the same time, the most versatile. Indeed,
if we trivialize (i.e., make one dimensional) the two inputs
of a bipartite channel, we recover the theory of entanglement
for bipartite states. On the other hand, if we consider classical
outputs, we obtain the “dual” resource theory of entanglement

FIG. 1. The four regions of a bipartite channel. Note the space
separation between the two parties, Alice and Bob. Unlike for bipar-
tite states, we can also distinguish a temporal separation between the
input and the output of each party.

for positive operator valued measures (POVMs). We can also
consider other scenarios. For instance, if we trivialize Alice’s
output and Bob’s input, we get a one-way channel from Alice
to Bob, a situation studied in Ref. [47].

In this article, we apply the resource-theoretic construc-
tions introduced in Ref. [48] to the resource theory of
entanglement for bipartite channels. In particular, we focus
on PPT and separable superchannels, for their greater math-
ematical simplicity, in the same spirit as one considers PPT
and separable channels to study the entanglement of states.
Our approach differs from Ref. [47] in a twofold way. First,
we study the most general resource: bipartite channels, in-
stead of just states and one-way channels. This allows us
to generalize the notion of κ-entanglement [47], which we
call max-logarithmic negativity, in two distinct ways. Second,
we do not require PPT superchannels to have PPT pre- and
postprocessing [49]. This leads to a great simplification in the
mathematical treatment and the derivation of results, as all
conditions on resource conversion can be expressed in terms
of semidefinite programs (SDPs).

We conclude the article by analyzing bound entanglement
for bipartite channels, showing that no entanglement can be
distilled from PPT channels. We also provide the example of
a bound entangled POVM.

The article is organized as follows. After some background
information on superchannels and their Choi matrices pre-
sented in Sec. II, the resource theory of entanglement for
bipartite channels is introduced in Sec. III, where we define
the basic resource-theoretic protocols. In Sec. IV we ana-
lyze the simplest resource theory for entanglement from a
mathematical point of view: the NPT resource theory. We
show that all resource conversion tasks can be expressed in
terms of SDPs, and, in particular, we provide an operational
interpretation for the max-logarithmic negativity. Separable
superchannels are introduced in Sec. V. We conclude the arti-
cle with a study of bound entanglement for bipartite channels
in Sec. VI. Conclusions are drawn in Sec. VII.
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II. PRELIMINARIES

This section contains some basic notions that are ex-
tensively used throughout this article. First we specify the
notation we use, and then we move to give a brief presentation
of the main properties of supermaps and superchannels. We
conclude the section with an overview of quantum combs.

A. Notation

Physical systems and their corresponding Hilbert spaces
will be denoted by A, B, C, etc., where the notation AB means
A ⊗ B. Dimensions will be denoted with vertical bars, so the
dimension of system A will be denoted by |A|. The tilde
symbol will be reserved to indicate a replica of a system. For
example, Ã denotes a replica of A, i.e., |A| = |Ã|. Density ma-
trices acting on Hilbert spaces will be denoted by lowercase
greek letters ρ, σ , etc., except for the maximally mixed state
(i.e., the uniform state), which will be denoted by uA := 1

|A| IA.
The set of all bounded operators acting on system A is

denoted by B(A), the set of all Hermitian matrices acting
on A by Herm(A), and the set of all density matrices acting
on system A by D(A). We use calligraphic letters D, E , F ,
etc., to denote quantum maps, reserving T to represent the
transpose map. The identity map on a system A will be de-
noted by idA. The set of all linear maps from B(A) to B(B)
is denoted by L(A → B), the set of all completely positive
(CP) maps by CP(A → B), and the set of quantum channels,
which are completely positive and trace-preserving (CPTP),
by CPTP(A → B). Herm(A → B) will denote the real vector
space of all Hermitian-preserving maps in L(A → B). We will
write N � 0 to mean that the map N ∈ Herm(A → B) is
completely positive.

Unless otherwise specified, we will associate two sub-
systems A0 and A1 with every physical system A, referring,
respectively, to the input and output of the resource. Hence,
any physical system will be comprised of two subsystems A =
(A0, A1), even those representing a static resource, in which
case we simply have |A0| = 1. For simplicity, we will denote
a channel with a subscript A, e.g., NA, to mean that it is an
element of CPTP(A0 → A1). Similarly, a bipartite channel in
CPTP(A0B0 → A1B1) will be denoted by NAB. This notation
makes the analogy with bipartite states more transparent.

In this setting, when we consider A = (A0, A1), B =
(B0, B1), etc., comprised of input and output subsystems, the
symbol L(A → B) refers to all linear maps from the vector
space L(A0 → A1) to the vector space L(B0 → B1). Similarly,
Herm(A → B) ⊂ L(A → B) is a real vector space consisting
of all the linear maps that take elements in Herm(A0 → A1)
to elements in Herm(B0 → B1). In other terms, maps in
Herm(A → B) take Hermitian-preserving maps to Hermitian-
preserving maps. Linear maps in L(A → B) and Herm(A →
B) will be called supermaps, and will be denoted by capital
greek letters �, ϒ , �, etc. In the following, to avoid confusion
with the notation for linear and Hermitian-preserving maps,
whenever we mean linear or Hermitian-preserving maps, the
systems involved will have a subscript, to make it clear that
we are not considering pairs of systems. In this setting, the
identity supermap in L(A → A) will be denoted by 1A.

We will use square brackets to denote the action of a
supermap �A→B ∈ L(A → B) on a linear map NA ∈ L(A0 →
A1). For example, �A→B[NA] is a linear map in L(B0 → B1)
obtained from the action of the supermap � on the map N .
Moreover, for a simpler notation, the identity supermap will
not often appear explicitly in equations; e.g., �A→B[NRA]
will mean (1R ⊗ �A→B)[NRA]. Instead, the action of linear
map (e.g., quantum channel) NA ∈ L(A0 → A1) on a matrix
ρ ∈ B(A0) will be written with parentheses, i.e., NA(ρA0 ) ∈
B(A1).

Finally, we adopt the following convention concerning
partial traces: when a system is missing, we take the partial
trace over it. This applies to matrices as well as to maps. For
example, if MAB is a matrix on A0A1B0B1, MAB0 denotes the
partial trace on the missing system B1: MAB0 := TrB1 [MAB].

B. Supermaps

In Refs. [50–52] it was shown that it is possible to con-
struct the Choi matrix J�

AB of a quantum supermap �A→B. In
particular, we can associate two linear maps with �A→B [52].
The first is the map P�

AB, defined as

P�
AB := �Ã→B[�+

AÃ
],

where the map �+
AÃ

acts on ρ ∈ B(A0Ã0) as

�+
AÃ

(ρA0Ã0
) = Tr[ρA0Ã0

φ+
A0Ã0

]φ+
A1Ã1

, (1)

with φ+
A0Ã0

:= |φ+〉〈φ+|A0Ã0
and |φ+〉A0Ã0

= ∑
j | j j〉A0Ã0

is the
unnormalized maximally entangled state (expressed in the
Choi basis). In other terms, the CP map �+

AÃ
can be viewed

as a generalization of φ+
A0Ã0

. With this construction, J�
AB can

be defined as the Choi matrix of the map P�
AB.

The second representation of a supermap is in terms of a
linear map Q� : B(A1B0) → B(A0B1), which is defined as
the map satisfying

J�
AB := Q�

Ã1B̃0→A0B1
(φ+

A1Ã1
⊗ φ+

B0B̃0
),

or as Q� := 1A ⊗ �A→B[SA], where SA is the swap from A1

to A0. With this second construction, it is apparent that the
Choi matrix J�

AB of the supermap can be defined also as the
Choi matrix of the the map Q�. On top of being useful for
the definition of the Choi matrix of a supermap, these two
representations of a supermap, P� and Q�, will play a useful
role in the study of the entanglement of bipartite channels.

A superchannel is a supermap �A→B ∈ L(A → B) that
takes quantum channels to quantum channels even when ten-
sored with the identity supermap [40,51–56]. More precisely,
�A→B ∈ L(A → B) is called a superchannel if it satisfies the
following two conditions:

(1) For any trace-preserving map NA ∈ L(A0 → A1), the
map �A→B[NA] is a trace-preserving map in L(B0 → B1).

(2) For any system R = (R0, R1) and any bipartite CP map
NRA ∈ CP(R0A0 → R1A1), the map �A→B[NRA] is also CP.

We will also say that a supermap �A→B ∈ L(A → B),
is completely positive if it satisfies the second condition
above [40,52]. Therefore, a superchannel is a CP su-
permap that takes trace-preserving maps to trace-preserving
maps [52,56]. We will denote the set of superchannels from
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A to B by S(A → B). Note that S(A → B) ⊂ L(A → B). In
particular, for the Choi matrix of a superchannel, we have
J�

A1B0
= IA1B0 and J�

AB0
= J�

A0B0
⊗ uA1 .

The definitions seen so far are abstract; nevertheless,
superchannels are physical objects that can be realized in
terms of pre- and postprocessing that are both quantum
channels [40,52]. Indeed, if � ∈ S(A → B), then there exist a
Hilbert space E , with |E | � |A0B0|, and two CPTP maps F ∈
CPTP(B0 → EA0) and E ∈ CPTP(EA1 → B1) such that, for
all NA ∈ L(A0 → A1),

�[NA] = EEA1→B1 ◦ NA0→A1 ◦ FB0→EA0 .

C. Quantum combs

Quantum combs are multipartite channels with a well-
defined causal structure [50,51,57–60]. They generalize the
notion of superchannels to objects that take several channels
as input, and output a channel (see Refs. [50,51] for more
details, and a further generalization where the input and the
output of combs are combs themselves). We will denote a
comb with n channel slots as input by Cn, and its action on
n channels by Cn[N1, . . . ,Nn]. The causal relation between
the different slots ensures that each such comb can be realized
with n + 1 channels E1, . . . , En+1. We therefore associate a
quantum channel

QCn := En+1 ◦ En ◦ · · · ◦ E1

with every comb. Note that the quantum channel QCn has a
causal structure in the sense that the input to Ek cannot affect
the output of Ek−1 for any k = 2, . . . , n + 1.

The Choi matrix of the comb is defined as the Choi matrix
of QCn . Owing to the causal structure of QCn , the marginals of
the Choi matrix of Cn satisfy similar relations to the marginals
of the Choi matrix of a superchannel (see Refs. [50,51] for
more details).

III. DYNAMICAL ENTANGLEMENT THEORY

Recall that with one ebit, thanks to quantum teleporta-
tion [9], we can simulate a qubit channel from Alice to
Bob using LOCC [23–25], and vice versa [38,39]. There-
fore, one ebit (a static resource) is equivalent to a dynamical
one: a qubit channel. Considering bipartite channels [46] in
CPTP(A0B0 → A1B1) (see Fig. 1), we can understand the
qubit identity channel from A0 to B1 as the maximal resource
under LOCC as long as |A1| = |B0| = 1. It is maximal be-
cause, by using it, every other channel can be implemented
between A0 and B1.

Now let us generalize this situation by analyzing what
the maximal resource is when all systems are nontrivial, and
specifically |A0| = |A1| = |B0| = |B1| = d . In Fig. 2 we show
that the SWAP operation is a maximal resource. Note that the
SWAP operator can produce two e-dits, and can also be simu-
lated by two e-dits. Therefore, the entanglement of the SWAP

operator is two e-dits. Note also that the SWAP operator is the
maximal resource even if the set of free operations allows only
one-way classical communication. On the other hand, in the
quantum resource theory in which free operations consists of
only local operations and shared entanglement (LOSE) [61],
but no classical communication, then two noiseless channels,

FIG. 2. (a) Simulation of an arbitrary channel NA′B′ with two
noiseless channels. (b) Simulation of an arbitrary channel NA′B′ with
the SWAP resource and one-way LOCC.

one from A0 → B1 and one from B0 → A1, are more resource-
ful than the SWAP operator. This is because the SWAP operator
is restricted to act simultaneously on both input systems. This
example demonstrates that in general, two channels NA0→B1

and MB0→A1 can be more resourceful than their tensor product
NA0→B1 ⊗ MB0→A1 since they can be used at different times.

