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Optical quantum memory, the ability to store photonic quantum states and retrieve them on demand, is an
essential resource for emerging quantum technologies and photonic quantum information protocols. Simul-

taneously achieving high efficiency and high-speed, broadband operation is an important task necessary for
enabling these applications. We investigate the optimization of a large class of optical quantum memories based
on resonant and near-resonant interaction with ensembles of A-type level systems with the restriction that the
temporal envelope of all optical fields must be Gaussian, which reduces experimental complexity. Through this

optimization we demonstrate an experimentally simple path to saturation of the protocol-independent storage
efficiency bound that is valid for a wide range of memory bandwidths, including those that are broadband
and high speed. Examining the resulting optimal Gaussian control field parameters, we find a continuous
transformation between three physically distinct resonant quantum memory protocols. We compare this Gaussian
optimization scheme with standard shape-based optimization.
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I. INTRODUCTION

Efficient photonic quantum state generation and synchro-
nization [1,2], metropolitan-scale quantum networking and
entanglement distribution [3,4], and linear-optical quantum
computing [5] all rely on efficient optical quantum memory. In
order for these emerging applications to operate at high speed
they must be compatible with broadband photonic quantum
states [6—8], ideally with minimal experimental complexity. In
quantum memories based on atomic ensembles, a significant
body of theoretical [9-14] and experimental [15—-17] work has
been dedicated to improving quantum memory efficiency by
temporal shaping of the optical signal field to be stored or
the control field used to mediate the interaction. However,
these techniques have largely only been applied for signal
bandwidths smaller than the linewidths of the excited states
participating in the memory interaction, in part due to the
technological complexity of shaping intense broadband fields.
In effect, ensemble quantum memories to date have been
limited to efficient narrowband operation [18-22] or ineffi-
cient broadband operation [6,23-32], with only a few notable
exceptions [8,33-36].

In this work, we provide a quantitative performance
analysis of resonant and near-resonant A-type quantum
memories, shown in Fig. 1, with a specific focus on signal
bandwidths larger than the memory’s intermediate state
linewidth (I" in Fig. 1), which we consider broadband. While
a variety of other level systems are employed for quantum
memory (ladder-type, etc.), A-type level systems are currently
the most common, and our analysis is readily generalizable to
other level systems.
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In the broadband regime, far off-resonant quantum mem-
ory protocols are well established, but require significantly
more control field power than resonant protocols and suffer
from low efficiency due to the experimental difficulty in sat-
isfying this requirement [6,23-26,29,31,32]. In this work, we
restrict our discussion to the use of resonant and near-resonant
optical fields with Gaussian temporal envelopes to avoid the
experimental complexities of large pulse energies and shaping
of the optical fields. Despite these restrictions, we find that
through optimization of the native parameters of Gaussian
control fields (i.e., optical power, arrival time, and duration),
which are simple to fine-tune experimentally, we can still
achieve high-efficiency memory operation, including in the
broadband regime.

Whereas most work aimed at optimizing quantum memory
efficiency focuses on a particular physical quantum memory
protocol and leverages physical understanding of the storage
mechanism to solve a generic, unconstrained optimization
problem [8-11,14,33,34,37], herein we take a physically
agnostic approach where we aim to optimize the memory
efficiency through a highly constrained set of experimental
parameters, initially without regard for the physical storage
protocols. While the protocol-based approach facilitates un-
derstanding the underlying physics of the quantum memory
interaction, practically one is often presented with a set of ex-
perimental parameters and resources which are limited, may
drift over time, and which in general are not guaranteed to
align neatly with a particular storage protocol. Between these
physical regimes and storage protocols, it is useful to fine-tune
the experimental parameters at hand to maximize memory
efficiency.

