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High-fidelity quantum teleportation toward cubic phase gates beyond the no-cloning limit
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High-fidelity quantum teleportation is necessary to configure a cubic phase gate that enables the processing
of the nonclassicality in an input quantum state. The noise variance of the antisqueezing component, which
increases rapidly with a higher pump factor, contaminates the squeezing component due to the phase fluctuation
and results in a reduction of the fidelity. Here, we balance the influence of the extraction loss and phase fluctuation
on the fidelity and optimize the performance of quantum teleportation. As a result, a fidelity F = 0.905 ± 0.022
is experimentally achieved. The ultrahigh fidelity is expected to configure a cubic phase gate involving four-time
sequential teleportation to perform universal continuous-variable quantum information processing.
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I. INTRODUCTION

Quantum teleportation can transfer an arbitrary, unknown
quantum state from one location to another, exploiting shared
quantum entanglement and classical communication between
two locations [1–16]. As the most fundamental Gaussian
operation, it represents a fundamental ingredient to the de-
velopment of many advanced quantum technologies [17,18],
including quantum repeaters [19], quantum gate teleporta-
tion [20], measurement-based quantum computation [21–26],
etc. In order to construct a universal quantum computation
using continuous variables, one needs to jump out of the set
of Gaussian operations and have a non-Gaussian operation,
such as a cubic phase gate. A cubic phase gate [27] allows
us to approximate arbitrary Hamiltonians, which is one of the
most promising non-Gaussian operation gates [28]. A cubic
phase gate involves four-time sequential teleportation [27].
High-fidelity quantum teleportation is necessary to configure
a cubic phase gate that enables the processing of the nonclas-
sicality in an input quantum state.

In order to evaluate quantum teleportation, the fidelity
F ≡ 〈ψ in |̂ρout|ψ in〉 is defined to quantify the overlap between
the input and the output states [4]. By virtue of the gen-
eration of an entanglement state, quantum teleportation was
experimentally implemented with a fidelity of 0.58 [3], which
is superior to the classical limit (1/2 for a coherent state
input) that is the best achievable value without the use of
entanglement [29]. The value of 2/3 is referred to as the
no-cloning limit, because surpassing this limit warrants that
the teleported state is the best remaining copy of the input
state [30,31]. It is desirable to realize a quantum teleportation
with the fidelity surpassing the no-cloning limit, which can
preserve the nonclassicality of an input quantum state such
as the Schrödinger-cat state and a squeezed state [32,33].
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Driven by the promise of building an advanced quantum op-
eration from multiple-step quantum teleportation, the fidelity
of continuous-variable (CV) quantum teleportation was grad-
ually increased [9], reaching a maximum value of 0.83 ±
0.01 [34].

Aiming at sequential teleportation [35], we define another
parameter n to signify how many times teleportations can
be achieved sequentially. We expect to achieve the ultimate
fidelity of beyond the no-cloning limit 2/3 after n times cas-
caded teleportation to preserve the nonclassicality of an input
quantum state and enable the operation of an arbitrary quan-
tum state. The parameter n has a more explicit meaning than
the fidelity when considering an advanced quantum operation.
In the case where the fidelity of the output state after n times
quantum teleportation is still higher than the no-cloning limit,
n can be expressed as n = F

2(1−F ) , where F is the fidelity of
single teleportation [36]. Currently, the highest fidelity of 0.83
corresponds to a maximum n = 2.4, which is not sufficient to
construct a cubic phase gate for performing universal quantum
information processing.

