
PHYSICAL REVIEW A 103, 062414 (2021)

Experimental lower bounds to the classical capacity of quantum channels
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We show an experimental procedure to certify the classical capacity for noisy qubit channels. The method
makes use of a fixed bipartite entangled state, where the system qubit is sent to the channel input and the set of
local measurements, σx ⊗ σx , σy ⊗ σy, and σz ⊗ σz, is performed at the channel output and the ancilla qubit, thus
without resorting to full quantum process tomography. The witness to the classical capacity is then achieved by
reconstructing sets of conditional probabilities, noise deconvolution, and classical optimization of the pertaining
mutual information. The performance of the method to provide lower bounds to the classical capacity is tested
by a two-photon polarization entangled state in Pauli channels and amplitude damping channels. The measured
lower bounds to the channels are in high agreement with the simulated data, which take into account both
the experimental entanglement fidelity F = 0.979 ± 0.011 of the input state and the systematic experimental
imperfections.
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I. INTRODUCTION

The complete characterization of quantum channels by
quantum process tomography [1–11] is demanding in terms
of state preparation and/or measurement settings since for
increasing dimension d of the system Hilbert space it scales as
d4. When one is interested in certifying specific properties of a
quantum channel, more affordable procedures can be devised
without resorting to complete quantum process tomography.
This is the case of the detection of entanglement-breaking
properties [12,13] or non-Markovianity [14] of quantum chan-
nels, or the certification of lower bounds to the quantum
capacity of noisy quantum channels [15–18]. Typically, these
direct methods also have the advantage of being more precise
with respect to complete process tomography, which has the
drawback of involving larger statistical errors due to error
propagation.

One of the most relevant properties of quantum channels is
the classical capacity [19–21] for its operational importance in
the quantification of the classical information that can be reli-
ably transmitted. For the purpose of detecting lower bounds to
the classical capacity, an efficient and versatile procedure has
been recently proposed in Ref. [22]. The method allows one
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to experimentally detect lower bounds to the classical capac-
ity of completely unknown quantum channels just by means
of a few local measurements, even for high-dimensional
systems [23].

The gist of the procedure is to efficiently reconstruct a
number of probability transition matrices for suitable input
states (playing the role of “encoding”) and matched out-
put projective measurements (the corresponding “decoding”).
The method is accompanied by the optimization of the prior
distribution for the single-letter encoding pertaining to each
input-output transition matrix. In this way, the mutual infor-
mation for different communication settings is recovered and
the resulting values are compared. Hence, a lower bound to
the Holevo capacity and then a certification of the minimum
reliable transmission capacity is achieved. Similarly to the
method of certification for the quantum capacity [15–17],
here each of the conditional probabilities corresponding to a
communication setting can be obtained by preparing just an
initial fixed bipartite state, where only one party enters the
quantum channel, while local measurements are performed at
the input and output of the channel.

In this paper, we present an experimental demonstration
for the above certification of classical capacity in noisy qubit
channels. We implement the method by using highly pure
polarization entangled photons pairs, where the encoding and
decoding settings are achieved by exploiting complementary
observables of the polarization state. Moreover, a faithful
deconvolution of noise is performed over the experimental
data, which allows one to optimize the reconstruction of the
probability transition matrices.
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FIG. 1. Protocol concept. The s qudit of a maximally entangled
bipartite quantum state |φ+〉 is sent through a noisy quantum channel
E , while the a qudit propagates freely. Encoding-decoding of type
α is represented by layers and is achieved by locally measuring
the basis {|φ (α)

i 〉}. The conditional probability Q(α)( j|i) of measuring
|φ (α)

j 〉 for an input |φ (α)
i 〉 allows one to evaluate the Shannon capacity

C (α). The witness CD of the classical capacity is the largest of the
values {C (α)} among all tested types α.

II. THEORETICAL MODEL

Let us briefly review the method proposed in Ref. [22]
for bounding from below the classical capacity, with specific
attention to the case of single-qubit quantum channels.

