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Remote state preparation of two-component Bose-Einstein condensates
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A protocol for remote state preparation is proposed for spin ensembles, where the aim is to prepare a state
with a given set of spin expectation values on a remote spin ensemble using entanglement, local spin rotations,
and measurements in the Fock basis. The spin ensembles could be realized by thermal atomic ensembles or
spinor Bose-Einstein condensates. The protocol works beyond the Holstein-Primakoff approximation, such that
spin expectation values for the full Bloch sphere can be prepared. The main practical obstacle is the preparation
of the maximally entangled state between the spin ensembles. To overcome this, we examine the protocol using
states based on the two-axis two-spin (2A2S) Hamiltonian in place of the maximally entangled state and examine
its performance. We find that the version of the protocol with 2A2S squeezing well approximates the maximally
entangled state, such that spin averages can be remotely prepared. We evaluate the errors that are introduced by
using 2A2S squeezed states, and find that it decreases with the ensemble size. With postselection, errors can be
systematically decreased further.
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I. INTRODUCTION

Entanglement is one of the fundamental distinguishing
characteristics of quantum mechanics with respect to classical
physics [1,2], and is considered a resource in the modern
context of quantum information science [3]. It plays a funda-
mental role in nontrivial quantum protocols such as quantum
teleportation [4], and its generation is considered to be one
of the essential capabilities when constructing a quantum
computer [5]. There are numerous different physical systems
where entangled states have been prepared experimentally,
such as superconductors [6,7], photons [8,9], quantum dots
[10–12], NV centers [13], neutral atoms [14,15], and trapped
ions [16]. While entanglement is most often associated with
the microscopic world, it has been also shown to be present in
quantum many-body systems [17–21]. For macroscopic sys-
tems, particularly atomic ensembles, most of the work to date
has been focused on single atomic ensembles, where the en-
tanglement exists between atoms in the same ensemble [22].

Entanglement is fundamental to quantum squeezing, which
allows a way to overcome the standard quantum limit [23–26].
Squeezing has many potential applications in quantum metrol-
ogy that has triggered many experiments so far [27–32]. Two
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well-known types of squeezed states on single ensembles
are the one-axis and two-axis countertwisting squeezed states
[23]. The first demonstration of entanglement between two
atomic ensembles was performed by Julsgaard, Kozhekin, and
Polzik [33], where a two-mode squeezed state was produced,
mediated by an optical pulse. Continuous variables teleporta-
tion [34] and spin-wave teleportation [35] were accomplished
based on the generation of entanglement between spatially
separated atomic ensembles. For ultracold atoms, experiments
towards generating entanglement between two atomic clouds
is currently being pursued. Entanglement between two spatial
regions of the same Bose-Einstein condensate (BEC) was
reported simultaneously by three groups [36–38]. The genera-
tion of entanglement between two BECs has been investigated
theoretically in numerous works [39–45], mainly focusing
on the generation of the two-spin version of the one-axis
countertwisting Hamiltonian, among others [46–48]. Such an
interaction can be considered the two-ensemble version of the
one-axis squeezed state, due to the similar form of the gen-
erating Hamiltonian. We call this state the one-axis two-spin
(1A2S) squeezed state, which has been studied in detail in
works such as Refs. [49,50], and has been shown to exhibit
interesting properties such as fractal pattern of entanglement.

Recently, the two-ensemble version of two-axis counter-
twisting squeezed state was investigated [51], which we call
the two-axis two-spin (2A2S) squeezed state. In contrast to
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the 1A2S squeezed state which produces correlations in two
pairs of spin variables, the 2A2S squeezed state produces
correlations between all three spin variables.1 The lack of full
correlations of the 1A2S state is evident in past approaches for
using the state as a basis for quantum teleportation [52,53]. In
Ref. [52], only spin coherent states around the equator of the
Bloch sphere could be successfully teleported. Reference [53]
overcame this limitation by using two auxiliary ensembles
to produce correlations in more spin directions, to achieve
teleportation for any state on the Bloch sphere. This makes
the 2A2S squeezed states potentially a better candidate from a
quantum information perspective [54–57], which has mainly
considered 1A2S squeezed states in the past.

In this paper, we propose and analyze a scheme for per-
forming remote state preparation (RSP) between two BECs
based on the 2A2S squeezed state. RSP [58–66] is a protocol
that is similar in many ways to quantum teleportation, but pos-
sesses several key differences. The aim of the original version
of the protocol is to prepare a desired state of a qubit using
the help of entanglement and classical communication. The
aim in our case is to prepare desired spin averages remotely
on a BEC via the use of shared entanglement. Such a protocol
is interesting in context of recent experiments that are being
developed currently relating to bimodal BEC-BEC entangle-
ment. While protocols for teleportation using BECs have been
proposed, these are still out of reach of current experiments
since they involve entanglement between three [52] and four
[53] bimodal BEC clouds. In RSP, only two atomic clouds are
required, hence is a simpler goal in the near-term. In the stan-
dard qubit version of the RSP protocol, only equatorial states
on the Bloch sphere are usually considered since there is no
classical correction that can correct a more general state. We
shall consider a slightly more general version of RSP where
arbitrary states on the Bloch sphere are prepared on the target
side. This will highlight the full set of spin correlations that are
present in 2A2S squeezed state. This allows for the transfer of
full coordinates on the Bloch sphere, up to a reflection on the
z axis. The ambiguity regarding the reflection occurs due to
the limitation of the original qubit RSP protocol, as there is
no antiunitary classical correction [60].