The fact that a tuple of n channels can be a greater resource
than their tensor product was also discussed in Ref. [62]
(cf. also Ref. [48]). In the following, however, we will focus
mainly on a single resource at a time, in this case a single
bipartite channel.

A. Simulation of channels: Cost and distillation

Following Refs. [48,62–64], in Fig. 3 we illustrate the
most general LOCC superchannel that can act on a bipartite

FIG. 3. The action of an LOCC superchannel on one copy of a
bipartite channel NAB. The resulting channel is MA′B′ . Note that this
superchannel uses the dynamical resource NAB to simulate another
channel MA′B′ .
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FIG. 4. The action of an LOCC superchannel on n copies of the
bipartite channel NAB. (a) Parallel strategy for the distillation of m
ebits out of n copies of NAB. (b) Adaptive strategy for the distillation
of m ebits out of n subsequent uses of NAB.

channel. The superchannel consists of a preprocessing and
a postprocessing channel that are both LOCC. Moreover, the
side channel, corresponding to the memory in the realization
of a superchannel, consists of two parts: A2 on Alice’s side and
B2 on Bob’s side. We denote the set of such superchannels by
LOCC(AB → A′B′).

The discussion at the beginning of Sec. III shows that
ebits remain the units to quantify the entanglement of a bi-
partite channel. Indeed, two ebits can be used to simulate
any bipartite channel in which the two input and two out-
put systems are all qubits. Therefore, even in the resource
theory of entanglement of bipartite channels one can de-
fine operational tasks in a very similar fashion to the state
domain. For example, in Figs. 4(a) and 4(b) we illustrate
parallel [65] and adaptive strategies [44,66–69] to distill static
entanglement out of a dynamical resource. Since the par-
allel scheme is a special instance of the adaptive strategy,
the distillable entanglement cannot be smaller when using
the adaptive scheme. However, in Sec. VI we will see that
there are bipartite entangled channels from which no distil-
lation is possible, no matter what strategy is applied. This
generalizes the notion of bound entanglement [28] to bipartite
channels.

Similar to distillation, also the entanglement cost of a bi-
partite channel can be divided into two types: parallel and
adaptive. In the parallel scheme, the goal is to simulate N⊗n

AB ,
i.e., n copies of NAB all acting simultaneously [see Fig. 5(a)].
On the other hand, the goal of the adaptive scheme is to
simulate n copies of NAB in a time sequential order [see
Fig. 5(b)]. Both schemes use ebits to simulate the channels.
For the same reason as for the distillation case, note that the
cost of simulating n sequentially ordered channels cannot be
greater than the cost in the parallel scheme. Owing to the
complexity of the adaptive scheme, in this paper we will focus
mostly on the parallel one.

FIG. 5. The cost of simulating a bipartite channel. (a) Parallel
strategy: consumption of m ebits to simulate N⊗n

AB . (b) Adaptive
strategy: consumption m ebits to simulate n subsequent uses of NAB.

Now we are ready to give the formal definitions of en-
tanglement costs and distillable entanglement of bipartite
channels. First of all, note that in entanglement theory,
the conversion distance for any two channels NAB and
MA′B′ , introduced in Ref. [48] and inspired by Ref. [70], is
given by

dLOCC(NAB → MA′B′ )

= 1
2 inf

�∈LOCC(AB→A′B′ )
‖�AB→A′B′ [NAB] − MA′B′ ‖�,

where the optimization is over the set of LOCC superchannels.
Typically, the computation of this quantity is NP hard. To see
why, consider the special case in which NAB is a bipartite sep-
arable state (i.e., |A0| = |B0| = 1), and MAB is some (possibly
entangled) bipartite state as well. In this case, the computation
of the conversion distance would determine if the bipartite
state MAB is entangled or not, but this is known to be NP
hard [71,72].

Furthermore, we know that if � ∈ LOCC(AB → A′B′)
then the bipartite channel Q�

AB→A′B′ is also LOCC, while the
condition that Q�

AB→A′B′ is LOCC is most likely insufficient
to ensure that � ∈ LOCC(AB → A′B′). This adds another
layer of complexity to the problem of computing dLOCC. In
Sec. IV we will see that this additional complexity persists
even when considering simpler sets of operations, like PPT
channels [32,35].
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Since in entanglement theory there exists a unique (up to
local unitaries) maximal static resource, the single-shot entan-
glement cost and entanglement distillation with error ε � 0
are given respectively by

COST(1)
LOCC,ε(NAB)

:= log2 min
m∈Z+

{m : dLOCC(φ+
m → NAB) � ε}

and

DISTILL(1)
LOCC,ε(NAB)

:= log2 max
m∈Z+

{m : dLOCC(NAB → φ+
m ) � ε},

where φ+
m is a (normalized) maximally entangled state with

Schmidt rank m. Here the optimizations are over this Schmidt
rank m. Then the entanglement cost and the distillable entan-
glement of a dynamical resource in the asymptotic regime are
defined respectively as

COSTLOCC(NAB) := lim
ε→0+

lim inf
n

1

n
COST(1)

LOCC,ε(N⊗n
AB )

and

DISTILLLOCC(NAB)

:= lim
ε→0+

lim sup
n

1

n
DISTILL(1)

LOCC,ε

(
N⊗n

AB

)
.

These definitions assume the parallel scheme. In the adaptive
scheme, the entanglement cost and the distillable entangle-
ment are defined accordingly, as per Ref. [48].

B. Measures of dynamical entanglement

In this section we discuss a few measures that quantify the
entanglement of a bipartite channel. We also examine the form
that the complete family of resource measures introduced in
Ref. [48] takes in entanglement theory.

A function E : CPTP(A0B0 → A1B1) → R is called a
measure of dynamical entanglement if it does not increase un-
der LOCC superchannels. It is called dynamical entanglement
monotone if it is convex, and does not increase on average un-
der LOCC superinstruments [56]. Some measures of dynam-
ical resources are discussed in Refs. [43,44,48,62,64,66,73–
79]. Specifically, for bipartite entanglement the relative en-
tropy of dynamical entanglement can be defined as

Erel(NAB) = inf
M∈LOCC

D(NAB‖MAB).

Note that we are using the infimum rather than the mini-
mum because the set of LOCC channels is not topologically
closed [29].

Moreover, any measure of static entanglement E that is
monotonic under separable channels (in particular, under
LOCC) can be extended to bipartite channels in two different
ways [48,62,64,74]. In the first, we consider the amortized
extension (cf. also Refs. [73,80])

E (1)(NAB) := sup
σ∈D(A′

0B′
0A0B0 )

{E (NA0B0→A1B1 (σA′
0B′

0A0B0 ))

− E (σA′
0B′

0A0B0 )},

where A′
0 and B′

0 are additional reference systems in Alice’s
and Bob’s sides, respectively, and the optimization is over all
density matrices on the system A′

0B′
0A0B0. The other extension

is given by

E (2)(NAB) := sup
σ∈SEP(A′

0A0:B′
0B0 )

E (NA0B0→A1B1 (σA′
0B′

0A0B0 )),

where SEP(A′
0A0 : B′

0B0) denotes the set of separable states
between Alice and Bob. Both of the above extensions of E
can be proved to be nonincreasing under separable superchan-
nels [74].

Now we introduce the complete family of dynamical en-
tanglement measures, following our construction in Ref. [48].
For any (fixed) bipartite channel P ∈ CPTP(A′

0B′
0 → A′

1B′
1),

define (see Ref. [48])

EP (NAB) := sup
�∈LOCC(AB→A′B′ )

Tr
[
JP

A′B′J�[N ]
A′B′

]
,

where NA ∈ CPTP(A0B0 → A1B1), and J is the Choi matrix
of the channel in its superscript. Note again that we are using
the supremum instead of the maximum because the set of
LOCC channels is not closed. This function may not van-
ish on LOCC channels; if we want so, we need to subtract
supM∈LOCC(A′B′ ) Tr[JP

A′B′JM
A′B′ ]. As explained in Ref. [48], this

defines a new non-negative measure of dynamical entangle-
ment, which vanishes on LOCC channels. Furthermore, the
set of functions {EP} is complete, in the sense that a bipartite
channel NAB can be converted within the topological closure
of LOCC superchannels into another bipartite channel EA′B′ if
and only if

EP (NAB) � EP (EA′B′ ) (2)

for every P ∈ CPTP(A′
0B′

0 → A′
1B′

1).
A natural question to ask is whether it is possible to find

another family of measures of dynamical entanglement that is
finite, but at the same time complete. However, in Ref. [81]
it was proved that any such complete family of entangle-
ment measures must be infinite. Nevertheless, our family {EP}
can be made countable since we can remove from it all the
channels P whose Choi matrix includes coefficients that are
irrational. This can be done because, by construction, each
function EP is continuous in P . Since the set of all channels
P whose Choi matrices involve only rational coefficients is
dense in the set of all Choi matrices, by continuity it follows
that, if Eq. (2) holds for all such rational Ps, it holds also for
all P ∈ CPTP(A′

0B′
0 → A′

1B′
1). We conclude that our family

{EP} is optimal, in the sense that there is no other complete
family of measures of dynamical entanglement that charac-
terizes the LOCC entanglement of a bipartite channel more
efficiently.

Despite the various interesting properties of the measures
of dynamical entanglement discussed in this section, they
are all extremely hard to compute due to the complexity
of LOCC channels and superchannels. We leave the dis-
cussion of more computationally manageable measures to
Sec. IV C.

C. Entanglement of bipartite POVMs

We end this section on the general properties of the
resource theory of dynamical entanglement with a short dis-
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cussion on entanglement of bipartite POVMs. A bipartite
channel N ∈ CPTP(A0B0 → A1B1) for which the output sys-
tem A1B1 is classical can be viewed as a POVM. In this case,
the channel can be expressed as

NAB(ρA0B0 ) =
∑
x,y

Tr
[
ρA0B0 Exy

A0B0

]|xy〉〈xy|A1B1
,

where the set of matrices {Exy
A0B0

}
x,y

forms a POVM, and
{|xy〉}x,y is an orthonormal basis of A1B1. Such channels
are fully characterized by the condition DA1B1 ◦ NAB = NAB,
where DA1B1 is the completely dephasing channel on system
A1B1 (with respect to the fixed classical basis). Note that
DA1B1 ∈ LOCC(A1B1 → A1B1).

Lemma 1. Let N ∈ CPTP(A0B0 → A1B1) be a bipartite
POVM. Then

Erel(NAB) = inf
M ∈ LOCC

DA1B1 ◦ MAB = MAB

D(NAB‖MAB). (3)

Proof. Clearly, by definition Erel(NAB) is less than or equal
to the right-hand side of Eq. (3). Let us prove the converse
inequality. We have

Erel(NAB) = inf
M∈LOCC

D(NAB‖MAB)

� inf
M∈LOCC

D(DA1B1 ◦ NAB‖DA1B1 ◦ MAB),

where the inequality follows from the generalized
data-processing inequality [74]. Now recall that, being
a POVM, DA1B1 ◦ NAB = NAB. Therefore, E (NAB) �
infM∈LOCC D(NAB‖DA1B1 ◦ MAB). Hence we conclude

that

Erel(NAB) = inf
M ∈ LOCC

DA1B1 ◦ MAB = MAB

D(NAB‖MAB).

�
The above lemma demonstrates that the relative entropy

of entanglement of a bipartite POVM can be viewed as its
relative entropy distance to the set of LOCC POVMs (rather
than arbitrary bipartite LOCC channels).