The classical capacity C of a noisy quantum channel E
quantifies the maximum number of bits that can be reliably
transmitted per channel use, and it is given by the regularized
expression [19–21] C = limN→∞ χ (E⊗N )/N , with N as the
number of uses, in terms of the Holevo capacity,

χ (�) = max
{pi,ρi}

{
S

[
�

(∑
i

piρi

)]
−

∑
i

piS[�(ρi )]

}
, (1)

where S(ρ) = −Tr[ρ log2 ρ] denotes the von Neumann en-
tropy. The Holevo capacity χ (E ) ≡ C1, also known as
one-shot classical capacity, is a lower bound for the ultimate
channel capacity C, and also an upper bound for the mutual
information [24–26],

I (X ;Y ) =
∑
x,y

pxQ(y|x) log2
Q(y|x)∑

x′ px′Q(y|x′)
, (2)

where any transition matrix Q(y|x) corresponds to the condi-
tional probability for outcome y in an arbitrary measurement
at the output of a single use of the channel with input ρx, and
px denotes an arbitrary prior probability, which corresponds
to the distribution of the encoded alphabet on the quantum
states {ρx}.

As depicted in Fig. 1, in order to obtain a witness for
the classical capacity without resorting to complete process
tomography, one can proceed as follows: Prepare a bipartite
maximally entangled state |φ+〉 = 1√

d

∑d−1
k=0 |ks〉|ka〉 between

a system and ancillary spaces, both with dimension d; send
|φ+〉 through the unknown channel by keeping the action of
E on the system alone, namely, via the map E ⊗ Ia; finally,
locally measure a number of observables of the form Xα ⊗ X τ

α ,
where τ denotes the transposition with respect to the fixed
basis defined by |φ+〉.

In fact, by denoting the d eigenvectors of Xα as {|φ(α)
i 〉},

from the identity [27]

Tr[(A ⊗ Bτ )(E ⊗ Ia)|φ+〉〈φ+|] = 1

d
Tr[AE (B)], (3)

with arbitrary operators A and B, the detection scheme allows
one to reconstruct the set of conditional probabilities,

Q(α)( j|i) = 〈
φ

(α)
j

∣∣ E( ∣∣φ(α)
i

〉 〈
φ

(α)
i

∣∣ ) ∣∣φ(α)
j

〉
. (4)

For each encoding-decoding scheme α characterized by the
choice of Xα , we can write the corresponding optimal mutual
information, namely, the Shannon capacity,

C(α) = max{
p(α)

i

}∑
i, j

p(α)
i Q(α)( j|i) log2

Q(α)( j|i)∑
l p(α)

l Q(α)( j|l )
. (5)

Then, we have the chain of inequalities,

C � C1 � CD ≡ max
α

{C(α)}, (6)

where CD is the experimentally accessible witness that de-
pends on the chosen set of measured observables labeled by
α, and provides a lower bound to the classical capacity of the
unknown channel.

In the present scenario, we consider single-qubit channels,
and the information settings correspond to the choice of the
three local observables σx ⊗ σx, σy ⊗ σy, and σz ⊗ σz. Hence,
each of the three conditional probabilities Q(α)( j|i), with α =
x, y, z, is a 2 × 2 transition matrix that corresponds to a bi-
nary classical channel, for which the optimal prior probability
{p(α)

i } can be theoretically evaluated [22]. In fact, without loss
of generality, for each transition matrix we can fix the label-
ing of logical zeros and ones such that 0 � ε0 � 1

2 , ε0 � ε1,
and ε0 � 1 − ε1, where ε0 denotes the error probability of
receiving 1 for input 0, and ε1 denotes the error probability of
receiving 0 for input 1. Then, for each α = x, y, z, the mutual
information as in Eq. (5) is maximized by a prior probability
{p0, p1 = 1 − p0}, with

p0 = 1 − ε1(1 + z)

(1 − ε0 − ε1)(1 + z)
, (7)

where z = 2
H [ε0]−H[ε1]

1−ε0−ε1 , and H (p) = −p log2 p −
(1 − p) log2(1 − p) denotes the binary Shannon entropy.
The corresponding capacity is given by [22]

CB(ε0, ε1) = log2

[
1 + 2

H[ε0]−H [ε1]
1−ε0−ε1

]
+ ε0

1 − ε0 − ε1
H[ε1] − 1 − ε1

1 − ε0 − ε1
H[ε0]. (8)

Notice that for ε0 = ε1 = ε, one recovers the classical capac-
ity for the binary symmetric channel,

CB(ε, ε) = 1 − H[ε], (9)

with uniform optimal prior {1/2, 1/2}, whereas for ε0 = 0
(i.e., when only input 1 is affected by error), one obtains the
capacity of the so-called Z channel,

CB(0, ε) = log2

[
1 + (1 − ε)ε

ε
1−ε

]
. (10)