After numerically calculating the optimal Gaussian control
field parameters for a broad range of experimental conditions,
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FIG. 1. Backward retrieval quantum memory scheme, wherein
a weak signal field [A;,(7), red thin line] and strong control field
[Q2(7), black thick line] enter an atomic medium, generating atomic
polarization [P(z, T), orange ellipse] and spin wave [B(z, t), blue
ellipse] fields according to the A-type level scheme shown on the
right, with excited-state linewidth I" and two-photon detuning A.
After a controllable delay, the signal field is retrieved with total
efficiency n? via the application of another strong control field that
propagates antiparallel to the first control field.

we return to examine the physical storage mechanisms and
identify the regions of high-efficiency memory operation. We
provide physical explanation for the optimized control field
parameters in terms of three established memory protocols:
those of Refs. [11,37-39] that we summarize with the phrase
“absorb-then-transfer,” the recently proposed Autler-Townes
splitting (ATS) protocol [33-36], and the electromagneti-
cally induced transparency (EIT) protocol [11,40-42]. As we
show, our optimization procedure connects these three physi-
cally distinct quantum memory protocols through continuous
transformation of the control field parameters (extending the
results of Ref. [34]), and allows for high-efficiency opera-
tion in the transition regions between physical protocols. In
particular, we report optimized Gaussian control field param-
eters that allow for optimal memory operation for bandwidths
broader than those used in the ATS protocol, and for band-
widths between the ATS and EIT protocols.

This article is organized as follows: After providing de-
tails on our numerical analysis of the equations of motion
describing the quantum memory interaction and the opti-
mal efficiency bound for a given optical depth (Sec. II), in
Sec. III we consider resonant (Sec. III A) and near-resonant
(Sec. I B) Gaussian control field optimization. In Sec. IV
we compare the efficiencies generated with the Gaussian op-
timization described in Sec. III and the standard shape-based
optimization method described in Refs. [9,10,12—14]. We find
that the Gaussian optimization procedure achieves memory
efficiencies comparable to the shape-based method in all but
the most broadband cases. In the Appendixes we provide
physical descriptions of the three resonant storage protocols
and details on the conditions we use to calculate ATS and EIT
regions.

Throughout this work we assume backward retrieval of
the signal field (Fig. 1) such that the atomic dynamics dur-
ing retrieval are the time reverse of those during the storage
process, which holds for near-degenerate ground and storage
states (|1) and |3) in Fig. 1) [10-12]. In this case, the retrieval
efficiency is identical to the storage efficiency 5, and the
total memory efficiency is 1. Thus, to fully characterize the

memory efficiency, we need only compute 7. Since the
Gaussian fields we consider are intrinsically time-reversal
symmetric, under these assumptions no additional experi-
mental measures need to be taken to ensure optimization
of retrieval beyond routing the retrieval control pulse to the
output facet of the atomic ensemble.

II. NUMERICAL SOLUTION OF
MAXWELL-BLOCH EQUATIONS

The A-type level structure shown in Fig. 1 includes two
stable or metastable ground states, |1) and |3), and an inter-
mediate excited state |2) that decays to the ground states with
the coherence decay rate y = I'/2, where I' is the popula-
tion decay rate of the |2) state. All temporal dynamics are
considered in the comoving frame defined by 7 =t — z/c,
where ¢ is the time measured in the laboratory frame, z is the
one-dimensional spatial coordinate [defined as z = O(L) at the
input (output) face of the medium, where L is the medium
length] and c is the speed of light. We assume that a control
field with frequency near the |2) < |3) transition, Rabi fre-
quency 2(t), and duration t&,\/ enters the medium with a
Gaussian temporal envelope and does not undergo significant
absorption or distortion as it propagates [Q2(z, T) = Q(7)]. We
assume that before the signal field enters the medium, it has
a Gaussian temporal envelope Aj,(t) = e/ 4"2, where o =
rwaM/ (24/21n 2), for the signal duration tpwyy [temporal
full width at half maximum (FWHM)]. There exists also the
possibility to temporally chirp the optical field and optimize
separately over control pulse bandwidth, but in this work we
consider only Fourier-transform-limited pulses such that, e.g.,
the signal field spectral intensity bandwidth § and duration
Trwam are related by 6 = 27 x 21n2/(w tpwam)-