Now, note that if systems A1 and B1 are classical, we
can view them as a single classical system (since classical
communication is free), and instead of using two indices
x, y to characterize the POVM, it makes more sense to
use just a single index, say x. In this setting, the above
lemma can be used to calculate the relative entropy of
process entanglement for a POVM {Nx

A0B0
}. Consider the

associated quantum-to-classical channel NA0B0→X (ρA0B0 ) =∑|X |
x=1 Tr[ρA0B0 Nx

A0B0
]|x〉〈x|X , and an LOCC POVM

{F y
A0B0

}, with its associated quantum-to-classical channel

FA0B0→Y (ρA0B0 ) = ∑|Y |
y=1 Tr[ρA0B0 F y

A0B0
]|y〉〈y|Y . Now,

possibly by completing one of the two POVMs with
some zero elements, we can always take X = Y . To
calculate the channel divergence we have to evaluate
NA0B0→X and FA0B0→X on any pure state ψRA0B0 ,
where R is isomorphic to A0B0 [82,83]. Recall that
ψRA0B0 = (IR ⊗ √

γA0B0UA0B0 )φ+
RA0B0

(IR ⊗ U †
A0B0

√
γA0B0 ),

where γA ∈ D(A0B0) and UA0B0 is some unitary. After some
calculations, we obtain

E ({Nx}) = inf
{Fx}∈LOCC

max
γ ,U

D

(∑
x

U
√

γ (Nx )T √
γU † ⊗ |x〉〈x|

∥∥∥∥∥∑
x

U
√

γ (F x )T √
γU † ⊗ |x〉〈x|

)
.

By the properties of D, we have finally

E ({Nx})

= inf
{Fx}∈LOCC

max
γ

∑
x

D
(√

γ (Nx )T √
γ
∥∥√

γ (F x )T √
γ
)
.

Using the protocol of entanglement swapping [84], we can
use the entanglement of POVMs to produce static entangle-
ment. This is illustrated in Fig. 6.

IV. NPT ENTANGLEMENT OF A BIPARTITE CHANNEL

Entanglement theory is hard to study due to the complexity
of LOCC channels [29,85–88] and the fact that even deter-
mining whether a given state is entangled or not is known
to be NP hard [71,72]. For this reason, much of the work in
recent years on entanglement theory involved the replacement
of LOCC with a larger set of free operations that are more
computationally friendly (see, e.g., Ref. [89] and references
therein). One such set is the set of separable operations (or
in short SEP; cf. Sec. V) [30–32]; another one is the set of
PPT operations [32,35]. Both sets are larger than LOCC, but
the set of PPT operations is much larger than both LOCC

and SEP operations, as it contains, for instance, PPT bound
entangled states [27,28] (viewed as PPT channels with trivial
input). Yet, among them, the set of PPT operations has the
simplest characterization, and can be used to provide insights
into LOCC entanglement, including various bounds on LOCC
tasks.

Bipartite states with positive (semidefinite) partial trans-
pose (called PPT states) were first discussed in Refs. [36,37]

FIG. 6. Here A1 and B1 are classical systems. The action of an
LOCC superchannel � on a bipartite channel with classical output
can produce an entangled state.
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in the context of entanglement theory. A few years later
Rains [32,35] defined PPT bipartite channels for the first time
(of which LOCC or SEP channels are a special type), and used
them to find an upper bound on the distillable entanglement.
In this section we consider PPT superchannels [49], and use
them for the study of entanglement of bipartite channels. We
will see that several of the optimization problems introduced
in the previous sections can be solved with SDPs in this theory
of entanglement, called the theory of NPT entanglement. We
start with a few notations that will be very useful in the
following.

Denote the transpose supermap by ϒB ∈ L(B → B):

ϒB[NB] := TB1 ◦ NB0→B1 ◦ TB0 ,

for all NB ∈ L(B0 → B1), where TB0 and TB1 are the trans-
pose maps on the input and output systems, respectively. In
Refs. [32,35] the symbol  was used to indicate the partial
transpose of a bipartite channel; that is,

N 
AB := (1A ⊗ ϒB)[NAB].

In the following we adopt the convention to always choose
Bob’s systems (i.e., those denoted by B) to apply the (partial)
transpose to. With these notations, the set of PPT maps in
CP(A0B0 → A1B1) is defined as

PPT(A0B0 → A1B1)

= {
N ∈ CP(A0B0 → A1B1) : N 

AB � 0
}
.

Note that PPT maps are defined as general CP maps, not
necessarily as channels. PPT maps have several useful proper-
ties. First, NAB ∈ PPT(A0B0 → A1B1) if and only if its Choi
matrix JN

AB satisfies JN
AB � 0 and (JN

AB)TB � 0. The former con-
dition implies that NAB is a CP map, and the latter ensures that
it is PPT. The latter follows from the identity

JN 

AB = (
JN

AB

)TB
. (4)

Furthermore, PPT maps have the property that they are
completely PPT preserving [89], meaning that if NAB ∈
PPT(A0B0 → A1B1), then for every bipartite PPT quantum
state ρ ∈ D(A′

0A0B′
0B0), the matrix NA0B0→A1B1 (ρA′

0A0B′
0B0 ) has

positive partial transpose. In other words, NAB takes PPT
positive-semidefinite matrices to PPT positive-semidefinite
matrices even when it is tensored with the identity.

Here we discuss two types of generalizations of PPT maps
to supermaps. We call the first one restricted PPT superchan-
nels, to distinguish it from the PPT supermaps we will study
extensively in what follows. We will see that restricted PPT
superchannels lead to a cumbersome entanglement theory on
bipartite channels, similar to the one used in Refs. [47,67,90].
Further, here we consider bipartite channels, whereas in
Ref. [47] the authors considered only one-way channels from
Alice to Bob (i.e., the special case in which |B0| = |A1| = 1).

A restricted PPT superchannel is depicted in Fig. 7. In the
language of Ref. [48], it is a freely realizable superchannel:
it consists of pre- and postprocessing channels E and F that
are both PPT. Note that, at a first glance, this looks a very
natural definition, and as discussed in Ref. [48], it is the most
physical and natural one. Moreover, denoting this restricted
PPT superchannel by �, it is clear that if N is a PPT chan-
nel then also the resulting map �[N ] is PPT. Nonetheless,

FIG. 7. The action of a restricted PPT superchannel on the bipar-
tite channel NAB.

PPT channels are not physical. They do not arise from some
physical constraint on a physical system. Therefore, the re-
quirement that the superchannel � be realized with PPT pre-
and postprocessing channels does not make � more physical.
Moreover, as we will see, this definition does not lead to a
simple resource theory, and as such, it loses its advantage of
being a useful approximation to LOCC. For these reasons, we
will adopt a more general definition of PPT superchannels that
avoids the requirement that they be realized by PPT channels.
However, before doing that, we first discuss some properties
of restricted PPT superchannels.

Proposition 2. Let � ∈ S(AB → A′B′) be a superchannel
as in Fig. 7, where F ∈ PPT(A′

0B′
0 → A2A0B0B2) and E ∈

PPT(A2A1B1B2 → A′
1B′

1). Then(
J�

ABA′B′
)TBB′ � 0.

Proof. Since J�
ABA′B′ is the Choi matrix of the CPTP map

Q�
A1A′

0B1B′
0→A0A′

1B0B′
1
= EA2A1B1B2→A′

1B′
1
◦ FA′

0B′
0→A2A0B0B2 , (5)

it is enough to show that the channel Q� is PPT. Now, Q� is
PPT because it is defined as a composition of two PPT maps.
Explicitly, we have(

Q�
) = TB0B′

1
◦ EA2A1B1B2→A′

1B′
1
◦ FA′

0B′
0→A2A0B0B2 ◦ TB1B′

0

= TB′
1
◦ EA2A1B1B2→A′

1B′
1
◦ TB1

◦ TB0 ◦ FA′
0B′

0→A2A0B0B2 ◦ TB′
0

= TB′
1
◦ EA2A1B1B2→A′

1B′
1
◦ TB1B2

◦ TB0B2 ◦ FA′
0B′

0→A2A0B0B2 ◦ TB′
0

= E
A2A1B1B2→A′

1B′
1
◦ F

A′
0B′

0→A2A0B0B2
.

Since both E and F are PPT channels, the last line is a valid
quantum channel. This completes the proof �

We believe that the converse of the proposition above does
not hold. In other words, if the Choi matrix of � has pos-
itive partial transpose, it does not necessarily mean that �

can be realized with pre- and postprocessing channels that
are both PPT. However, to prove such a statement, one will
need to provide an example, and then show that the proposed
superchannel does not have any other realizations that involve
only PPT pre- and postprocessing channels. Alternatively, the
question can be rephrased as follows. Suppose we only know
that the channel Q� in the first line of Eq. (5) is a PPT channel;
does it necessarily mean that there exist PPT channels E and
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F such that we can decompose Q� as in the second line of
Eq. (5)?

While there are no obvious reasons to believe that the
answer is positive, we have not been able to prove it. If,
instead, the answer were positive, it would mean that the set
of restricted PPT superchannels is the same as the set of PPT
superchannels we define below.

A. PPT supermaps

In this section we define the set of PPT superchannels we
are going to use in the following [49]. These superchannels
have already featured in a number of works on quantum com-
munication [91–93]. We believe that this set is strictly larger
than the set of restricted PPT superchannels introduced above.
However, as we discussed above, we have not been able to
show this strict inclusion.

Definition 3. Let � ∈ L(AB → A′B′) be a CP supermap
with systems A, B, A′, B′ all being composite systems with
input and output dimensions.

(1) � is PPT preserving if for any PPT map E ∈
PPT(A0B0 → A1B1), the map �[E] ∈ PPT(A′

0B′
0 → A′

1B′
1).

(2) � is completely PPT preserving if 1A′′B′′ ⊗ � is PPT
preserving for any composite systems A′′ = (A′′

0, A′′
1 ) and

B′′ = (B′′
0, B′′

1 ).
(3) � is a PPT supermap if, in addition to �, also � :=

ϒB′ ◦ � ◦ ϒB is a CP supermap.
Remark 4. Note that if � ∈ L(AB → A′B′) is a PPT CP

supermap, and the dimensions |A0| = |B0| = |A1| = |B1| = 1,
then � can be viewed as a PPT map in CP(A′

0B′
0 → A′

1B′
1).

Moreover, note that in the definition of a PPT supermap we
require that both � and � are CP supermaps, in complete
analogy with the definition of PPT CP maps.

We denote the set of all PPT CP supermaps by PPT(AB →
A′B′).

The landscape of PPT supermaps portrayed in Definition 3
is actually simpler. Indeed, completely PPT-preserving and
PPT supermaps are the same notion (cf. also Ref. [49]).

Theorem 5. Let � ∈ L(AB → A′B′) be a CP supermap,
and denote by J�

ABA′B′ its Choi matrix. Then, the following are
equivalent:

(1) � is a PPT supermap.
(2) The Choi matrix of � satisfies(

J�
ABA′B′

)TBB′ � 0.

(3) � is completely PPT preserving.
Proof. First we prove that statements (1) and (2) are equiv-

alent. Consider the map �+
AÃ

∈ CP(A0Ã0 → A1Ã1) defined in
Eq. (1), which is completely positive, and it is the CP-map
analog of the maximally entangled state. Recall also that one
of the representations of a supermap � ∈ L(A → A′) is given
by the map P�

AA′ = (1A ⊗ �)[�+
AÃ

] whose Choi matrix is the
Choi matrix of �. Since here we consider a bipartite CP
supermap � ∈ L(AB → A′B′), the map P� is defined as

P�
ABA′B′ = (1AB ⊗ �ÃB̃→A′B′ )[�+

AÃ
⊗ �+

BB̃
],

where we have used the fact that �+
ABÃB̃

= �+
AÃ

⊗ �+
BB̃

. Now,
observe that

P�

ABA′B′ = (1AB ⊗ ϒB′ ◦ �ÃB̃→A′B′ ◦ ϒB̃)[�+
AÃ

⊗ �+
BB̃

] (6)

and

ϒB̃[�+
BB̃

] = TB̃1
◦ �+

BB̃
◦ TB̃0

= ϒB[�+
BB̃

], (7)

where in the last equality we used the representation (1) of
�+

BB̃
, and the fact that (φ+

B0B̃0
)TB̃0 = (φ+

B0B̃0
)TB0 and (φ+

B1B̃1
)TB̃1 =

(φ+
B1B̃1

)TB1 . Combining this with Eq. (6), we conclude that

P�

ABA′B′ = (ϒB′ ⊗ ϒB) ◦ (1AB ⊗ �ÃB̃→A′B′ )[�+
AÃ

⊗ �+
BB̃

]

= (
P�

ABA′B′
)

. (8)

Hence

J�

ABA′B′ = (
J�

ABA′B′
)TBB′

,

where we have used Eq. (4). This completes the proof of the
equivalence between statements (1) and (2).