In Appendix A, we summarize the expected theoretical results
for the qubit channels that we implemented experimentally.
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In order to consider the experimental imperfections in our
state preparation, we assume a Werner form,

ρF = 4F − 1

3
|�+〉 〈�+| + 1 − F

3
Is ⊗ Ia, (11)

where F = 〈�+|ρF |�+〉 denotes the fidelity with respect
to the ideal maximally entangled state |�+〉 = 1√

2
(|0〉 |0〉 +

|1〉 |1〉). Hence, we can replace Eq. (3) with

Tr[AE (B)] = 2

4F − 1
Tr[(A ⊗ {3Bτ − 2(1 − F )

× Tr[B]Ia})(E ⊗ Ia)ρF ]. (12)

Equation (12) allows one to deconvolve the noise as long as
F �= 1/4 since the output state (E ⊗ Ia)ρF faithfully repre-
sents the unknown channel E .

The normalized conditional probabilities for the three
binary classical channels corresponding to the information
settings α = x, y, z, where coding and decoding are performed
using the eigenstates of the three Pauli matrices σx, σy, σz, can
be obtained by the ratio Tr[AE (B)]

Tr[E (B)] , when replacing A and B with
the pertaining eigenvectors. In practical terms, these quantities
are measured from the bipartite qubit detections, which in
optical channels correspond to two-photon coincidence detec-
tions C( ji) = Tr[(| j〉〈 j|S ⊗ |i〉〈i|A)(E ⊗ Ia)ρF ] on the output
state. We provide, in Appendix B, the explicit expressions
for the conditional probabilities in terms of the measured
coincidences. For each information setting α = x, y, z, the
logical bits and their pertaining transition error probabilities
ε

(α)
0 and ε

(α)
1 introduced before Eq. (7) are identified from the

conditional probabilities as follows:

ε
(α)
0 = min

{i, j}
Q(α)(i| j) ≡ Q(α)(1|0), ε

(α)
1 ≡ Q(α)(0|1). (13)

Using Eq. (8), from the experimental data we then ob-
tain C(α) = CB(ε (α)

0 , ε
(α)
1 ), and hence the detected classical

capacity as

CD = max
α=x,y,z

CB
(
ε

(α)
0 , ε

(α)
1

)
. (14)

We remark that the effect of a fidelity value F < 1 (except the
case F = 1

4 ) is not detrimental for accessing the capacity wit-
ness CD, and only the statistical noise is expected to increase
for decreasing value of F . This can be argued from the identity
(12) which, for any couple of bases {|i〉A}i=0,1 and {| j〉S} j=0,1,
provides an unbiased estimation of the joint probabilities
pF ( j, i) = Tr[(| j〉〈 j|S ⊗ |i〉〈i|A)(E ⊗ Ia)ρF ] pertaining to the
case of ideal fidelity F = 1 in terms of the measured proba-
bilities as

pF=1( j, i) = 1 + 2F

4F − 1
pF ( j, i) − 2(1 − F )

4F − 1
pF ( j, i ⊕ 1). (15)

By denoting with σ the typical order of magnitude of the
standard deviation for the measured joint probabilities with
F < 1, the noise deconvolution provides the correct probabil-
ities with standard deviation,

σF = σ

√(
1 + 2F

4F − 1

)2

+ 4

(
1 − F

4F − 1

)2

= σ

√
8F 2 − 4F + 5

|4F − 1| . (16)

FIG. 2. (a) Full scheme with quantum source, propagation chan-
nels, and projection and measurement devices. PBS: polarizing beam
splitter; M: mirror; BS: nonpolarizing 50:50 beam splitter; QWP:
quarter-wave plate; HWP: half-wave plate; DM: dichroic mirror;
ppKTP: periodically poled nonlinear crystal; BF: band-pass filter;
LF: long-pass filter; Fk : lenses; SPADs: single-photon avalanche
detectors; SMF: single-mode fiber; LC: liquid crystal element.
The additional D-label is for compatibility with both the pump
and generated wavelength. (b) Left: Setup for phase-del- damp-
ing and depolarizing channels. Right: Setup for amplitude damping
channel.

