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Matrix powering is a fundamental computational primitive in linear algebra. It has widespread applications in
scientific computing and engineering and underlies the solution of time-homogeneous linear ordinary differential
equations, simulation of discrete-time Markov chains, or discovering the spectral properties of matrices with
iterative methods. In this paper, we investigate the possibility of speeding up matrix powering of sparse stable
Hermitian matrices on a quantum computer. We present two quantum algorithms that can achieve speedup over
the classical matrix powering algorithms: (i) a fast-forwarding algorithm that builds on construction of Apers
and Sarlette [Quantum Inf. Comput. 19, 181 (2019)] and (ii) an algorithm based on Hamiltonian simulation.
Furthermore, by mapping the N-bit parity determination problem to a matrix powering problem, we provide
no-go theorems that limit the quantum speedups achievable in powering non-Hermitian matrices.
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I. INTRODUCTION

Recent years have seen rapid progress in the development
of quantum computing hardware, and there have already been
experimental demonstrations of quantum computations that
are believed to be hard to simulate on classical computers
[1,2]. While this progress in hardware has brought us closer
to the monumental goal of building a fault-tolerant quantum
computer, it has also provided us with access to noisy quantum
hardware which might already solve problems that are hard
for classical computers [3]. From a theoretical standpoint, it
has become important to discover algorithms that can provide
speedup over their classical counterparts on both fault tolerant
quantum computers and near-term noisy quantum hardware.

Quantum computers are known to offer exponential
speedup in simulating the physics of quantum systems—near-
optimal algorithms have been developed for the simulation of
Hamiltonian dynamics [4–6], Lindbladian dynamics [7–10],
and steady state (finite temperature or ground state) properties
of Hamiltonians [11–14]. Several techniques used for simu-
lating quantum systems have been generalized to accelerate
more fundamental linear algebra computational primitives—
exponential quantum speedup in the solution of systems of
linear equations have been obtained [15–17], and quantum
speedups have also been shown in solving ordinary differen-
tial equations [18,19] and partial differential equations [20].
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Another fundamental computation that can be accelerated
on quantum computers is matrix powering i.e. computing a
matrix-element v†At u given access to the matrix A ∈ CN×N , a
positive integer power t and vectors v, u ∈ CN . This is a com-
putational primitive which appears in various applications,
including but not limited to solving linear differential equa-
tions, simulating discrete-time Markov chains, and matrix
inversion and eigenvalue computation using Krylov subspace
methods. Classically, this problem can be solved by repeated
matrix multiplication in time O[poly(N )Dt], where D is the
sparsity of the matrix A. Without any assumptions on the ma-
trix A, one approach to solve the matrix-powering problem on
a quantum computer is to map it to a matrix inversion problem
and use quantum algorithms for solving linear equations—
this approach has been investigated in Refs. [18,19]
in the context of solving linear time-homogeneous or-
dinary differential equations and has a run time of
O[polylog(N )poly(ε−1)κV ‖v‖2‖u‖2Dt], where κV is the con-
dition number of the eigenvector matrix of A, to obtain v†At u
to a precision ε for stable matrices, thereby providing an ex-
ponential speedup in the matrix size over classical algorithms.

Furthermore, several authors have studied the problem of
powering a stochastic matrix which arises in the context of
simulating the dynamics of a discrete-time Markov chain
[21–23]. Classically, the problem of powering a stochastic
matrix can be solved efficiently to a precision ε with the
Monte Carlo algorithm in time O(Dt‖v‖2‖u‖2/ε2)—using the
Monte Carlo algorithm is thus exponentially faster than using
repeated matrix multiplication. While the quantum algorithms
based on linear equation solvers do not provide an exponential
speedup for stochastic matrix powering when compared to
the classical Monte Carlo algorithm, there have been two
proposals for achieving polynomial quantum speedups for this
specific problem. One of the proposed algorithms is to use a
reversible implementation of the classical Monte Carlo algo-
rithm together with quantum amplitude estimation to achieve
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a quadratic improvement in the dependence of the run time on
precision as compared to the classical Monte Carlo algorithm
[24]. This idea has been applied to propose solutions to the
heat equation [25] and stochastic differential equations [26].
A different quantum speedup can be obtained for symmetric
stochastic matrices by employing quantum walks [27–30]. In
particular, Ref. [31] prepares a quantum state within an ε

radius of At u/‖At u‖ in O[D‖At u‖−1√t ln1/2(ε−1‖At u‖−1)].
The same author generalized this algorithm to arbitrary Her-
mitian matrices A in Ref. [32]. While this algorithm obtains
a quantum speedup over classical methods (an exponen-
tial speedup in N over repeated matrix multiplication, and
quadratic speedup in t over the Monte Carlo algorithm), the
dependence of the run time on ‖At u‖−1 can often make it
polynomially slow in N .

In this paper we introduce two algorithms to compute
v†At u for stable Hermitian matrices A, i.e., Hermitian ma-
trices all of whose eigenvalues have magnitudes less than
1. The first algorithm, which combines the construction of
Ref. [31] with a Hadamard test [33], has a run time of
Õ(D

√
t‖v‖‖u‖ε−1‖A‖t

1)1. For matrices where it is known that
‖A‖1 � 1, this provides a quantum speedup over repeated
matrix multiplication, since its run time does not scale poly-
nomially with the size of the matrix. Furthermore, it provides
a quadratic speedup in t over the classical Monte Carlo al-
gorithm for symmetric stochastic matrices (in which case
‖A‖1 = 1). For problems such as the simulation of diffu-
sive discrete-time Markov chains, where ‖At u‖−1 = O(

√
N )

at large t , this algorithm provides an exponential speedup
in the size of the matrix A over Ref. [31]. The second al-
gorithm, based on Fourier series expansion, has a run time
of Õ[Dt2poly(‖v‖‖u‖ε−1)] to compute v†Aτ u for all τ ∈
{0, 1, 2, . . . , t}. While this is slower than the quantum-walk-
based algorithm, it only uses Hamiltonian simulation as a
primitive and thus is more suitable for near-term quantum
hardware. A similar run time is achieved in Ref. [34] em-
ploying only Hamiltonian simulation, wherein the authors
instead of using a Fourier series identified a matrix power
with a derivative of the matrix exponential and used a finite
difference approximation for it. Furthermore, our algorithm
achieves a run time comparable to that of the quantum algo-
rithms based on linear equation solvers [18,19]. For matrices
that are not stochastic and consequently cannot be classi-
cally powered with the Monte Carlo algorithm, this algorithm
achieves a quantum speedup over repeated matrix multiplica-
tion since its run time does not scale polynomially with the
size of the matrix. Finally, following a construction similar to
that of Ref. [35], we provide no-go theorems that limit the

1Notation for norms. Throughout this paper, for a vector v ∈ CN ,
‖v‖k , k ∈ {1, 2, . . . }, will refer to the standard �k norm of the vec-
tor. Furthermore, for convenience, we will use ‖v‖ to denote the
�2 norm of v. For matrices A ∈ CN×N , ‖A‖k denotes the operator
norm induced by the �k vector norm, i.e., ‖A‖k = supv ‖Av‖k/‖v‖k .
In particular, ‖A‖2 will be the largest singular value of A, which
coincides with the largest magnitude of eigenvalue if A is Hermitian.
Additionally, for Hermitian matrices A, ‖A‖∞ = ‖A‖1 will be the
maximum absolute row (or column) sum of the matrix A.

speedups achievable with a quantum computer for powering
non-Hermitian matrices.

