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Continuous-variable quantum key distribution (QKD) utilizes an ensemble of coherent states of light to
distribute secret encryption keys between two parties. An essential ingredient of the QKD protocol is highly
efficient information reconciliation. To achieve highly efficient reconciliation, error-correcting codes with a low
channel coding rate are inevitable in the most common schemes of multilevel coding and multistage decoding
(MLC-MSD) and multidimensional reconciliation. Multiedge-type (MET) low-density parity-check (LDPC)
codes are well suited for highly efficient reconciliation at low rates. Here, we calculate the optimal channel
coding rates in the MLC-MSD scheme for reverse reconciliation, introduce the concept of generalized extrinsic
information transfer charts for MET-LDPC codes, which constitute a simple and fast asymptotic analysis tool,
and present a set of MET-LDPC codes with asymptotic efficiency >97% for channel coding rates 0.1, 0.05,
0.02, and 0.01. We believe that our codes will find wide application in implementations of continuous-variable
quantum key distribution based on Gaussian modulation.
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I. INTRODUCTION

The security of today’s asymmetric cryptography, e.g.
the Rivest-Shamir-Adleman (RSA) protocol and the Diffie-
Hellman key-exchange protocol, is based on mathematical
complexity assumptions of basic problems such as the discrete
log problem and the factorization of large numbers [1]. The
advent of the quantum computer or even an unexpected algo-
rithmic innovation can compromise their security with drastic
consequences for the internet.

One possible solution is quantum key distribution (QKD)
[2], which provides information theoretical secure crypto-
graphic key exchange for two parties, Alice and Bob, based on
the properties of quantum mechanics. In continuous-variable
QKD (CV-QKD) [2–4] the transmitter, Alice, modulates
(weak) coherent states, and the receiver, Bob, measures the
amplitude and phase quadratures of the electromagnetic light
field. The communication distance and the key generation rate
are thereby limited by the performance of information recon-
ciliation, which is an important part of every QKD protocol
to ensure that both parties generate the same cryptographic
key. Reverse reconciliation is usually applied; that is, Alice
has to reconcile with Bob’s measurement results. The main
challenge here is the design of capacity-approaching error
correction codes within a large range of signal-to-noise ratios
(SNRs) required to cover a large range of transmission dis-
tances. For instance, in Ref. [5] an SNR of −15.37 dB was
reported for a transmission distance of 80 km, and in Ref. [6]
an SNR of −16.198 dB was reported for 100 km. At shorter
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distances the SNR is larger, e.g., on the order of 10 dB at
1–2 km [7].

In general, two methods have mostly been considered pre-
viously: Multidimensional (MD) reconciliation [8] and slice
reconciliation using multilevel coding and multistage decod-
ing (MLC-MSD) [9,10]. The first is usually employed for low
SNRs, i.e., below 0 dB, and is well studied in the literature
[5,8]. The second method has in principle the ability to extract
more than 1 bit of information per symbol and is thus usually
employed for SNRs higher than 0 dB. In Ref. [9] the recon-
ciliation efficiency and optimum channel code rates for direct
reconciliation and an SNR � −3 dB have been calculated.
Slice reconciliation can also be used with nonbinary low-
density parity-check (LDPC) codes [11]; however, nonbinary
LDPC is computationally very complex and therefore only a
solution to niche applications [7].

In both cases, MD reconciliation and MLC-MSD, LDPC
codes with low channel coding rate are required. Multiedge-
type LDPC (MET-LDPC) codes are highly suitable for this
task; however, only a few codes have been published so
far [5,12], and more emphasis has been put on increasing
the throughput of the decoder [13–15]. More specifically,
in Ref. [5] a MET-LDPC code with channel coding rate
0.02 was introduced for long-distance reconciliation with
asymptotic efficiency of 98.1%, and in Ref. [12], two degree
distributions for channel coding rates 0.05 and 0.1 were pre-
sented with corresponding asymptotic efficiencies of 96.6 and
91.8 %. In addition, Ref. [15] introduced two spatially cou-
pled LDPC codes with channel coding rates 1/3 and 1/4 for
high-speed reconciliation of CV-QKD. At a frame error rate
of 0.5 the codes have efficiencies of 93.5% and below 91%,
respectively.
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Here, we first extend the analysis of Ref. [9] on MLC-MSD
for CV-QKD to reverse reconciliation, show optimal channel
coding rates for a wide range of SNRs from −20 to 10 dB, and
compare the performance with MD reconciliation. We then
introduce the concept of generalized extrinsic information
transfer (G-EXIT) charts for MET-LDPC codes, which are
a useful visualization tool for code performance evaluation.
Finally, we introduce highly efficient MET-LDPC codes with
channel coding rates 0.01, 0.02, 0.05, and 0.1, suitable for
both MLC-MSD and MD reconciliation, and we investigate
their performance. We find asymptotic efficiencies larger than
97% and determine their performance with finite block length.
We expect our codes to find wide application in reconciliation
of Gaussian-modulated CV-QKD protocols.

EXIT charts have been used in the context of CV-QKD
before [10], but only for the design of irregular LDPC codes.
Only moderate efficiencies have been achieved due to the
lack of codes with low channel coding rate since low-rate
codes with high efficiency cannot be achieved with irregular
codes. Here, we fill this gap by considering EXIT charts for
MET-LDPC codes.

