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Much has been learned about universal properties of the eigenstate entanglement entropy for one-dimensional
lattice models, which is described by a Hermitian Hamiltonian, while much less has been understood for non-
Hermitian systems. In the present work we study a non-Hermitian, noninteracting model of fermions which is
invariant under combined PT transformation. Our models show a phase transition from a PT unbroken phase
to broken phase as we tune the Hermiticity-breaking parameter. Entanglement entropy of such systems can be
defined in two different ways, depending on whether we consider only right (or equivalently, only left) eigenstates
or a combination of both left and right eigenstates which form a complete set of biorthonormal eigenstates.
We demonstrate that the entanglement entropy of the ground state and also of the typical excited states shows
some unique features in both of these phases of the system. Most strikingly, entanglement entropy obtained
taking a combination of both left and right eigenstates shows an exponential divergence with system size at the
transition point. While in the PT -unbroken phase, the entanglement entropy obtained from only the right (or
equivalently, left) eigenstates shows identical behavior to an equivalent Hermitian system which is connected to
the non-Hermitian system by a similarity transformation.
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I. INTRODUCTION

Entanglement is a property of quantum systems, providing
unique ways of characterizing quantum many-body systems
[1,2]. The correlations between two entangled quantum sys-
tems that are in an overall pure state cannot be explained
by local classical theory [3]. Studies of entanglement indica-
tors have given insights into the properties of ground states
[4,5], quantum phase transitions [6,7], and highly excited
eigenstates that exhibit eigenstate thermalization [8–11]. Dif-
ferent measures of entanglement have also been given lots
of attention in the context of black hole physics [12,13],
holography [14,15], and quantum information scrambling in
nonequilibrium quantum dynamics [16–18]. Recently, thanks
to the advancements of ultracold atoms in an optical lattice,
the measurements of an entanglement have been realized even
in experiments [19,20].

On the other hand, in recent days the study of non-
Hermitian systems, such as open systems or dissipative
systems with gain and loss [21–25], has revealed various
intriguing phenomena that do not exist in Hermitian systems.
For example, the complex energy spectra of non-Hermitian
systems are theoretically predicted to host bulk Fermi arcs
[26–30], which has been also realized in experiments [31].
Also, there is a growing interest to extend the idea of topo-
logical Bloch theory developed in Hermitian systems to
non-Hermitian Hamiltonians [32–36].

Among a large class of non-Hermitian systems, if a system
is invariant under combined parity and time-reversal (PT )
operations, they can have purely real spectra for a finite range
of parameters [37,38]. The Hermiticity property which is
sufficient to ensure the real spectrum of the Hamiltonian in

usual quantum mechanics is replaced by PT symmetry in
the case of non-Hermitian systems. Although the spectrum of
such systems may be completely real, the eigenstates may not
form an orthonormal set and may not have positive-definite
norms. Because of these the probabilistic interpretation of
quantum theories fails and the time evolution of the cor-
responding quantum systems becomes nonunitary. Later a
consistent quantum theory with a complete real spectrum,
unitary time evolution, and probabilistic interpretation for
PT -symmetric non-Hermitian systems has been developed in
a modified Hilbert space equipped with a positive-definite
CPT inner product [39]. C is an additional symmetry as-
sociated with every PT -symmetric non-Hermitian system.
Because of this exciting realization, the research in non-
Hermitian systems has received a huge boost over the past
two decades [40]. PT -symmetric non-Hermitian systems have
found numerous applications in various branches of physics
and interdisciplinary areas [41–52], and some of the predic-
tions of non-Hermitian theories are experimentally observed
[53–56]. Another important aspect is that such PT -symmetric
non-Hermitian systems generally exhibit a phase transition
(or, more appropriately, a PT breaking transition) that sepa-
rates two parametric regions, (i) a region of the unbroken PT
symmetry in which the entire spectrum is real and eigenstates
of the system respect PT symmetry, and (ii) a region of broken
PT symmetry in which the whole spectrum (or a part of it)
appears as complex-conjugate pairs and eigenstates of the
Hamiltonian do not respect PT symmetry [57–63].