II. PROBLEM DEFINITION, PRELIMNARIES,
AND SUMMARY OF RESULTS

We consider the problem of powering a Hermitian matrix
A ∈ CN×N that is stable; i.e., all of its eigenvalues have a mag-
nitude less than 1, or equivalently ‖A‖2 � 1. Furthermore, we
assume the matrix to be D-sparse; i.e., every row or column
of the stochastic matrix has at most D nonzero elements.
Hermitian matrices arising in practice will typically have D =
O(1) or O[polylog(N )]. The matrix-powering problem that we
consider is precisely defined below.

Problem (Matrix powering). Given a D-sparse stable Her-
mitian matrix A ∈ CN×N , a positive integer power t , and
vectors v, u ∈ CN , compute v†At u to a specified precision of
ε > 0.

We point out that previous works that solve the matrix-
powering problem in various contexts adopt a different
problem definition wherein they aim to prepare a quantum
state encoding At u. Since in many applications of matrix
powering we are finally interested in computing its inner prod-
uct, v†At u, with another vector v which is typically known
beforehand, the algorithms proposed in this paper directly
compute this expectation value without ever explicitly prepar-
ing a quantum state encoding At u. We make two further notes
about this problem definition.

(i) The precision of the output of this algorithm is assumed
to be in a probabilistic sense; i.e., the algorithm is said to
produce an estimate X of a quantity x with a precision ε if
Prob[|X − x| � ε] is large enough. The value of this probabil-
ity, often referred to as the confidence level of the algorithm,
is assumed to be a prespecified constant close to 1 throughout
this paper and we suppress it in the complexity results.

(ii) We assume a black-box query model for the sparse
Hermitian matrix A [36]; i.e., we assume access to two oracles
OF and OA which allow us to access the elements of the Her-
mitian matrix. The oracle OF provides access to the indices of
the nonzero elements of each column of the Hermitian matrix
via the implementation of a unitary that satisfies

OF | j, k〉 = | j, f ( j, k)〉 ∀ j ∈ [N], k ∈ [D], (1)

where f ( j, k) is the index of the kth nonzero element in the jth
row or column. The oracle OA provides access to the nonzero
elements of the matrix A via the implementation of a unitary
that satisfies

OA| j, k〉|z〉 = | j, k〉|z ⊕ Aj,k〉 ∀ j, k ∈ [N], (2)

where Aj,k are the complex elements of the matrix A that are
represented by a bit-string up to some specified precision δ.
On a quantum computer, these oracles can be implemented
with quantum circuits of depth O[Dpolylog(1/δ)], e.g., with a
quantum random access memory (qRAM) [37]. On near-term
hardware, there might be alternative more efficient ways of
implementing these oracles for specific matrices A (for in-
stance, the matrices corresponding to local Hamiltonians of a
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lattice of classical spins). In this paper, for clarity, we express
our complexity results in terms of the number of calls to the
oracles OF and OA, and these can easily be translated to the
circuit depths for various hardware-specific implementations.

In the remainder of this paper, we provide several quantum
algorithms to solve the matrix-powering problem and achieve
speedups over classical algorithms. The first algorithm builds
on Ref. [31] and combines a quantum walk together with
a Hadamard test and a classical sampling algorithm to ob-
tain the following result. Furthermore, by employing the
linear combination of unitaries (LCU) technique along with
quantum amplitude amplification [24], we can obtain a
quadratic improvement in the scaling of the run time with the
precision ε.

Theorem 1. Given a constant C > 0 such that ‖A‖1 < C,
the matrix-powering problem can be solved with a quantum
algorithm in Õ(Ct D

√
t‖v‖‖u‖ε−1) calls to the oracles OF

and OA.
Here Õ hides any polylog complexity factors. We point out

that these algorithms suffer from an exponential scaling with
the power t when ‖A‖1 > 1—this is due to the fact that the
quantum walk construction we employ can only be used if the
sum of magnitude of the elements of each row (or column)
of A is smaller than 1. For a number of matrix-powering
problems, such as simulation of discrete-time Markov chains,
‖A‖1 = 1, and the run time of these scales sublinearly with
t . The above results improve the fast-forwarding algorithm
presented in Refs. [31], whose run time scales inversely with
‖At u‖—our approach avoids this scaling at the expense of
scaling with ‖u‖2 and ‖v‖2. This could be of relevance in
problems such as the simulation of diffusive discrete-time
Markov chains, where ‖At u‖−1 = O(

√
N ) at large t . Further-

more, compared to the quantum algorithms based on linear
equation solvers, this result has a quadratic speedup in t . We
also remark that when compared to classical algorithms, we
obtain an exponential speedup in N over the matrix multipli-
cation algorithm and a quadratic speedup in t over the Monte
Carlo algorithm when the matrix A is stochastic.

While the quantum-walk-based algorithms provided above
are able to achieve “fast-forwarding,” i.e., a sublinear run time
with respect to the matrix power t , they are difficult to im-
plement on near-term quantum hardware. Given experimental
constraints, it is widely believed that Hamiltonian simulation
[4–6] will be one of the first problems to be solved on practi-
cal hardware. Furthermore, simulation of several classes of
Hamiltonians can also be implemented on analog quantum
simulators [38–40] which are significantly easier to experi-
mentally build as compared to fully programmable quantum
computers. Based on a truncated Fourier series expansion of
the function f (x) = xt , we provide a quantum algorithm to
solve the matrix-powering problem with only the ability to
use Hamiltonian simulation.

Theorem 2. The matrix-powering problem can be solved
simultaneously for all powers from 0 to t using an efficient
Hamiltonian simulator in time Õ[t2poly(‖v‖‖u‖ε−1)D].

We note that this result has a worse run time not only when
compared to the quantum-walk algorithms but also with the
classical Monte Carlo algorithm if the matrix A is stochastic.
However, it achieves an exponential speedup in N over the
classical repeated matrix multiplication algorithm although at

an expense of quadratically worse scaling with t , for matrices
that are not stochastic. Furthermore, it achieves the same
run time as quantum algorithms based on the linear equation
solvers if they are employed to compute matrix powers from 0
to t . The key advantage of this algorithm over other quantum
algorithms is its feasibility of being implemented on near-term
quantum hardware.