We note that since a two-component BEC is a finite-
dimensional system, in principle it is possible to apply
existing RSP protocols for qudits [60,67]. In this sense, our
aim of remotely preparing spin averages is a more restrictive
goal than preparing a general state. The main problem here
is that it is assumed that a measurement in an arbitrary basis
is available. In the case of BECs, only a limited set of mea-
surements are realistic, typically Fock state measurements.
Additionally, unitary operations corresponding to Hamilto-
nian with low powers of total spin operators are usually only
available. When designing our protocol we constrain our-
selves such that (i) only operations involving low powers of
total spin operators are used; (ii) only measurements in Fock
basis are used; (iii) decoherence-sensitive encodings are not
used (see Ref. [68] for more details about the approach). We

1For 1A2S states in the short time limit, the dominant correlations
are of the form Sz

A − Sy
B and Sy

A − Sz
B [49]. Meanwhile, the 2A2S

states have correlations of the form Sx
A + Sx

B, Sy
A − Sy

B, Sz
A − Sz

B after a
suitable basis rotation [51].

choose this because of the limited measurements and oper-
ations that are available to a BEC. As spin coherent states
are robust in the presence of decoherence, they fulfill the
requirement (iii). Furthermore, this can be considered a proto-
col that fits within the scheme of spinor quantum computing
[68], where qubit information is encoded redundantly. This
has been shown to be an error-suppressed encoding of the
original qubit encoding [57]. These design principles allow
for a robust protocol that should be implementable in future
experiments.

We finally comment on similarities and differences to ex-
isting works. In Ref. [64], the RSP protocol was generalized
to the high-dimensional case with nonmaximally entangled
states. The 2A2S squeezed state produces nonmaximally en-
tangled states, hence, a question is where the approach of
Ref. [64] could be used. In our case, the entangled resource
that will be used is the optimally squeezed 2A2S state, which
is not a maximally entangled state. The successful preparation
of the given state in Ref. [64] depends upon the matching state
structure of the entangled and desired states. In our case, since
this structure is not there, it does not appear possible to apply
this approach in a way that is practically feasible in the sense
described above. Finally, another potential option is to work
under the Holstein-Primakoff approximation [34] and use the
approach of Ref. [69]. This is, however, also not applicable in
our case since in a similar way to Refs. [52,53], our aim is to
be able to prepare a state at any position on the Bloch sphere,
not only those which are in the vicinity of the polarized spin,
as demanded by the Holstein-Primakoff approximation [33].

The paper is structured as follows: In Sec. II, we present the
RSP protocol for the ideal cases of a single qubit and BECs
prepared with maximally entangled Einstein-Podolsky-Rosen
(EPR) states. We then explain our proposed RSP protocol for
2A2S squeezed states in Sec. III. In Sec. IV, we analyze the
performance of the RSP protocol with 2A2S squeezed states.
The conclusions are given in Sec. V.

II. REMOTE STATE PREPARATION: IDEAL CASES

We first examine two ideal RSP protocols that will be
the foundation for our full RSP protocol to be discussed in
later sections. The first examines the extended RSP protocol
for preparing a state of a qubit with arbitrary coordinates on
the Bloch sphere. The second introduces the ideal version of
the RSP protocol for spin ensembles, where the equivalent
operation to the qubit RSP is performed.

A. Qubit remote state preparation

Let us recall the RSP protocol for the qubit case [58–60].
The continuous variable version of RSP is given in [69]. In
the first step, one prepares a maximally entangled state, for
example, the state (|0〉A|0〉B − |1〉A|1〉B)/

√
2. Then Alice (in

possession of the first qubit) performs a measurement in the
basis

|A0〉 = e−iσ z (π−φ)/2e−iσ yθ/2|0〉 ∝ cos
θ

2
|0〉 − e−iφ sin

θ

2
|1〉,

|A1〉 = e−iσ z (π−φ)/2e−iσ yθ/2|1〉 ∝ sin
θ

2
|0〉 + e−iφ cos

θ

2
|1〉,

(1)
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where σ x, σ y, σ z are the 2 × 2 Pauli matrices. Alice then mea-
sures in the |A0〉, |A1〉 basis and informs Bob (in possession of
the second qubit) of the result.

For the case that Alice obtains |A0〉, which occurs with
probability p = 1

2 , Bob obtains the state

|B0〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉. (2)

This is a completely general state on the Bloch sphere, which
completes the RSP for this case. For the case that Alice ob-
tains |A1〉, which occurs with probability p = 1

2 , Bob obtains
the state sin θ

2 |0〉 − eiφ cos θ
2 |1〉. The phase between the states

can be fixed to be the same as (2) by Bob conditionally
applying the unitary e−iσ zπ/2, to give the state

|B1〉 = sin
θ

2
|0〉 + eiφ cos

θ

2
|1〉. (3)

There is, however, no unitary operation that can turn the state
(3) into (2) for general φ [60]. For this reason, only equatorial
states θ = π/2 are usually considered in the RSP protocol,
where (3) is the same state as (2) [59,61,70].

Another way to view this is in terms of expectation values
of spin operators. For the case that Alice obtains the state |A0〉,
the expectation values of the Pauli operators are

〈B0|σ x|B0〉 = sin θ cos φ,

〈B0|σ y|B0〉 = sin θ sin φ, (4)

〈B0|σ z|B0〉 = cos θ,

which are the expectation values in terms of the standard
Bloch sphere angles. For the state (3), we however have

〈B1|σ x|B1〉 = sin θ cos φ,

〈B1|σ y|B1〉 = sin θ sin φ, (5)

〈B1|σ z|B1〉 = − cos θ.

Hence, Bob receives the target state up to a reflection Bloch
sphere about the x-y plane. Since both Alice and Bob are
aware of the measurement outcome, one way to deal with the
additional minus sign is to add the extra sign during classical
postprocessing. In this case, Bob takes note that his state is a
reflected version of the intended state if Alice informs that
she obtained |A1〉, and accounts for this in his subsequent
operations.