One of the most popular examples of PT -symmetric sys-
tems are open systems with balanced gain and loss [64–68].
Typically, in such a system the parity denotes a reflection
symmetry in its spatial arrangement, and when balanced gain
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and loss leads to non-Hermiticity. Usually for small gain and
loss rates, the eigenvalues of the PT -symmetric Hamiltonian
describing such a system remain real; however, when the
strength of the gain (or loss) exceeds a value known as the
PT -symmetry-breaking threshold, two or more of its eigen-
values become degenerate and then complex-conjugate pairs.
This emergence of complex-conjugate eigenvalues is a sig-
nature of PT symmetry breaking. Recent developments in
the fabrication techniques of optical devices can allow one to
create and control arrays of coupled optical waveguides, and
the couplings of these arrays can be tuned to match the dynam-
ics of a large variety of different tight-binding Hamiltonians
[69,70]. Also, controlled loss and gain can be implemented
relatively straightforwardly, allowing the observable dynam-
ics to extend into the non-Hermitian realm [54,55].

In this work, our main aim is to understand entanglement
properties of the eigenstate of non-Hermitian PT -symmetric
systems. In general, quantum correlation is an extremely
useful tool to detect different phases as well as the phase tran-
sition. Specially, for one-dimensional (1D) systems on lattice,
the scaling of entanglement entropy with system size gives
lots of insights regarding the system. In order to distinguish
between gapless and gapped phases of a system [71] or de-
tect localization-delocalization transitions [72], the eigenstate
entanglement entropy is one of the most popular diagnostics.
Here we show that the entanglement entropy also can be
used as a probe to detect different phases of PT -invariant
systems as well as PT transitions. Since the non-Hermitian
systems have two types of eigenvectors (left and right), we
define the entanglement entropy in two different ways [73],
depending on whether we consider only right (or equivalently,
only left) eigenstates or a combination of both left and right
eigenstates. We find that the entanglement entropy obtained
taking a combination of both left and right eigenstates di-
verges exponentially with system size at the transition point.
While in the PT -unbroken phase, the entanglement entropy
obtained from only the right (or equivalently, left) eigenstate
shows identical behavior to a Hermitian system.

The paper is organized as follows: In Sec. II we introduce
the non-Hermitian lattice model, which is invariant under PT
transformation. Next we discuss our analytical understanding
for the 2 × 2 model in Sec. III. In Sec. IV we numerically in-
vestigate the PT transition point, and Sec. V is devoted to the
analysis of entanglement entropy of the ground state as well
as a typical excited state. Finally, in Sec. VI we summarize
our results.

II. MODEL

We study noninteracting fermions in a 1D lattice with an
open boundary. The system is described by the following
Hamiltonian:

H0 = −
L−1∑
j=1

(ĉ†
j ĉ j+1 + H.c.), (1)

where ĉ†
j (ĉ j) is the fermionic creation (annihilation) operator

at site j, which satisfies standard anticommutation relations.
L is the size of the system, which we set to be an even

number for all our calculations (we choose the lattice spacing
as unity).

In order to make the Hamiltonian PT symmetric and non-
Hermitian, we add a local term at site L/2 and L/2 + 1. The
PT -symmetric Hamiltonian reads

H = H0 + iγ (n̂L/2 − n̂L/2+1), (2)

where n̂ j = ĉ†
j ĉ j is the number operator, and γ is identified

as the Hermiticity-breaking parameter. While under parity
transformation c j → cL− j+1, time-reversal symmetry opera-
tion changes i → −i. Hence, H remains invariant under PT
transformation, which implies [H, PT ] = 0.