We further assume that all atoms initially populate the |1)
state, which is a valid approximation for atomic populations
after optical pumping, or for atomic species with sufficient
energy separation between the |1) state and other low-lying
states. In general, the signal field undergoes spatial and tem-
poral deformation as it propagates through the medium and is
absorbed along the |1) — |2) transition, described by A(z, 7).
The atomic dynamics in the presence of these two optical
fields are described by the resonant, normalized Maxwell-
Bloch equations [10,14,33,43]

9,A(z. 1) = —VdP(z, 1), (1)
_ (1)
0. P(z,t) = —yP(z, T)+ \/JA(Z, T)—1i B(z,t), (2)
.Q*(7)
0:B(z,t) = —yB(z,T) — i P(z, 1), 3)

where d is the resonant optical depth of the memory, y =
(y —iA)/y is the normalized complex detuning, and P(z, 7)
and B(z, t) are macroscopic field operators representing the
atomic coherences |1) <> |2) and |1) < |3), respectively,
which are delocalized across the length of the medium. In
Egs. (1) to (3), all frequency (time) scales are normalized by y
(1/y), and all length scales are normalized by L. We assume
that the coherence decay rate corresponding to the |3) — |1)
transition, yp, is negligible during the storage and retrieval
operations: yp < 1.
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We iteratively solve these equations of motion using Ral-
ston’s method for evaluating the t derivatives and Chebyshev
spectral differentiation for the z derivatives. After integration,
we compare the population in B to the population in Aj, in or-
der to calculate the storage efficiency for a particular choice of
Q(7), as

_ fy dz|B@z. T — o0)?
Lo dT |An(o)?

“)

where in practice we truncate Aj,(r) and B(z, 7) at rend —
4Tpwiam, Where A;, (") has dropped to 010719 of its
maximum value. Thus Egs. (1) to (3) in combination with
Eq. (4) define an objective function that can be maximized
with respect to the free parameters of (7). We parametrize
the control field Rabi frequency, which we take to be real
for simplicity, in terms of its pulse area 6 = ffooo dt Q(7),
temporal delay A7°"! relative to the arrival of the signal field,
and duration Tuhy = 2+/21n 20" as

Q(r) = Qe 1T AT (5)
where Q) = 60/(2/mo"™). We optimize over the parame-
ter space vector G = (9, At &4l 1) using a Nelder-Mead
simplex method, which rapidly identifies the efficiency max-
ima under these constraints, as verified by deterministic
searches of the same parameter space. We define r = 0 at the
maximum of the signal field.

Throughout this work we normalize the efficiencies cal-
culated via the method above by the protocol-independent
efficiency bound for a fixed optical depth 1oy, described in
Refs. [10,11,14,16] and elsewhere. In brief, we calculate this
efficiency bound by finding the eigenvalues of the antinor-
mally ordered storage kernel

d ,
K(z,7) = Ee*’““ 210(d72), (6)

where Iy(x) is the zeroth-order modified Bessel function of
the first kind, and we discretize K(z,z) on a 5000 x 5000
point grid. For fixed d, the largest eigenvalue A of this kernel
represents the maximum achievable storage efficiency at that
optical depth nop = Ag. By performing this normalization, we
aim to compare the efficiencies of particular memory imple-
mentations independent of the limitation imposed by finite
optical depth.

III. RESULTS OF GAUSSIAN OPTIMIZATION

A. On resonance (A = 0)

We first consider the case of resonant interaction of the
optical fields with the atomic A system (i.e., A = 0). At each
optical depth and signal bandwidth, we optimize over the
control field parameters G = (6, Aretl rﬁ%‘JHM), which fully
define any Gaussian control field through Eq. (5). This allows
us to show that the three known, physically distinct quantum
storage protocols for resonant storage (see Appendix A for
a brief overview of the protocols) are smoothly connected
via continuous transformation of the control field parameters.
This result is similar to that in Ref. [34], which demonstrated
ATS and EIT quantum memory behavior can be connected
through continuous transformation of the control field Rabi