Finally, all the algorithms provided above assume the ma-
trix A to be Hermitian, in which case it was possible to
obtain a fast-forwarding speedup using quantum walks, i.e.,
compute At in time �(

√
t ). A natural question to ask is

if fast-forwarding is possible for non-Hermitian matrices as
well. By utilizing a construction similar to the no-go theorems
for Hamiltonian simulation [35] and relying on the result
that even a quantum computer cannot speedup the calculation
of parity of N-bits [41,42], we provide the following no-go
theorem.

Theorem 3 (No-go theorem). There cannot exist a quan-
tum algorithm that solves the matrix-powering problem in
Õ[tαpoly(‖u‖, ‖v‖, ε−1)] calls to the oracles OF and OA, with
α < 1, for any arbitrary irreducible sparse matrix A.

We point out that while these no-go theorems rigorously
show that it is not possible to fast-forward the matrix-
powering problem for generic non-Hermitian matrices, it does
not prohibit an improvement of the run time’s dependence
on the size of the matrix. Indeed, matrix-powering methods
based on quantum linear equation solvers [18,19] obtain an
exponential improvement over classical algorithms even for
non-Hermitian matrices if the matrix is not stochastic.

The remainder of this paper contains proofs of the theo-
rems stated above. In Sec. III we describe the matrix-powering
algorithms presented in this paper and prove Theorems 6, 1,
and 2. In Sec. IV, we prove the no-go Theorem 3. We only
provide proofs of the most important theorems in the main
text, and details are relegated to the appendices.

III. MATRIX MULTIPLICATION ALGORITHM

Before detailing the matrix-powering algorithm, we pro-
vide the following lemma that maps the computation of v†At u
to the overlap of At , 〈ψ |At |ψ〉, with quantum states |ψ〉 that
depend on u and v. This transformation is useful since the
Hadamard test naturally allows for the computation of such
overlaps.

Lemma 1. Given a Hermitian matrix A and vectors v and u,
it follows that

Re[v†At u] = 1
2

(
λR

1

〈
ψR

1

∣∣At
∣∣ψR

1

〉 + λR
2

〈
ψR

2

∣∣At
∣∣ψR

2

〉)
,

Im[v†At u] = 1
2

(
λI

1

〈
ψ I

1

∣∣At
∣∣ψ I

1

〉 + λI
2

〈
ψ I

2

∣∣At
∣∣ψ I

2

〉)
,

where |ψR
i 〉 and λR

i , i ∈ {1, 2}, are the eigenvectors and eigen-
values of the Hermitian matrix uv† + vu†, and |ψ I

i 〉 and λI
i ,

i ∈ {1, 2}, are the eigenvectors and eigenvalues of the Hermi-
tian matrix i(vu† − uv†).

Proof. It follows immediately from the Hermiticity of
A that 2Re[v†At u] = Tr[At (uv† + vu†)] and 2Im[v†At u] =
Tr[iAt (vu† − uv†)]. Using uv† + vu† = λR

1 |ψR
1 〉〈ψR

1 | +
λR

2 |ψR
2 〉〈ψR

2 | and i(vu† − uv†) = λI
1|ψ I

1〉〈ψ I
1| + λI

2|ψ I
2〉〈ψ I

2|,
we obtain the result in the lemma. �
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Consequently, we focus on developing methods to compute
the overlap 〈ψ |At |ψ〉 efficiently. It can also be noted that for
problems where u and v are sparse, the eigenvectors |ψ1,2〉
introduced above are also sparse and consequently efficiently
preparable on quantum computers. Furthermore, we note that
the eigenvalues λ1 and λ2 are bounded by the norms u and v,
which is concretely stated in the following lemma.

Lemma 2. All eigenvalues λ of uv† + vu† and i(vu† − uv†)
satisfy |λ| � 2‖u‖‖v‖.

Proof. Denoting by |ψ〉 the normalized eigenvector cor-
responding to the eigenvalue λ, it follows that |λ| =
‖(uv† + vu†)|ψ〉‖ � ‖u‖ |v†|ψ〉| + ‖v‖ |u†|ψ〉| � 2‖u‖‖v‖.
A similar proof holds for the eigenvalues of i(vu† − uv†). �

A. Fast-forwarding with quantum walks

One of the key ingredients in the quantum-walk-based
algorithms for the matrix-powering problem is expressing At

as a linear combination of Chebyshev polynomials of A,

At =
t∑

m=0

pmTm(A), (3)

where pm is a probability distribution given by

pm =

⎧⎪⎪⎨
⎪⎪⎩

1
2t−1

( t
(t−m)/2

)
for m > 0, t = m mod 2,

1
2t

( t
t/2

)
for m = 0, t = 0 mod 2,

0 otherwise.

(4)

Consequently, a quantum circuit to compute the overlap
〈ψ |At |ψ〉 can be constructed from a quantum circuit that
can compute the overlap 〈ψ |Tm(A)|ψ〉 for a specified m ∈
{0, 1, . . . , t}. As is shown below, this can be done with a
quantum walk provided that the 1-norm of A is smaller than
1. Since this is not necessary for stable Hermitian matrices,
we assume that we have access to an upper bound C on this
norm, i.e., ‖A‖1 � C and compute 〈ψ |(A/C)t |ψ〉, albeit to a
precision Ct higher than that required in 〈ψ |At |ψ〉. Therefore,
in the remainder of this section, unless otherwise mentioned,
we assume ‖A‖1 � 1.

A quantum walk construction similar to that used in
Refs. [27,28,31] together with a Hadamard test allows us to
compute these overlaps. However, since the elements of the
matrix A can be complex, it is important to design the quantum
walk with care so as to account for the phase of the complex
matrix elements [36]. For A ∈ CN×N , we consider a Hilbert
space CN+1 ⊗ CN+1 ⊗ C2 and assume access to a unitary V
that satisfies

V |i, 0, 0〉 =
N∑

k=1

√|Ak,i|eiϕk,i/2|i, k, 1〉 +
(

1 −
N∑

k=1

|Ak,i|
)1/2

|i, N + 1, 1〉 if i �= N + 1, (5a)

V †|i, j, 1〉 = √|Aj,i|e−iϕ j,i/2|i, 0, 0〉 + |φ⊥〉|1〉 for some |φ⊥〉 if i �= N + 1, (5b)

V |N + 1, j, b〉 = |N + 1, j, b〉, (5c)

where if Ai, j = |Ai, j |ei∠Ai, j for ∠Ai, j ∈ (−π, π ], then ϕi, j =
∠Ai, j for i � j and −∠Ai, j for i < j. Furthermore, we intro-
duce the operator S given by

S|i, j, b〉 =

⎧⎪⎨
⎪⎩

|i, j, 0〉 if b = 0,

| j, i, 1〉 if b = 1 and i �= j,

sgn(Ai,i )|i, i, 1〉 if b = 1 and i = j.