For nonzero values of γ , H is non-Hermitian. Hence its
left eigenvectors |Ln〉 and Rn〉 are not the same. However, H is
diagonalizable, and H = ∑

n εn|Rn〉〈Ln|, with 〈Ln|Rm〉 = δmn

and 〈Rn|Rn〉 = 1. εn can be identified as single-particle energy
eigenvalues of the system, which in general is complex. If the
Hamiltonian H goes through a PT phase transition, then in
the PT -symmetric phase, the εn values remain real. On the
other hand, in the broken PT phase, εn values are complex.
We also verified our results for another model where we added
the Hermiticity-breaking terms in a PT -invariant way in four
sites, i.e., described by following Hamiltonian:

H̃ = H0 + iγ
L/2+r∑

j=L/2−(r−1)

(−1) j n̂ j, (3)

where we chose r = 2. We would also like to point out that in
the absence of a Hermiticity-breaking term, our model is the
same as a nearest-neighbor fermionic “tight-binding” model,
which is possibly the simplest exactly solvable model one can
write down in the context of condensed-matter physics. Also,
we believe that a variant of our Hamiltonian with gain and loss
is experimentally realizable in an ultracold fermionic system
[74]. Note that for all the many-body calculations, we chose
to work at half-filling.

III. ANALYTICAL RESULTS: 2 × 2 MATRIX EXAMPLE

In this section we restrict the Hamiltonian H to a lattice
of only two sites. Our aim is to analytically solve the 2 × 2
matrix to gather some insights about this model. The Hamil-
tonian H (2) is represented in matrix form as

H2×2 =
(

iγ −1
−1 −iγ

)
. (4)

There exist various representations of the parity operator,
and we define the parity operator for this model as

P =
(

0 1
1 0

)
, (5)

since P transforms
(1

0

)
to

(0
1

)
and vice versa. It is an optimal

choice for our case. It is straightforward to check that the
Hamiltonian in Eq. (4) is PT invariant. In the first step, we
evaluate the eigenvalue of this 2 × 2 matrix, which is

E± = ±
√

(1 − γ 2). (6)

It implies that for γ > 1 (γ < 1), E± is completely complex
(real). Also, it is straightforward to check that for γ < 1,
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|E+〉 = 1√
2 cos α

(
eiα/2

e−iα/2) and |E−〉 = i√
2 cos α

(
e−iα/2

−eiα/2) are simul-

taneous eigenstates of H2×2 [75] and PT , where sin α = −γ .
Hence, one can conclude that the PT transition occurs for the
H2×2 matrix model at γ = 1, and the PT -symmetric phase
corresponds to γ < 1. In the PT broken phase, for γ > 1, α

becomes complex and hence the eigenstates |E+〉 and |E−〉 are
not eigenstates of PT .

Now we go one step ahead and construct a new linear op-
erator C that commutes with both H2×2 and PT . The operator
C for the H2×2 matrix turns out to be [40,76]

C = 1√
1 − γ 2

(−iγ 1
1 iγ

)
. (7)

A more general way to represent the C operator is to express
it generically, C = eQP. It has been shown that the square root
of the positive operator eQ can be used to construct a similar-
ity transformation that maps a non-Hermitian PT -symmetric
Hamiltonian H to an equivalent Hermitian Hamiltonian h
[63], where

h = e−Q/2HeQ/2. (8)

For the H2×2 matrix model, the equivalent Hermitian matrix
h2×2 will be

h2×2 =
(

0 −
√

1 − γ 2

−
√

1 − γ 2 0

)
. (9)

Note that h2×2 is equivalent to H2×2 because it has the
same eigenvalues as H2×2. However, the eigenvectors of H2×2

and h2×2 are not the same but are related to each other with
a similarity transformation (see Appendix B for a detailed
derivation of the equivalent Hermitian matrix h4×4 for the
4 × 4 non-Hermitian Hamiltonian).

IV. PT TRANSITION

In this section we investigate the fate of the PT transition
for Hamiltonian Eqs. (2) and (3) in the thermodynamic limit.
In the previous section we had shown analytically for the
two-sites version of the Hamiltonian Eq. (2), the PT transi-
tion occurs at γ = 1. Here we numerically diagonalize the
Hamiltonian H and H̃ for different values of L to obtain all
the energy eigenvalues. In order to characterize PT transition,
we plot the fraction of complex eigenvalues I as a function
of γ . We expect that in the PT -symmetric (unbroken) phase
the ratio should be zero, whereas in the PT broken phase the
value of I should be nonzero. Figure 1 (main panel) shows the
variation of I as a function of γ for different values of L for
the Hamiltonian H . We see I jumps from 0 to 1 (which implies
that all eigenvalues become complex in the PT broken phase)
at γ = 1, which concludes a clear signature PT phase transi-
tion in this model, where the PT broken (unbroken) phase
corresponds to γ > 1 (γ < 1). Interestingly, this transition
point γth = 1 obtained from our numerical results is exactly
the same as what we obtained by analyzing the 2 × 2 matrix
in the previous section.