The organization of the remainder of this paper is as fol-
lows. First a short background is presented in Sec. II. In
Sec. III, we introduce the MLC-MSD scheme and calculate
the designed capacity rate for each level for a given input
distribution. Finally, we compare the reconciliation efficiency
of the MLC-MSD scheme with MD reconciliation for the
same code efficiency used for error correction. In Sec. IV
we introduce the concept of G-EXIT charts for MET-LDPC
codes. MET-LDPC codes for multiple channel coding rates
are presented in Sec. V, where we demonstrate their asymp-
totic and finite-size performance. Finally, Sec. VI concludes
the paper.

II. BACKGROUND

Information reconciliation is a method by which two par-
ties, each possessing a sequence of numbers, agree on a
common sequence of bits by exchanging one or more mes-
sages. Mathematically speaking, in CV-QKD with Gaussian
modulation the two sequences of numbers are joint instances
of a bivariate random variable that follows a bivariate nor-
mal distribution. Physically, these sequences are obtained by
one party generating coherent states in the quadrature phase
space and the other party measuring them. In other words,
in QKD, two parties share correlated random variables and
wish to agree on a common bit sequence. However, imperfect
correlations introduced by the inherent shot noise of coherent
states and noise in the quantum channel and the receiver give
rise to discrepancies in the two sequences of numbers which
have to be corrected by exchanging additional information.

In reverse reconciliation, which is the focus of this work,
Alice reconciles her modulated symbols to match Bob’s mea-
surement outcomes. The reconciliation process can be fully
described as a conventional communication theory problem,
which was first addressed in Ref. [16] as source coding with
side information: Let Alice and Bob have access to two cor-
related information sources XA and XB which follow a joint
probability distribution pXAXB (xA, xB). The two parties wish
to distill a common binary string from blocks of length n,

FIG. 1. Correlated source coding configuration. Correlated
information sequences �XB = (XB,0, XB,1, . . . , XB,n−1) and �XA =
(XA,0, XA,1, . . . , XA,n−1) are generated by a pair of continuous random
variables XA, XB from a given bivariate distribution pXAXB (xA, xB ).

�XA = (XA,i )n−1
i=0 , �XB = (XB,i )n−1

i=0 , by exchanging information.
Since it is convenient to generate the reconciliation messages
as syndromes using linear codes [10,17], the parity-check
matrix of the error correction code is often used to generate the
syndrome for the reconciliation problem. Thus an equivalent
channel coding problem can be solved instead of the above-
mentioned source coding with side information.

As depicted in Fig. 1 we describe reconciliation with error
correction codes in two steps. The first step is discretization,
which transforms the continuous Gaussian source XB into an
m-bit source Q(XB) ∈ A with its binary representation vectors
(X m−1

B , . . . , X 1
B , X 0

B ), where X m−1
B is the most significant bit

and X 0
B is the least significant bit. We note that there is an

inherent information loss due to the discretization process
of the source. The second step is source coding with side
information. In reverse reconciliation as considered here, Bob
sends an encoding (compressed version) of Q( �XB) to Alice,
such that she can infer Q( �XB) with high probability using her
own source �XA as side information.

The efficiency β of this process is defined as

β = H (Q(XB)) − Rs

I (XB; XA)
, (1)

where I (XB; XA) is the mutual information and H (Q(XB)) −
Rs is the net shared information per symbol between the two
parties [9,18], with H (·) being the Shannon entropy and Rs

being the source coding rate. Thus the practical efficiency
of the reconciliation depends on the ability to design very
good discretizers and highly efficient compression codes with
minimum possible source coding rate. Note that Slepian and
Wolf [16] have shown that H (Y |Z ) is the lower bound to the
source coding rate when decoding Y given side information
Z . Therefore Rs � H (Q(XB)|XA).
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FIG. 2. The MLC-MSD scenario for the reverse reconciliation. First the input source is quantized into an m-bit source. Then each of the m
sources are encoded and sent to Alice. The decoder has the side information from its own source and with the m encoded sources produces an
estimate of the quantized source. Usually, we transmit the least significant bits (LSBs) directly to the channel.

III. SLICE RECONCILIATION BASED ON MLC-MSD

For the second step we use an MLC-MSD scheme, which is
presented in Fig. 2 using m levels corresponding to the number
of bits used for discretization. Bob encodes level i with source
coding rate Rs

i . Using the Slepian-Wolf theorem, the source
coding rate Rs

i is lower bounded by the conditional entropy of
the ith bit of XB, given side information XA and all the lower
bits of XB:

Rs
i � H

(
X i

B|XA, X i−1
B , . . . , X 0

B

) = Rs∗
i . (2)

The total source coding rate is given by summing over the
individual source code rates Rs

i :

Rs =
m−1∑
i=0

Rs
i .