(6)

We remark that this operator is different from that used in
Ref. [31]—in particular, we have modified this operator to
account for possibly negative on-diagonal elements of the ma-
trix A which Apers and Sarlette [31] did not handle since they
were dealing with a stochastic matrix. Finally, the quantum
walk operator W can then be constructed using the operators
V and S and a reflection about the last qubit,

W = −(I ⊗ I ⊗ σz )V †SV. (7)

We then obtain the following lemma, similar to that obtained
in Refs. [31,32] stating that m applications of the quantum
walk operator effectively apply Tm(A) on an input state condi-
tioned on the state of the last qubit.

Lemma 3 [Quantum walk for Tm(A)]. The unitary operator
W defined in Eq. (7) satisfies

W m|ψ〉|0〉|0〉 = Tm(A)|ψ〉|0〉|0〉 + |ψ⊥〉|1〉, (8)

for some |ψ⊥〉 ∈ CN+1 ⊗ CN+1.
Proof. Denote by Π0 the projector that projects the third

register to the state |0〉. Then we have 2Π0 − I = −σz. Using
the fact that Π0σz = −Π0, and that U is unitary, we can write

Π0W
m = −Π0σzU (2Π0 − I )UW m−2

= 2Π0UΠ0UW m−2 − Π0U
2W m−2

= 2Π0UΠ0W
m−1 − Π0W

m−2. (9)

Recall that the Chebyshev polynomials satisfy the re-
cursion Tm(x) = 2xTm−1(x) − Tm−2(x). Using x = Π0U and
T0(Π0U ) = Π0, it follows that Π0W m fulfills the same re-
cursion. We can therefore write Π0W m = Tm(Π0U ). Further-
more, since (Π0U )m|ψ〉|0, 0〉 = Mm|ψ〉|0, 0〉 (this is shown
in Ref. [31]), we obtain

Π0W
m|ψ〉|0, 0〉 = Tm(M )|ψ〉|0, 0〉. (10)

Since W is a unitary operator, this implies that

W m|ψ〉|0, 0〉 = Tm(M )|ψ〉|0, 0〉 + ∣∣ψ⊥〉|1〉, (11)

which proves the lemma. �
As is shown in Appendix A, the quantum walk operator

A can be implemented with O(D) calls to the oracles OF

and OA that access the matrix A. In order to estimate the
overlap 〈ψ |Tm(A)|ψ〉 using the walk operator W , we introduce

062420-4



QUANTUM ALGORITHMS FOR POWERING STABLE … PHYSICAL REVIEW A 103, 062420 (2021)

a controlled version of W and W c via

W c = I ⊗ |0〉〈0| + W ⊗ |1〉〈1|. (12)

We then have the following lemma to compute the overlap
〈ψ |Tm(A)|ψ〉 using a Hadamard test with the controlled oper-
ator W c.

Lemma 4 (Chebyshev polynomial overlap). Consider the
state (W c)m|ψ〉|0, 0,+〉, and measure the last two qubits
on the basis {|0,+〉, |0,−〉, |1,+〉, |1,−〉}. Define a random
variable Xm based on the measurement outcome μ via

Xm =
⎧⎨
⎩

+1 if μ = (0,+),
−1 if μ = (0,−),
0 otherwise,

then E (Xm) = 〈ψ |Tm(A)|ψ〉.
Proof. It is straightforward to evaluate the expectation of

Xm,

E (Xm) =
t∑

m=0

pm(p0+ − p0−)

=
t∑

m=0

pm〈ψ |Tm(A)|ψ〉

= 〈ψ |Tm(A)|ψ〉, (13)

which completes the proof. �
While this overlap estimation procedure can be used to-

gether with the Chebyshev polynomial expansion in Eq. (3)
to compute 〈ψ |At |ψ〉, this would not provide any fast-
forwarding since computing Tt (A) would require t applica-
tions of the operator W c. However, an important insight into
the nature of the coefficients pm in the expansion in Eq. (4) is
that they concentrate around m ∼ √

t . One possible approach
to exploit this property is to sample m from the probability dis-
tribution given by the coefficients pm in Eq. (4) and compute
the overlap 〈ψ |Tm(A)|ψ〉 of the corresponding Chebyshev
polynomial using Lemma 4—this would allow us to reduce,
on an average, the number of times the walk operator W c is
applied. This is formalized in the lemma below.

Lemma 5 [Matrix power overlap with classical sampling].
The overlap 〈ψ |At |ψ〉 can be computed by estimating the
mean of a random variable X which is generated by first
sampling m ∈ {0, 1, . . . , t} from the probability distribution
in Eq. (4), followed by drawing a sample of Xm defined in
Lemma 4 using the state |ψ〉. Furthermore, this estimation
can be done in expectation with a precision ε with O(ε−2

√
t )

calls to the controlled walk operator W c or equivalently with
O(Dε−2

√
t ) calls to the oracles OF and OA.

Proof. We can immediately see that

E (X ) =
t∑

m=0

pmE (Xm)

=
t∑

m=0

pm〈ψ |Tm(M )|ψ〉 = 〈ψ |Mt |ψ〉. (14)

Furthermore, noting that X 2 ∈ {0, 1}, it follows that var(X ) �
1. Consequently, E (X ) can be estimated to a precision ε with
N = O(1/ε2) samples. Furthermore, the average number of

calls to the controlled walk operator W c, 〈m〉, is given by

〈m〉 =
t∑

m=0

mpm = 1

2t

t/2∑
n=0

n

(
t

t/2 − n

)
= 2 + t

2t−2

(
t

t/2 − 1

)
.

(15)

For large t , using Stirling’s approximation this is

(
t

t/2 − 1

)
= t/2

t/2 + 1

(
t

t/2

)
∼

(
t

t/2

)
∼ 2t

√
tπ/2

. (16)

Therefore 〈m〉 = O(
√

t ), and consequently the number of
calls to the W c operator to achieve a precision ε is given by
N〈m〉 = O(ε−2

√
t ). �

Lemma 6. Given a constant C > 0 such that ‖A‖1 < C,
the matrix-powering problem can be solved with a quantum
algorithm in O(C2t D

√
t‖v‖2‖u‖2ε−2) calls, in expectation, to

the oracles OF and OA.
Proof. Combining Lemma 5 with Lemma 1, we obtain a

procedure for solving the matrix-powering problem. The com-
plexity result in Theorem 6 can be obtained as follows: Given
an upper bound C on ‖A‖1, we note that to compute v†At u
to a precision ε, we need to compute 〈ψL,R

1,2 |(A/C)t |ψL,R
1,2 〉 to

a precision of at most ε/4‖u‖‖v‖Ct which can be done using
the algorithm in Lemma 1 with O(Dε−2

√
t‖v‖2‖u‖2C2t ) calls

to the oracles OF and OA. �
While the algorithm described above allows a quadratic

fast-forwarding for the matrix-powering problem, the depen-
dence of the run time on the precision ε can also be improved
by using amplitude amplification, which is precisely stated in
the following lemma from Ref. [24].