III. EXPERIMENTAL IMPLEMENTATION

A single-mode continuous-wave laser at 405 nm was used
to pump a Type-II ppKTP crystal within a Sagnac interfer-
ometer (SI) in order to produce polarization-entangled photon
pairs at 810 nm via spontaneous parametric down conversion,
as implemented in [17]. The two output modes were labeled as
s qubit and a qubit, so the Bell state |�+〉 = 1√

2
(|Hs〉 |Ha〉 +

|Vs〉 |Va〉) was generated. As shown in the full scheme of
Fig. 2, tube lenses with F1 = 300 mm collimate both output
modes, while objective lenses with F2 = 11 mm couple them
into single-mode fibers (SMFs).

The fidelity of the experimental state ρF defined in
Eq. (11) and measured by quantum tomography techniques
[28,29] was F = 〈�+|ρF |�+〉 = 0.979 ± 0.011. Hence, we
use Eq. (12) for noise deconvolution, and the standard devia-
tion of the joint probabilities is increased just by 1.45% with
respect to the ideal case F = 1, according to Eq. (16).

The observables σα , for α = x, y, z, are measured with
rotations of a quarter-wave plate (QWP) and a half-wave plate
(HWP) before a polarizing beam splitter (PBS) for each qubit.
The remaining photon pairs after these projections are mea-
sured with synchronized single-photon avalanche detectors
(SPADs) within a time window of 5 ns for an integration time
of 10 s/measurement.
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FIG. 3. Experimental channel capacity. Left: C (α) for PD channel. Center: C (α) for D channel. Right: C (α) for AD channel. In blue (dark
gray): C (x); in red (gray): C (y); in green (light gray): C (z). For the predicted theoretical behavior, C (z) is depicted with dashed green (light gray),
while C (x) and C (y) are depicted with dashed black lines. All error bars (standard deviation) are calculated from at least eight values per point;
their x-axis components originate from the propagated uncertainty in the angle of the HWPs, which dominate over other sources of error, such
as wrong retardance in the LC.

By referring to the parametrization of channels given in
Appendix A, within the family of Pauli channels we have
chosen two special cases as implemented in [17,30]. The first
one is the phase-damping (PD) channel (described by qz = q
and qx = qy = 0 in Appendix A). The second one is the depo-
larizing (D) channel (described by qx = qy = qz = q). Their
experimental simulations were implemented by qi-weighted
combinations of independent Pauli operations, achieved by
setting a HWP at 0◦ degrees (45◦ degrees) for σz (σx) and
a liquid crystal (LC) at minimum (maximum) voltage for σz

(I) [see Fig. 2(b)]. Accordingly, the simultaneous operation
σy = iσxσz gives us the last Pauli operation.

The experimental simulation of an amplitude damping
(AD) channel was achieved by using a square SI with dis-
placed trajectories as implemented in [17,31], where a HWP
at 0◦ degrees was placed in the H-polarized counterclockwise
trajectory, while another HWP at ω = arccos(−√

1−η)
2 degrees

was place in the V-polarized clockwise trajectory. The induced
rotation of a single polarization (or damping) sends this light
to the long arm of an unbalanced Mach-Zehnder interferom-
eter (MZI), which then recombines it out of coherence in a
nonpolarizing beam splitter (BS).

IV. RESULTS

In Fig. 3, we show the measured Shannon capacities C(α)

in all three bases for the experimental simulation of three dif-
ferent environments, namely, a PD channel, a D channel, and
an AD channel. This is compared to the predicted behavior for
the real input state, which is fidelity dependent from Eq. (12)
and explained in detail in Appendix B. See Appendix C for
details of the noise propagation and Appendix D for details of
the experimental raw data.

For a PD channel, the witness CD of the channel capacity
is obtained for α = z and can be compared with the expected
theoretical value CD = 1. The presented results confirm the
behavior in which phase-damping processes do not affect
binary data transmission in the logical basis, but only in com-
plementary superposition bases. The systematic offset below
unity value is due to the propagation of error by replac-
ing experimental negative values of ε

(z)
0 with their absolute

values. We observe that the customary constrained maximum-

likelihood technique can solve the possible issue of negative
reconstructed probabilities and the resulting bias in the
capacity bounds.

For a D channel, the theoretical value CD = 1 − H (2q) is
equally achieved by any of the three bases. Here, we find
the best agreement with respect to this prediction because
small differences of the experimental state or channel from
the ideal ones are rapidly compensated during the decoher-
ence process by the simultaneous action of all three Pauli
operations. Accordingly, the balance increase (decrease) in the
diagonal (off-diagonal) terms of the density matrix reduces
bias projections and final data dispersion.