Following the procedure above, Alice can remotely prepare
Bob’s qubit in a desired quantum state. While the protocol has
similarities with teleportation, there are several differences.
First, the state to be prepared on Bob’s side is known to Alice
in advance, unlike teleportation where it is in principle un-
known to Alice and Bob. Second, it only involves two qubits,
rather than three, such that no Bell measurement is required.
Finally, only one bit of classical information is sent from Alice
to Bob, in contrast to teleportation where two bits are required.

B. Remote state preparation using a spin-EPR state

We now introduce a variant of the RSP protocol suitable
for spin ensembles and BECs that allows Alice to prepare
an arbitrary state on Bob’s side with the same Bloch sphere
parameters as that seen in (4) and (5).

Alice and Bob are each in possession of a two-component
BEC or atomic ensemble with N atoms, respectively. Work-
ing in the symmetric subspace of the atomic ensembles, our
formalism equally applies to either thermal atomic ensembles
or BECs (see Sec. 5.10 of Ref. [68] for a full discussion).
The exact mathematical equivalence of the internal spin states
of BECs and atomic ensembles in the symmetric subspace
allows us to handle both cases simultaneously. For brevity,
we will call the atomic ensembles held by Alice and Bob as
“BECs,” although it should be understood that our formalism
equally holds for thermal ensembles. The bosonic annihilation
operators for the two-component BEC are denoted as a, b.
Any state of the BEC can then be expanded in terms of the
Fock basis

|k〉 = 1√
k!(N − k)!

(b†)k (a†)N−k|vac〉 (6)

for each BEC, where |vac〉 is the vacuum state with no parti-
cles. States involving superposition of the states a, b can also
form Fock states, which we define

|k〉(θ,φ) = U (θ,φ)|k〉, (7)

where

U (θ,φ) = e−iSzφ/2e−iSyθ/2 (8)

is the unitary operation that rotates a state from the north pole
of the Bloch sphere to spherical coordinates (θ, φ). Here the
spin operators are Schwinger boson (total spin) operators for
Alice and Bob, respectively, defined as

Sx = b†a + a†b,

Sy = −ib†a + ia†b, (9)

Sz = b†b − a†a.

The commutation relation for spin operators is given by

[S j, Sk] = 2iε jklS
l , (10)

where ε jkl is the Levi-Civita symbol and j, k, l ∈ {x, y, z}.
Explicit expressions for the matrix elements of the rotated
Fock states are given in Appendix A.

The first step of the protocol involves preparing an entan-
gled state. Let us consider the maximally entangled state

|EPR−〉 = 1√
N + 1

N∑
k=0

(−1)k|k〉A|k〉B. (11)

This state was considered in Ref. [51] and was shown to have
similarities to the 2A2S squeezed state. Analogously to (1),
the next step is then to measure in the basis

|k〉(θ,π−φ) = U (θ,π−φ)|k〉. (12)

This can be done by Alice applying the unitary rotation

U (θ,π−φ)† = eiSy
Aθ/2eiSz

A(π−φ)/2, (13)

then performing a measurement in the Fock basis (6). Such
Fock state measurements are readily achievable using the
current state-of-the-art technology for BECs [30,55,71].
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One of the important features of the state (11) is that it can
be algebraically manipulated into the form [51]

|EPR−〉 = 1√
N + 1

N∑
k=0

|k〉(θ,π−φ)
A |k〉(θ,φ)

B . (14)

Using this result, applying the unitary rotation (13), we have

U (θ,π−φ)†|EPR−〉 = 1√
N + 1

N∑
k=0

|k〉A|k〉(θ,φ)
B . (15)

Alice’s projection on a particular Fock state |k〉A, which oc-
curs with probability pk = 1/(N + 1), gives the state |k〉(θ,φ)

B
on Bob’s side. Projections on Fock states can be performed ex-
perimentally using various techniques such as spin-selective
absorption imaging [26].

The final step is to apply a π rotation around the z axis

UC
k =

{
e−iSz

Bπ/2, k < N/2

I, k � N/2.
(16)

This is the analogous step to that performed to obtain the state
(3) in the qubit case. The final state held by Bob at the end of
the RSP protocol is then

∣∣� ideal
k

〉 =
{

|k〉(θ,φ+π )
B , k < N/2

|k〉(θ,φ)
B , k � N/2.

(17)

The above procedure completes the RSP as desired.
We can see that (17) achieves the desired aim by evaluating

the expectation values of the spin operators. For the case k �
N/2, we have〈

� ideal
k

∣∣Sx
∣∣� ideal

k

〉 = 〈k|U (θ,φ)†
SxU (θ,φ)|k〉

= 〈k|(cos θ cos φSx − sin φSy

+ sin θ cos φSz )|k〉
= (2k − N ) sin θ cos φ, (18)

where the transformation of the spin operators was used, and
the Sx, Sy terms do not contribute since they are off diagonal.
Similarly, we evaluate〈

� ideal
k

∣∣Sy
∣∣� ideal

k

〉 = 〈k|U (θ,φ)†
SyU (θ,φ)|k〉

= 〈k|(cos θ sin φSx + cos φSy

+ sin θ sin φSz )|k〉
= (2k − N ) sin θ sin φ (19)

and 〈
� ideal

k

∣∣Sz
∣∣� ideal

k

〉 = 〈k|U (θ,φ)†
SzU (θ,φ)|k〉

= 〈k|(cos θSz − sin θSx )|k〉
= (2k − N ) cos θ. (20)

We can see that (18)–(20) are the analogous result to (4) for
qubits. There is a common factor of 2k − N > 0 which can be
eliminated by normalizing the Bloch vector with the factor

N ≡
√

〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 = |2k − N |. (21)

For the k < N/2 case, the expectation values can be simi-
larly evaluated as〈

� ideal
k

∣∣Sx
∣∣� ideal

k

〉 = (N − 2k) sin θ cos φ,〈
� ideal

k

∣∣Sy
∣∣� ideal

k

〉 = (N − 2k) sin θ sin φ, (22)〈
� ideal

k

∣∣Sz
∣∣� ideal

k

〉 = −(N − 2k) cos θ,

which is the analogous result to (5). The factors of N − 2k >

0 can be eliminated by again dividing by (21). The above
result can be summarized for all k as

〈
� ideal

k

∣∣S j
∣∣� ideal

k

〉 =
⎧⎨
⎩

|2k − N | sin θ cos φ, j = x
|2k − N | sin θ sin φ, j = y

(2k − N ) cos θ, j = z.
(23)

We again see that 〈Sz〉 has an extra minus sign for k < N/2
which cannot be eliminated using a unitary rotation.