Lemma 7 (Overlap estimation, Theorem 2.5 of Ref. [24]).
Given a state |ψ〉 in terms of its preparation unitary U from a
known state |0〉: |ψ〉 = U |0〉, an observable V and an estimate
σ of its variance satisfying 〈ψ |V 2|ψ〉 − (〈ψ |V |ψ〉)2 � σ 2,
〈ψ |V |ψ〉 can be estimated on a quantum computer with a
precision ε with Õ(ε−1σ ) calls to the unitary U .

In order to use amplitude amplification and achieve fast-
forwarding in the same algorithm, we approximate the
problem of computing the overlap 〈ψ |At |ψ〉 for a given |ψ〉
to computing an overlap of the form 〈φt |V |φt 〉 where the op-
erator V is independent of t and the state |φt 〉 can be prepared
in �(

√
t ) calls to the oracles OF and OA. This is achieved

by using a combination of quantum walks with the Hadamard
test and the LCU technique similar to that of Ref. [31]. The
quadratic fast-forwarding in this approach is also obtained due
to the concentration of the coefficients pm in Eq. (4) around
m = √

t . This is made concrete by the following lemma, ac-
cording to which the sum in Eq. (3) can be truncated after
∼O[

√
t ln(ε−1)] terms while incurring a specified additive er-

ror ε.
Lemma 8. If A is a stable Hermitian matrix and |ψ〉 is a

normalized state, then ∀ε > 0 and C � 2 ln(2/ε)

∣∣∣∣∣∣〈ψ |At |ψ〉 − 〈ψ |
√

Ct∑
m=0

pmTm(A)|ψ〉
∣∣∣∣∣∣ � ε.
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Proof. Using Lemma 3 from Ref. [31], we obtain that ∀ε >

0, C � 2 ln(2/ε)∣∣∣∣∣∣xt −
√

Ct∑
m=0

pmTm(x)

∣∣∣∣∣∣ � ε ∀x ∈ [−1, 1]. (17)

Since A is a stable matrix, its eigenvalues will have a mag-
nitude less than equal to 1. Furthermore, since A is also
Hermitian, its eigenvalues are real and lie in [−1, 1] and
hence satisfy Eq. (17). Denoting by λi, |φi〉 the eigenvalues
and eigenvectors of M and using its spectral decomposition
A = ∑

i λi|φi〉〈φi|, we obtain∣∣∣∣∣∣〈ψ |At |ψ〉 − 〈ψ |
√

Ct∑
m=0

pmTm(A)|ψ〉
∣∣∣∣∣∣

�
∑

k

|〈φk|ψ〉|2
∣∣∣∣∣∣λt

k −
√

Ct∑
m=0

pmTm(λk )

∣∣∣∣∣∣ � ε. (18)

�
Consequently, we can effectively approximate At as a

weighted linear combination of O(
√

t ) Chebyshev polyno-
mials of A—while the quantum walk operator introduced in
Eq. (7) can be used to individually implement the Chebyshev
polynomials, in order to implement their linear combination
we use the LCU technique [6]. Below, we show the con-
struction of an operator to effectively apply

∑τ
m=0 pmW m to

a given quantum state. We do this by introducing auxillary
qubits and implementing the following unitary VP depending
on the coefficients pm:

VP|φ〉|0, 0〉 =
τ∑

m=0

√
pm|φ〉|m, 0〉

+
[

1 −
τ∑

m=0

pm

]1/2

|φ〉|0, 1〉. (19)

Furthermore, we assume access to the controlled quantum
walk operator Wτ defined by

Wτ =
τ∑

m=0

W m ⊗ |m〉〈m| ⊗ I. (20)

The operator Wτ requires τ calls to the quantum walk operator
W . Therefore, following the result in Appendix A, it can be
constructed with O(Dτ ) calls to the oracles OF and OA. The
operator V †

P WτVP then effectively applies the linear combina-
tion

∑τ
m=0 pτW τ to an input state.

Lemma 9 (LCU adapted from Refs. [6,31]). The unitary
operator V †

P WτVP, with VP and Wτ defined in Eqs. (19) and
(20), respectively, satisfies

V †
P WτVP|φ〉|0, 0〉 =

τ∑
m=0

pmW m|φ〉|0, 0〉 + |φ⊥〉|1〉, (21)

for some |φ⊥〉.
In order to compute 〈ψ |∑τ

m=0 pmTm(A)|ψ〉, we consider a
controlled version of the operator defined in Lemma 9: W c

τ =
I ⊗ |0〉〈0| + V †

P WτVP ⊗ |1〉〈1|. It then follows from Lemmas
3 and 9 that computing the expectation value of the operator

|0〉〈0| ⊗ σz on the last two qubits in the circuit of W c
τ on a state

prepared by application of HW c
τ H (where H is a Hadamard

gate on the last qubit) to |ψ〉|0, 0, . . . , 0〉 allows us to evaluate
〈ψ | ∑τ

m=0 pmTm(A)|ψ〉. By truncating the linear combination
to an appropriate number of terms using Lemma 7 and using
amplitude estimation (Lemma 8), we obtain the following
lemma for estimating the overlap of the matrix with a given
state.

Lemma 10 (Matrix power overlap with LCU). For a Hermi-
tian stable matrix A with ‖A‖1 � 1 and a state |ψ〉, 〈ψ |At |ψ〉
can be computed on a quantum computer to a precision ε with
Õ(D

√
tε−1) calls to the oracles OF and OA.

Proof. The overlap estimation can be done using the
Hadamard test described above—as shown in Lemma 8, it
is sufficient to use τ = O[

√
t ln(ε−1)] in the LCU construc-

tion described in Lemma 9. Furthermore, the outcome of the
Hadamard test has a variance bounded by 1 and consequently
a direct application of amplitude amplification (Lemma 7)
allows us to obtain an estimate of 〈ψ |At |ψ〉 with Õ(D

√
t/ε)

calls to the oracles OF and OA. �
Proof of Theorem 2. Combining Lemma 10 with Lemma

1, we obtain a procedure for solving the matrix-powering
problem. The complexity result in Theorem 1 can be ob-
tained as follows. Given an upper bound C on ‖A‖1, we note
that to compute v†At u to a precision ε, we need to compute
〈ψL,R

1,2 |(A/C)t |ψL,R
1,2 〉 to a precision of at most ε/4‖u‖‖v‖Ct

which can be done using the algorithm in Lemma 1 with
Õ(

√
t‖v‖‖u‖Ctε−1) calls to the oracles OF and OA. �

B. Matrix powering with Hamiltonian simulation

In this section, we describe an approach to solve the
matrix-powering problem using Hamiltonian simulation as
a primitive and prove the complexity result in Theorem 2.
Formally for our purposes, a Hamiltonian simulation can be
considered to be the problem of computing 〈ψ |e−iHt |ψ〉 to a
precision ε given access to the sparse Hamiltonian H and the
states |ψ〉. A Hamiltonian simulator (implemented on a quan-
tum computer or an analog quantum simulator) is said to be
efficient if it can solve this problem in Õ[poly(ε−1)D‖H‖maxt]
time, where D is the sparsity of the Hamiltonian and ‖H‖max
is its maximum magnitude element. State of the art algorithms
for Hamiltonian simulation on quantum computers achieve
such run times for general sparse Hamiltonians [5,6], while
such run times can be achieved on quantum simulators for
local Hamiltonians.