For the equivalence between statements (1) and (3), let
� ∈ L(AB → A′B′) be a PPT supermap. Then, for any sys-
tems A′′B′′ and any PPT bipartite CP map, NA′′B′′AB, we have

0 � �
AB→A′B′ [ϒB′′B[NA′′B′′AB]] = ϒB′′B′ [�AB→A′B′ [NA′′B′′AB]],

where the equality follows from the definition of �
AB→A′B′ .

In other words, (1A′′B′′ ⊗ �)[NA′′B′′AB] is a PPT map, so � is
completely PPT preserving.

Conversely, let � ∈ L(ÃB̃ → A′B′) be a CP supermap that
is completely PPT preserving. Note that, by Eq. (7), �+

ABÃB̃
=

�+
AÃ

⊗ �+
BB̃

is a PPT map. Therefore, the CP map

P�
ABA′B′ = (1AB ⊗ �ÃB̃→A′B′ )[�+

AÃ
⊗ �+

BB̃
]

is PPT. From a similar relation to Eq. (8), it follows that
P�

ABA′B′ � 0, so � is PPT. This completes the proof. �
We end this section with a convenient property of the

partial transpose operation. This will be very useful in the
following.

Proposition 6. Let � ∈ L(AB → A′B′) be a bipartite su-
permap and let N ∈ L(A0B0 → A1B1) be a bipartite map.
Then,

(�[N ]) = �[N ].

Proof. Note that

�[N ] = ϒB′ ◦ � ◦ ϒB[ϒB[NAB]]

= ϒB′ ◦ �[NAB]

= (�[NAB]).

This completes the proof. �

B. Single-shot interconversions

In the resource theory of NPT static entanglement the con-
version of one resource into another can be characterized by
SDPs [94]. Here we show that for NPT dynamical entangle-
ment, the conversion distance dPPT(NAB → MA′B′ ), defined in
Ref. [48], can be computed by an SDP as long as we consider
the PPT superchannels introduced in Definition 3, and not the
restricted PPT operations illustrated in Fig. 7.

Now, recall that in NPT entanglement theory, the conver-
sion distance is

dPPT(NAB → MA′B′ )

= 1
2 min

�∈PPT(AB→A′B′ )
‖�AB→A′B′ [NAB] − MA′B′ ‖�.
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Now, the diamond norm can be expressed as the SDP [95]

1
2‖�AB→A′B′ [NAB] − MA′B′ ‖�

= min
ωA′B′�0; ωA′B′�J�[N ]−M

A′B′

∥∥ωA′
0B′

0

∥∥
∞.

Now, in Ref. [74], it was shown that it can be written also as

1
2‖�AB→A′B′ [NAB] − MA′B′ ‖�

= min {λ : λQA′B′ � �AB→A′B′ [NAB] − MA′B′ },
where QB ∈ CPTP(B0 → B1). Therefore, calculating the
conversion distance amounts to solving the following mini-
mization problem:

Find dPPT(NAB → MA′B′ ) = min λ

Subject to λQA′B′ � �AB→A′B′ [NAB] − MA′B′ ,

Q channel,

� superchannel. (9)

This can be rephrased in the following SDP form. Denote the
Choi matrix of λQA′B′ by αA′B′ , and the Choi matrix of � by
JABA′B′ . Then, following Ref. [48], we can express Eq. (9) in
terms of Choi matrices, finding the new optimization problem

dPPT(NAB → MA′B′ ) = 1

|A′
0B′

0|
min Tr[αA′B′ ]

subject to

αA′B′ � 0, αA′
0B′

0
= Tr[αA′

0B′
0
]uA′

0B′
0
,

α � TrAB
[
JABA′B′

((
JN

AB

)T ⊗ IA′B′
)] − JM

A′B′ ,

JABA′B′ � 0, JABA′
0B′

0
= JA0B0A′

0B′
0
⊗ uA1B1 ,

JA1B1A′
0B′

0
= IA1B1A′

0B′
0
, JTBB′

ABA′B′ � 0.

Clearly, the above optimization can be solved efficiently and
algorithmically with an SDP. We can also express it in its dual
form following Ref. [48]:

dPPT(NAB → MA′B′ )

= max
{
t |A1B1A′

0B′
0| − Tr

[
ζA′B′JM

A′B′
]}

, (10)

subject to(
JN

AB

)T ⊗ ζA′B′ − t IABA′B′ ∈ J∗
ABA′B′ ,

0 � ζA′B′ � ηA′
0B′

0
⊗ IA′

1B′
1
, Tr[ηA′

0B′
0
] = 1, (11)

where J∗
ABA′B′ is defined in Eq. (A1). We want to show that this

dual problem is an SDP as well. To this end, from Eq. (A2),
define

βABA′
0B′

0
:= 1

|A0B0| (t IABA′
0B′

0
+ YABA′

0B′
0
+ IA0B0 ⊗ ZA1B1A′

0B′
0
),

where, like in Eq. (A2), Y is a Hermitian matrix such that
YAB = 0, and Z is a Hermitian matrix such that Tr[ZA1B1A′

0B′
0
] =

0. In this way, by the definition of βABA′
0B′

0
, and recalling

Eq. (A2), we can rewrite Eqs. (10) and (11) as

dPPT(NAB → MA′B′ ) = max
{
Tr

[
βABA′

0B′
0

] − Tr
[
ζA′B′JM

A′B′
]}

,

subject to

β ∈ Herm(ABA′
0B′

0), βAB = uA0B0 ⊗ βA1B1 ,

0 � ζA′B′ � ηA′
0B′

0
⊗ IA′

1B′
1
, Tr

[
ηA′

0B′
0

] = 1,((
JN

AB

)T ⊗ ζA′B′ − |A0B0|β ⊗ IB′
1A′

1
− PABA′B′

)TBB′
� 0,

PABA′B′ � 0.

Hence, the computation of dPPT(NAB → MA′B′ ) in the re-
source theory of NPT entanglement is an SDP optimization
problem. We point out that if we considered restricted PPT
superchannels, instead, the condition that � is free would
be expressed as the condition that the CPTP map Q� has a
decomposition into pre- and postprocessing that are both PPT
channels, like in Eq. (5). This condition appears to be very
cumbersome, and it is not clear if the determination of whether
or not � has the form (5) can be solved with an SDP.

C. NPT entanglement measures

In the entanglement theory for static resources, functions
that behave monotonically under PPT operations also behave
monotonically under LOCC operations, as LOCC is a subset
of PPT. Hence, any NPT entanglement measure is also an
LOCC entanglement measure. The advantage of some of the
NPT entanglement measures is that they can be computed
with SDPs (see, e.g., the family of measures discussed in
Ref. [96]). In this section we study a few of these measures.

1. Negativity and logarithmic negativity of bipartite channels

A well-known NPT entanglement measure is the negativ-
ity [97]. It is defined on a bipartite quantum state ρ ∈ D(A0B0)
as

N (ρA0B0 ) = ‖TB0 (ρA0B0 )‖1 − 1

2
.

The generalization of the negativity to bipartite channels can
be done by replacing the input bipartite state ρ ∈ D(A0B0)
with input bipartite channel N ∈ CPTP(A0B0 → A1B1), the
trace norm with the diamond norm, and the transpose map
TB0 with the transpose supermap ϒB. The negativity of the
bipartite channel is therefore defined as

N (NAB) = ‖ϒB[NAB]‖� − 1

2
.

Furthermore, the logarithmic negativity is defined as

LN (NAB) = log2 ‖ϒB[NAB]‖�.

To show that the above quantities are indeed good gen-
eralizations of the negativity and logarithmic negativity to
bipartite channels, we show that they vanish on PPT bipartite
channels, and that they behave monotonically under PPT su-
perchannels. They vanish on PPT bipartite channels because
if NAB is PPT then ϒB[NAB] is a quantum channel so its
diamond norm is 1. To show the monotonicity property, let
� ∈ PPT(AB → A′B′) and observe that

‖ϒB′ ◦ �[NAB]‖� = ∥∥(�[NAB])
∥∥

�
= ∥∥�

[
N 

AB

]∥∥
�

� ‖ϒB[NAB]‖�,
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where in the first equality we used the definition of the partial
transpose of a channel, in the second Proposition 6, and finally
the inequality follows from the fact that � is a superchan-
nel because � is a PPT superchannel, and the fact that the
diamond norm is contractive under superchannels [52]. There-
fore, since both the negativity and the logarithmic negativity
are increasing functions of ‖ϒB[NAB]‖�, we conclude that
they are nonincreasing under PPT superchannels.

2. A complete set of computationally manageable measures
of bipartite NPT dynamical entanglement

We can use the same technique as above to generalize
other measures of NPT static entanglement to NPT dynamical
entanglement (see, e.g., Ref. [97]). Now we focus on the
complete family of measures introduced in Ref. [48]. In the
case of NPT entanglement, for any bipartite channel PA′B′ ∈
CPTP(A′

0B′
0 → A′

1B′
1), using the results in Ref. [48], we can

write

fP (NAB) = max
J∈J

Tr
[
JABA′B′

((
JN

AB

)T ⊗ JP
A′B′

)]
for every quantum channel NAB, where J is the set of Choi
matrices of PPT superchannels (note that it is compact and
convex). In other words, JABA′B′ is subject to the following
constraints:

(1) JABA′B′ � 0; JABA′
0B′

0
= JA0B0A′

0B′
0
⊗ uA1B1 ; JA1B1A′

0B′
0
=

IA1B1A′
0B′

0
.

(2) JTBB′
ABA′B′ � 0.

The first group of conditions above ensures that JABA′B′

is the Choi matrix of a superchannel in S(AB → A′B′); the
second condition guarantees that the superchannel is free, i.e.,
PPT. A key observation about the above optimization problem
is that it is an SDP. As noted in Ref. [48], the family of convex
functions { fP}, indexed by all P ∈ CPTP(A′

0B′
0 → A′

1B′
1), is

complete, in the sense that there exists a PPT superchan-
nel converting a bipartite channel N ∈ CPTP(A0B0 → A1B1)
into another bipartite channel E ∈ CPTP(A′

0B′
0 → A′

1B′
1) if

and only if

fP (NAB) � fP (EA′B′ ) (12)

for every P ∈ CPTP(A′
0B′

0 → A′
1B′

1).
One may argue that the above condition cannot be checked

efficiently, as it involves an (uncountably) infinite num-
ber of measures of dynamical entanglement, labeled by all
quantum channels P . However, we have another way to de-
termine whether two bipartite quantum channels NAB and
EA′B′ can be interconverted by PPT superchannels, which
is to compute the conversion distance dPPT(NAB → EA′B′ ):
dPPT(NAB → EA′B′ ) = 0 if and only if NAB can be converted
(exactly) into EA′B′ by PPT superchannels. In Sec. IV B we
showed that this can be done efficiently with an SDP.

Why do we consider this family of dynamical entan-
glement measures, then? Their significance is that they
completely characterize the NPT entanglement of a single
bipartite channel, whereas the computation of dPPT(NAB →
EA′B′ ) requires to know both of its inputs N and E , i.e., also
the target channel. Hence, Eq. (12) demonstrates that the
convertibility can be expressed in a monotonic form, similarly
to Vidal’s monotones [26,98,99] in the theory of pure-state
bipartite entanglement.

Remark 7. If we want measures of NPT dynamical entan-
glement that vanish on PPT channels, we can consider the
measures GP (NAB) = fP (NAB) − maxM Tr[JM

A′B′JP
A′B′ ]. Here

M ranges over all PPT channels (again, a compact and convex
set).

3. The max-logarithmic negativity

In Ref. [47] the authors considered a measure of NPT
entanglement, which they called the κ-entanglement. For bi-
partite states, it is defined as

Eκ (ρAB)

= log2 inf
{
Tr[SAB] : −STB

AB � ρ
TB
AB � STB

AB ; SAB � 0
}
,

and for one-way channels EA0→B1 as

Eκ (EA0→B1 )

= log2 inf
{∥∥JQ

A0

∥∥
∞ : −Q � E

A0→B1
� Q; Q � 0

}
.