frequency for fixed memory parameters, under the condition
of either a constant control field or an interrupted control
field of varying linear slope. Here we distinguish between
the memory parameters M = (d, tpwumy ), Which represent
the physical characteristics of a particular quantum memory
for the chosen signal bandwidth, and the control field param-
eters G. In this formalism, the authors of Ref. [34] derived
a connection between ATS and EIT storage for fixed M
by varying G [where, e.g., G. = (£2p) is a single-parameter
vector in the case of a constant control field Q(7) = Qp].
Motivated by this observation, we consider the distinct con-
dition of Gaussian-shape control fields, and we show that
again ATS and EIT memory behavior can be connected if
we consider the transformation as a function of M, where
optimization of G at each point in M ensures optimal or
near-optimal storage efficiency. Further, we show the two
protocols can be connected to the ‘“‘absorb-then-transfer”
protocol through the same continuous transformation. We
show each protocol possesses a region of optimality under
the restriction of Gaussian pulses and identify two regions
where our optimization scheme is most useful: one where
the storage mechanism is given by the “absorb-then-transfer”
protocol, but in the largely unexplored nonadiabatic regime,
and one between the regions of efficient ATS and EIT memory
operation.

Figure 2 presents the main results of this section. In
Fig. 2(a) we show the normalized efficiencies achieved
through the optimization procedure described in Sec. II, for
memory parameters in the range d = 1 to 50 and tpwumy =
0 to 1.5, which we take to be representative of the bulk
of experimental broadband quantum memories, though our
analysis is easily extended to other regions. The efficiencies
shown saturate the optimal efficiency bound (1/7o, = 100%)
for adiabaticities dtpwumy = 1 [see Fig. 2(b) for a map
of the memory adiabaticity]. This result demonstrates that
Gaussian-shape fields are sufficient for high-efficiency, broad-
band memory operation, without the need for full pulse-shape
control.

The first region of the M parameter space where our op-
timization is most useful can be highlighted using Fig. 2(b),
which shows the memory adiabaticity (dtrwamy) as a func-
tion of M. For dtpwamy < 1, we observe the expected decay
of the storage efficiency [11], shown in Fig. 2(a). Between
dtrwumy = 1 and the region of efficient ATS operation [de-
lineated with dashed lines in Fig. 2(b); see Appendix B for
derivation], we observe storage efficiencies that approach the
optimal bound (/no, = 100%), where the physical storage
mechanism is given by the “absorb-then-transfer” protocol
[11,37-39]. As can be seen in Figs. 2(d) to 2(f), the opti-
mized control field parameters in this region correspond to
approximately m -pulse-area control fields that are narrower in
duration than the signal fields they store (IIS{)T}HM < TFWHM)»
and arrive after the signal field (At > 0). The optimized
control fields arrive at the approximate time when the electric
field of the signal changes sign (when evaluated at z = 1/2),
in agreement with the analysis found in Refs. [39,44,45]. This
result demonstrates that the “absorb-then-transfer” protocol
can approach the optimal efficiency bound in the nonadiabatic
regime, in addition to the adiabatic regime investigated in
Ref. [37].
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FIG. 2. (a) Storage efficiencies achieved through optimization
of Gaussian-shape control fields, relative to the optimal bound 7,y
shown in parentheses for each optical depth d. (b) Memory adia-
baticity, where the region d tpwamy = 3 to 8 corresponds to optimal
ATS memory operation (see Appendix B). (¢c) The memory character
ratio, where € < 0.1 indicates the region of EIT memory opera-
tion. (d)—(f) The optimized control field parameters as a function
of optical depth and signal field duration tpwym. Positive (negative)
delay At > 0 (At < 0) refers to control fields that arrive after
(before) the signal field.