We would also like to point out that the PT transition
we observed for Hamiltonian Eq. (2) is unique in the sense
that here in the PT broken phase all energy eigenvalues are

FIG. 1. Variation of the fraction of single-particle complex
eigenvalues I as a function of the Hermiticity-breaking parameter
γ for L = 100, 200, 300, and 400 for the Hamiltonian H (2). In-
set shows the variation of the fraction of single-particle complex
eigenvalues I as a function γ , where the Hermiticity-breaking terms
have been added in four sites [see Hamiltonian H̃ (3)].

complex, and hence at γ = 1, the faction of complex eigen-
values I jumps from O to 1. However, this feature is just a
manifestation of the fact that we have added the Hermiticity-
breaking parameter only at sites L/2 and L/2 + 1. In the inset
of Fig. 1, we have studied the Hamiltonian H̃ [see Eq. (3)]
where we have added the Hermiticity-breaking terms in four
sites. We show that the PT transition points γth � 0.45 < 1,
and also we find that here I does not jump sharply from 0
to 1; in contrast, there is a parameter regime where I takes
values between [0,1]. This implies that in that parameter
regime, a fraction of eigenvalues still remains real. However,
as we increase γ all energy eigenvalues become complex.
Interestingly, we also note that for this model near γ = 1
the variation of I with γ is nonmonotonic. There is a pa-
rameter regime near γ = 1 for which the number of complex
eigenvalues decreases as we increase the Hermiticity-breaking
parameter. Figure 2 shows the variation of I with γ for
the Hamiltonian Eq. (3) for different values of r and for
L = 400. We find that, indeed, γth becomes much smaller
as we increase r. The inset shows that γth approaches zero
with r as a power law. Interestingly, we find that as the
number of Hermiticity-breaking terms increases, the region
where real and imaginary eigenvalues coexist, i.e., 0 < I < 1,
also increases. Note that it is straightforward to show, even
analytically, that the PT -symmetric phase would not have
been stable in the thermodynamic limit if we had added a
Hermiticity-breaking term at all sites (see Appendix. A for
more details).

V. ENTANGLEMENT ENTROPY

In this section we will discuss the many-body eigenstate
entanglement entropy of the PT -invariant Hamiltonian (2).
We note that a typical measure of the entanglement in a quan-
tum system is bipartite von Neumann entanglement entropy
S, defined as S = −Tr A[ρA ln ρA], where ρA = Tr Bρ is the
reduced density matrix of a subsystem A after dividing the
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FIG. 2. Variation of the fraction of single-particle complex
eigenvalues I as a function of the Hermiticity-breaking parameter
γ for L = 400, Hamiltonian H (3) for different values of r. Inset
shows γth scales to zero with increasing r as a power law. Dashed
line corresponds to 1/r.

system into two adjacent parts A and B. and ρ is the total
density matrix corresponding to the eigenstate of the sys-
tem. For the Hermitian system, ρ = |En〉〈En|, where Ens are
many-body energy eigenstates. For non-Hermitian systems,
since left and right eigenvectors are not the same, we have
two choices to define the total many-body density matrix of
the system, i.e., (1) ρ1 = |Rn〉〈Rn| and (2) ρ2 = |Rn〉〈Ln|, and
the corresponding entanglement entropies are denoted by SR

and SLR, respectively [77,78]. Note that since the Hamiltonian
Eq. (2) is quadratic, the ground-state (also typical eigenstates)
entanglement entropy can be obtained from the one-body den-
sity matrix [73] in a similar spirit as one can do for a Hermitian
system [79–84].