The significance of this measure is that it has an operational
interpretation as the exact asymptotic cost under PPT op-
erations. Here we introduce the max-logarithmic negativity
(MLN) (see also Ref. [96]), which has a similar operational
interpretation, and is a generalization of the κ-entanglement to
bipartite channels. However, as we will see, for bipartite chan-
nels, there are two possible generalizations of the quantity
given in Ref. [47], and we define the MLN to be the maximum
of the two. Explicitly, the MLN is defined as

LNmax(NAB) = max
{
LN (0)

max(NAB), LN (1)
max(NAB)

}
,

where

LN (0)
max(NAB)

= log2 inf
{∥∥JP

A0B0

∥∥
∞ : −P

AB � N 
AB � P

AB; P � 0
}

and

LN (1)
max(NAB)

= log2 inf
{∥∥JP

A0B0

∥∥
∞ : −P

AB � N 
AB � P

AB; P � 0
}
.

The above quantities can be computed with SDP. In particular,
they have a dual, giving an alternative expression for them:

LN (0)
max(NAB) = log2 sup

{
Tr

[
JN

AB(VAB − WAB)
]}

(13)

subject to

VAB + WAB � ρA0B0 ⊗ IA1B1 , ρ ∈ D(A0B0),

VAB � 0, WAB � 0,

and

LN (1)
max(NAB) = log2 sup

{
Tr

[
JN

AB(VAB − WAB)
]}

subject to

VAB + WAB � ρ
TB0
A0B0

⊗ IA1B1 , ρ ∈ D(A0B0),

VAB � 0, WAB � 0.

These expressions can be obtained with the usual SDP
techniques. By Sion’s minimax theorem, we can swap the
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order of the infimum and the maximum in the definition of
the MLN, so

LNmax(NAB) = log2 inf
{
max

{∥∥JP
A0B0

∥∥
∞,

∥∥JP

A0B0

∥∥
∞

}}
subject to −P

AB � N 
AB � P

AB and PAB � 0. The MLN is
defined here in terms of the bipartite map P ∈ CP(A0B0 →
A1B1). Denoting its Choi matrix by PAB ∈ Herm(AB), we can
express the MLN as

LNmax(NAB) = log2 inf
{

max
{
‖PA0B0‖∞,

∥∥∥P
TB0
A0B0

∥∥∥
∞

}
: −PTB

AB �
(
JN

AB

)TB � PTB
AB, PAB � 0

}
. (14)

Now we show here that many properties of the κ-
entanglement discussed in Ref. [47] carry over to the
max-logarithmic negativity, including the operational mean-
ing of single-shot exact entanglement cost (cf. Sec. IV D).
Moreover, we will see that the max-logarithmic negativity is
monotonic under PPT superchannels, which we believe is a
strictly larger set than the set discussed in Ref. [47], that is
the set of restricted PPT superchannels, which can be imple-
mented by PPT pre- and postprocessing, like in Fig. 7.

4. Properties of the max-logarithmic negativity

Here we list a few key properties of the MLN. The first two
show that it reduces to Eκ introduced in Ref. [47].

Reduction to κ-entanglement for states. A bipartite
state can be viewed as a bipartite channel NAB with
|A0| = |B0| = 1. In this case, in Eq. (14), PA0B0 = PTB

A0B0
=

Tr[PA1B1 ]. Recalling that PA1B1 � 0, we have LNmax(NAB) =
log2 inf {Tr[PA1B1 ]}, subject to −P

TB1
A1B1

� ρ
TB1
A1B1

� P
TB1
A1B1

and
PA1B1 � 0. This expression coincides with Eκ (ρA1B1 ).

Reduction to κ-entanglement for one-way channels. For
|B0| = |A1| = 1, the channel NAB can be viewed as a map
E ∈ CPTP(A0 → B1) and

LNmax(NAB) = Eκ (EA0→B1 ).

Monotonicity. Let N ∈ CPTP(A0B0 → A1B1) be a bi-
partite channel, and let � ∈ PPT(AB → A′B′) be a PPT
superchannel. Then,

LNmax(�AB→A′B′ [NAB]) � LNmax(NAB).

Proof. Recall that for any superchannel � and bipartite
channel NAB we have (�[NAB]) = �[N 

AB] (see Proposi-
tion 6). Hence, from the expression

LNmax(�[NAB])

= log2 inf
{

max
{∥∥JR

A′
0B′

0

∥∥
∞,

∥∥∥(
JR

A′
0B′

0

)TB0

∥∥∥
∞

}}
,

subject to −R
A′B′ � �[N 

AB] � R
A′B′ and RA′B′ � 0, we can

definitely write

LNmax(�[NAB])

� log2 inf
{

max
{∥∥∥J�[P]

A′
0B′

0

∥∥∥
∞

,

∥∥∥J
�[P]
A′

0B′
0

∥∥∥
∞

}}
, (15)

where −(�[PAB]) � �[N 
AB] � (�[PAB]) and PAB � 0.

Indeed, this inequality follows because we have restricted
RA′B′ to CP maps of the form �AB→A′B′ [PAB], where P ∈
CP(A0B0 → A1B1), and � is a PPT superchannel. Next,
observe that, by the properties of the Choi matrices of super-

channels,

J�[P]
A′

0B′
0

= TrABA′
1B′

1

[
J�

ABA′B′

((
JP

AB

)T ⊗ IA′B′
)]

= TrAB

[
J�

ABA′
0B′

0

((
JP

AB

)T ⊗ IA′
0B′

0

)]
= TrAB

[(
J�

A0B0A′
0B′

0
⊗ uA1B1

)((
JP

AB

)T ⊗ IA′
0B′

0

)]
= 1

|A1B1|TrA0B0

[
J�

A0B0A′
0B′

0

((
JP

A0B0

)T ⊗ IA′
0B′

0

)]
=: DA0B0→A′

0B′
0

(
JP

A0B0

)
,

where D is a CP map whose Choi matrix is given by
JD

A0B0A′
0B′

0
:= 1

|A1B1|J
�
A0B0A′

0B′
0
. The fact that � is a superchannel

ensures that JD
A′

0B′
0
= IA′

0B′
0
, so D is unital. Now, the operator

norm is contractive under CP unital maps; thus we con-
clude that ‖J�[P]

A′
0B′

0
‖∞ � ‖JP

A0B0
‖∞. Similarly, since � is also

a superchannel, we have ‖J� [P ]
A′

0B′
0

‖∞ � ‖JP

A0B0
‖∞. Therefore,

recalling Eq. (15),

LNmax(�[NAB]) � log2 inf
{
max

{∥∥JP
A0B0

∥∥
∞,

∥∥JP

A0B0

∥∥
∞

}}
,

subject to −P
AB � N 

AB � P
AB and PAB � 0, where we have

used the fact that � is a superchannel, so −P
AB � N 

AB �
P

AB implies −�[P
AB] � �[N 

AB] � �[P
AB]. But the fi-

nal expression we have obtained is precisely LNmax(NAB).
This completes the proof. �

Additivity. For any two bipartite channels N ∈
CPTP(A0B0 → A1B1) and M ∈ CPTP(A′

0B′
0 → A′

1B′
1)

we have

LNmax(NAB ⊗ MA′B′ ) = LNmax(NAB) + LNmax(MA′B′ ).

In particular, note that this property implies that, for all posi-
tive integers n,

LNmax(N⊗n
AB ) = nLNmax(NAB).

Proof. The proof follows from the facts

LN (0)
max(NAB ⊗ MA′B′ ) = LN (0)

max(NAB) + LN (0)
max(MA′B′ )

and

LN (1)
max(NAB ⊗ MA′B′ ) = LN (1)

max(NAB) + LN (1)
max(MA′B′ ),

which can be proved with the same techniques as in Ref. [47],
with the primal problem being used to show the � side, and
the dual problem used to show the � side. For completeness,
we include the proof in Appendix B. �
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D. Exact asymptotic NPT entanglement cost

In this section we generalize the operational interpretation
given in Ref. [47] of Eκ togeneric bipartite channels. This
generalization will be fairly straightforward, and the ultimate
reason for this is that we do not consider only restricted
PPT superchannels, but rather generic PPT superchannels (see
Sec. IV A). This makes the conditions involved closer to the
case of bipartite states.

Following the same argument in Sec. III, in NPT entangle-
ment theory, the maximally entangled state φ+

A′
1B′

1
, if suitably

normalized, where |A′
1| = |B′

1| = m, can be regarded as the
maximal resource: two maximally entangled states φ+ are
equivalent to the swap. This state can also be viewed as the
channel �+

A′B′ (cf. Sec. II B) with trivial inputs A′
0 and B′

0. With
this in mind, the single-shot exact resource cost to simulate a
channel takes the form

E (1)
PPT(NAB) := inf {log2 m : NAB = �A′B′→AB[�+

A′B′ ]}, (16)

where the infimum is over all PPT superchannels �, |A′
0| =

|B′
0| = 1, and |A′

1| = |B′
1| = m.

The following two lemmas will be used in the proof of the
main theorem of this section (Theorem 10) that provides an
operational meaning to the MLN. The first lemma provides
an alternative expression for E (1)

PPT(NAB).
Lemma 8. Let N ∈ CPTP(A0B0 → A1B1) be a bipartite

channel. Then,

E (1)
PPT(NAB)

= inf
{
log2 m : −(m − 1)R

AB � N 
AB � (m + 1)R

AB

}
,

(17)

where R ∈ CPTP(A0B0 → A1B1) and m ∈ Z+.
Proof. The proof follows similar lines to the one in

Ref. [47], but with states replaced by channels. We first prove
that E (1)

PPT(NAB) is less than or equal to the right-hand side of
Eq. (17). Let m = |A′

1| = |B′
1| be a positive integer, and let

RAB be a CPTP map satisfying

−(m − 1)R
AB � N 

AB � (m + 1)R
AB. (18)

We need to show that there exists a PPT superchannel �

as in Eq. (16) with the same m. To this end, define the
superchannel � ∈ S(A′B′ → AB) (with |A′

1| = |B′
1| = m and

|A′
0| = |B′

0| = 1) on any CP map MA′B′ as

�A′B′→AB[MA′B′ ] := NABTr[�+
A′B′MA′B′ ]

+ RABTr[(IA′B′ − �+
A′B′ )MA′B′ ],

where we have used the fact that MA′B′ and �+
A′B′ can be

viewed as matrices because their input dimensions are trivial,
so the traces above are well defined. For a simpler notation,
set A′ ≡ A′

1 and B′ ≡ B′
1.

Note that � above is indeed a superchannel, as it is CP,
and sends channels to channels [56]. In addition, it satisfies
�[�+

A′B′ ] = NAB. We need to show that � = ϒB ◦ � ◦ ϒB′ is
a superchannel too. For this purpose, let R = (R0, R1) be a ref-
erence system, and consider PRA′B′ ∈ CPTP(R0 → R1A′B′),
and observe that

�[PRA′B′ ] = N 
AB ⊗ TrA′B′

[
(φ+

A′B′ )
TB′PRA′B′

]
+ R

AB ⊗ TrA′B′
[
(IA′B′ − φ+

A′B′ )
TB′PRA′B′

]
,

where the partial trace above is understood as follows: for
any matrix X ∈ B(R0), the expression TrA′B′ [(φ+

A′B′ )TB′PRA′B′ ]
is the map

TrA′B′
[
(φ+

A′B′ )
TB′PRA′B′

]
(XR0 )

:= TrA′B′
[
(φ+

A′B′ )
TB′PRA′B′ (XR0 )

]
.

Recall that (φ+
A′B′ )TB′ = 1

m FA′B′ , where FA′B′ is the unitary
SWAP (or flip) operator, and the factor 1

m comes from the fact
that here we are taking φ+

A′B′ to be normalized. Therefore,

TrA′B′
[
(φ+

A′B′ )
TB′PRA′B′

] = 1

m
TrA′B′ [FA′B′PRA′B′ ],

and

TrA′B′
[
(IA′B′ − φ+

A′B′ )
TB′PRA′B′

]
= TrA′B′

[(
IA′B′ − 1

m
FA′B′

)
PRA′B′

]
.