The second region of M-space where our optimization
procedure is most useful is in the region between the optimal
memory conditions for ATS and EIT storage, delineated by
the dashed lines in Fig. 2 (see Appendix C for derivation of the
boundary of the EIT region). Here the memory is still nonadi-
abatic (dtpwumy >> 1 is not satisfied), but the ATS condition
dtrwumy = 3 to 8 is exceeded, similar to the broadband-EIT
region of Refs. [8,34]. In this region, fine-tuning of the con-
trol field parameters allows for optimal memory efficiency,
whereas use of the typical ATS [G = (27, 0, trwum)] or EIT
control field parameters leads to suboptimal efficiency.

We note that Figs. 2(d) to 2(f) may act as a guide for
experimentally simple optimization of broadband quantum
memory using Gaussian pulses. For a given set of memory
parameters M, the optimal Gaussian control field parameters
may be read off directly from Figs. 2(d) to 2(f). In the adia-
batic, EIT regime (dtrwumy > 1), we find negative temporal
delays that asymptote to around —0.55tgwpMm, and control
field durations that asymptote to ~1.33tpwpm.

Notably, the optimized control field parameters presented
in Fig. 2 are not mutually independent; for example, at fixed
M, changes to the control field duration away from the opti-
mal choice shown in Fig. 2(f) may be compensated for with
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FIG. 3. Optimized A-type quantum memory efficiency and cor-
responding optimized control field parameters as a function of optical
depth d and signal field duration trwyy for varying two-photon
detuning (a)—(d) A =y, (e)-(h) A =5y, and (i)-(1) A = 10y, for
excited state coherence decay rate y.

changes to the control field delay and pulse area, with only
a small decrease in efficiency in some cases. Figures 2(d) to
2(f) shows only the optimal and mutually dependent choice of
control field parameters. The sensitivity or robustness to noise
in these optimal parameters may be the subject of future work.

B. Near resonance (A # 0)

The case of resonant signal and control fields considered
above has shown optimal storage efficiency to be possible
for a wide range of memory parameters using only Gaussian
pulses. In this section we continue this analysis for nonzero
two-photon detunings in the near-resonant regime, where A is
of order y. This analysis differs then from the far-off-resonant
Raman regime [14,23-26,29], where A > y. While we nom-
inally only consider positive detunings, the results presented
in this section are symmetric about A = 0.

Whereas for resonant signal and control fields all opti-
mization parameters G are smooth, monotonic functions of
the memory parameters M, in the near-resonant case we
observe more complicated behavior where the optimized pa-
rameters are no longer strictly monotonic functions of M.
In Figs. 3(a) to 3(d), 3(e) to 3(h), and 3(i) to 3(I), we con-
sider two-photon detunings A =y, A = 5y, and A = 10y,
respectively. As shown in Figs. 3(a), 3(e), and 3(i), for fixed
memory parameters M, larger A consistently implies smaller
n/Mmax- It appears this decrease in memory efficiency can
be avoided by increasing optical depth, although this comes
at the cost of larger control field pulse area and optical
power required to implement optimized storage. In general,
as shown in Figs. 3(b), 3(f), and 3(j), for fixed M the pulse
areas necessary to implement optimized quantum storage with
Gaussian pulses tend to increase with increasing A. The
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minimum temporal delay in the region we simulate decreases
as a function of A, indicating control field pulses in those
regions of negative delay that arrive significantly sooner (be-
fore the signal field) than their resonant counterparts in the
EIT regime. In these same regions [i.e., M =~ (20, 1.5) for
A =5y, M =~ (35, 1.5) for A = 10y], the control field du-
ration is also significantly larger than in the resonant case.

As in Sec. IITA, we note that Fig. 3 may serve as an
experimental guide for optimized quantum memory imple-
mentation with Gaussian-shape signal and control fields at
fixed detuning in the near-resonant regime.

IV. COMPARISON OF GAUSSIAN AND
SHAPE-BASED OPTIMIZATION

In the sections above we introduced an alternative quantum
memory optimization scheme that relies only on broadband
light pulses with Gaussian temporal envelope. This scheme
operates at or near two-photon resonance, and therefore
avoids the experimental complexities associated with full
pulse-shape control of broadband fields and the use of large
pulse energies. In this section, we compare the results of
this optimization scheme with the more standard shape-based
optimization of Refs. [9,10,12—14].