The above protocol completes the aim of the RSP, where
the Bloch sphere parameters (θ, φ) are prepared on Bob’s
side by Alice. As with the standard qubit case, only one bit
of classical information is required to perform the classical
correction step. For the projection outcome k < N/2, there is
an extra minus sign which cannot be eliminated, similar to
the qubit case. This can be handled either by Bob performing
classical postprocessing on his results, or one can restrict
Alice’s measurements to θ = π/2 which removes the issue
by setting 〈Sz〉 = 0. We note that the protocol succeeds except
for the outcome k = N/2, where all expectation values are
zero. The failure probability is 1/(N + 1) for even N and
zero for odd N . For large N this is a rare outcome, and can
be considered an isolated case. In this way, all measurement
outcomes except for k = N/2 in Fig. 1(a) can be utilized as
successful outcomes in the RSP protocol. For other qudit pro-
tocols the success probability is 1/(N + 1) [60], hence, this is
a considerable improvement in comparison. This is due to the
more restricted aim of preparing the Bloch sphere parameters
(θ, φ), whereas in Ref. [60] is to prepare a general quantum
state. The aim of preparing the Bloch angles is consistent
with the approach of Ref. [57] where the BEC acts as an
error-suppressed encoding of qubit states.

III. REMOTE STATE PREPARATION PROTOCOL
WITH THE TWO-AXIS TWO-SPIN SQUEEZED STATE

In Sec. II B we introduced a RSP protocol based on
spin-EPR states. While this is satisfactory as a protocol in
terms transferring a state with Bloch sphere angles (θ, φ),
preparation of the spin-EPR state is nontrivial using current
experimental techniques. In Ref. [51], it was found that the
2A2S squeezed state can approximate the spin-EPR state at
particular evolution times. Our strategy will thus be to replace
the spin-EPR state with the 2A2S squeezed state and proceed
with the RSP protocol as described in the previous section.
In this section, we describe the RSP protocol using 2A2S
squeezed states.

A. The two-axis two-spin (2A2S) squeezed state

In this section we briefly review the two-axis two-spin
squeezed state that will be used as the entangled state for the
remote state preparation. This is discussed in more detail in
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FIG. 1. (a) RSP probability distributions of measurements on Al-
ice’s qubits Pk (θ ) for N = 20, time τopt = 0.1214. (b) Average of the
normalized probability distribution for N = 20, time τopt = 0.1214
and N = 50, time τopt = 0.0586.

Ref. [51]. The 2A2S Hamiltonian is defined as

H = J

2

(
Sx

ASx
B − Sy

ASy
B

) = J (S+
A S+

B + S−
A S−

B ), (24)

where the raising and lowering operators are defined by

S+
j = (

Sx
j + iSy

j

)/
2 = b†

ja j,

S−
j = (

Sx
j − iSy

j

)/
2 = a†

j b j, (25)

where j ∈ {A, B} and J is an energy constant. The Hamil-
tonian (24) is the natural generalization of the two-axis
squeezing Hamiltonian [22,23] acting on two spin ensembles.
For the single-ensemble case, the two-axis squeezing Hamil-
tonian reduces the quantum noise to a greater extent than
one-axis squeezing.

The 2A2S Hamiltonian is applied to two atomic ensembles
initially prepared in the maximally +Sz-polarized state to
create the entangled state. The state that we will consider is

|ψ (τ )〉 = e−i(S+
A S+

B +S−
A S−

B )τ |N〉A|N〉B, (26)

where the initial states are Fock states that satisfy Sz|N〉 =
N |N〉 according to (6), and we defined the dimensionless time
parameter τ = Jt/h̄.

The 2A2S squeezed state (26) has EPR-like correlations,
in a similar way to two-mode squeezed states in continuous
variables optics [72]. According to our Hamiltonian phase
convention, the relevant squeezed variables are the rotated
operators (Sy ± Sx )/

√
2 [51]. In order to account for this

rotation, it is convenient in our case to apply a phase rotation
to the state (26), such that we work instead with the state

|�(τ )〉 = eiSz
Aπ/8eiSz

Bπ/8|ψ (τ )〉
= eiSz

Aπ/8eiSz
Bπ/8e−i(S+

A S+
B +S−

A S−
B )τ |N〉A|N〉B. (27)

Using a Holstein-Primakoff approximation, and for short
times τ < ln(4N )/2N [51], the variance of the state (27)
follows the relations

Var
(
Sx

A + Sx
B

) = 2Ne−2Nτ ,

Var
(
Sy

A − Sy
B

) = 2Ne−2Nτ ,

Var
(
Sz

A − Sz
B

) = 0. (28)

Under the full evolution (26), the first two variances reach a
minimum at the optimal squeezing time and then increases
again. In the vicinity of this time, it was observed in Ref. [51]

that the state (27) has a high fidelity with the state (11), such
that we may approximate

|EPR−〉 ≈ |�(τopt)〉. (29)

In this paper, we define the evolution time τopt such that the
maximum fidelity with the spin-EPR state is achieved. The
optimum times for each N are provided in Ref. [51]. We use
the above state in place of the spin-EPR state to accomplish
RSP.