In this paper, we theoretically analyze the influence of the
fluctuation in the phase locking and the amount of variance
on the squeezing and antisqueezing quadrature components
on the fidelity with a coherent state as the input state.
Based on the analysis, we make a trade-off between the ex-
traction loss and phase fluctuation, which drives a fidelity
increase from 0.891 to 0.905. Inferred from the fidelity of
single teleportation, the ultimate fidelity is superior to the
no-cloning limit 2/3 after four-time sequential teleportation.
The repeatable technique of a high-level squeezed state, in
combination with the optimization procedure for phase stabi-
lization, guarantees that a high fidelity of F = 0.905 ± 0.022
can be repeatedly achieved. The ultrahigh fidelity is expected
to construct a cubic phase gate involving four-time sequen-
tial teleportation toward universal CV quantum information
processing.
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FIG. 1. Schematic of CV quantum teleportation. EOM, electro-
optic modulator; PS, phase shifter; OPO, optical parameter oscil-
lator; PD, photodiode; HR, mirror with a reflectivity larger than
99.95%; θi, the relative phases; VBS, variable beam splitter; PID,
proportional-integral derivative; L, extraction loss for locking θ1;
Aux, auxiliary beam; SA, spectrum analyzer; OSC, oscilloscope.

II. EXPERIMENTAL SETUP

The schematic of our experiment is depicted in Fig. 1.
Entangled Einstein-Podolsky-Rosen (EPR) beams are gen-
erated by combining two independent squeezed states at a
50:50 beam splitter. A variable beam splitter (VBS) is located
behind the 50:50 beam splitter to extract the error signal
for phase θ1 stabilization. It is worth noting that the extrac-
tion loss L can be manipulated to provide an optimization
procedure. Both squeezed fields are produced by paramet-
ric down-conversion in a subthreshold optical parametric
oscillator (OPO) [37], which have exactly the same configura-
tion [38]. Two electro-optical modulators (EOMs) are placed
in front of two OPOs respectively to generate error signals
for cavity and phase locking. All the photodetectors that serve
the Pound-Drever-Hall (PDH) control loop are homemade
resonant photodetectors with a high Q factor [39]. In our pre-
vious work, with the optimization of phase noise [38,40,41],
system loss [42,43], and detector dark noise [44], the
maximum squeezing level was measured to be 13.8 dB be-
low the shot-noise limit (SNL), close to the record level
of 15 dB [45].

After the generation of the EPR beams, they are used
as an auxiliary resource to teleport the unknown state. At
Alice’s sending terminal, the input state and EPR1 are com-
bined at a balanced beam splitter (with a relative phase
of 0) to perform a joint measurement. Two balanced homo-
dyne detectors are used to acquire the amplitude and phase
information with the assistance of two local oscillators. The
measurements are dispatched to Bob through classical chan-
nels with proper gain. An auxiliary beam (Aux) obtains the
transmitted information by utilizing an amplitude modulator
(AM) and a phase modulator (PM). A half-wave plate (not
shown in the figure) that is placed before the AM and PM
is used to control the polarization direction to eliminate the

crosstalk between the AM and PM. The Aux carrying the
acquired information is combined with the EPR2 at a 99:1
mirror to reassemble the initial input state. A local oscillator
is utilized to verify the performance of the reassembled state
via balanced homodyne detection. Both the Wigner functions
of the teleported states without and with EPR entanglement
are reconstructed to verify whether or not the teleportation
process is successful. What is worth being highlighted is
that we have many technical innovations to drive the high
achievement during the squeezed-state generation, specifi-
cally as follows: All the mode-matching efficiencies should
always be higher than 99.8%; the propagation loss should be
as small as possible; the balanced homodyne detectors should
have a large clearance and high common mode rejection ratio
to reduce the measurement error [46]; all the servo loops
have minor fluctuations by the employment of a homemade
resonant photodetector and wedged EOM with low residual
amplitude modulation (RAM) [39,47]. On the basis of these
technical innovations, experimental imperfections are over-
come as much as possible. As a result, a squeezing level
above 12 dB can be repeatedly achieved in our experiment at
any time [38,41,42,44]. On the basis, quantum teleportation
needs more mode-matching procedures, and control loops
for phase stabilization. These extra control loops may cause
more losses induced from the extraction of an error signal,
the phase fluctuations, which should be eliminated as much as
possible.