For an AD channel, the experimental implementation re-
quires control on multiple optical paths, where systematic
error can have an unbalanced contribution among different
bases. Such an issue, combined with the nonlinear depen-
dency of η with respect to ω and an angular uncertainty of
0.5◦ degrees, gives considerable propagated errors. The ex-
pected capacity witness CD = 1 − H ( 1−√

1−η

2 ) is equivalently
achieved by the bases x or y. Our method still succeeds in
showing the general behavior and providing a sensible lower
bound to the classical channel capacity.

In summary, by comparison with the theoretical predic-
tions, the method proved to be very effective in providing a
witness for the classical capacity of noisy quantum channels,
even if the channel implementation has critical and systematic
imperfections. Moreover, by means of the noise deconvolu-
tion, we have shown that the method is robust with respect to
an imperfect probe-state preparation and provides an unbiased
estimation of the theoretical lower bounds.

V. CONCLUSIONS

The experimental coincidence counts allow one to directly
reconstruct the sets of conditional probabilities for three dif-
ferent information settings. For each setting α = x, y, z, by
Eq. (13) the logical bits and the values of ε

(α)
0 and ε

(α)
1 are

identified. From these values, one recovers three values of
CB as in Eq. (8), which correspond to the Shannon capacity,
namely, the optimized mutual information for coding and
decoding on the eigenstates of σx, σy, and σz. The highest
among such three values is selected as a classical capacity
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witness, namely, it certifies a lower bound to the ultimate
classical capacity of the unknown quantum channel. For each
information setting, by Eq. (7) the identified values of ε

(α)
0 and

ε
(α)
1 also allow one to obtain the optimal weight for the coding

of the two logical characters.
We emphasize that our method is highly robust against

experimental imperfections, even in cases where the prepared
quantum state is partially mixed as the Werner state. For each
of the three chosen bases, the Shannon capacity is precisely
retrieved for all values of the channel parameters. Neverthe-
less, the most accurate values were obtained for the Pauli
channels, which are effectively produced by mixing unitary
operations over the input state. For mixtures of nonunitary
operations as the amplitude damping channel, we find a less
smooth behavior in the detected classical capacity because
experimental imperfections do not act in balanced ways for
both photon polarizations.

We recommend this method for certifying the classical
capacity of quantum channels due to its high precision under
different scenarios. The studied cases were not particularly
designed to match with the protocol, but chosen to represent
a variety of classes. No prior information is needed about the
channel structure, while the measurement settings are much
less demanding with respect to full process tomography.
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APPENDIX A: EXPECTED THEORETICAL RESULTS
FOR THE IMPLEMENTED QUBIT CHANNELS

For an amplitude damping (AD) channel, described by

EAD(ρ) = K0ρK†
0 + K1ρK†

1 , (A1)

where K0 = |0〉〈0| + √
1 − η|1〉〈1| and K1 = √

η|0〉〈1|, the

error probabilities of the three binary channels correspond to

ε
(x)
0 = ε

(x)
1 = ε

(y)
0 = ε

(y)
1 = (1 −

√
1 − η)/2,

ε
(z)
0 = 0, ε

(z)
1 = η. (A2)

The detected capacity is obtained equivalently by the x or y
information setting and is given by

CD = C(x) = C(y) = 1 − H

(
1 − √

1 − η

2

)
. (A3)

For any η, this result outperforms the z setting, for which one
has C(z) = CB(0, η), according to Eq. (10). We recall that the
detected capacity in Eq. (A3) is strictly lower than the Holevo
capacity C1, which can be evaluated as [32,33]

C1 = max
t∈[0,1]

{H[t (1 − η)] − H[g(η, t )]}, (A4)

where g(η, t ) ≡ 1
2 [1 +

√
1 − 4η(1 − η)t2].

For a Pauli (P) channel, described by

EP(ρ) = qIρ + qxσxρσx + qyσyρσy + qzσzρσz, (A5)

with qI = 1 − (qx + qy + qz ) and qx + qy + qz � 1 (with
qi � 0), the three channels that are compared are symmetric
and correspond to the error probabilities

ε
(x)
0 = ε

(x)
1 = min{qy + qz, 1 − (qy + qz )},

ε
(y)
0 = ε

(y)
1 = min{qx + qz, 1 − (qx + qz )}, (A6)

ε
(z)
0 = ε

(z)
1 = min{qx + qy, 1 − (qx + qy)}.