Using the parity of error correction codes to generate syn-
dromes, the corresponding channel coding rate for level i is
given by

Rch
i = 1 − Rs

i � 1 − H
(
X i

B|XA, X i−1
B , . . . , X 0

B

)
. (3)

Thus the reconciliation efficiency of the system in terms of the
channel coding rates reads

β = H (Q(XB)) − m + ∑m−1
i=0 Rch

i

I (XB; XA)
. (4)

By optimizing the individual codes for each level the overall
efficiency of reconciliation can be maximized. The channel
coding rate Rch

i is bounded by

1 − H
(
X i

B|X i−1
B , . . . , X 0

B

)
� Rch

i � 1 − Rs∗
i , (5)

where the upper bound is given by Eq. (3). This implies
that

0 � β � H (Q(XB)) − m + ∑m−1
i=0 Rch∗

i

I (XB; XA)
, (6)

where Rch∗
i = 1 − Rs∗

i .
We will now discuss how to calculate the source coding

rates Rs∗
i for the individual levels. Using the chain rule, we

can describe the total mutual information as a summation of
the conditional mutual information of the individual levels

I (XA; Q(XB)) = I
(
XA; X m−1

B , . . . , X 0
B

)
= I

(
XA; X 0

B

) + I
(
XA; X 1

B |X 0
B

) + · · ·
+ I

(
XA; X i

B|X i−1
B , . . . , X 0

B

) + · · ·
+ I

(
XA; X m−1

B |X m−2
B , . . . , X 0

B

)
. (7)

Thus we define the conditional mutual information for level i
as

Ii := I
(
XA; X i

B|X i−1
B , . . . , X 0

B

)
= H

(
X i

B|X i−1
B , . . . , X 0

B

) − H
(
X i

B|XA, X i−1
B , . . . , X 0

B

)
. (8)

Using Eq. (2), we obtain an analytical way to calculate the
source coding rate for level i,

Rs
i � H

(
X i

B|X i−1
B , . . . , X 0

B

) − Ii. (9)

The conditional mutual information Ii can thereby be cal-
culated as follows [19]:

Ii = I
(
XA; X i

B|X i−1
B , . . . , X 0

B

)
= I

(
XA; X m−1

B , . . . , X i
B|X i−1

B , . . . , X 0
B

)
− I

(
XA; X m−1

B , . . . , X i+1
B |X i

B, . . . , X 0
B

)
. (10)
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FIG. 3. Simulation of (a) the individual conditional mutual information, (b) the equivalent optimum channel coding rates Rch∗
i = 1 − Rs∗

i

minimizing the leaked information about the raw key, and (c) the corresponding theoretical reconciliation efficiency depending on which levels
are encoded and which are transmitted without encoding. The labels of the traces indicate which levels are encoded. (d) Practical reconciliation
efficiencies for the MD and the MLC-MSD reconciliation schemes where code efficiency βc = 0.98. For the simulation we normalized Alice’s
and Bob’s Gaussian data with zero mean to a standard deviation of 1 and used a digitizer with 6-bit resolution and a range of six standard
deviations.

Each term on the right-hand side can be computed separately
by

I
(
XA; X m−1

B , . . . , X i
B|X i−1

B , . . . , X 0
B

)
= Exi−1

B ,...,x0
B ∈ {0,1}i

{
I
(
XA; X m−1

B , . . . , X i
B|xi−1

B , . . . , x0
B

)}
,

where we average over all possible combinations of
xi−1

B , . . . , x0
B. The full characterization of Ii requires a set

of probability density functions (PDFs) fXA|X i
B
(xA|xi

B), which
are defined as

{
fXA|X i

B,...,X 0
B

(
xA|xi

B, xi−1
B , . . . , x0

B

)|(xi−1
B , . . . , x0

B

) ∈ {0, 1}i
}
,

where

fXA|X i
B,...,X 0

B

(
xA|xi

B, xi−1
B , . . . , x0

B

)
= Eb∈ S(xi

B,...,x0
B ){ fXA|XB (xA|b)}.

Here, the signal point b is taken from the subset S(x0
B · · · xi

B).
A detailed description of the set partitioning can be found
in Appendix A. fXA|XB (xA|xb) is the conditional probability
distribution describing Alice’s outcome conditioned on Bob’s,
which is described in Appendix B.

A. Simulation results

Figure 3 shows simulation results for a CV-QKD protocol
using Gaussian modulation with 6-bit discretization and a
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range of the discretizer of six standard deviations. Current
security proofs for CV-QKD require discretizers with a high
resolution and large range [20]. In the figure the mutual
information, the optimal channel coding rates, and the recon-
ciliation efficiency are plotted versus the signal-to-noise ratio
(SNR). The SNR is determined by the modulation variance of
the coherent state ensemble at the transmitter (which is usually
optimized for a certain channel to obtain the maximum secret
key rate), the optical loss of the channel, and the noise in the
channel.

The conditional mutual information of each level and
the total and the expected mutual information of the addi-
tive white Gaussian noise (AWGN) channel are depicted in
Fig. 3(a). For SNRs below 0 dB the 3 least significant bits
(I0, I1, I2) do not contribute (much) to the total mutual in-
formation; only the most significant bits do. Note that in the
figure the conditional mutual information flattens out towards
lower SNRs due to the numerical accuracy of the calculation.
For the binary mapping used in this simulation the second-
and third-most-significant bits contain the highest amount of
conditional mutual information, while the most significant bit
has a lower but still considerable amount. This order can be
explained by the fact that the probability distribution condi-
tioned on Bob’s measurement result is a Gaussian distribution
centered at Bob’s result and that therefore the sign in the bi-
nary representation does not contain most of the information.