III. EXPERIMENTAL ANALYSIS AND RESULTS

Fidelity F is always defined to quantify the performance
of the teleportation process F ≡ 〈ψ in |̂ρout|ψ in〉 in which “in”
and “out” denote the input and output state. For a coherent
input state, fidelity F of the teleported state is given by [10]

F = 2

σQ
exp

[
− 2

σQ
|βout − βin|2

]
, (1)

where

σQ =
√(

1 + σ x
W

)(
1 + σ

p
W

)
, (2)

σ x
W = σ

p
W = g2 + 1

2
e2r (1 − g)2 + 1

2
e−2r (1 + g)2. (3)

σQ is the variance of the teleported state in the represen-
tation of the Q function which depends on the fluctuation
variances of amplitude and phase quadratures (σ x

W and σ
p

W ),
and r represents the squeezing factor. βin and βout are am-
plitudes of the input state at Alice’s terminal and the output
state at Bob’s terminal, respectively. g is the gain factor of
the classical channels, and as the two quadrature components
(amplitude and phase) are symmetric, g has an equivalent
value for the amplitude (gx) and phase (gp) quadratures. With
perfect transmission, g is set to be 1 for both amplitude and
phase quadratures (thus σ x

W = σ
p

W = 1 + 2e−2r). For classical
teleportation with r = 0, corresponding to σ x

W = σ
p

W = 3, the
noise variance at Bob’s terminal is three times the same as
vacuum noise. At this point, the fidelity of the teleported state
equals the classical boundary of 1/2. The fidelity gradually
increases with the squeezing factor r, reaching a fidelity of 1
at r → ∞.
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In an ideal case with perfect phase-locking loops and gain
factors, the fidelity of the teleported state that is indepen-
dent of the antisqueezed quadrature variance depends on the
squeezing factor r. However, in the actual case, the effect of
phase fluctuations, originating from nonideal phase locking,
is to contaminate the squeezed quadrature variance, which
limits the fidelity. Especially in a teleportation operation, there
are multiple phases that need to be controlled. Any unwanted
deviation from the ideal values will lessen the fidelity. Here,
we analyze the influence of the phase fluctuation of the tele-
portation process on the fidelity and balance the extraction
loss and phase fluctuation to get the optimal fidelity according
to the actual experimental setup, which provides guidance on
optimal experiment parameters. The phase fluctuation in the
generation of a squeezed state, which leads to the contami-
nation of the squeezing component, decreases the squeezing
level [38] and reduces the fidelity. Owing to the interdepen-
dent phase relationship, the total phase fluctuation is more
than the sum of the phase fluctuation of each loop, and should
be systematically analyzed.

We need to perform five active phase stabilizations to im-
plement an actual teleportation operation. In order to achieve
high fidelity, the total phase fluctuation of teleportation sys-
tem should be optimized as low as possible. These phases
are outlined as follows: (1) the relative phase between two
squeezed states for the generation of EPR beams (θ1); (2)
the relative phase between EPR1 and the input state (θ2);
(3) the relative phase between the combination state and
the local oscillator for extracting the amplitude information
(θX ); (4) the relative phase between the combination state and
the local oscillator for extracting the phase information (θY );
and (5) the relative phase between EPR2 and the auxiliary
beam (θ3).