We again restrict ourselves to stable Hermitian matrices A.
In order to compute an overlap 〈ψ |At |ψ〉, we expand At into
a Fourier series—as is shown in the following two lemmas,
this can be done to a precision of ε while retaining only Nh =
O(t/ε) harmonics.

Lemma 11. ∀ε ∈ (0, 2/π ), Nh � 4t/π2ε, and ∃a ∈ C2Nh+1

such that ∣∣∣∣∣xt −
Nh∑

n=−Nh

aneinπx/2

∣∣∣∣∣ � ε ∀ x ∈ [−1, 1], (22)

where an are the elements of the vector a and a can be com-
puted classically in O(Nht ) time. Furthermore, ‖a‖1 � 1 ∀t >

0 and Nh > 0.
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A detailed proof of this lemma, as well as an ex-
plicit calculation of the coefficient vector a, is provided in
Appendix B. Employing this result, we can now compute the
overlap of the power 〈ψ |At |ψ〉 using an efficient Hamiltonian
simulator.

Lemma 12. (Matrix overlap with Hamiltonian simulation).
Given a D-sparse stable Hermitian matrix A, 〈ψ |Aτ |ψ〉 can be
computed for all τ ∈ {0, 1, . . . , t} using an efficient Hamilto-
nian simulator in time Õ[poly(ε−1)Dt2].

Proof. Since the matrix A is stable and Hermitian, all of its
eigenvalues are real and lie in [−1, 1], thus satisfying Eq. (22).
Denoting by λk, |φk〉 the eigenvalues and eigenvectors of A
and using Lemma 11, we obtain that∣∣∣∣∣〈ψ |Aτ |ψ〉 −

n=Nh∑
n=−Nh

an〈ψ |eiπnA/2|ψ〉
∣∣∣∣∣

=
∣∣∣∣∣
∑

k

|〈φk|ψ〉|2
(

λτ
k −

n=Nh∑
n=−Nh

aneiπnλk/2

)∣∣∣∣∣ � ε

2
, (23)

for an appropriately chosen Nh = O(τ/ε). Furthermore, we
note that since A is stable, the magnitude of all of its el-
ements is at most 1, i.e., ‖A‖max � 1. Using an efficient
Hamiltonian simulator, we can estimate 〈ψ |eiπnA/2|ψ〉 to a
precision of ε/2 in time O[poly(ε−1)Dn]. Since ‖a‖1 � 1,
we can then compute

∑Nh
n=−Nh

an〈ψ |eiπnA/2|ψ〉 to a precision
ε on a classical computer, thus determining 〈ψ |Aτ |ψ〉 to a
precision ε—since we need to compute 〈ψ |eiπnA/2|ψ〉 for
n ∈ {−Nh,−Nh + 1, . . . , Nh − 1, Nh}, the total time taken for
this computation is O[poly(ε−1)DN2

h ] = O[poly(ε−1D)τ 2].
Furthermore, we note that since we propose to compute the
overlaps 〈ψ |einπA/2|ψ〉 individually for all n, we can compute
〈ψ |Aτ |ψ〉 for all τ ∈ {0, 1, . . . , t} with the same set of Hamil-
tonian simulations in time O[poly(ε−1)Dt2]. �

Proof of Theorem 2. Combining Lemma 12 with Lemma
1, we obtain a procedure for solving the matrix-powering
problem. To obtain the complexity result in Theorem 2, we
note that computing v†Aτ u to a precision ε, we need to com-
pute 〈ψL,R

1,2 |Aτ |ψL,R
1,2 〉 to a precision of at most ε/4‖u‖‖v‖.

This can be done using the algorithm in Lemma 12 for τ ∈
{0, 1, 2, . . . , t} simultaneously in O[poly(ε−1‖v‖‖u‖)Dt2]
time. �

IV. NO-GO THEOREMS FOR FAST-FORWARDING

In this section, we provide the no-go theorems stated in
Sec. II, showing that fast-forwarding the matrix-powering
problem is not possible for a generic non-Hermitian matrix.
These no-go theorems utilize a construction similar to that of
the no-go theorems for Hamiltonian simulation [35], and they
rely on the fact that even a quantum computer cannot speed up
the calculation of parity of N-bits [41,42], a result concretely
stated as the following lemma.

Lemma 13 (N-bit parity problem, Refs. [41,42]). Consider
N-bits b1, b2, . . . , bN which can be accessed as an oracle OB:
OB|i, b〉 = |i, b ⊕ bi〉. There cannot exist a quantum algorithm
that can determine the parity b1 ⊕ b2 ⊕ · · · ⊕ bN with success
probability greater than 1/2 with fewer than N/2 calls to the
oracle OB.

We note that this result rules out even an approximate
solution of the N-bit parity problem on a quantum computer
with a run time less than O(N ). In particular, since the parity
is known to be an integer, if an algorithm can estimate this
parity to a precision of ε < 1/2 with a confidence level greater
than 1/2, then it would have solved the N-bit parity problem—
consequently, in the rest of this analysis we can consider the
precision ε = O(1). As is shown in the no-go theorem below,
we can construct a matrix such that computing its N th power,
in the sense specified in Sec. II, allows us to solve the N-bit
parity problem, thereby ruling out the possibility of design-
ing a quantum algorithm that can achieve a run time scaling
sublinearly with the matrix power. We first provide a proof of
Lemma 14, which rules out the possibility of fast-forwarding
the powering of a general matrix, and then strengthen it to
obtain Theorem 3, which rules out the possibility of fast-
forwarding even the powering of irreducible matrices.

Lemma 14 (No-go theorem for an arbitrary matrix). There
cannot exist a quantum algorithm that solves the matrix-
powering problem in Õ[tαpoly(‖u‖, ‖v‖, ε−1)] calls to the
oracles OF and OA, with α < 1, for any sparse matrix A.