B. Remote state preparation protocol

Here we summarize, for the sake of clarity, the RSP proto-
col using 2A2S squeezed states, as developed in the previous
sections. The protocol follows the sequence:

(1) Prepare two BECs in the maximally +Sz polarized
state, and apply the 2A2S Hamiltonian (24) for a time τopt,
according to (26). The optimal time τopt is the time that opti-
mizes the fidelity with the spin-EPR state, given in Ref. [51].

(2) Apply the transformations eiSz
Aπ/8eiSz

Bπ/8 such as to pro-
duce correlations that are similar to the spin-EPR state (11).

(3) Apply a unitary operation (13), i.e., U (θ,π−φ)† =
eiSy

Aθ/2eiSz
A(π−φ)/2 on Alice’s BEC.

(4) Alice measures in the Sz-basis Fock states |k〉 and tells
Bob the binary result of whether k < N/2 or k � N/2.

(5) Bob applies the unitary (16), i.e., if k < N/2 then
applies e−iSzπ/2, and otherwise does nothing.

The above produces an approximation to expectation val-
ues (23).

IV. NUMERICAL ANALYSIS OF THE REMOTE STATE
PREPARATION PROTOCOL

In this section, we analyze the protocol that is provided
in Sec. III B. In general, the state (26) cannot be written
analytically and hence one must evolve the state numerically
to obtain the wave function. We examine quantities such as
the probability distribution, spin averages, Wigner functions,
and the error of the protocol due to the usage of the 2A2S
squeezed states.

A. Probability distribution

We first examine the probability distribution for RSP state
of the protocol. This is defined by

Pk = 〈�k|�k〉, (30)

where

|�k〉 = UC
k |k〉〈k|AU (θ,π−φ)†|�(τopt)〉 (31)

is the resulting unnormalized state after step 5 in the RSP
protocol on Bob’s side. The expression for the rotation of
the Fock states are given in Appendix A. The measurement
|k〉〈k|A is performed on Alice’s subspace and UC

k is performed
on Bob’s subspace.

The probability distribution is independent of φ and only
depends upon θ . To see this, let us write (26) as

|ψ (τ )〉 =
∑

k

ψk|k〉A|k〉B, (32)
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FIG. 2. Spin averages 〈Sx
B〉, 〈Sy

B〉, 〈Sz
B〉 for Bob’s BEC according to (36) for different projective measurements (a) k = N , (b) k = 3N/4,

(c) k = N/2, (d) k = N/4, (e) k = 0 for N = 20, τopt = 0.1214. (f) Ideal case (23) with k = N .

where we used the fact that only equal Fock number states are
generated by the 2A2S Hamiltonian. The RSP state (31) then
can be written

|�k〉 = |k〉A ⊗
∑

k′
ψk′ei(2k′−N )( 3π−φ

4 − 
(N−2k)π
2 )

× 〈k|AeiSy
Aθ/2|k′〉A|k′〉B, (33)

where 
(N − 2k) is the Heaviside step function. The proba-
bility distribution is then given as

Pk (θ ) =
∑

k′
|ψk′ |2|〈k|eiSyθ/2|k′〉|2, (34)

which makes it clear that the φ-dependent phase terms cancel
out.

In our calculations, we generally focus upon the case with
N � 1, appropriate for BECs which may typically contain
atoms beyond N = 103 [71]. We typically take N large enough
such that the effects of N are not significant. In Fig. 1 we show
the probability distribution for various values of θ . It is clear
that under a transformation of θ → π − θ , the probability
distribution transforms as k → N − k. The extremal values
of angles such as θ = π have a low probability outcome for
k = N , and similarly there is a low probability outcome for
k = 0 around θ = 0. For larger N , the probability distribution
has similar characteristics.

We also plot the average of the normalized probability
distribution defined by

k̄ =
∑

k

kPk (θ ). (35)

The numerical results are obtained for k̄/N for two N values
as shown in Fig. 1(b). We see that the average k outcome is
very close to N/2 for a wide range of θ , with a weak cosine
dependence. Thus, although the distribution is biased by the
target θ state, the measurement outcome generally has a broad
range of outcomes in k.

B. Spin averages after Alice’s measurement

We measure the spin averages of the RSP state (31)
defined by

〈
S j

B

〉 = 〈�k|S j
B|�k〉

〈�k|�k〉 , (36)

where j ∈ {x, y, z}. Figure 2 shows the spin average density
plot over the entire Bloch sphere. The expectation values
for an ideal remote state preparation are given in (23) and
are plotted in Fig. 2(f) for comparison. For the projection
outcome k = 0, we see that the spin distribution is completely
flipped for the Sz variable in comparison with Fig. 2(f) and
is in agreement with (22). Moreover, the spin amplitudes are
diminished for outcomes near k = N/2, where spin averages
are close to zero as in Fig. 2(c).

Taking a closer look at the performance of the protocol,
we plot the spin averages in Fig. 3, for the various states on
the Bloch sphere for different measurement outcomes |k〉 by
Alice. In Fig. 3 we see that for the k = N case, nearly ideal
results are obtained, where the averages of the spins agree well
with the ideal outcomes. For this outcome, the closest spin
expectations are obtained towards the north pole of the Bloch
sphere, which originates from the fact that the 2A2S squeezed
state initially starts with polarized spins at the north pole. For
k = 0, the spin averages Sx,y