Following Ref. [47], we define �±
A′B′ := 1

2 (IA′B′ ± FA′B′ ) to be
the orthogonal projections onto the symmetric and antisym-
metric subspaces, respectively. Hence, substituting �+

A′B′ −
�−

A′B′ for FA′B′ , and �+
A′B′ + �−

A′B′ for IA′B′ , yields (cf. Eqs.
(68)–(73) in Ref. [47])

�[PRA′B′ ]

= 1

m
N 

AB ⊗ TrA′B′ [FA′B′PRA′B′ ]

+ R
AB ⊗ TrA′B′

[(
IA′B′ − 1

m
FA′B′

)
PRA′B′

]
= 1

m

(
N 

AB + (m − 1)R
AB

) ⊗ TrA′B′ [�+
A′B′PRA′B′ ]

+ 1

m

(
(m + 1)R

AB − N 
AB

) ⊗ TrA′B′ [�−
A′B′PRA′B′ ].

(19)

By Eq. (18), the expression on the right-hand side of the
equation above is a CPTP map. Hence, 1R ⊗ � takes chan-
nels to channels; i.e., � is a superchannel, so � is indeed a
PPT superchannel. To summarize, we showed that, for any
integer m for which there exists a channel RAB that satis-
fies Eq. (18), there exists a PPT superchannel � achieving
�[�+

A′B′ ] = NAB with |A′
1| = |B′

1| = m (and |A′
0| = |B′

0| = 1).
Hence, E (1)

PPT(NAB) cannot be greater than the right-hand side
of Eq. (17). To complete the proof, we now prove the con-
verse inequality; i.e., we show that E (1)

PPT(NAB) is greater than
or equal to the right-hand side of Eq. (17). Denote by G ∈
CPTP(A′B′ → A′B′) the twirling channel of the form

G(ωA′B′ ) =
∫ (

UA′ ⊗ U B′
)
ωA′B′

(
UA′ ⊗ U B′

)†
dUA′B′ (20)

with respect to the Haar probability measure, dU , over unitary
matrices. It can be shown [100–102] that G is actually the
channel

G(ωA′B′ ) = φ+
A′B′Tr[φ+

A′B′ωA′B′ ]

+ IA′B′ − φ+
A′B′

m2 − 1
Tr[(IA′B′ − φ+

A′B′ )ωA′B′ ].
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Note that, since |A′
0| = |B′

0| = 1, we can view the channel
G as a superchannel GA′B′→A′B′ taking channels (which are
nothing but density matrices) in CPTP(A′

0B′
0 → A′

1B′
1) to

channels in the same set. In particular, this superchannel is
self-adjoint, and satisfies G[�+

A′B′ ] = �+
A′B′ . The latter implies

that if � is a PPT superchannel such that �[�+
A′B′ ] = NAB,

then �A′B′→AB := �A′B′→AB ◦ GA′B′ is also a PPT superchannel
that takes �+

A′B′ to NAB (i.e., it achieves the same performance
as �). Furthermore, by Eq. (20) the superchannel � satisfies
(cf. Eqs. (80)–(82) of Ref. [47])

�A′B′→AB[MA′B′ ] := NABTr[�+
A′B′MA′B′ ]

+ RABTr[(IA′B′ − �+
A′B′ )MA′B′ ],

where

RAB := 1

1 − m2
�[IA′B′ − �+

A′B′ ].

Now, from the exact same lines leading to Eq. (19), it follows
that, for �A′B′→AB to be a PPT superchannel, it is necessary
that for any PRA′B′ ∈ CPTP(R0 → R1A′

1B′
1), the map on the

right-hand side of Eq. (19) is a quantum channel. Since �+
and �− are orthogonal projectors, each term must be a CP
map, which yields Eq. (18). To summarize, if � is a PPT
superchannel that satisfies �[�+

A′B′ ] = NAB, then � is also
a PPT superchannel that satisfies �[�+

A′B′ ] = NAB; the fact
that � is PPT forces each term of Eq. (19) to be a CP map
which is equivalent to Eq. (18). Hence, E (1)

PPT(NAB) cannot be
smaller than the right-hand side of Eq. (17). This completes
the proof. �

The second lemma uses the previous one to link the single-
shot exact PPT cost to the MLN.

Lemma 9. Let N ∈ CPTP(A0B0 → A1B1) be a bipartite
channel. Then,

log2

(
2LNmax(NAB ) − 1

)
� E (1)

PPT(NAB)

� log2

(
2LNmax(NAB ) + 2

)
.

Proof. First of all, we prove that the result of the previous
lemma can be rewritten in a slightly modified version:

E (1)
PPT(NAB)

= inf
{
log2 m : −(m − 1)R

AB � N 
AB � (m + 1)R

AB

}
,

(21)

where R � 0, JR
A0B0

� IA0B0 , JR

A0B0
� IA0B0 , and m ∈ N. To see

why, denote the second line of Eq. (21) by Ẽ (1)
PPT(NAB). Then,

by definition, we have E (1)
PPT(NAB) � Ẽ (1)

PPT(NAB) because if R
is a CPTP, then JR

A0B0
= JR

A0B0
= IA0B0 [note that the condition

−(m − 1)R
AB � (m + 1)R

AB implies in particular that R �
0]. Conversely, suppose R satisfies JR

A0B0
� IA0B0 and JR

A0B0
�

IA0B0 . Define P as the map whose Choi matrix is given by

JP
AB := JR

AB + (
IA0B0 − JR

A0B0

) ⊗ uA1B1 .

Note that P is a channel, and that both (IA0B0 − JR
A0B0

) ⊗ uA1B1

and its partial transpose are positive semidefinite. Therefore,
P too satisfies the constraints

−(m − 1)P
AB � N 

AB � (m + 1)P
AB,

so we can conclude that E (1)
PPT(NAB) � Ẽ (1)

PPT(NAB). This proves
that E (1)

PPT(NAB) = Ẽ (1)
PPT(NAB).

The rest of the proof employs similar techniques to Propo-
sition 9 in Ref. [47], with a few exceptions. Continuing, we
have

E (1)
PPT(NAB) = Ẽ (1)

PPT(NAB)

� log2 inf
{
m : −(m + 1)R

AB � N 
AB � (m + 1)R

AB, R � 0, JR
A0B0

� IA0B0 , JR

A0B0
� IA0B0 , m ∈ N

}
(22)

= log2 inf
{
m : −P

AB � N 
AB � P

AB, P � 0, JP
A0B0

� (m + 1)IA0B0 , JP

A0B0
� (m + 1)IA0B0 , m ∈ N

}
(23)

� log2 inf
{
m : −P

AB � N 
AB � P

AB, P � 0, JP
A0B0

� (m + 1)IA0B0 , JP

A0B0
� (m + 1)IA0B0 , m ∈ R+

}
(24)

� log2 inf
{
max

{∥∥JP
A0B0

∥∥
∞,

∥∥JP

A0B0

∥∥
∞

} − 1 : −P
AB � N 

AB � P
AB, P � 0

}
= log2

(
2LNmax(NAB ) − 1

)
, (25)

where in Eq. (22) we replaced m − 1 with m + 1, so the infimum is on a less restricted set; in Eq. (23) we defined PAB :=
(m + 1)RAB; in Eq. (24) we removed the restriction that m is an integer; and the last inequality (25) follows from the fact that if
JP

A0B0
� (m + 1)IA0B0 and JP

A0B0
� (m + 1)IA0B0 then m � max {‖JP

A0B0
‖∞, ‖JP

A0B0
‖∞} − 1.

For the other inequality, following similar lines, we get

2E (1)
PPT(NAB ) = 2Ẽ (1)

PPT(NAB ) (26)

� inf
{
m : −(m − 1)R

AB � N 
AB � (m − 1)R

AB, R � 0, JR
A0B0

� IA0B0 , JR

A0B0
� IA0B0 , m ∈ N

}
(27)

= inf
{
m : −P

AB � N 
AB � P

AB, P � 0, JP
A0B0

� (m − 1)IA0B0 , JP

A0B0
� (m − 1)IA0B0 , m ∈ N

}
= inf

{�m� : −P
AB � N 

AB � P
AB, P � 0, JP

A0B0
� (�m� − 1)IA0B0 , JP

A0B0
� (�m� − 1)IA0B0 , m ∈ R+

}
(28)

� inf
{
m : −P

AB � N 
AB � P

AB, P � 0, JP
A0B0

� (m − 2)IA0B0 , JP

A0B0
� (m − 2)IA0B0 , m ∈ R+

}
= inf

{
max

{∥∥JP
A0B0

∥∥
∞,

∥∥JP

A0B0

∥∥
∞

} + 2 : −P
AB � N 

AB � P
AB, P � 0

}
= 2LNmax(NAB ) + 2, (29)
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where in Eq. (26) we replaced m + 1 with m ∈ R+, obtaining
a larger set; in Eq. (27) we set P := (m − 1)R; in Eq. (29)
we used the fact that m − 2 � �m� − 1, so the constraints
JP

A0B0
� (m − 2)IA0B0 and JP

A0B0
� (m − 2)IA0B0 imply the con-

straints JP
A0B0

� (�m� − 1)IA0B0 and JP

A0B0
� (�m� − 1)IA0B0 of

Eq. (28), respectively. This completes the proof. �
Recalling Ref. [48], the exact (parallel) NPT entanglement

cost of the channel is defined as

EPPT(NAB) = lim sup
n

1

n
E (1)

PPT(N⊗n
AB ).

The following result, which is the key theorem of this section,
states that the exact PPT cost of a bipartite channel is given
precisely by its max-logarithmic negativity.

Theorem 10. Let N ∈ CPTP(A0B0 → A1B1) be a bipartite
channel. Then,

EPPT(NAB) = LNmax(NAB).

Proof. The proof follows from the additivity property of
LNmax(NAB) and Lemma 9. Specifically,

1

n
E (1)

PPT

(
N⊗n

AB

)
� 1

n
log2(2LNmax(N⊗n

AB ) + 2)

= 1

n
log2(2nLNmax(NAB ) + 2).

Conversely,

1

n
E (1)

PPT

(
N⊗n

AB

)
� 1

n
log2(2LNmax(N⊗n

AB ) − 1)

= 1

n
log2(2nLNmax(NAB ) − 1).

Then
1

n
log2(2nLNmax(NAB ) − 1) � 1

n
E (1)

PPT

(
N⊗n

AB

)
� 1

n
log2

(
2nLNmax(NAB ) + 2

)
.

If we take the limit as n → +∞, the lower and upper bound
of 1

n E (1)
PPT(N⊗n

AB ) have the same limit, equal to LNmax(NAB).
Therefore, 1

n E (1)
PPT(N⊗n

AB ) has the limit (which will be equal
to its limit superior). This allows us to conclude that
EPPT(NAB) = LNmax(NAB) �.

In Ref. [43] we proved that the MLN is an upper bound
for another entanglement measure, the NPT entanglement
generation power EPPT

g [62,64,74,103]:

EPPT
g (NAB) � LNmax(NAB).

V. SEP entanglement of a bipartite channel

In the previous section we saw that extending the set of
free operations beyond LOCC can be very fruitful. However,
one may argue that the PPT operations allow for “too much”
freedom, making NPT entanglement a rather crude approx-
imation of LOCC entanglement. Here we consider a much
smaller set: the set of separable superchannels (SEPS). Like
before, SEPS do not necessarily have a realization similar to
the one in Fig. 7, where the preprocessing and postprocessing
are both SEP channels. Instead, we define SEPS using the
Choi matrix formalism of superchannels. This simplifies the

set of operations, making them more useful for applications
and calculations.

Recall that a channel N ∈ CPTP(A0B0 → A1B1) is called
separable [30–32] if it has an operator-sum representation of
the form

NAB(ρA0B0 ) =
∑

j

(
X j

A0
⊗ Y j

B0

)
ρA0B0

(
X j

A0
⊗ Y j

B0

)†
,

where X j ∈ B(A0), Y j ∈ B(B0), and
∑

j (X
j

A0
)†X j

A0
⊗

(Y j
B0

)†Y j
B0

= IA0B0 . It is simple to check that the set SEP
is precisely the set of completely resource nongenerating
operations [13,48] in entanglement theory (see, e.g., Ref. [89]
and references therein). Moreover, a bipartite channel is
separable if and only if its Choi matrix is a separable matrix.
This fact inspires us to define SEPS using the Choi formalism
for superchannels.