The detected capacity is then given by

CD = 1 − min{H (qy + qz ), H (qx + pz ), H (qx + py)}, (A7)

where min{·} compares the x, y, and z information settings,
respectively. We recall that for Pauli channels, the capacity
witness CD equals the Holevo and the classical capacity (i.e.,
C = C1 = CD since the additivity hypothesis holds true for
unital qubit channels [34]).

APPENDIX B: PROBABILITY TRANSITION MATRICES FOR THE THREE INFORMATION SETTINGS σz, σx, σy

From Eq. (12), the ratio Tr[AE (B)]
Tr[E (B)] is given by

Tr[AE (B)]

Tr[E (B)]
= Tr[(A ⊗ {3Bτ − 2(1 − F )Tr[B]Ia})(E ⊗ Ia)ρF ]

Tr[(Is ⊗ {3Bτ − 2(1 − F )Tr[B]Ia})(E ⊗ Ia)ρF ]
. (B1)

When qubits are encoded in the single-photon polarization degree of freedom, the z-information setting corresponds to the
choice of A and B as the projectors on the basis {|H〉 , |V 〉}, with H (V ) as the horizontal (vertical) polarization. Using Eq. (B1),
the corresponding probability transition matrix is then given in terms of the measured coincidences, C( ji) = Tr[(| j〉〈 j|S ⊗
|i〉〈i|A)(E ⊗ Ia)ρF ] as

Q(z)(H |H ) = (1 + 2F )C(HH ) − 2(1 − F )C(HV )

(1 + 2F )[C(HH ) + C(V H )] − 2(1 − F )[C(HV ) + C(VV )]
, Q(z)(V |H ) = 1 − Q(z)(H |H ), (B2)

Q(z)(H |V ) = (1 + 2F )C(HV ) − 2(1 − F )C(HH )

(1 + 2F )[C(HV ) + C(VV )] − 2(1 − F )[C(HH ) + C(V H )]
, Q(z)(V |V ) = 1 − Q(z)(H |V ). (B3)

For the x-information setting, A and B correspond to the projectors on the diagonal basis, |+〉 = 1√
2
(|H〉 + |V 〉) and

|−〉 = 1√
2
(|H〉 − |V 〉), and so one has

Q(x)(+|+) = (1 + 2F )C(++) − 2(1 − F )C(+−)

(1 + 2F )[C(++) + C(−+)] − 2(1 − F )[C(+−) + C(−−)]
, Q(x)(−|+) = 1 − Q(x)(+|+), (B4)
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Q(x)(+|−) = (1 + 2F )C(+−) − 2(1 − F )C(++)

(1 + 2F )[C(+−) + C(−−)] − 2(1 − F )[C(++) + C(−+)]
, Q(x)(−|−) = 1 − Q(x)(+|−). (B5)

Finally, for the y-information setting, A and B correspond to the projectors on the circular basis, |R〉 = 1√
2
(|H〉 − i|V 〉) and

|L〉 = 1√
2
(|H〉 + i|V 〉), and hence

Q(y)(R|R) = (1 + 2F )C(RL) − 2(1 − F )C(RR)

(1 + 2F )[C(RL) + C(LL)] − 2(1 − F )[C(RR) + C(LR)]
, Q(y)(L|R) = 1 − Q(y)(R|R), (B6)

Q(y)(R|L) = (1 + 2F )C(RR) − 2(1 − F )C(RL)

(1 + 2F )[C(RR) + C(LR)] − 2(1 − F )[C(RL) + C(LL)]
, Q(y)(L|L) = 1 − Q(y)(R|L). (B7)

Notice the different symmetry in the equations for the y coding with respect to the z and x cases due to the presence of the
transposition in Eq. (B1). For each of the above binary classical channels, the transition errors ε

(α)
0 and ε

(α)
1 are identified from

the conditional probabilities by Eq. (13).
According to the above equations, all expectation values are obtained just by the measurement of 12 polarization projections

of the state (4 by each of the 3 observables), which makes the process efficient in terms of the registration and analysis of the
data, given the reduced number of operations compared with standard process tomography.