Also, motivated by our analysis for a two-site model, we
conjecture that the Hermitian equivalent model h corresponds
to the non-Hermitian Hamiltonian H given by

h = −
L/2−1∑

j=1

(ĉ†
j ĉ j+1 + H.c.) −

L−1∑
j=L/2+1

(ĉ†
j ĉ j+1 + H.c.)

− (1 − γ 2)1/2(ĉ†
L/2ĉL/2+1 + H.c.). (10)

Note that if we restrict ourself to L = 2, the Hamiltonian h
becomes identical to h2×2 [see Eq. (9)]. We also test our con-
jecture by comparing the single-particle energy eigenvalues
En for both Hamiltonians (2) and (10) in Fig. 3. We find an
excellent agreement between them, as shown in Fig. 3. Next,
our goal is to analyze the entanglement entropy of the ground
state as well as the typical excited states for both models H
[see Eq. (2)] and h [see Eq. (10)] and compare their results.

A. Ground state

We first focus on the ground-state entanglement entropy
of the non-Hermitian Hamiltonian H . Usually the many-body
ground state of a noninteracting system is obtained by popu-
lating the lowest energy single-particle states one by one. A
similar method can also be used for the non-Hermitian system

FIG. 3. Comparison of energy eigenvalues En between Hamilto-
nian (2) and Hamiltonian (10) for γ = 0.5 and L = 400. Inset shows
the differences of the energy eigenvalues between Hamiltonian (2)
and Hamiltonian (10) are of the order of machine precision.

in the PT -symmetric phase, given that the energy eigenvalues
are purely real. In the case of a PT broken phase, given that
the eigenvalues can be complex, there is a bit of ambiguity re-
garding in which order we should populate the single-particle
states to get the desired many-body ground state. However, we
arrange the eigenvalues, sorting by its real parts, and obtain
the many-body ground state by populating one by one the
single-particle states whose real parts of the eigenvalues are
the lowest. Given that we have always restricted ourselves
to the even number of particles in the system, this particular
choice of the many-body ground state ensures that many-
body ground-state energy always remains real, even in the
PT broken phase. Moreover, this working definition of the
many-body ground state can also be “analytically continued”
in the PT -symmetric phase.

Figure 4 shows the variation of the ground-state entangle-
ment entropy obtained from the right eigenvectors. In the main
panel of Fig. 4, we plot the real part of SR as a function of
γ . Interestingly, we find that SR decreases monotonically as
a function of γ when γ < 1, i.e., the PT -symmetric phase.
Remarkably, this value goes to zero at the transition point,
i.e., γ = 1. The solid dashed lines in the main panel of Fig. 4
correspond to the ground-state entanglement entropy of the
Hermitian Hamiltonian h. It shows excellent agreement with
the real part of SR in the PT -symmetric phase. In Fig. 4(a),
we also plot the variation of the imaginary part of SR, we find
that while it is zero in the PT -symmetric phase, for γ > 1
(in the broken PT phase) the imaginary part of SR can have
nonzero values. We also like to emphasize that Re[SR] van-
ishes at γ = 1 due to the fact that we choose LA = L/2. That
becomes even more apparent from our Hermitian equivalent
Hamiltonian (10). At γ = 1, Hamiltonian (10) is just two
separate systems of length L/2 who do not talk to each other.
Hence the entanglement entropy is bound to be zero if we
make a cut in the middle. However, if we choose LA = L/4,
at γ = 1, the entanglement will not be zero, shown explic-
itly in Fig. 4(b). However, the variation of the entanglement
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FIG. 4. Variation of the real part of SR of the ground state as
a function of γ for L = 100, 200, 400. We choose the subsystem
size LA = L/2. Solid dashed lines correspond to ground-state en-
tanglement entropy of the Hermitian model h (10). Inset (a) shows
the variation of the imaginary part of SR of the ground state as a
function of γ . Inset (b) shows the variation of the real part of SR

of the ground state as a function of γ for subsystem size LA = L/4.
Solid dashed lines correspond to ground-state entanglement entropy
of the Hermitian model h (10).

entropy in the PT -symmetric phase can still be captured by
the Hermitian equivalent Hamiltonian Eq. (10).