The corresponding channel coding rates for each level are
shown in Fig. 3(b). As expected from the mutual informa-
tion the channel coding rates for the 3 least significant bits
(Rch

0 , Rch
1 , Rch

2 ) are very close to 0 for low SNR. Channel code
rates below 0.01 are impractical as such rates would yield a
very low throughput of the decoder. Therefore those bits can
be transmitted without encoding instead of using a code, and
only the 3 most significant bits have to be reconciled. The
channel coding rate for the most significant bit (Rch

5 ) is very
close to 1, and we can recover it by using a Bose, Chaudhuri,
and Hocquenghem (BCH) code.

Figure 3(c) shows the reconciliation efficiency depending
on which levels are encoded. The other remaining bits are
simply transmitted without encoding. For the SNR range con-
sidered here, high efficiency can be achieved for transmitting a
maximum of 3 least significant bits without encoding (encode
levels 3–5). If a fourth bit is transmitted without encoding
(encode only levels 4 and 5), the efficiency drops by 10–20%
at SNRs smaller than −5 dB.

Due to finite-size effects the efficiency of the actual im-
plemented code is always lower than asymptotically possible.
Using codes with efficiency βc instead of the optimal effi-
ciency, the overall reconciliation efficiency of the MLC-MSD
scheme drops significantly at low SNRs. In Figure 3(d) we
compare the reconciliation efficiency of MLC-MSD with MD
reconciliation [8] for βc = 98%. The figure shows that MD
reconciliation is the method of choice for SNRs below about
0 dB. For SNRs higher than 0 dB the MLC-MSD scheme
has better performance. In the plot we also indicate to which
channel attenuation the SNR may correspond. Assuming an
(channel input related) excess noise of 0.0015 shot noise units
[21], we optimized the secret key rate for each channel atten-
uation value to obtain the optimal modulation variance. We
note that in practice the chosen modulation variance and thus

the SNR may be different, for instance, due to the presence
of phase noise. In both schemes, the MLC-MSD and the MD,
MET-LDPC codes with low channel coding rates are required
to get very high efficiency.

IV. GENERALIZED EXTRINSIC INFORMATION
TRANSFER CHART

Density evolution (DE) is the main tool for analyzing
the average asymptotic behavior of the belief propagation
decoder for MET-LDPC code ensembles with infinite block
length and infinite number of iterations. The density evolution
analysis is in general simplified by the all-one-code-word
assumption, by the channel symmetry, and by working in the
log-likelihood ratio domain [22–24]. Density evolution for
MET-LDPC codes is described by the recursion

Pl+1 = λ(R, ρ(Pl )),

Ql+1 = ρ(Pl ), (11)

where ρ(x) and λ(r, x) are the edge-perspective represen-
tations of the MET-LDPC code. They are described in
Appendix C. Pl = (Pl

1, . . . , Pl
ne

) denotes the vector of mes-
sages passed from variable nodes to check nodes in iteration l
assuming that P0 = �0. Here, �0 describes a vector of densi-
ties where each density is given by δ0, the Dirac delta function
at point zero. Similarly, R denotes the received distributions.
The density evolution for MET-LDPC codes is a generaliza-
tion of the density evolution for irregular LDPC codes with
ne dimensions. For irregular codes, Eq. (11) reduces to a
one-dimensional recursion.

The concepts of EXIT and G-EXIT charts were first intro-
duced for irregular LDPC codes [25], for which they provide
a graphical representation of the convergence behavior. Run-
ning the density evolution for irregular LDPC codes, one can
monitor the intermediate densities at the output of variable
nodes and check nodes. Given two families of L densities {cεi}
and {aε} related to P and Q and parametrized by ε, the G-EXIT
function is

G(cεi , aε ) =
∫

z

∫
ω

aε (z)
∂cεi (ω)

∂ε
log2 (1 + e−z−ω )dωdz∫

ω

∂cεi (ω)
∂ε

log2 (1 + e−ω )dω
. (12)

The G-EXIT curve is then given in parametric form by
{H (cεi ), G(cεi , aε )}, where

H (cεi ) =
∫ ∞

−∞
cεi (ω) log2(1 + e−ω )dω.

In a G-EXIT chart we plot the G-EXIT curve of the vari-
able nodes and the inverse of the dual G-EXIT curve of the
check nodes. The dual G-EXIT curve is defined in parametric
form as {G(aε, cεi ), H (aε )} [25]. Note that for a binary lin-
ear code and transmission over binary memoryless symmetric
channels the G-EXIT and the dual G-EXIT curves have equal
area [25].

For irregular LDPC codes the corresponding G-EXIT chart
is a two-dimensional plot. The extension of the G-EXIT charts
for MET-LDPC codes is not straightforward as for ne = 2
edge types the G-EXIT chart would be three dimensional and
for MET-LDPC codes with higher edge types, i.e., ne > 2,
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FIG. 4. G-EXIT charts for all edge types of a MET-LDPC code with channel coding rate 0.02.

the G-EXIT chart would be even higher dimensional, which
renders a graphical representation impossible.

Here, we propose to solve this by plotting ne two-
dimensional G-EXIT charts by monitoring the densities along
each edge type separately. To plot the two-dimensional G-
EXIT charts, we apply the G-EXIT functions of Eq. (12) to
the density families at the output of variable nodes and check
nodes along each edge type, i.e., for each component of the
vectors in Eq. (11). The combination rules of the densities for
the ith component are given by

cεi =
∑

j

λi
j R⊗b ⊗ [Ql+1]⊗d, (13)

aε =
∑

j

ρ i
j[P

l ]�d, (14)

where Q⊗d = ⊗ne
k=1 Q⊗dk

k , R⊗b = ⊗nr
k=0 R⊗bk

k . Here, ⊗ is the
convolution in variable nodes. Similarly, P�d = �ne

k=1P�dk
k ,

where � is the convolution of check nodes [26].
In Fig. 4 we show the G-EXIT chart for a MET-LDPC code

with channel code rate of 0.02. Since the code has ne = 3 edge
types, the chart consists of three plots, each representing the
G-EXIT chart for one edge type.