θ2, θX , and θ3 are locked to 0 by employing the PDH
technique, the error signal of which is generated by the EOM
placed in front of the OPO2. However, almost all the EOMs
generate some unwanted RAM, which results in a systematic
zero baseline drift of the PDH error signal [47]. It inevitably
degrades the phase-locking performance of θ2, θX , and θ3,
and is detrimental in the fidelity of the teleportation oper-
ation. It is worth noting that the control loops for locking
θ2, θX , and θ3 are from the same EOM in our experimental
setup, so the phase fluctuations coming from the RAM are
approximately equal. At θ2 = θ3, the entanglement degree of
EPR beams is independent of the value of θ2, θ3 due to the
principle of EPR entanglement. In our previous work [47], the
EOM is constructed by using a wedged crystal instead of the
conventional design to reduce the RAM and the fluctuation
in the phase-locking loop is restrained to 0.013◦. Unlike the
relative phase θ2, θX , and θ3, the phases θ1 and θY are locked
to π/2 by directly feeding the interference signal back to the
actuator [10], which does not need an additional demodulation
process. Due to the weak interference signal (the more signal
we use for phase locking, the worse the squeezing factor of the
entangled state would be), the performance of phase (θ1 and
θY ) locking is worse than that of θ2, θX , and θ3. It is because
the error signal of the phase (θ2, θX , and θ3) locking can be
amplified by increasing the power of the local oscillator in the
demodulation process. In comparison with the phase fluctua-
tions in θ1 and θY , the fluctuation in θX could be neglected.

Therefore, only the fluctuations of θ1 and θY should be taken
into account.

After considering the fluctuations in θ1 and θY (during the
calculating process, these minterms such as the cross terms of
the fluctuations are neglected), the expression of the teleported
can be easily obtained,

âout = âin +
√

2

4
(2e−rs)X̂1 +

√
2

4
i[−2e−rsX̂2

+ (2δθ1 + δθY)eraŶ2], (4)

where âin is the input state, and X̂1, X̂2 and Ŷ1, Ŷ2 are the ampli-
tude and phase quadratures of the annihilation operators of the
two squeezed states. rs and ra are the squeezing factors of the
squeezing and antisqueezing quadrature components, which
are determined by the pump factor (the ratio of between the
pump power and threshold power). δθ1 and δθY are the fluc-
tuations in the phase θ1 and θY , and we set δθ = 2δθ1 + δθY .
The fidelity of the teleported state with a coherent state as the
input state is then expressed as

F = 2√
(2 + 2Vs)

[
2 + 2Vs + 1

2 (δθ )2Va
] , (5)

where Vs and Va are the noise variances of the squeezing and
antisqueezing components.

We know, from expression (5), that the fidelity is only
determined by the variance of squeezing quadrature compo-
nent, independent of the antisqueezing noise at δθ = 0. In
fact, there is an inevitable phase fluctuation δθ that mixes
the squeezed and antisqueezed quadrature components, and
the fidelity cannot increase monotonously with the squeezed
quadrature variance. The variances of the squeezed and an-
tisqueezed quadrature components can be manipulated by
changing the pump factor. δθ depends on the light power
(extraction loss) that serves the feedback loop. The lower
the loss induced from the error signal extraction, the worse
is δθ . With a large value of δθ , we should lower the pump
factor aiming to reduce the antisqueezing noise, and vice
versa. In order to obtain an optimal fidelity of the teleporta-
tion process, we should balance the extraction loss and phase
fluctuation δθ .

According to these system parameters (OPO length l =
37 mm, linewidth κ = 68 MHz, analysis frequency f =
2 MHz), we quantify the relationship between the fidelity
and pump factor at different phase fluctuations δθ with an
extraction loss of 1%, illustrated in Fig. 2. The orange dashed-
dotted curve and black solid curve are obtained at δθ = 15
and 90 mrad, respectively. The results demonstrate that the
optimal pump factor will increase with a decrease of δθ .
Further, we measure the dependence of the fidelity on the
pump factor, shown as blue dots in Fig. 2, and acquire the
phase fluctuation δθ = 45.6 mrad with the blue dotted curve.
A maximum fidelity of 0.905 is obtained at a pump factor of
0.6. Subsequently, the same measurement is carried out with
an extraction loss of 5%, shown as red squares in Fig. 2. The
red dashed curve is the theoretical result, corresponding to the
phase fluctuation δθ = 13.8 mrad. Compared with the above
results, the phase fluctuation obviously decreases. However,
the optimal fidelity is only 0.891 at a pump factor of 0.8 owing
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FIG. 2. Fidelity of the teleported state as the function of the
pump factor. The orange dashed-dotted curve, blue dotted curve, and
black solid curve are obtained theoretically at an extraction loss of
1% with different δθ : orange dashed-dotted curve, δθ = 15 mrad;
blue dotted curve, δθ = 45.6 mrad; black solid curve, δθ = 90 mrad;
the blue dots are the experimental results. The red dashed curve is ob-
tained theoretically at an extraction loss of 5% with δθ = 13.8 mrad,
and the red squares are the measured results. The error bars are the
standard deviation during 20 times measurements.