Next we investigate how SLR behaves as a function of
the Hermiticity-breaking parameter γ . We again focus on
the ground state. In the main panel of Fig. 5, we plot the

FIG. 5. In the main panel we show the variation of the real part
of SLR of the ground state as a function of γ for L = 100, 200, 400.
We choose the subsystem size LA = L/2. Inset shows the variation
of the real part of SLR with LA for γ = 0, 0.25, 0.5, 0.75, 1. We
keep L = 600 fixed. The red dashed line is the best fit where the
fitting function is 1

6 ln[sin(πLA/L)]+ const. Another inset shows
the variation Re[SLR] with LA (for fixed L = 1500) for γ = 1 in the
semilog scale. Inset in the right-bottom corner shows the variation of
the imaginary part of SLR with γ .

FIG. 6. Variation of Re[SR] of typical eigenstates of the Hamilto-
nian (2) as a function of γ for L = 100, 200, 400 for fixed LA = L/2.
Black symbols correspond to the entanglement entropy of a typical
state for the Hermitian Hamiltonian h. Top-right inset shows a nice
data collapse when we rescale Re[SR] by Re[SR]/LA. Another inset
shows the variation of imaginary part of SR with γ .

real part of SLR with γ for different values of L; we keep
the subsystem size LA = L/2 fixed. We find that in the PT -
symmetric phase and for a fixed value of γ , the real part
of SLR increases with system size. First we focus on the
PT -symmetric phase, i.e., γ < 1. For γ = 0 we know that
the Hamiltonian H is gapless, which implies that the ground
state can be described by a conformal field theory (CFT)
of central charge c. Hence we expect that the entanglement
entropy S should scale as S = c

6 ln[sin(πLA/L)] + const [85].
It is well known that the central charge corresponding to the
Hamiltonian H0 is c = 1. In the inset of Fig. 5, we show
that indeed for γ = 0, S obeys expected logarithmic scaling.
Strikingly, we find that the same scaling exists for SLR in the
PT -symmetric phase as well. Next we investigate the behavior
of SLR at the phase transition point, i.e., γ = 1. We observe
that at γ = 1 the value of Re[SLR] is much larger compared
to its value in the PT -symmetric phase. In the inset we show
the variation of Re[SLR] with LA for a fixed value of L, and
we find that SLR actually diverges exponentially with LA at
the phase transition point. We also show the variation of the
imaginary part of SLR in the right-bottom corner inset of Fig. 5
and find that in the PT -symmetric phase the imaginary part
of SLR is zero, whereas in the PT broken phase it can have
nonzero value.

B. Typical eigenstates

After investigating the ground-state entanglement entropy,
now we study the entanglement entropy of the typical states.
Again, we investigate separately both SR and SLR. In each
configuration, we randomly populate L/2 numbers of particles
in total L number of single-particle states. Then we average
over 1000 different configurations [79–81,86]. Figure 6 shows
the variation of the real part of SR of a typical state with γ for
the Hamiltonian H , Eq. (2). We see that in the PT unbroken
phase, the magnitude of SR does not change significantly, it
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FIG. 7. Variation of Re[SR]/L of typical eigenstates of the
Hamiltonian (3) as a function of γ for L = 100, 200, 400 for fixed
LA = L/2, which shows nice data collapse. Inset shows the variation
of Im[SR] with γ for the same model.

remains almost the same as the value obtained for γ = 0.
However, for γ > 1, the value monotonically decreases. Also,
similar to the ground state, Re[SR] in the PT -symmetric phase
is almost the same as the entanglement obtained for the typ-
ical eigenstates of the Hermitian Hamiltonian h (10). In the
inset we show the data collapse when we rescale Re[SR] by
Re[SR]/LA, which indicates the signature of the volume law.
We strengthen our claims by investigating the Hamiltonian
equation (3) in Fig. 7 as well.