From the ne two-dimensional G-EXIT curves we can deter-
mine the convergence behavior of the MET-LDPC code. If the
curves cross each other in any of the graphs, the MET-LDPC
code does not converge. In fact, in our simulations, either the
curves for all edge types showed a crossover or the curves for
none of them did (see, e.g., Appendix C, Fig. 8). In addition,
the gap between the two curves is minimal in all graphs for
the SNR corresponding to the threshold of the curve. Highly
efficient codes have a very small gap. This can be seen in the
G-EXIT charts for the codes presented in Sec. V.

V. MET-LDPC CODES FOR USE IN CV-QKD
IMPLEMENTATIONS

We will now present a set of highly efficient MET-LDPC
codes which are optimized for the binary input (BI) AWGN
channel. These codes can be used in MD reconciliation or
MLC-MSD for lower levels. For example, for MD reconcil-

iation a channel code of rate 0.02 is required at an SNR of
−15.4 dB, and a channel code of rate 0.01 is required for an
SNR of −18.4 dB. For MLC-MSD the low channel code rates
might be used at the lower levels. As shown in Fig. 3(b) a
channel code of rate 0.02 should be used at an SNR of 5 dB
for the fourth level. The exact channel code rates depend,
however, on the number of levels and the range of the digitizer.
For example, in Ref. [10] a channel code of rate 0.01 can be
used at an SNR of 3 dB, and a channel code of rate 0.02 can
be used at an SNR of 7 dB.

The design of MET-LDPC code involves solving an
optimization problem [27,28]. The optimization algorithm
searches between all the valid degree distributions to find
a code close to the threshold. Here, we reduced the search
space by focusing on codes in the cascade structure (see
Appendix C). The cascade structure allows us to find a MET-
LDPC code by first designing an irregular LDPC code and
then growing the MET-LDPC code on top.

The codes are presented in Table I. We show the degree
distributions of MET-LDPC codes for channel coding rates
0.01, 0.02, 0.05, and 0.1, while for comparison we also in-
clude previously published channel codes of rate 0.02 and 0.5.
The asymptotic threshold σ ∗

DE of these codes was obtained by
running the density evolution for each code until getting an
error probability of less than 10−10. The required number of
iterations to find the threshold of each code and the corre-
sponding SNR are also specified in the table. The asymptotic
efficiency of each code is defined by

βDE = Rch

C(σ ∗
DE)

, (15)

where C(σ ∗
DE) denotes the Shannon capacity at σ ∗

DE.
A visual representation of the convergence behavior of the

channel code with rate 0.02 is presented in the form of G-
EXIT charts for the separate edge types in Fig. 4. The high
efficiency of the code results in the two curves in each chart
being very close. For edge type 3, which belongs to variable
nodes of degree 1, the corresponding G-EXIT curves are two
completely matching vertical lines at x = 0.9799. The value
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TABLE I. List of MET-LDPC codes with different channel coding rates Rch. We present the degree distributions and compare their
convergence threshold σ ∗

DE using density evolution for the BI AWGN channel with the threshold at Shannon capacity σ ∗
Sh. The SNR is specified

at the threshold. βDE is the asymptotic efficiency of the code. The maximum number of iterations for all the codes was 1000 except for the
proposed code with rate 0.02, for which a maximum of 2000 iterations was allowed.

Rch Degree distribution σ ∗
DE SNR (dB) σ ∗

Sh βDE (%)