B are in good agreement with those
of ideal case with the Sz

B being flipped as given in (23). In this
case, the best parameters are for states near the south pole. On
comparison with Fig. 1, we see that poorly performing regions
near the north pole have zero probability of measurement for
k = 0, hence, the deviations are in fact inconsequential to the
performance of the protocol. For other values of k, the spin
amplitudes are diminished, as expected from the |2k − N |
factor in (23). There is a small nonlinear contribution with
respect to k, where there is a different distribution to the ideal
case, with a double periodicity in the θ distribution, which
can be most clearly seen for the k = N/2 case in Fig. 3(c).
The deviations occur due to the fact that we use the 2A2S
squeezed state which is not exactly the spin-EPR state. In the
above calculations we have only considered the case where the
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FIG. 3. Spin averages (36) for Bob’s state corresponding to Al-
ice’s outcomes in RSP protocol for N = 20, time τopt = 0.1214,
φ = −π/4 (a) k = N , (b) k = 3N/4, (c) k = N/2, (d) k = 0. Spin
averages (B3) for BECs prepared in a statistical mixture of different
atom numbers with (e) k = NA, (f) k = 0 about mean atom number
N̄ = 20 for Gaussian width σ0 = 2

√
N̄ . Dotted lines are spin aver-

ages for the ideal case (23).

atom number on each BEC is fixed. More realistically, when a
BEC is prepared, the number of atoms changes on each cycle
of the experiment. Thus, in this case the state at the beginning
of the protocol of Sec. III B is given by

ρ0 =
∑
NANB

p(NA)p(NB)|NA〉A〈NA|A ⊗ |NB〉B〈NB|B. (37)

Here the probabilities are considered to be Gaussian distribu-
tions

p(N ) ∝ exp

[
− (N − N̄ )2

2σ 2
0

]
, (38)

up to a normalization constant such that
∑∞

N=0 p(N ) = 1.
Starting from this initial state, in Appendix B we derive the
expression for the normalized spin average after the RSP
protocol. We calculate the normalized spin averages such that
the effect of different spin amplitudes do not contribute.

The effect of atom-number fluctuations on the spin aver-
ages is shown in Figs. 3(e) and 3(f). We observe that the spin
average amplitudes are decreased and the transfer of the state
has error in comparison to the ideal case as expected. The
deviation is rather small and generally remarkably robust in
the presence of atom-number fluctuations. We can understand
this because of the dependence of the protocol on the atom-
number fluctuations. From the protocol shown in Sec. III B,
we can see that only step 1 has a dependence on the number
of atoms. In step 1, the 2A2S squeezed state must be produced

at the optimal squeezing time, which has an approximate
1/N dependence. For fluctuating atom-number preparation,
suboptimal squeezing times will be applied to the state for
a common squeezing time. However, since the optimal time
does not change very strongly within the atom-number fluc-
tuations, and furthermore becomes less sensitive for large N
[51], this results in only a small effect on the RSP protocol.

C. Wigner function

The average values of the spins give only partial infor-
mation about the state of the BEC on Bob’s side. To gain a
better understanding of the type of state that is obtained after
the RSP protocol, we calculate the spin Wigner function for
various cases. The spin Wigner function is a quasiprobability
distribution defined as [68,73]

W (θ, φ) =
2 j∑

k=0

k∑
q=−k

ρkqYkq(θ, φ), (39)

where Ykq(θ, φ) are the spherical harmonics. Here, the matrix
element ρkq for a given state is defined as

ρkq =
j∑

m,m′=− j

(−1) j−m
√

2k + 1

(
j k j

−m q m′

)
〈 jm|ρ| jm′〉,

(40)
where

( j k j
−m q m′

)
is the Wigner 3 j symbol. This can be

used to represent any state of a two-component BEC with
fixed particle number N . Here we used a different notation
for the Fock states, written in terms of angular momentum
eigenstates

| jm〉 = |k = j + m〉, (41)

where the states on the right-hand side are the Fock states as
in (6) with N atoms.

In Fig. 4, the Wigner functions for Bob’s BEC state are
plotted for different measurement outcomes by Alice labeled
by k for the particular case θ = 0.5, φ = 0. Starting with
the k = N outcome in Fig. 4(a), we observe that the Wigner
function for Bob’s state is very similar to the the Wigner
function corresponding to a spin coherent state [68] at (θ , φ),
as can be seen in Fig. 4(g). For other nonextremal values of
k, such as k = N − 1, the Wigner function begins to develop
strong negative values, resembling the distribution of the Fock
state as in (17). In Figs. 4(b) and 4(h) we see a compari-
son of the Wigner function for the outcome k = N − 1 and
the state (17), which has an obvious similarity. The case of
k = N − 2 corresponds to a two-particle Fock state, and the
nonclassical nature of the Wigner functions increases as the
outcome k = N/2 is approached. For outcomes with k < N/2,
the distribution shifts to the other side of the Bloch sphere, due
to the flipping of spins, as observed in (22). Again, the non-
classicality of the distributions increases towards k = N/2,
and for the case k = 0, the distribution still has a remnant
nonclassical region due to the imperfect spin-EPR state that
is being made by the 2A2S Hamiltonian.

For Alice’s rotation in the southern hemisphere of the
Bloch sphere θ > π/2, similar behavior results, except that
the relationship with the outcome k is reversed. Figure 5
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FIG. 4. Wigner functions for Bob’s BEC (31) for various mea-
surement outcomes for Alice’s rotation parameters taken as θ =
0.5, φ = 0. The measurement outcomes are (a) k = 20, (b) k = 19,
(c) k = 18, (d) k = 2, (e) k = 1, (f) k = 0. For comparison, the ideal
cases (17) are shown for the states (g) |k = N〉(θ,φ), (h) single Fock
state |k = N − 1〉(θ,φ). For all cases N = 20 and time τopt = 0.1214.

shows the result with θ = 2.5, φ = 0. Starting with the k = 0
case, we see a nearly ideal transfer of the state in terms
of a spin coherent state like Wigner distribution as seen by
comparing Figs. 5(f) and 5(g), except that the distribution is
reflected to the opposite hemisphere, due to the additional
minus sign in 〈Sz〉 for k < N/2. The k = 1 and 2 outcomes
correspond to single- and two-particle Fock states, as seen in
Figs. 5(e) and 5(d), respectively. The nonclassical nature of
the distribution increases approaching k = N/2, as before. For
k = N case, the distribution again has some remnant nonclas-
sicality due to the imperfect preparation of the spin-EPR state
by the 2A2S squeezed state.