Next we investigate the real part of SLR/L in Fig. 8 for
the Hamiltonian H̃ (3). We again find a nice data collapse
in the PT -symmetric phase, i.e., γ < 0.45, which indicates
the volume entanglement. However, at the transition point

FIG. 8. Variation of Re[SLR]/L of typical eigenstates as a func-
tion of γ for L = 100, 200, 400 for fixed LA = L/2 and for the
Hamiltonian H̃ (3). Data collapse is observed for γ < γth � 0.45.
Inset (a) shows the variation of Re[SLR

typ] with LA for L = 500 and γ

= γth. Inset (b) shows the variation of the imaginary part of SLR with
γ . Inset (c) shows the data collapse of SLR/L for Hamiltonian Eq. (2)
in the PT -symmetric phase, i.e., γ < 1.

γ � 0.45, the volume-law scaling breaks down. At the point
of the phase transition, even after we rescale Re[SLR] by
Re[SLR]/L, the value increases with L, which suggests the
scaling is much faster than the volume law. In Fig. 8(a) we
plot the variation Re[SLR] for the Hamiltonian H̃ at the PT
transition point with LA for a fixed L = 500, and we confirm
that the scaling of Re[SLR] with system size is much faster
than the volume-law scaling observed in the PT -symmetric
phase. We also show the imaginary part of SLR for a typical
state in inset (b), which shows that similar to our previous
findings in the PT -symmetric (broken) phase Im[SLR] is zero
(nonzero). Note that a similar behavior has been observed
even for the Hamiltonian H (2). In Fig. 8(c) we show a nice
data collapse for SLR/L in PT -symmetric phase, i.e., γ < 1.

VI. CONCLUSIONS

In this paper we investigate the entanglement properties of
the ground state and a typical excited state of a noninteract-
ing non-Hermitian lattice model which is invariant under PT
transformation. The model we had looked into has two parts.
The Hermitian part is described by a fermionic system having
just nearest-neighbor hopping, while we add the Hermiticity-
breaking terms (also known as gain-loss terms) only at the two
sites (four sites for the Hamiltonian H̃ ), which are situated in
the middle of the lattice. Usually in a Hermitian system, if one
adds some local perturbations it does not significantly alter the
extensive quantities such as energy of the system. Strikingly,
here we find that even though we have added the Hermiticity-
breaking terms only in a finite number of sites [in two sites
for Hamiltonian (2) and in four sites for Hamiltonian (3)],
but it significantly modifies the properties of the system. Most
importantly, we find that the non-Hermitian model shows a
PT phase transition as we change the Hermiticity-breaking
parameter.

Next we analyze the entanglement properties of differ-
ent phases of this model. We find that in the PT -symmetric
phase, the entanglement entropy obtained from only the right
eigenvectors are the same as the entanglement entropy ob-
tained for the equivalent Hermitian model. We find this result
extremely nontrivial, given that the equivalence between the
non-Hermitian and Hermitian model implies they have the
same set of energy eigenvalues, but it does not imply that
the eigenvectors of these two models are the same. Hence it is
not at all obvious that entanglement entropy of the eigenstates
of these two models should be the same.

Another interesting finding of our work is that the en-
tanglement entropy obtained by considering both left and
right vectors diverges exponentially with system size at
the PT phase transition point. On the other hand, in the
PT -symmetric phase, the ground-state entanglement entropy
scales logarithmically with subsystem size, which is an evi-
dence that presumably low energy states of this PT -symmetric
non-Hermitian system might also be described by CFT. We
also find that the typical excited states are volume-law entan-
gled. We would also like to point out that we have repeated
all our calculations for the models where we have added the
Hermiticity-breaking parameters at more than four sites. We
find that even though the results change quantitatively, quali-
tative features of the entanglement entropy remain unaltered.
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Interestingly, the PT phase transition point γth approaches
zero as we increase the number of non-Hermitian sites; hence
we only show the results for the Hamiltonian H (2) and H̃ (3).