Definition 11. Let � ∈ S(A′B′ → A′B′) be a bipartite su-
perchannel. Then, � is called a separable superchannel
(SEPS) if its Choi matrix is separable; i.e., it can be expressed
as

J�
ABA′B′ =

∑
j

X j
AA′ ⊗ Y j

BB′ ,

where, for all j, the matrices X j
AA′ and Y j

BB′ are positive
semidefinite. We denote by SEPS(AB → A′B′) the set of all
bipartite SEPS from system AB to A′B′.

Remark 12. Note that clearly SEPS is a subset of PPT
superchannels.

Definition 11 does not refer to the implementation of SEPS
with pre- and postprocessing that are both SEP channels. On
the other hand, however, if a bipartite superchannel � consists
of a SEP preprocessing channel E and a SEP postprocessing
channel F , then the channel Q� = F ◦ E is also SEP (and
also its Choi matrix J�), so we can conclude that � is SEPS.

The next proposition shows that the set of SEPS is not “too
large” in the sense that it cannot generate (dynamical) entan-
glement out of SEP channels. In this way, we establish that a
superchannel � is completely nonentangling (i.e., completely
resource nongenerating) if and only if it is a SEPS.

Proposition 13. � ∈ SEPS(AB → A′B′) if and only if,
for every trace nonincreasing separable CP map NA′′AB′′B ∈
CP(A′′

0A0B′′
0B0 → A′′

1A1B′′
1B1), the map

(1A′′B′′ ⊗ �AB→A′B′ )[NA′′AB′′B]

is a separable trace nonincreasing CP map in
CP(A′′

0A′
0B′′

0B′
0 → A′′

1A′
1B′′

1B′
1).

Proof. Let � be SEPS. Note that

J1⊗�
A′′B′′ABA′B′ = J1

A′′B′′ ⊗ J�
ABA′B′ ,

where

J1
A′′B′′ = φ+

A′′
0B′′

0 Ã′′
0 B̃′′

0
⊗ φ+

A′′
1B′′

1 Ã′′
1 B̃′′

1

= φ+
A′′

0 Ã′′
0
⊗ φ+

A′′
1 Ã′′

1
⊗ φ+

B′′
0 B̃′′

0
⊗ φ+

B′′
1 B̃′′

1

is separable. Since J�
ABA′B′ is also separable, then 1A′′B′′ ⊗

�AB→A′B′ is in SEPS too. Hence, it is enough to show that
� is resource non-generating [48]. Let MAB be a separable
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bipartite CP map. Then,

J�[M]
A′B′ = TrAB

[
J�

ABA′B′

((
JM

AB

)T ⊗ IA′B′
)]

is separable since both J�
ABA′B′ and JM

AB are separable.
Conversely, suppose � ∈ S(AB → A′B′) is a completely

nonentangling superchannel with respect to SEP channels.
Recall the representation of � given by P� as in Sec. II B,
where A and B are replaced by AB and A′B′, respectively. We
have

P�
ABA′B′ = �ÃB̃→A′B′ [�+

ABÃB̃
] = �ÃB̃→A′B′ [�+

AÃ
⊗ �+

BB̃
],

where we have used the fact that the CP map �+
ABA′B′ splits in

exactly the same way as its state counterpart φ+
ABA′B′ . Since

� is completely nonentangling, it follows that the channel
P�

ABA′B′ is separable, and therefore its Choi matrix J�
ABA′B′ is

separable as well. Hence, � is a SEPS. This completes the
proof �.

VI. BOUND DYNAMICAL ENTANGLEMENT

We know that if the partial transpose of a bipartite entan-
gled state yields a positive semidefinite matrix, then the state
is not distillable under LOCC [27,28]. Such states are said to
possess bound entanglement [28].

This condition can be elevated to bipartite channels. Let
NAB ∈ CPTP(A0B0 → A1B1) be a bipartite channel whose
partial transpose N 

AB is also a bipartite channel (i.e., NAB

is a PPT bipartite channel). We argue here that such chan-
nels cannot be used to distill entanglement. To see why, by
contradiction, suppose that there exists n ∈ N large enough
and an LOCC superchannel � converting N⊗n

AB to a bipar-
tite qubit state ρA′B′ = �[N⊗n

AB ], where |A′
0| = |B′

0| = 1 and
|A′

1| = |B′
1| = 2. If ρA′B′ is entangled, its partial transpose is

not positive semidefinite [36,37]. On the other hand, on the
right-hand side the partial transpose gives

(�[N⊗n
AB ]) = �

[
(N⊗n

AB )
] = �

[(
N 

AB

)⊗n] � 0

for LOCC superchannels are in particular PPT, so � is a su-
perchannel. Recall also that we assume that N 

AB is a channel
as well. Therefore, we get a contradiction.

Note that in the argument above we showed that PPT super-
channels (which include in particular LOCC superchannels)
cannot be used to distill entanglement from an arbitrarily
large number of copies of a PPT channel. This further shows
that our definition of the set of PPT superchannels, which in
principle can be larger than the set of superchannels realizable
with PPT pre- and postprocessing as in Fig. 7, is not so large
such that PPT entanglement becomes distillable.

So far we have discussed the parallel scenario in which
the superchannel � acts on N⊗n

AB in parallel, or at a single
time. However, if one can use the channel repeatedly and
sequentially, one can realize, e.g., a transformation of the form

�n[NAB] ◦ · · · ◦ �2[NAB] ◦ �1[NAB], (30)

as illustrated in Fig. 8. More generally, in Fig. 9 we illustrate
a PPT comb, which is not necessarily of the form given in
Eq. (30). Instead, for a PPT comb we only require that the
channel QAn+1Bn+1 := En+1 ◦ En ◦ · · · ◦ E1 be PPT. The channel
QAn+1Bn+1 is illustrated in Fig. 10.

FIG. 8. Sequence of PPT superchannels applied to the channels
N1, . . . ,Nn.

Now we argue that not even such a comb can convert n
PPT bipartite channels N1,N2, . . . ,Nn to a single two-qubit
entangled state. This in particular demonstrates that n adaptive
uses of a PPT channel NAB in a PPT comb cannot produce a
two-qubit entangled state. In other words, pure-state entangle-
ment cannot be distilled by LOCC (not even by PPT combs)
out of PPT bipartite channels. In other words, PPT entangled
channels are bound entangled channels.

For this purpose, we note that a comb Cn is uniquely
characterized by the channel QAn+1Bn+1 . Therefore, we define
the partial transpose of Cn, denoted C 

n , to be the supermap
associated with Q

An+1Bn+1 . Consequently, C is a PPT quantum
comb if C 

n is a quantum comb. Moreover, note that

(Cn[N1, . . . ,Nn]) = C 
n

[
N 

1 , . . . ,N 
n

]
,

as described in Fig. 11 for n = 2. This is the key reason why
PPT quantum combs cannot produce entangled states from
PPT channels.

Proposition 14. Let Cn be a PPT quantum comb with n
slots, as illustrated in Fig. 9, with |A(1)

0 | = |B(1)
0 | = 1 and

|A(n+1)
1 | = |B(n+1)

1 | = 2. Let N1, . . . ,Nn be n PPT bipartite
channels with input and output dimensions compatible with
the comb Cn, i.e., such that Cn[N1, . . . ,Nn] =: ρA(n+1)

1 B(n+1)
1

is a well-defined two-qubit state. Then, the quantum state
ρA(n+1)

1 B(n+1)
1

is separable.
Proof. The proof follows from the property that(

ρA(n+1)
1 B(n+1)

1

)T
B(n+1)

1 = (Cn[N1, . . . ,Nn])

= C 
n

[
N 

1 , . . . ,N 
n

]
� 0

because C 
n is a quantum comb, and N 

1 , . . . ,N 
n are all CP

maps, as N1, . . . ,Nn are PPT. So ρA(n+1)
1 B(n+1)

1
is a PPT two-

qubit state, therefore separable [36,37]. �
Note that the above proposition generalizes the notion of

bound entanglement to multiple and possibly different dy-
namical resources. In the special case in which N1 = · · · =

FIG. 9. PPT comb: any comb such that En+1 ◦ En ◦ · · · ◦ E1 is a
PPT channel.
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FIG. 10. A quantum comb is PPT if and only if the bipartite channel Q ∈ CPTP(A(1)
0 B(1)

0 · · · A(n+1)
0 B(n+1)

0 → A(1)
1 B(1)

1 · · · A(n+1)
1 B(n+1)

1 ) is PPT.

Nn ≡ N , the above proposition implies that pure-state entan-
glement cannot be distilled from a PPT bipartite channel N ,
not even with adaptive schemes. When N has trivial input,
we recover the PPT bound entanglement for states. When
N ∈ CPTP(A0B0 → A1B1) has classical outputs A1 and B1,
we get bound entanglement for POVMs. Since the latter is a
less studied one, we give here a simple example of a family
of bipartite POVMs that are not local (i.e., cannot be imple-
mented by LOCC), but at the same time they cannot produce
distillable entanglement. To find other candidates for bound
entangled channels, we must consider PPT channels that are
not LOCC.

Example 15. Let β ∈ D(A0B0) be any PPT bound entan-
gled state of a composite system A0B0, and define a binary
POVM consisting of EA0B0 := βA0B0 and FA0B0 := IA0B0 −
βA0B0 . We view this POVM as the bipartite channel E ∈
CPTP(A0B0 → X ) (as already noted in Sec. III C, since the
output is classical, there is no need to represent it with two
classical systems, because classical communication is free)
given by

EA0B0→X (ρA0B0 ) := Tr[EA0B0ρA0B0 ]|0〉〈0|X
+ Tr[FA0B0ρA0B0 ]|1〉〈1|X .

Since both EA0B0 and FA0B0 have positive partial transpose, it
follows that E above is a PPT channel, and, as such, it cannot
produce distillable entanglement. This means that the POVM
{EA0B0 , FA0B0} is a bound entangled POVM.

VII. CONCLUSIONS AND OUTLOOK

In this article we studied quantum entanglement as a re-
source theory of processes, where the resources are bipartite
channels (see Fig. 1). This paradigm encompasses several

FIG. 11. The channel (Cn[N1,N2]) equals the channel
C 

n [N 
1 ,N 

2 ]. Note that the yellow boxed areas correspond to the
maps (N 

1 ) = N1 and (N 
2 ) = N2.

interesting cases, including the already well-studied resource
theory of entanglement of quantum states [1,2], but also the
novel area of entanglement theory for POVMs.

The LOCC resource theory for dynamical entanglement
is still very complicated to characterize from a mathematical
point of view, so we also considered broader classes of free
superchannels: separable superchannels (SEPS) [30–32] in
Sec. V and PPT superchannels [32,35,49] in Sec. IV. The
NPT resource theory is particularly simple to deal with, as
all resource-theoretic protocols can be fully characterized by
SDPs. This remarkable fact, which did not appear in a previ-
ous work on PPT superchannels [47], is a consequence of not
restricting ourselves to freely realizable [48] PPT superchan-
nels, i.e., to superchannels whose pre- and postprocessing are
both PPT channels. This is not the only novelty with respect
to Ref. [47]: since we considered the most general case of
bipartite channels, we were able to generalize their notion of
κ-entanglement in two possible ways, the maximum of which
we call max-logarithmic negativity (see Sec. IV C). This has
a nice operational characterization as the exact asymptotic
entanglement cost of a bipartite channel under PPT super-
channels.

Finally, we concluded with an analysis of bound entangle-
ment for bipartite channels, showing that from a PPT channel
we can distill no ebits under any PPT superchannels (therefore
also under any LOCC or SEP superchannels), not even with
an adaptive scheme. This generalizes the known result for PPT
states [28]. We were also able to give an example of a bound
entangled POVM (Sec. VI).

Clearly our work just looks at the surface of a whole
unexplored world, but it opens the way to the study of the
new area of entanglement of bipartite channels [104–111].
On a small level, one can generalize the analysis we did,
and the results we obtained in this article. For example, one
can try to characterize which PPT superchannels are freely
realizable, i.e., restricted PPT channels (see Sec. IV A), and
what the resulting resource theory looks like. One can also go
a level up in complexity, and describe transitions under LOCC
superchannels.