To enumerate this comparison, we consider a quantum
memory with optical depth d = 50, where we calculate via
Eq. (6) an optimal storage efficiency of 9o = 95.2% (total
efficiency: ’7<2)pt = 90.6%). We further assume resonant stor-
age of photons such that A = 0. To calculate the storage
efficiencies achieved via shape-based optimization, we first
numerically construct the storage kernel K(z, ) defined by
the linear integral transform

o]

Bou(2) = B(z. T — 00) = / At Kz DAn(),  (7)

—00

via the method described in Ref. [14]. The largest singular
value of K(z, t) and the corresponding right-singular vector
represent the optimal storage efficiency and optimal sig-
nal mode temporal profile, respectively [11,14]. Importantly,
K(z, 7) depends both on the chosen optical depth d and the
control field parameters G. The optimal signal mode calcu-
lated through this method is therefore guaranteed to lead to
optimal storage efficiency for the given d and G.

This method relies on signal-field shaping to achieve opti-
mal memory efficiency. One can instead optimize the memory
efficiency through shaping of the control field with the proce-
dure outlined in Ref. [14]. In short, one interpolates between
the optimal signal mode calculated for given d and G and
the desired signal mode (typically a Gaussian, with dura-
tion tpwym), and at each interpolation step one optimizes
Gy, which is a large vector that defines the shape of (7).
At each interpolation step, the signal field is deformed away
from the optimal shape and the control field shape is opti-
mized to compensate for the decrease in memory efficiency.
For sufficiently small successive deformations of the signal
field, optimality is preserved at each interpolation step and
this procedure leads to the optimal control field shape for a
Gaussian signal field. We find the final memory efficiency
achieved through control-field shaping is typically bounded
above by the efficiency achieved through signal-field shaping.
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FIG. 4. Comparison of quantum memory efficiencies achieved
using shape-based and Gaussian control field optimization for d =
50. Dotted line represents the optimal efficiency bound nqy =
95.2%.

For the purposes of this comparison, we compare the results
of the Gaussian optimization in Sec. III with the upper bound
achieved via signal-field shaping.

In Fig. 4, we calculate the storage efficiency achieved via
signal-field shaping alongside the efficiency calculated via the
Gaussian optimization scheme presented in this article, for
signal durations between 0 and 1.5/y in the example case of
a A-type level system at d = 50. We observe saturation of
the optimal bound (dashed line, n = 7oy = 95.2%) in the re-
gion tpwpm = 0.1/y to 1.5/y for both optimization schemes,
where the optimal storage protocol transitions between all
three resonant protocols defined in Appendix A. Below 0.1/y
signal-field duration, we observe decay in the memory effi-
ciency for both schemes, where the Gaussian optimization
scheme leads to comparatively lower storage efficiencies for
the most broadband pulse durations. Nevertheless, the Gaus-
sian optimization procedure provides comparable memory
performance over a wide range of bandwidths.

The main result of this section is as follows: Through
the Gaussian optimization procedure described in this article,
we achieve storage efficiencies that closely compare with
the efficiencies achieved through shape-based optimization,
but which (1) require significantly less computational ex-
pense to calculate and (2) physically correspond to quantum
memory experiments that are simpler, as they eliminate the
need for arbitrary shaping of either intense, broadband fields
(control-field shaping) or broadband single-photon level fields
(signal-field shaping).