Proof. Given N bits b1, b2, . . . , bN , we can construct the
following matrix-powering problem that determines the parity
of b1 ⊕ b2 · · · ⊕ bN on computing its N th power.

(i) The matrix A ∈ C2N×2N with the rows (or columns)
being indexed by (i, σ ), where i ∈ [N] and σ ∈ {0, 1}, and
matrix elements being given by

Ai,σ ;i′,σ ′ =
{

1 if i′ = i − 1 and σ ⊕ σ ′ = bi−1,

0 otherwise. (24)

(ii) The vectors u and v are given by

ui,σ =
{

1 if i = 0 and σ = 0,

0 otherwise,

vi,σ =
⎧⎨
⎩

1 if i = N and σ = 0,

−1 if i = N and σ = 1,

0 otherwise.
(25)

The matrix A is a stochastic matrix corresponding to a
discrete-time Markov chain (DTMC) shown in Fig. 1(a)—the
states of this DTMC can be grouped as per their σ index, and
for every bit bi is identified with a flip of the “σ” index at i.
Consequently, on computing v†At u, we can count the num-
ber of bits that are 1, thereby computing b1 ⊕ b2 ⊕ · · · ⊕ bN .
Furthermore, we can note that the oracles OF and OA can
be constructed with O(1) calls to the oracle OB since each
bit determines the positions of the nonzero elements in at
most two columns. Furthermore, we note that ‖u‖, ‖v‖ =
O(1) by construction. Consequently, if there existed a quan-
tum algorithm to solve the DTMC simulation problem with
Õ[tαpoly(‖u‖, ‖v‖, 1/ε)] queries to OF and OA with α < 1,
it could solve the N-bit parity problem in Õ(Nα ) queries to
OB. This contradicts Lemma 13, thus proving that no such
quantum algorithm can exist. �

While this argument proves that no quantum algorithm
can exist to fast-forward the matrix-powering problem for
a general matrix, we note that the specific matrix A used
in this argument is reducible. Consequently, this raises the
question of whether their exists a quantum algorithm that can
fast-forward the powering of arbitrary irreducible matrices.
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(b)(a)

FIG. 1. Schematic representation of (a) a reducible Markov chain and (b) an irreducible Markov chain that solves the N-bit parity problem.
In panel (b), the blue (gray) lines indicate the stochastic matrix element δ and the black lines indicate the stochastic matrix element 1 − δ.

We show that this too is not possible by constructing an
irreducible stochastic matrix that is very close to the reducible
stochastic matrix constructed above and thus approximately
solves the N-bit parity problem.

Proof of Theorem 3. We consider an instance of the matrix-
powering problem with u and v as defined in Eq. (25) and
a matrix Aδ = A + Bδ, where A is defined in Eq. (24), δ ∈
(0, 1), and matrix B has elements given by

Bi,σ ;i′,σ ′ =

⎧⎪⎨
⎪⎩

−1 if i′ = i − 1 and σ ⊕ σ ′ = bi−1,

1 if i′ = i + 1 and σ ⊕ σ ′ = bi,

1 if i = i′ ∈ {1, N}, σ �= σ ′,
0 otherwise.

(26)

The matrix Aδ is the stochastic matrix corresponding to the
discrete-time Markov chain shown in Fig. 1(b). It is easy to
see that Aδ is irreducible for δ �= 0. Furthermore, we can easily
bound the difference between the result of powering Aδ and A:∣∣v†At

δu − v†At u
∣∣ � ‖v‖‖u‖[(‖A‖2 + ‖B‖2δ)t − ‖A‖t

2

]
� ‖v‖‖u‖‖A‖t

2(e‖B‖2δt/‖A‖2 − 1). (27)

For the choice of u and v under consideration, δ = ln(1 +
ε/2

√
2)/8N2 and t = N , it follows that∣∣v†AN

δ u − v†AN u
∣∣ � ε

2
, (28)

wherein we have used ‖v‖ = √
2 and ‖u‖ = 1, and 1/

√
2N �

‖A‖2 � 1 and ‖B‖2 � 4
√

2N . This shows that being able to
compute v†At

δu to a precision of ε/2 allows us to determine
v†At u = b1 ⊕ b2 ⊕ · · · ⊕ bN to precision ε. Consequently,
from Lemma 14, the no-go theorem follows for irreducible
matrices as well. �

V. CONCLUSION

This paper studied the problem of computing the power
of a stable Hermitian matrix. Following the construction of
Ref. [31], we show that fast-forwarding is possible while
powering stable Hermitian matrices, and we present algo-
rithms based on quantum walks that improve their results. We
also present a complementary algorithm to solve the matrix-
powering problem using only Hamiltonian simulators which
could potentially be used on near-term quantum hardware.
Finally, by establishing a map between the the N-bit parity
determination problem to a matrix-powering problem, we
show that quantum computers cannot fast-forward powering
of non-Hermitian matrices.
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APPENDIX A: COSTS FOR QUANTUM WALK
OPERATORS IN TERMS OF MATRIX ORACLES

In this Appendix we show how the coin operator W can be
implemented with O(D) calls to the oracles OF and OA that
access the matrix A, where D is the sparsity. The coin operator
is W = V †SV . We have assumed access to a unitary operator
V such that

V |i, 0, 0〉 =
N∑

k=1

√|Ak,i|eiϕk,i/2|i, k, 1〉 +
(

1 −
N∑

k=1

|Ak,i|
)1/2

|i, N + 1, 1〉 if i �= N + 1, (A1a)

V †|i, j, 1〉 = √|Aj,i|e−iϕ j,i/2|i, 0, 0〉 + ∣∣φ⊥〉|1〉 for some |φ⊥〉 if i �= N + 1, (A1b)

V |N + 1, j, b〉 = |N + 1, j, b〉. (A1c)

We can write V as

V = |N + 1〉〈N + 1| ⊗ I ⊗ I +
N∑

i=1

|i〉〈i| ⊗ Vi. (A2)

Therefore, V applies Vi depending on the second and third registers depending on the state of the first qubit. The Vi act as

Vi = |ψi〉〈0, 0| +
N∑

j=1

| j, 0〉〈 j, 0| +
N+1∑
j=1

|ψ⊥
i, j〉〈 j, 1|, (A3)
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where |ψ⊥
i, j〉, along with |ψi〉, form an orthonormal basis. The

expression for |ψi〉 is

|i〉|ψi〉 = V |i, 0, 0〉

=
N∑

k=1

√
A∗

k,i|i, k, 1〉 +
√√√√1 −

N∑
k=1

|Ak,i||i, N + 1, 1〉,

(A4)

where the square root is defined as in Eq. (A1a). Therefore, we
need to show that we can apply the operator U that prepares
|ψi〉 with O(D) queries to the oracles. This can be proved with
a slight modification of the procedure in Ref. [43].