D. Error of the remote states

To measure the success of this protocol, we calculate the
error of Bob’s state in comparison to the ideal spin-EPR state
protocol of Sec. II B. Since our aim is to prepare the Bloch
sphere spin averages, one can measure the error in a similar

FIG. 5. Wigner functions for Bob’s BEC (31) for various mea-
surement outcomes with Alice’s rotation parameters set to θ = 2.5,
φ = 0, (a) k = 20, (b) k = 19, (c) k = 18, (d) k = 2, (e) k = 1,
(f) k = 0. For comparison, the ideal cases (17) are shown for the
states (g) |k = N〉(θ,φ), (h) single Fock state |k = N − 1〉(θ,φ). For all
cases N = 20 and time τopt = 0.1214.

way to the trace distance for qubits. We define this for the
conditional state (31) as

Ek (θ, φ) = 1

2N

√√√√ ∑
j=x,y,z

(〈�k|S j
B|�k〉

〈�k|�k〉 − 〈
� ideal

k

∣∣S j
B

∣∣� ideal
k

〉)2

.

(42)

Here the comparison to the ideal spin-EPR RSP protocol is
given by (23). The expression (42) gives the distance between
two states on the normalized Bloch sphere. In other words,
it is the error of current RSP protocol measured in terms of
trace distance, when it is mapped to an equivalent qubit. The
maximum possible error is 1 according to the above definition.
A similar metric was used for teleporting qubit information
using spin ensembles [40,53]. We note that the only source of
error is the imperfect preparation of the spin-EPR states, due
to the use of the 2A2S squeezed state, in practice decoherence
effects will potentially give further errors.
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FIG. 6. Error of the RSP protocol as defined in (42) for Bob’s
BEC qubit for different projective measurements for N = 20, time
τopt = 0.1214 (a) k = N , (b) k = N/2, (c) k = 0. (d), (e) Average
error (43) for N = 20 and 50, respectively. (f) Average error for θ =
π/2, φ = 0 with various N using no postselection (43), labeled by
“no PS” and postselection (44), labeled by the cutoff values kcut used.

In Figs. 6(a) and 6(c) the error is plotted for Alice’s
measurement outcomes taking extremal values k = N, 0, re-
spectively. We see that the errors are generally low except for
the regions in the south and north poles of the Bloch sphere,
respectively. As already observed in Fig. 3, the regions of
high error coincide with the regions of low probability. For
example, in Fig. 1(a) we see that for θ = π , the probability
of k = N is zero. Hence, although it appears that high errors
are achieved in some regions, it is also important to take
into account the probabilities of these occurring. The reverse
is true for cases k < N/2 where a high error is observed
around θ = 0 that is a low probability outcome for k = 0. For
k = N/2 in Fig. 6(b), the best performing regions are in the
region of the equator. We point out that in this case even the
ideal RSP protocol fails as the amplitude of the preparated
state is zero (23). Hence, the origins of the errors in this case
are the residual amplitudes as already observed in Fig. 1(c).

In order to take into account the fact that some of the
regions with poor performance coincide with low-probability
events, we average the error function (42) with the probability
that they occur. We define the overall error of the RSP as

Ē (θ, φ) =
∑

k

Pk (θ )Ek (θ, φ), (43)

where Pk (θ ) is the probability of obtaining Alice’s measure-
ment outcome k as in (30). This is shown in Figs. 6(d) and
6(e) for two ensemble sizes N . The best performing regions
are near the two poles and in the vicinity of the equator.

While the distribution of the two cases are nearly the same,
the overall error tends to decrease with N , as can be observed
from examining the scale.

The variation of the average error with particle number
N is shown in Fig. 6(f) (the “no PS” curve). The error de-
creases with N as expected, but appears to approach a nonzero
value. In Ref. [51] it was observed that the fidelity of the
2A2S squeezed state approaches a nonunit fidelity for large
N , although it is unclear whether logarithmic corrections are
present. The error can be improved by performing postselec-
tion on the measurement outcomes by Alice. We postselect
results to remove the outcomes in the range kcut < k < N −
kcut. The normalized average error including postselection is

Ēkcut (θ, φ) =
∑

k�kcut,k�N−kcut
Pk (θ )Ek (θ, φ)∑

k�kcut,k�N−kcut
Pk (θ )

. (44)

In Fig. 6(f) we show different cutoff kcut values. We can see
that introducing postselection improves the error particularly
for larger ensembles, where the error appears to extrapolate
to zero. For kcut = 0, where only Alice’s outcomes k = 0, N
are kept, the error shows the best performance, at the expense
of a lower success probability. As we increase the kcut val-
ues, a larger contribution of k values are involved including
those with the poor performance, increasing the error value.
For larger kcut, the curve eventually merges with the average
error (43).

V. SUMMARY AND CONCLUSIONS

We have introduced a RSP protocol for spin ensembles
where arbitrary spin averages can be prepared using entan-
glement, spin rotations, and measurements in the Fock basis.
This is an alternative form of the standard qubit RSP algorithm
[60], that is applicable to spin ensembles. We considered
an extended version of the original qubit protocol that can
prepare a state with arbitrary Bloch sphere coordinates, up to a
negative sign flip on the Sz. This sign ambiguity is an existing
limitation of the RSP protocol, and is the reason why typi-
cally equatorial states are only considered. The RSP protocol
was constructed using only operations and measurements that
are experimentally viable, namely, Fock state measurements
and spin rotations. Due to the difficulty of experimentally
preparing a maximally entangled spin-EPR state, we have
analyzed the performance of the protocol using the 2A2S
squeezed state, which serves as a close approximation to the
spin-EPR state. In particular, we examined spin averages,
Wigner functions, and the error of the state that is remotely
prepared in terms of the proximity with the ideal state on the
Bloch sphere. We found that the transferred spin average well
approximates the ideal spin averages. The Wigner function of
the transferred state is found to have close agreement with
the expected state produced in the ideal spin-EPR version of
the protocol. The error in terms of the distance was found to
decrease with ensemble size, and the performance could be
further improved using a postselection measurement where
we discard unfavorable cases.