0.01 ν(r, x) = 0.01125 r1 x2
1 x111

2 + 0.00875 r1 x3
1 x118

2 + 0.98 r1 x3, 8.37 −18.45 8.46 97.8

μ(x) = 0.0053125 x3
1 + 0.0046875 x7

1 + 0.65875 x2
2 x1

3 + 0.32125 x3
2 x1

3

0.02 ν(r, x) = 0.0225 r1x2
1x52

2 + 0.0175 r1x3
1x57

2 + 0.96 r1x1
3, 5.93 −15.46 5.96 98.8

μ(x) = 0.0165 x4
1 + 0.0035 x9

1 + 0.2475 x3
2x1

3 + 0.7125 x2
2x1

3

0.02 ν(r, x) = 0.0225 r1x2
1x57

2 + 0.0175 r1x3
1x57

2 + 0.96 r1x1
3, 5.91 −15.43 5.96 98.1

(Appendix A of Ref. [5]) μ(x) = 0.010625 x3
1 + 0.009375 x7

1 + 0.6 x2
2x1

3 + 0.36 x3
2x1

3

0.05 ν(r, x) = 0.05625 r1 x2
1 x20

2 + 0.04375 r1 x3
1 x25

2 + 0.90 r1 x3, 3.69 −11.34 3.73 97.8

μ(x) = 0.0265625 x3
1 + 0.0234375 x7

1 + 0.48125 x2
2 x1

3 + 0.41875 x3
2 x1

3

0.10 ν(r, x) = 0.075 r1x2
1x21

2 + 0.05 r1x3
1x20

2 + 0.875 r1x1
3, 2.56 −8.16 2.59 97.5

μ(x) = 0.025 x12
1 + 0.825 x3

2x1
3 + 0.050 x2

2x1
3

0.50 (Ref. [26]) ν(r, x) = 0.20 r0 x3
2 x3

3 + r1 (0.50 x2
1 + 0.30 x3

1 + 0.2 x4), 0.965 0.305 0.9787 98.2

μ(x) = 0.10 x3
1x2

2 + 0.4 x4
1 x1

2 + 0.2 x3
3 x1

4

corresponds to the entropy of the channel H (σ ∗
DE). G-EXIT

charts of all other codes can be found in Appendix C 2.
To evaluate the finite-block-length performance of the

channel code with rate 0.02, Fig. 5(a) shows the simulated
frame error rate (FER). We compare our results with the sim-
ulated FER of the code of Ref. [5] with channel code rate 0.02,
which has been used in many implementations. In the figure
we plot the FER for block lengths of 1.024×106, while for the
code of Ref. [5] block lengths of 8.192×105 and 1.6384×106

were used. For both codes a progressive edge growth (PEG)
algorithm [29] was used to construct quasicyclic MET-LDPC
codes with Z×Z circulant permutation matrices. Our designed
channel code outperforms both variants of the channel code

of Ref. [5]. More specifically, compared with code of length
8.192×105, our code provides 0.1 dB additional gain at FER
= 0.01. In addition, our code always provides lower FER
in spite of its shorter block length in comparison with the
other code of length 1.6384×106. The vertical dashed lines
in the figure display the Shannon asymptotic threshold for
the channel code rate 0.02 on a BI AWGN channel and the
asymptotic threshold obtained by density evolution for our
code and the code of Ref. [5], respectively.

The efficiencies of the two codes versus the FER are com-
pared in Fig. 5(b). It can be observed that for all FERs the
efficiency of our code is higher than that of the code of Ref. [5]
even with longer block length. For instance, for an efficiency

−15.6 −15.5 −15.4 −15.3 −15.2 −15.1 −15.0
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FIG. 5. Simulation of (a) the frame error rate vs SNR for MET-LDPC codes with channel coding rate 0.02 and (b) the efficiency vs frame
error rate for MET-LDPC codes with channel coding rate 0.02. To plot the FER curves, we set the maximum number of iterations to 500, and
for each point, 100 frames of errors are counted. We used Z = 256 for the solid orange curve and Z = 1024 for the solid red and blue curves.
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FIG. 6. Numerical simulation of secret key rate comparing the
performance of our codes with previous codes. The experimental
points and the simulation parameters are taken from Table I of
Ref. [21]: The repetition rate is 5 MHz, the fraction of symbols for
parameter estimation is ν = 0.1, the modulation variance VA has been
optimized, and the fiber attenuation is α = 0.16 dB/km. The (input
related) excess noise is 0.0086 shot noise units for the blue curves
and 0.0081 shot noise units for the red ones. The electronic noise
is 0.2717 and 0.1523 shot noise units, respectively, and the trusted
receiver efficiency is 61.34%.

of 95% the two variants of code in Ref. [5] have a FER of
0.6 and 0.53, respectively, but our code is able to provide the
same efficiency with a FER as low as 0.26. This improvement
corresponds to a 1.85 and 1.57 times higher secret key rate in
terms of bits per second for the same channel. In addition, for
an accepted FER = 0.5, the efficiency of our code is close to
96%, while the efficiencies of the other two variants are less
than or equal to 95%.

To show the performance of our MET-LDPC codes on
CV-QKD, we simulated the achievable secret key rate versus
distance as shown in Fig. 6. Taking finite-size effects into
account, the secret key rate for reverse reconciliation on CV-
QKD is [30]

Kfinite = f (1 − FER)(1 − ν)[βIAB − XEB − �(nprivacy)],
(16)

where f is the repetition rate, FER is the frame error rate
of the reconciliation, ν is the fraction of symbols used for
parameter estimation, β is the reconciliation efficiency, IAB

is the classical mutual information between Alice and Bob,
XEB bounds Eve’s Holevo information on Bob’s variable, and
�(nprivacy) is the finite-size penalty. For the simulation we use
the parameters from Ref. [21] and compare different error
reconciliation codes. In particular, we use f = 5 MHz and
assume that the length of the data for the privacy amplifica-
tion is nprivacy = 1011 (blue symbols in Fig. 6) or 1012 (red
symbols). The number of the quantum symbols is nquantum =
10×nprivacy (ν = 0.1).

In Fig. 6 the solid curves show the simulated secret key
rate fitting the experimental points obtained in Ref. [21],
which are marked with a star. Using our codes for informa-

tion reconciliation, higher secret key rates, marked with the
triangles, could be achieved instead. For comparison we also
plot the maximum achievable secret key rate assuming an
information reconciliation efficiency of 1 and a FER of 0.
From the set of codes presented in Table I we use the code
with channel code rate 0.1 for a distance of 99.31 km (15.89-
dB losses), the code with rate 0.02 for 146.62 km (23.46-dB
losses), and the code with rate 0.01 for 170.62 km (28.65-dB
losses). Additionally, we use the repetition technique [6] with
factor 3 for channel code rate 0.01 to extend the distance up
to 200 km (32.10-dB losses). Due to the higher efficiency and
lower FER the achievable secret key rates are about a factor
of 2 higher than what is achievable with the previous codes.