To do this, we start with the state |i〉|0〉. We then prepare a
list with all the neighbors of i: |i〉| f (i, 1)〉 · · · | f (i, D)〉. This
can be done with O(D) calls to OF . Now we can prepare
a list containing all the nonzero probabilities in the ith row
|i〉|Ai, f (i,1)〉 · · · |Ai, f (i,D)〉. This can be done with O(D) calls to
OA. Appending an extra register to this list, we can compute
|i〉|Ai, f (i,1)〉|Ai, f (i,D)〉|1 − ∑D

k=1 |Ai, f (i,k)|〉 Using both lists, fol-
lowing the procedure in Ref. [43], we can prepare the state

D∑
j=1

√
A∗

i, f (i, j)|i〉| j〉 +
√√√√1 −

D∑
k=1

|Ai, f (i,k)||i, N + 1〉. (A5)

Querying again OF we obtain the desired state. Therefore,
it follows that the quantum walk operator W can be imple-
mented with O(D) calls to OF and OA.

APPENDIX B: PROOF OF LEMMA 11

In this Appendix, we provide a proof of Lemma 11 in-
troduced and used in the main text. Our goal is to calculate
a Fourier series expansion of xt , which converges pointwise
when x ∈ [−1, 1], and estimate the number of terms of the
Fourier series that we need to retain to achieve a certain pre-
cision in this expansion. We point out that for odd t , a Fourier
series expansion of xt in the interval [−1, 1] could exhibit a
Gibb’s phenomena at x = ±1 since the periodic extension of
xt is not continuous. Consequently, we instead consider the
function f (x) on the interval [−2, 2] defined below:

ft (x) =
⎧⎨
⎩

xt for |x| � 1,

(2 − x)t for 1 < x � 2,

(−2 − x)t for − 2 � x < −1.

(B1)

The periodic extension of this function is continuous, since
ft (2) = ft (−2) ∀t and ft (x) is continuous within the interval
(−2, 2). Furthermore, for |x| � 1 this function coincides with
xt . We can now write down a Fourier series expansion for this
function which converges pointwise for all x ∈ [−2, 2]—for
ease of analysis, we treat the cases when t is even and odd
separately:

ft (x) =
{∑∞

p=0 cp(t ) cos(pπx) if t is even,∑∞
p=0 sp(t ) sin[(2p+1)πx/2] if t is odd,

(B2)

where

cp(t ) =
∫ 2

0
ft (x) cos(pπx)dx

= 2
∫ 1

0
xt cos(pπx)dx, (B3a)

sp(t ) =
∫ 2

0
ft (x) sin[(2p + 1)πx/2]dx

= 2
∫ 1

0
xt sin[(2p + 1)πx/2]dx. (B3b)

We point out that Eq. (B2) can be rewritten in terms of
complex exponentials to obtain a Fourier series of the form
used in Lemma 11. Furthermore, cp(t ) and sp(t ) can be ex-
plicitly evaluated to obtain

cp(t ) = 2(−1)p
t/2∑
k=1

(−1)k+1

(p2π2)k

2k−2∏
i=0

(t − i), (B4a)

sp(t ) = 2(−1)p
(t+1)/2∑

k=1

(−1)k+1

[(p + 1/2)2π2]k

2k−2∏
i=0

(t − i). (B4b)

We point out that sp(t ) and cp(t ) can be computed in O(t )
time on a classical computer using a recursive implementation
of the summations in Eq. (B4). We now consider a truncated
Fourier series expansion; i.e., we construct the function f̂ N

t (x)
from the coefficients cp(t ) and sp(t ) where

f̂ N
t (x) =

{∑N
p=0 cp(t ) cos(pπx) if t is even,∑N
p=0 sp(t ) sin[(2p + 1)πx/2] if t is odd.

(B5)

We then obtain that ∀x ∈ [−1, 1], |xt − f̂ N
t (x)| � eN , where

eN (t ) =
{∑∞

p=N+1 |cp(t )| if t is even,∑∞
p=N+1 |sp(t )| if t is odd.

(B6)

It now remains to provide bounds on eN (t ) in terms of t and
N . We note from Eq. (B4) that

∀p > t/π, |cp(t )| � 2
t/2∑
k=1

1

(p2π2)k

2k−2∏
i=0

(t − i)

� 2
∞∑

k=1

t2k−1

(p2π2)k
= 2t

p2π2 − t2
. (B7)

A similar bound holds for |sp(t )|:

∀p > t/π, |sp(t )| � 2
(t+1)/2∑

k=1

1

[(p + 1/2)2π2]k

2k−2∏
i=0

(t − i)

� 2
∞∑

k=1

t2k−1

(p2π2)k
� 2t

p2π2 − t2
. (B8)

Consequently, it then follows that

∀N > t/π, eN (t ) � 2
∞∑

p=N+1

t

p2π2 − t2

�
∫ ∞

N

2t

x2π2 − t2
dx = 1

π
ln

(
Nπ + t

Nπ − t

)
.

(B9)
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To ensure that eN (t ) is smaller than a given precision ε, we
can then choose N to be

N = t

π tanh(πε/2)
� 2t

π2ε
. (B10)

We point out that for this estimate to be correct, the chosen
N should also be larger than t/π [Eq. (B9)], which is implied
by Eq. (B10) if the precision ε to be smaller than 2/π and we
obtain the estimate provided in Lemma 11.

Finally, we compute the l1 norm of the coefficients cp(t )
and sp(t ). We note that (−1)pcp(t ) � 0 and (−1)psp(t ) � 0
for all p � 0. This is easily seen as follows—from Eq. (B3),
using integration by parts it follows that

cp(t ) = 2(−1)p t

p2π2
− t (t − 1)

p2π2
cp(t − 2), (B11a)

sp(t ) = 2(−1)p t

(p + 1/2)2π2
− t (t − 1)

(p + 1/2)2π2
sp(t − 2).

(B11b)

Furthermore, from Eq. (B3), it also follows that

|cp(t )|, |sp(t )| � 2
∫ 1

0
xt dx = 2

t + 1
∀t � 0, (B12)

from which it follows that 2t � |t (t − 1)cp(t − 2)| and
2t � |t (t − 1)sp(t − 2)|. Together with Eq. (B11a), it fol-
lows that (−1)pcp(t ) � 0 and (−1)psp(t ) � 0 for all p � 0.
Therefore,

∞∑
p=0

|cp(t )| =
∞∑

p=0

cp(t )(−1)p =
∞∑

p=0

cp(t ) cos pπ = 1 and

∞∑
p=0

|sp(t )| =
∞∑

p=0

sp(t )(−1)p

=
∞∑

p=0

sp(t ) sin

(
(2p + 1)π

2

)
= 1.

Therefore, the 1-norm of [c0(t ), c1(t ), . . . , cN (t )] and
[s0(t ), s1(t ), . . . , sN (t )] is less than 1.
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