One of the motivations of this study is to find a sim-
ple yet nontrivial application of entanglement between two
BECs. RSP is perhaps the simplest approach to entanglement-
based quantum information transfer, and would be a prime
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candidate once entanglement between two BECs is ex-
perimentally realized. Currently, there is much interest in
entangling BECs [36–38], and we have restricted ourselves
to operations that can be relatively easily performed, namely,
spin rotations and Fock state measurements. The restriction
on the type of measurement that we assume is the origin for
the relatively simple class of states that can be produced on
Bob’s side. Namely, since we assume Alice can only per-
form Fock state measurements, the type of state Bob receives
is also a Fock state. Due to the similarity of the optimally
squeezed 2A2S state to the spin-EPR state, with a more gen-
eral measurement, it is likely that a wider class of states can
be prepared, in a similar way to qudit RSP [60,67]. We note
that even with the current scheme, Fock states with highly
nonclassical distributions are created (stochastically) on Bob’s
BEC, as seen in Figs. 4 and 5. Thus, one potential application
of our RSP protocol is the measurement-based preparation of
quantum states, which may be otherwise difficult to prepare.
Another potential application is in the remote synchronization
of clocks, where a similar protocol to RSP is used to transmit
time information [74,75].

The most challenging aspect of the current protocol re-
mains the preparation of the 2A2S entangled state. Some
options for this include first generating two-axis counter-
wisted squeezed states on one ensemble (i.e., 2A1S squeezed
states) using methods such as those given in Ref. [76],
then performing a splitting procedure, in a similar way to
Refs. [44,45]. Another way is to use optical means to generate
an analogous state with similar correlations [28,46]. We note
that our protocol differs from performing the RSP protocol in
the continuous variables framework [69] since no Holstein-
Primakoff approximation is used throughout our analysis.
Within the Holstein-Primakoff regime, only those states in the
vicinity of the north pole would be valid in the approximation.
In contrast, for our protocol an arbitrary state on the Bloch
sphere is prepared.

In this work, we did not consider decoherence effects
which will be inevitably present in a realistic experimental
setting. Since our aim is to transfer the quantum information
of a single qubit, one way our protocol may be viewed is that
an encoded qubit is being remotely prepared. In this case, the
encoding of the qubit is in terms of Fock states of the appropri-
ate basis. A similar strategy was used in Ref. [57] to perform
an encoded version of adiabatic quantum computing, where
ensembles encode an effective qubit. In Ref. [57] the main
result was that the use of the ensembles resulted in an error
suppression effect, thanks to the duplication of the quantum
information. A simple way to understand the error suppression
effect of using ensembles is that it results in a boosted signal
to noise. For example, if the typical amplitude of the spins is
∼N , and if a depolarizing channel acts on the spin, this would
modify the spin expectation values to ∼εN . The boost of N
provides a much larger signal to work with, in comparison to
single qubits N = 1. Since in BECs, N can be 103 [30,38],
and even larger for atomic ensembles [33], this provides a
considerable boost. We can thus anticipate that the use of
spin ensembles should provide an error suppression effect in a
similar way to Ref. [57]. A more detailed investigation of this
will be left as future work.
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APPENDIX A: EXPRESSION FOR TRANSFORMATION
OF FOCK STATES IN VARIOUS SPIN BASES

The Fock states |k〉 in (6) are eigenstates of the Sz spin
operator; one can transform them to an arbitrary direction
|k〉(θ,φ) in Ref. [68]. The rotation operations in the Sy and Sz

directions consecutively transform the Fock state as

|k〉(θ,φ) = e−iSzφ/2e−iSyθ/2|k〉
=

∑
k′

e−i(2k′−N ) φ

2

√
k!(N − k)!k′!(N − k′)!

×
min(k,N−k′ )∑

n=max(k−k′,0)

(−1)n

(k′ − n)!(N − k − n)!n!(k − k′ − n)!

× cosk′−k+N−2n(θ/2) sin2n+k−k′
(θ/2)|k′〉. (A1)

APPENDIX B: EFFECT OF NUMBER FLUCTUATIONS

In a realistic BEC, the number of atoms fluctuates from
shot to shot due to the probabilistic processes involved in its
preparation. In this section, we show the effect of number
fluctuations on the RSP protocol.

The ensemble average of the initial state is taken over many
shots at the start of the protocol according to (37). Starting
from this initial state, proceeding with the steps shown in
Sec. III B gives the normalized state

ρ(τ ) =
∑
NANB

p(NA)p(NB)

∣∣� (NA,NB )
k

〉〈
�

(NA,NB )
k

∣∣〈
�

(NA,NB )
k

∣∣� (NA,NB )
k

〉 , (B1)

where we defined∣∣� (NA,NB )
k (τ )

〉 =UC
k |k〉〈k|AU (θ,π−φ)†

eiSz
Aπ/8eiSz

Bπ/8

× e−i(S+
A S+

B +S−
A S−

B )τ |NA〉A|NB〉B. (B2)

This explicitly labels the particle numbers of each BEC in the
wave function (31). The spin averages are then evaluated for
the number fluctuating case as

〈
s j

B

〉 =
∑
NANB

p(NA)p(NB)

NB

〈
�

(NA,NB )
k (τ )

∣∣S j
B

∣∣� (NA,NB )
k (τ )

〉
〈
�

(NA,NB )
k (τ )

∣∣� (NA,NB )
k (τ )

〉 . (B3)
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