VI. CONCLUSION

In summary, we presented a practical approach to calculate
the optimal channel code rates of a MLC-MSD reconcilia-
tion scheme suitable for reverse reconciliation in Gaussian
modulation CV-QKD. The optimal channel code rates in this
scheme depend on the number of individual levels which is
given by the resolution of the Gaussian-distributed coherent
states and thus determined by the QKD system’s implementa-
tion, and on the SNR. Using a 6-bit discretization and a range
of six standard deviations, for SNRs below 0 dB the reduced
code efficiency for each level due to finite block size of the
error-correcting codes is detrimental for the overall efficiency,
and thus one has to resort to MD reconciliation.

Furthermore, we introduced the powerful tool and concept
of G-EXIT charts for MET-LDPC codes to visualize their
performance and convergence behavior, and we presented a
set of highly efficient MET-LDPC codes with channel coding
rates 0.1, 0.05, 0.02, and 0.01 with asymptotic efficiencies
higher than 97%. The finite-block-length performance of the
0.02 code was evaluated, and a lower FER was found than for
previously available codes. Specifically, the MET-LDPC code
with channel coding rate 0.01 can be used in conjunction with
MD reconciliation to achieve distances longer than 170 km
[21], a regime that is only possible to achieve with information
reconciliation performing closely at the theoretical optimum.
We therefore believe that our codes will find wide applications
in CV-QKD implementations.
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APPENDIX A: SET PARTITIONING

We consider a quantization scheme with M = 2m, m > 1,
signal points in a D-dimensional real signal space, with sig-
nal points taken from the signal set S = {�a0, �a1, . . . , �aM−1}
with probabilities Pr{�ak}. Each signal point has its equiva-
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lent binary form defined by a bijective mapping �a = M(�x)
of binary representation vectors �x = (xm−1

B , . . . , x0
B) to signal

points �a ∈ S. Two well-defined mappings are binary and Gray
mapping. As an example for m = 3 levels, in one-dimensional
signal space (D = 1), the M = 23 signal points are taken from
S = {−7,−5,−3,−1,+1,+3,+5,+7}. Fixing the values of
coordinates i to 0, i.e., xi

B, . . . , x0
B, we obtain subsets of the

signal set S:

S
(
xi

B, . . . , x0
B

)
= {�a = M(�x) | �x = (

bm−1, . . . , bi+1, xi
B, . . . , x0

B

)
,

bj ∈ {0, 1}, j = i + 1, . . . , m − 1}. (A1)

For more details about set partitioning and mapping, see
Ref. [19]. For example, for the above-mentioned constellation
points with M = 8 with binary partitioning we have

S
(
x0

B = 0
) = {�a = M(�x)|�x = {000, 010, 100, 110}}

= {−7,−3,+1,+5},
S
(
x1

Bx0
B = 10

) = {�a = M(�x)|�x = {010, 110}}
= {−3,+5},

S
(
x2

Bx1
Bx0

B = 010
) = {�a = M(�x)|�x = {010}} = {−3}.

APPENDIX B: CLASSICAL STATISTICAL
REPRESENTATION

In the following we assume that the symbols of Alice, XA,
and Bob, XB, are jointly distributed according to a bivariate
normal distribution with zero mean. The bivariate normal
distribution can be described by

fXB,XA (xB, xA) =
exp

(
− (xA, xB)
−1(xA, xB)T

2

)

2π
√|
| (B1)

with the covariance matrix


 =
[

σ 2
A ρ σA σB

ρ σA σB σ 2
B

]
, (B2)

where

ρ = E{XAXB}
σAσB

(B3)

is the correlation coefficient between XA and XB and σA and
σB denote their standard deviations, respectively. We empir-
ically estimate the covariance matrix during the parameter
estimation phase of the quantum key distribution protocol. We
then normalize Alice’s and Bob’s data by dividing by their
respective standard deviation, i.e.,

x j
A → x j

A/σA,

x j
B → x j

B/σB,

such that


 → 
 =
[

1 ρ

ρ 1

]
. (B4)

The conditional probability distribution describing Alice’s
outcome conditioned on Bob’s is given by

fXA|XB (xA|xB) = N (ρxB, (1 − ρ2)). (B5)

TABLE II. Degree structure of a MET-LDPC code with channel
coding rate 0.02. σ ∗

Sh = 5.96, σ ∗
DE = 5.93, and βDE = 98.8%.

νbd b d μd d

0.0225
0.0175
0.96

0 1
0 1
0 1

2 52 0
3 57 0
0 0 1

0.0165
0.0035
0.2475
0.7125

4 0 0
9 0 0
0 3 1
0 2 1

As we discussed in Sec. II, let us denote the quantized
version of XB by Q(XB) with its binary equivalent vec-
tor (X m−1

B , . . . , X 1
B , X 0

B ). Considering a fixed step size δ for
discretization, the entropy of the quantized source can be
approximated by

H (Q(XB)) ≈ h(XB) − log2 δ,

where h(XB) is the differential entropy defined for the con-
tinuous variable XB. A similar quantization can be applied on
Alice’s side to get Q(XA). This also holds for the conditional
entropy; that is,

H (Q(XB)|Q(XA)) ≈ h(XB|XA) − log2 δ.