Our future plan is to understand the effect of interaction
and disorder in such systems and study how they modify
the PT phase transitions. Recently, there have been efforts to
investigate a non-Hermitian many-body localized phase [87],
and it will be interesting to investigate the PT -symmetric
system in the same light.
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APPENDIX A

Here we investigate a similar model as (2), but we add
a complex on-site potential in each site [88]. The model is
described by the following Hamiltonian:

H̃ = H0 + iγ
∑

j

(−) j n̂ j . (A1)

It is straightforward to verify that the Hamiltonian (A1) is also
invariant under PT transformation, i.e., [H̃ , PT ] = 0.

Thus we arrive at the stationary discrete Schrödinger
equation,

Eψ j = ψ j+1 + ψ j−1 + iγ (−1) jψ j . (A2)

We assume a trial solution ψ j = Aei jk + Be−i jk . Using the
boundary condition ψ0 = ψL+1 = 0, one obtains A = −B and
k = sπ/(L + 1), with s = 0, 1, , . . . L − 1. Inserting the trial
solution of Eq. (A2), it is straightforward to obtain the energy

eigenvalues, which is given by

E2 = 4 cos2 k − γ 2. (A3)

From Eq. (A3), one gets that all eigenvalues are real for
γ < 2 cos k for any value of s. Since the smallest value of
cos k occurs for s = L/2, the condition of a completely real
spectrum is

γ < γth = 2 cos

[
Lπ

2(L + 1)

]
� π/L. (A4)

Hence, in the thermodynamic limit the Hamiltonian (A1) does
not have a true PT -unbroken phase.

APPENDIX B

In this section we restrict the Hamiltonian H̃ , Eq. (3), to a
lattice of only four sites. We show the details of the numer-
ical calculation, which one can use to obtain the Hermitian
equivalent Hamiltonian for this system. The outline of the
calculation is already presented in the main text in Sec. III.
The Hamiltonian 4 × 4 is represented in the matrix form as

H4×4 =

⎛
⎜⎝

iγ −1 0 0
−1 −iγ −1 0
0 −1 iγ −1
0 0 −1 −iγ

⎞
⎟⎠. (B1)

We choose γ = 0.2, for which all energy eigenvalues
are completely real, i.e., E1 = −1.605 63, E2 = 1.605 63,
E3 = 0.584 779, and E4 = −0.584 779. Hence it belongs
to the PT -symmetric phase. Simultaneous eigenvectors of
H4×4 and PT are |E1〉 = (0.373 182, 0.599 19 + 0.074 63i,
0.603 821, 0.370 32 + 0.046 127 8i)T , |E2〉 = (0.373 182,

−0.599 19+0.074 63i, 0.603 821,−0.370 32 + 0.046 127
8i)T , |E3〉= (0.585 094+0.200 108i,−0.382 172,−0.361 608
− 0.123 674i, 0.618 368)T , and |E4〉= (0.618 368,

0.361 608 + 0.123 674i,−0.382 172,−0.585 094 − 0.200
108i)T , where PT |E1,3〉 = |E1,3〉, and PT |E2,4〉 = −|E2,4〉.
Now it is straightforward to obtain the C operator, where
C2 = I , and [C, H4×4] = 0, it reads as

C =

⎛
⎜⎝

−0.2819i 0.923 31 0.097 245i −0.486 228
0.923 31 0.184 663i 0.437 088 −0.097 245i

0.097 245i 0.437 088 −0.184 663i 0.923 31
−0.486 228 −0.097 245i 0.923 316 0.281 9i

⎞
⎟⎠.

Given that C = eQP, the parity operator reads

P =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠, (B2)

and it is trivial to obtain h4×4 = e−Q/2H4×4eQ/2, which is represented as,

h4×4 =

⎛
⎜⎝

0 −0.979 579 0 −0.020 634 3
−0.979 579 0 −1.000 21 0

0 −1.000 21 0 −0.979 579
−0.020 634 3 0 −0.979 579 0

⎞
⎟⎠,
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where h4×4 is a Hermitian matrix, and it is straightforward to check that its eigenvalues are same as the eigenvalues of H4×4, i.e.,
E1, E2, E3, and E4. Note that one can perform a similar calculation for any PT -symmetric non-Hermitian system and obtain the
Hermitian equivalent Hamiltonian.
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