Possible easy directions for future work involve expanding
our preliminary treatment of the entanglement of POVMs
(Sec. III C to deal with concrete cases and examples, e.g.,
von Neumann measurements), studying the entanglement of
bipartite unitary channels [103], or even achieving a com-
plete characterization of the entanglement of the simplest
instances of bipartite channels, i.e., those where every system
is a qubit. Moreover, another interesting research direction
is about witnesses. In Appendix A we introduce witnesses
for PPT superchannels, but, as we note therein, the really
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interesting ones are for the LOCC theory, which have yet to
be characterized.

On a grand scale, this work on entanglement theory leads
to several areas that can be explored anew. Think, e.g., of
multipartite entanglement [2], or of the whole zoo of entan-
glement measures [1,2]. One can also wonder if entangled
bipartite channels can be used to draw a secret key from
them [11]. Moreover, our results for LOCC superchannels
can be translated to local operations and shared randomness
(LOSR) superchannels [8,112–114], which are a strict subset
of LOCC ones. LOSR superchannels were argued to be essen-
tial for the formulation of resource theories for nonlocality [8],
as they define the relevant notion of dynamical entanglement
in Bell and common-cause scenarios. This intriguing research
direction deserves a comprehensive study in the future, in
addition to theories of nonlocality that do not involve LOSR
channels [115]. Finally, providing us with a more general
angle, research developments in the resource theory of entan-
glement for bipartite channels can also help us get insights
into one of the major open problems of quantum information
theory: the existence of bound entangled states that are not
PPT states [116–118].

To conclude, on an even more general and speculative
level, one can introduce a resource theory of entanglement for
higher-level generalizations of quantum channels [51,54,55],
such as superchannels themselves, combs, or more exotic
objects without a definite causal structure [53,119,120]. On
such a general level, especially without causal definiteness,
one can expect new and interesting behaviors, which need to
be examined carefully.
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APPENDIX A: NPT WITNESSES

Entanglement witnesses provide a simple “no-go” testing
to determine whether a given resource (state, channel, or even
superchannel) is free or not. Here we analyze the witnesses
determining whether a bipartite superchannel is PPT or not,

for this is the most general case. Indeed, PPT states and PPT
channels can be viewed as limiting cases of PPT superchan-
nels when some of the input systems are trivial.

In NPT entanglement theory one can determine whether
bipartite states, channels, or superchannels are PPT simply by
checking the positivity of their partial transpose. Why do we
study NPT witnesses then? The main reason is to distinguish
them from LOCC entanglement witnesses, which are the more
interesting ones. Indeed, LOCC entanglement witnesses play
a central role in entanglement theory, as there is no simple or
efficient way to determine if a resource is entangled or not.
Therefore, distinguishing LOCC witnesses from NPT ones is
necessary to understand which witnesses are truly physically
meaningful.

Definition 16. A matrix W ∈ Herm(ABA′B′) is an NPT
witness if it is not positive semidefinite, and if it sat-
isfies Tr[WABA′B′J�

ABA′B′ ] � 0 for all superchannels in � ∈
PPT(AB → A′B′).

Therefore, the set of all NPT witnesses can be viewed
as the set of all matrices in J∗

ABA′B′ that are not positive
semidefinite, where J∗

ABA′B′ is the dual of the cone generated
by the Choi matrices of PPT bipartite superchannels, JABA′B′ .
In Ref. [48], we showed that the former can be expressed as

J∗
ABA′B′ = {

W ∈ Herm(ABA′B′) : Tr
[
WABA′B′J�

ABA′B′
]
� 0

}
,

(A1)
for every PPT superchannel �. Then J∗

ABA′B′ is the set of all
W ∈ Herm(ABA′B′) such that Tr[WABA′B′JABA′B′ ] � 0 for all
matrices J ∈ Herm(ABA′B′) with the following properties:

(1) JABA′B′ � 0.
(2) JABA′

0B′
0
= JA0B0A′

0B′
0
⊗ uA1B1 .

(3) JA1B1A′
0B′

0
= IA1B1A′

0B′
0
.

(4) JTBB′
ABA′B′ � 0.

Note that the first three conditions ensure that JABA′B′ is the
Choi matrix of a bipartite superchannel, and the last condition
ensures that the superchannel is PPT.

The conditions above imply that all NPT witnesses W ∈
Herm(ABA′B′) are of the form

WABA′B′ = PABA′B′ + X TBB′
ABA′B′ + YABA′

0B′
0
⊗ IA′

1B′
1

+ IA0B0A′
1B′

1
⊗ ZA1B1A′

0B′
0
, (A2)

where PABA′B′ , XABA′B′ � 0, YABA′
0B′

0
is a Hermitian matrix

such that YAB = 0, and Z is a Hermitian matrix such that
Tr[ZA1B1A′

0B′
0
] = 0. Note that the Hilbert-Schmidt inner prod-

uct between YABA′
0B′

0
⊗ IA′

1B′
1

(or IA0B0A′
1B′

1
⊗ ZA1B1A′

0B′
0
) and any

Choi matrix of a superchannel is always zero, as shown in
Ref. [52]. This is why they can be added to any NPT witness.
Now we will use this form of NPT witnesses to expresses the
PPT conversion distance as an SDP.

APPENDIX B: ADDITIVITY OF THE MAX-LOGARITHMIC NEGATIVITY

Here we prove only the additivity of LN (0)
max, as the proof of the additivity of LN (1)

max follows the exact same lines.
Lemma 17. For any two bipartite channels N ∈ CPTP(A0B0 → A1B1) and M ∈ CPTP(A′

0B′
0 → A′

1B′
1) we have

LN (0)
max(NAB ⊗ MA′B′ ) = LN (0)

max(NAB) + LN (0)
max(MA′B′ ).
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Proof. For simplicity of the exposition, in some places we will omit the subscripts identifying the systems. By definition we
have

LN (0)
max(NAB ⊗ MA′B′ ) = log2 inf

{∥∥JP
A0B0A′

0B′
0

∥∥
∞ : −P

ABA′B′ � N 
AB ⊗ M

A′B′ � P
ABA′B′ , P � 0

}
(B1)

� log2 inf
{∥∥JP1⊗P2

A0B0A′
0B′

0

∥∥
∞ : −P

1 � N  � P
1 ; −P

2 � M � P
2 ; P1,P2 � 0

}
= LN (0)

max(NAB) + LN (0)
max(MA′B′ ), (B2)

where the inequality follows from the fact that, if P1 and P2 satisfy the constraints in (B2), then P = P1 ⊗ P2 satisfies the
constraints in (B1). The last equality follows from the multiplicativity of the operator norm under tensor product.

For the other direction, we use the dual expression in Eq. (13). Hence,

LN (0)
max(NAB ⊗ MA′B′ ) = log2 sup{Tr[JN⊗M(V − W )] : V + W � ρ ⊗ I; ρ ∈ D(A0B0A′

0B′
0); V,W � 0}.

Setting X := V + W and Y := V − W , we have

LN (0)
max(NAB ⊗ MA′B′ ) = log2 sup{Tr[JN⊗MY ] : X � ρ ⊗ I; ρ ∈ D(A0B0A′

0B′
0); X ± Y � 0} (B3)

� log2 sup{Tr[JN⊗M(Y1 ⊗ Y2)] : X1 � ρ1 ⊗ I; X2 � ρ2 ⊗ I; X1 ± Y1 � 0; X2 ± Y2 � 0}, (B4)

where ρ1 ∈ D(A0B0) and ρ2 ∈ D(A′
0B′

0) and the inequality follows from the fact that if X1, X2, ρ1, and ρ2 satisfy the constraints
in (B4), then X = X1 ⊗ X2, Y = Y1 ⊗ Y2, and ρ = ρ1 ⊗ ρ2 satisfy the constraints in (B3). In particular, let us show that if X1 ±
Y1 � 0 and X2 ± Y2 � 0, then we also have X1 ⊗ X2 ± Y1 ⊗ Y2 � 0. First of all, observe that, from the assumptions X1 ± Y1 � 0
and X2 ± Y2 � 0, we have

(X1 ± Y1) ⊗ (X2 ± Y2) � 0,

from which

X1 ⊗ X2 + Y1 ⊗ Y2 � ∓(X1 ⊗ Y2 + Y1 ⊗ X2).

This means that

〈ψ |X1 ⊗ X2 + Y1 ⊗ Y2|ψ〉 � ∓〈ψ |X1 ⊗ Y2 + Y1 ⊗ X2|ψ〉,
for all vectors ψ . This in turn means that

〈ψ |X1 ⊗ X2 + Y1 ⊗ Y2|ψ〉 � 0,

for all vectors ψ , from which X1 ⊗ X2 + Y1 ⊗ Y2 � 0.
Similarly, from

(X1 ± Y1) ⊗ (X2 ∓ Y2) � 0

we get that

X1 ⊗ X2 − Y1 ⊗ Y2 � ∓(Y1 ⊗ X2 − X1 ⊗ Y2),

which, by an argument similar to the one above, allows us to conclude that X1 ⊗ X2 − Y1 ⊗ Y2 � 0.
Combining both inequalities we obtained for LN (0)

max(NAB ⊗ MA′B′ ), we prove the additivity. �

[1] M. B. Plenio and S. Virmani, Quantum Inf. Comput. 7, 1
(2007).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,
Rev. Mod. Phys. 81, 865 (2009).

[3] E. Schrödinger, Math. Proc. Cambridge Philos. Soc. 31, 555
(1935).

[4] J. S. Bell and A. Aspect, Speakable and Unspeakable in Quan-
tum Mechanics: Collected Papers on Quantum Philosophy, 2nd
ed. (Cambridge University Press, Cambridge, UK, 2004).

[5] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys.
Rev. Lett. 23, 880 (1969).

[6] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Rev. Mod.
Phys. 82, 665 (2010).

[7] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Rev. Mod. Phys. 86, 419 (2014).

[8] D. Schmid, T. C. Fraser, R. Kunjwal, A. B. Sainz, E. Wolfe,
and R. W. Spekkens, arXiv:2004.09194.

[9] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[10] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881
(1992).

[11] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[12] M. Horodecki and J. Oppenheim, Int. J. Mod. Phys. B 27,

1345019 (2013).
[13] F. G. S. L. Brandão and G. Gour, Phys. Rev. Lett. 115, 070503

(2015).
[14] L. del Rio, L. Krämer, and R. Renner, arXiv:1511.08818.
[15] L. Krämer and L. del Rio, arXiv:1605.01064.
[16] G. Gour, Phys. Rev. A 95, 062314 (2017).
[17] B. Regula, J. Phys. A 51, 045303 (2017).

062422-19

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/RevModPhys.82.665
https://doi.org/10.1103/RevModPhys.86.419
http://arxiv.org/abs/arXiv:2004.09194
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.69.2881
https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1142/S0217979213450197
https://doi.org/10.1103/PhysRevLett.115.070503
http://arxiv.org/abs/arXiv:1511.08818
http://arxiv.org/abs/arXiv:1605.01064
https://doi.org/10.1103/PhysRevA.95.062314
https://doi.org/10.1088/1751-8121/aa9100


GILAD GOUR AND CARLO MARIA SCANDOLO PHYSICAL REVIEW A 103, 062422 (2021)

[18] C. Sparaciari, L. del Rio, C. M. Scandolo, P. Faist, and
J. Oppenheim, Quantum 4, 259 (2020).

[19] E. Chitambar and G. Gour, Rev. Mod. Phys. 91, 025001
(2019).

[20] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso, Phys.
Rev. Lett. 122, 140402 (2019).

[21] Z.-W. Liu, K. Bu, and R. Takagi, Phys. Rev. Lett. 123, 020401
(2019).

[22] K. Kuroiwa and H. Yamasaki, Quantum 4, 355 (2020).
[23] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,

J. A. Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722
(1996).

[24] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[25] H.-K. Lo and S. Popescu, Phys. Rev. A 63, 022301
(2001).

[26] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[27] P. Horodecki, Phys. Lett. A 232, 333 (1997).
[28] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.

Lett. 80, 5239 (1998).
[29] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A.
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