If m is large enough, and thus δ is small, we can approximate

I (Q(XB); Q(XA)) ≈ I (Q(XB); XA) ≈ I (XB; XA),

where the equality holds when δ → 0.

APPENDIX C: MET-LDPC CODES

1. MET-LDPC code ensemble

Multiedge-type LDPC (MET-LDPC) codes are a general-
ization of the concept of irregular LDPC codes [26,31]. These
codes provide improvements in performance and complexity
by giving more flexibility over different edge types. In this
structure, each node is characterized by the number of con-
nections (sockets) to edges of each edge type. It is noteworthy
to mention that an irregular LDPC code is a single-edge-
type LDPC (SET-LDPC) code. Using MET-LDPC codes, we
are able to design capacity-achieving codes without using
variable nodes with very high degree, which provides a less
complex implementation. Also it exploits the advantage of
using variable nodes of degree 1, which are very useful for
designing LDPC codes at low channel coding rate and low
SNR [26]. It is important to recall that in the case of SET-
LDPC codes the minimum usable variable node degree is 2.

A graph ensemble is specified through two multivariable
polynomials, one associated with variable nodes and the other
associated with check nodes. We denote these multivariable
polynomials by

ν(r, x) =
∑

νbdrbxd, μ(x) =
∑

μdxd, (C1)

respectively, where in Eq. (C1) we define the vectors b, d, r, x
and the coefficients νbd and μd as follows. Let ne denote the
number of edge types and nr denote the number of different
channels over which the code-word bits can be transmitted.
To represent the structure of the graph, we introduce the
following node-perspective multivariable-polynomial repre-
sentation. We thereby interpret degrees as exponents. Let d :=
(d1, . . . , dne ) be a multiedge degree, and let x := (x1, . . . , xne )
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0.2475 N
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1

1
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3
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FIG. 7. Graphical representation of the three-edge-type LDPC
code presented in Table II, where circles represent the variable nodes
and squares represent the check nodes. The numbers of nodes for
different edge types are shown as fractions of the code length N ,
where N is the number of transmitted code-word bits.

denote (vector) variables. We write xd for
∏ne

i=1 xdi
i . Sim-

ilarly, let b := (b0, . . . , bnr ) be a received degree, and let
r := (r0, . . . , rnr ) denote variables corresponding to received
distributions. By rb we mean

∏nr
i=0 rbi

i . In this paper we use r1

for the transmission channel and r0 for punctured bits (with no
transmission channel). Typically, vectors b will have one entry
set to 1 and the rest set to 0. Finally, the coefficients νbd and
μd are non-negative real values corresponding to the fraction

of variable nodes of type (bd) and the fraction of constraint
nodes of type d in the graph.

For example, let N be the length of the code word; then
for each constraint node degree type d the quantity μdN is the
number of constraint nodes of type d in the graph. Similarly,
the quantity νbdN is the number of variable nodes of type (bd)
in the graph. We store this information in a table to describe
the structure of the graph. For instance, a full description of a
MET-LDPC code ensemble with channel coding rate 0.02 we
designed with the following structure is presented in Table II
and Fig. 7.

ν(r, x) = 0.0225 r1x2
1x52

2 + 0.0175 r1x3
1x57

2 + 0.96 r1x3,

μ(x) = 0.0165 x4
1 + 0.0035 x9

1 + 0.2475 x3
2x1

3

+ 0.7125 x2
2x1

3 .

The edge-perspective degree distribution can be described
as a vector of multivariable polynomials, for variable nodes
and check nodes, respectively,

λ(r, x) =
(

νx1 (r, x)

νx1 (1,1)
,

νx2 (r, x)

νx2 (1,1)
, . . . ,

νxne
(r, x)

νxne
(1,1)

)
,

ρ(x) =
(

μx1 (x)

μx1 (1)
,

μx2 (x)

μx2 (1)
, . . . ,

μxne
(x)

μxne
(1)

)
, (C2)

where

νxi (r, x) = ∂

∂xi
ν(r, x),

μxi (x) = ∂

∂xi
μ(x),

and 1 denotes a vector of all 1s where the length is be-
ing determined by context. The coefficients of ν and μ are
constrained to ensure that the number of sockets of each type
is the same on both sides (variable and check) of the graph.
This gives rise to ne linear conditions on the coefficients of ν
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FIG. 8. The G-EXIT charts for separate edge types for the MET-LDPC codes with channel coding rates (a) 0.01, (b) 0.05, (c) 0.10, and
(d) 0.50. When the code converges at a specific threshold value, we are able to plot the G-EXIT charts separately by applying the G-EXIT
operators for densities at each edge type.
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and μ,

νxi (1,1) = μxi (1), i = 1, . . . , ne.

Finally, the nominal channel coding rate for nonpunctured
code is given by

Rch = ν(1,1) − μ(1).

2. G-EXIT charts for other codes

The graphical representation of the convergence behavior
of the other codes with channel coding rates 0.01, 0.05, 0.10,
and 0.50 described in Table I is presented in Fig. 8. The graphs
show that the G-EXIT charts can be plotted for a variety of
codes from very low channel coding rates of 0.01 to codes
with channel coding rate of 0.50. Also we are not limited to
codes with three edge types. For example, Fig. 8(d) shows a
MET-LDPC code with ne = 4.
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