to the increased extraction loss. The results provide guidance
for balancing the system parameters, aiming to optimize the
experimental results.

In the best performance, we measure the noise power of the
teleported state. The maximum fidelity is obtained at a pump
factor of 0.6, which is shown in Fig. 3. Trace (i) represents
the SNL, which is obtained with only the local oscillator
injecting into the BHDs. Trace (iii) shows the noise power
of the teleported state without EPR entanglement, and it is
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FIG. 3. Noise power of the teleported state: (a) the X quadrature;
(b) the Y quadrature. Traces (i)–(iii) are the shot-noise limit, the noise
power of the teleported state with the help of EPR entanglement, and
the noise power of the teleported state without EPR entanglement,
respectively.

FIG. 4. Reconstructing the Wigner function of the states be-
fore and after teleportation. (a) Wigner function of the input state.
(b) Wigner function of the output state without EPR entanglement.
(c) Wigner function of the output state with EPR entanglement. P
and Q are momentum and position in the phase space.

acquired by adjusting the gain factor of the classical channels.
The noise power is 4.77 dB higher than the SNL as expected.
Trace (ii) is the noise power of the teleported state with the
help of EPR entanglement, and it is about 3.94 dB below the
case without EPR entanglement. All the traces are measured
via balanced homodyne detection at an analysis frequency
of 2.0 MHz. According to Eq. (1), the fidelity of the tele-
ported state is calculated to be F = 0.905 ± 0.022. To verify
the above theoretical analysis, we measure the fidelities of
the teleportation process under different pump powers of the
OPOs, where the blue dots shown in Fig. 2 are the measured
experimental results.

The Wigner function, a quasiprobability distribution of
quadrature amplitude and phase in phase space, provides the
complete quantum characteristics of a quantum state. To quan-
tify the performance of the teleportation process, the Wigner
functions of teleported states with EPR entanglement (quan-
tum teleportation) and without EPR entanglement (classical
teleportation) are reconstructed at Bob’s terminal by using
optical homodyne tomography, shown in Fig. 4. Figure 4(a)
represents the reconstructed Wigner function of the input
coherent state, and Figs. 4(b) and 4(c) are the reconstructed
Wigner function of the output states without and with EPR
entanglement, respectively.

With such a high fidelity, we expect to focus on sequen-
tial quantum teleportation. The total (average) fidelity for a
sequential of n quantum teleportation can be described as

F (n) = 1

1 + ne−2r
. (6)

A cubic phase gate involves four-time sequential telepor-
tation, corresponding to n = 4. The fidelity of the teleported
state is inferred to be 0.70 in this case, which is still higher
than the no-cloning limit 2/3. Therefore, our teleporter is
sufficient to configure the cubic phase gate which enables the
preservation of the nonclassicality of an input quantum state.

IV. CONCLUSION

In conclusion, we have demonstrated high-fidelity quan-
tum teleportation with a maximum fidelity of 0.905 ± 0.022
by virtue of balancing the extraction loss and phase fluctuation
δθ . With such high fidelity, the ultimate fidelity is superior
to the no-cloning limit 2/3 after four-time sequential telepor-
tation. The ultrahigh fidelity is expected to construct a cubic
phase gate involving four-time sequential teleportation toward
universal CV quantum information processing.
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