V. CONCLUSION AND FUTURE WORK

In this work we presented a quantitative and qualitative
exploration of A-type quantum memory with Gaussian optical
fields that are resonant and near-resonant with an atomic two-
photon transition. The restriction to Gaussian fields serves
to simplify experimental implementations of optical quantum
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memory. We showed that despite this restriction, optimization
of the parameters of Gaussian control fields (optical power,
arrival time, and duration) can lead to high-efficiency memory
operation over a wide range of memory parameters in the
broadband regime. We make the distinction between the mem-
ory parameters (M) and the control field parameters (G), and
in so doing we find that optimization of G reveals a continuous
transition between three physically distinct quantum memory
protocols (what we call the “absorb-then-transfer” protocol,
ATS, and EIT) as a function of M. This optimization proce-
dure is most useful in two regions of the memory parameter
space. In the region of M that is more broadband than the
optimal ATS region at fixed optical depth, we show that the
“absorb-then-transfer” protocol can operate with near-optimal
efficiency, extending the result investigated previously in the
adiabatic (dtpwamy > 1) regime [37]. In the region of M
between optimal ATS and EIT operation, the mixed ATS/EIT
regime, we also show that optimal memory operation is pos-
sible.

In Sec. III B we extended this analysis to the near-resonant
regime where the two-photon detuning is of order the excited
state linewidth A ~ y. We observe similar qualitative behav-
ior of the optimal control field parameters G as a function of
M, but to achieve the same memory efficiency, a larger optical
depth d and control field pulse area 6 are required compared
to the resonant case.

Finally, in Sec. IV we provided a numerical comparison of
the proposed Gaussian optimization technique with the more
common shape-based optimization procedure. We find that
Gaussian pulses are suitable for optimal memory operation
over a wide range of memory parameters, and only perform
significantly worse than arbitrarily shaped pulses in the most
broadband cases where the storage efficiency is nonoptimal
even for shape-based optimization.

In this work we restrict ourselves to the widely available
resource of Fourier-transform limited pulses, where pulse
duration and bandwidth are Fourier-transform pairs and ac-
cordingly only describe one degree of freedom subject to
optimization. Future work may consider optimization via
chirped optical fields, which expands the toolbox for opti-
mization of Gaussian quantum memory and has been explored
in other memory protocols [46—48]. We also restricted our
optimization procedure to the case of homogeneous dephasing
of the atomic polarization field. The case of inhomogeneous
polarization dephasing, following the approach of the authors
of Ref. [49], may be considered in future work.
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APPENDIX A: DESCRIPTION OF PROTOCOLS

Here we briefly review the three known resonant quantum
memory protocols that make use of a homogeneously broad-
ened excited-state linewidth, and their key features.

1. “Absorb-then-transfer”

Described in Refs. [11,37-39], quantum storage is
achieved through linear absorption of the signal field along the
[1) — |2) transition and coherent population transfer between
the atomic polarization and spin-wave field via a m-pulse
control field. We distinguish this “absorb-then-transfer” stor-
age protocol from the related photon-echo protocols [38,50—
52], as photon emission upon retrieval does not depend on
dipole rephasing for homogeneously broadened intermediate
states. The authors of Ref. [39] found that in order to optimize
storage efficiency the arrival time of the control field should
occur near the first zero of the complex signal field amplitude
when evaluated at the middle of the ensemble (z = 1/2), at
least in the weak-absorption regime. The authors of Ref. [37]
showed this storage protocol can be optimal (i.e., can achieve
1 = nopt) for large optical depths, such that d tpwpmy > 1.

2. Autler-Townes Splitting

In the recently proposed Autler-Townes-Splitting (ATS)
protocol [33-36], a control field propagates with the signal
field at zero delay (AT = 0) with pulse area § = 27, cre-
ating an Autler-Townes doublet in the signal field absorption
profile that matches the signal field bandwidth. As shown in
Ref. [34], one is free to choose any control field shape, as long
as 6 = 2x is fulfilled over the duration of the signal field.
As more broadband signal fields experience lesser effective
optical depth (due to increasing Autler-Townes splitting), and
more narrowband pulses lead to decoherence of the atomic
polarization during the storage operation, the ATS protocol is
constrained to optimal operation in a narrow bandwidth region
around a unique choice of trwpm for a given optical depth
[33,34] (see Appendix B).

3. Electromagnetically Induced Transparency

The well-known electromagnetically induced transparency
(EIT) protocol is described in the narrowband regime in
Refs. [11,40-42] and in the broadband regime in Refs. [8,34].
A control field of duration longer than the signal field
(rﬁ{{}HM > TpwyMm) enters the medium ahead of the signal field
in time (A7 < 0) and opens a spectral transparency window
that is slowly closed after the signal field enters the medium,
thereby trapping the signal field in the medium via the slow-
light effect.

We note that the key physical features of all three proto-
cols are compatible with the use of Gaussian-shape control
fields, which helps to explain why Gaussian-shape fields are
sufficient to achieve the high storage efficiencies of Secs. III
and IV.

APPENDIX B: DERIVATION OF THE ATS REGION

As stated in Appendix A, at fixed optical depth the ATS
protocol is constrained to optimal operation in a narrow region
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operation.

around a unique value of tpwpm [33,34]. In this Appendix
we derive an approximation of this region, for the memory
parameters investigated in the text, given by dtpwpmy = 3 to
8. Notably, this approximation is dependent on the region of
M chosen, and is not strictly valid for other regions, such as
those in Refs. [33-35].

Nominally the ATS protocol requires pulse areas 6 = 2w
for optimal operation, however, as stated in Ref. [33], this
constraint is relaxed in regions of nonoptimal effective optical
depth d < 3, where d = dtpwamy 7 /(20 In2) for Gaussian
pulses. If the effective optical depth is small, as is frequently
the case in the broadband regime considered here, pulses with
area 6 < 2 yield larger memory efficiency than 6 = 2 due
to a reduction in Autler-Townes splitting and an increase in
the effective optical depth.

To accurately capture the ATS region of M discussed
in Sec. Il A, we do not rely solely on the region of high-
efficiency operation with & = 27 control fields. Instead, we
follow a reduced version of the optimization procedure pre-
sented in the main text, wherein we fix At =0 and
Tl M = Trwam and optimize over 6. The efficiencies re-
sulting from this optimization procedure, compared to the
efficiencies for & = 27 only, are presented in Figs. 5(a) and
5(b). For purposes of comparison, we plot the boundary of
1n/Nopt = 98% operation, which is increased upon optimiza-
tion of 8. The optimized pulse areas corresponding to Fig. 5(b)
are shown in Fig. 5(c). The region of 6 &~ 27 operation which
results in high normalized efficiency is well captured by the
condition dtpwymy = 3 to 8 in this region of M, and ac-
cordingly we take this condition to be representative of ATS
operation for the memory parameters under consideration.

We note that for extremely low optical depths d ~ 1, the
region of high-efficiency ATS operation diverges from the

dtpwamy = 3 to 8 condition towards smaller adiabaticity.
Other conditions may be used to define the ATS region,
for example, based on optimal delay (e.g., AT = —0.25
to 0.25) or the character ratio discussed in Appendix C
(e.g., C =0.75 to 1.25) that better capture this region of
ATS operation. However, the region given by dtrwumy =
3 to 8 is the largest of these and is consistent with
Refs. [33-35].

APPENDIX C: DERIVATION OF THE EIT REGION

We define the boundary of the EIT region via the character
ratio

C o 1 f_nri?zdf fol dz |P(z, T)|? n
T [ dzIBG T — 0o)f

introduced in Ref. [34], which gives the ratio of the tran-
sient population that enters P(z, t) during the storage period
T, = 2.25tpwymMm to the population that arrives in B(z, 7) after
the storage operation is completed. We consider the normal-
ized character ratio C = C/C, using the value of C for each
optical depth that corresponds to “pure” ATS operation with
At = 0, which we identify as Cy. Using this normalization,
we consider the region of M where € < 0.1 to correspond to
EIT operation, delineated with dashed lines in Fig. 2(c) [34].
In this region, Figs. 2(d) to 2(f) shows the optimal control
fields have larger pulse area than in the “absorb-then-transfer”
or ATS regions, the control fields are broader in duration than
the accompanying signal field, and the control fields arrive
before the signal field. This behavior is a signature of EIT
storage and supports the choice of C < 0.1 as the threshold
for EIT behavior.
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