APPENDIX C: DETECTION EFFICIENCIES
AND EXPERIMENTAL ERROR ANALYSIS

The overall optical efficiencies for both system and ancilla
modes are given by

εs = εOpt · εchannel · ·ε2
SMF · εSPAD, (C1)

εa = εOpt · εSMF · εSPAD, (C2)

where the single-photon transmission efficiency of the main
optical components is εOpt = 0.9, the single-mode fiber cou-
pling efficiency is εSMF = 0.73, and the SPADs detection
efficiency is εSPAD = 0.7. Accordingly, the two-photon optical
efficiency was

εs,a = εs · εa ≈ 0.15 · εchannel. (C3)

The channel optical efficiencies εchannel were 0.6 for the AD
channel and 0.98 for the PD channel and D channel. Thus,
the overall coincidence efficiencies εs,a are 0.09 and 0.15,
respectively.

The propagated standard deviation in our data was calcu-
lated from Monte Carlo simulations of Poissonian statistics on
the photon coincidence counts. In our experiment, the main
sources of error were the following:

(1) The setting of the rotation angle in the LC and HWPs.
(2) The setting of the LC voltage for the precise retardance.
(3) The statistical propagation due to the mixing of inde-

pendent Pauli operations.
The first source of error is negligible because all wave

plates contained in the channels and used for the projective
measurements and the LC were calibrated to a precision of
±0.1 degrees. For wave plates at an angle around 0◦ degrees
or 45◦ degrees, the dependence of counts on a small angle
deviation is linear, and thus the overall error is strongly dom-
inated by the Poissonian statistics on the counts. This is not
valid in the AD-channel configuration, where the interference
leads to a strong nonlinearity between wave-plate angles and
coincidence counts, governed by ω = arccos(−√

1−η)
2 . Accord-

ingly, we considered a prudent error (0.5◦ degrees) on the
angle, leading to a considerable increase of the error on the
damping parameter.

The second source of error is negligible as well because
when performing the calibration of the LC, we use horizon-
tally polarized light, the LC at 45 degrees, and a PBS. Here,
by scanning the voltage on the LC, we verified a nonlinear
retardance, which is almost flat around both the minimum
and maximum voltages used in the experiment, Vlow = 0.5 V

TABLE I. Experimental conditional probabilities in the AD channel.

η Q(z)(H |H ) Q(z)(V |H ) Q(x)(+|+) Q(x)(−|+) Q(y)(L|L) Q(y)(R|L)

0 0.9983 ± 0.0011 −0.01396 ± 0.00078 1.0001 ± 0.0011 −0.0018 ± 0.0011 0.0145 ± 0.0014 0.9906 ± 0.0014
0.05 0.9642 ± 0.0017 0.0195 ± 0.0015 0.9661 ± 0.0017 0.0329 ± 0.0017 0.0480 ± 0.0019 0.9551 ± 0.0019
0.1 0.9300 ± 0.0021 0.0530 ± 0.0020 0.9322 ± 0.0021 0.0674 ± 0.0021 0.0815 ± 0.0023 0.9199 ± 0.0023
0.15 0.8958 ± 0.0024 0.0866 ± 0.0023 0.8983 ± 0.0024 0.1018 ± 0.0024 0.1149 ± 0.0025 0.8849 ± 0.0026
0.2 0.8617 ± 0.0026 0.1201 ± 0.0026 0.8646 ± 0.0027 0.1360 ± 0.0027 0.1482 ± 0.0028 0.8501 ± 0.0028
0.25 0.8275 ± 0.0028 0.1537 ± 0.0028 0.8311 ± 0.0029 0.1700 ± 0.0029 0.1814 ± 0.0030 0.8156 ± 0.0030
0.3 0.7934 ± 0.0030 0.1872 ± 0.0030 0.7976 ± 0.0031 0.2038 ± 0.0031 0.2146 ± 0.0031 0.7813 ± 0.0032
0.35 0.7593 ± 0.0032 0.2208 ± 0.0032 0.7643 ± 0.0032 0.2375 ± 0.0032 0.2477 ± 0.0033 0.7472 ± 0.0033
0.4 0.7252 ± 0.0033 0.2543 ± 0.0033 0.7310 ± 0.0034 0.2709 ± 0.0034 0.2806 ± 0.0034 0.7133 ± 0.0034
0.45 0.6911 ± 0.0034 0.2879 ± 0.0034 0.6979 ± 0.0035 0.3042 ± 0.0035 0.3135 ± 0.0035 0.6796 ± 0.0035
0.5 0.6570 ± 0.0035 0.3215 ± 0.0035 0.6649 ± 0.0035 0.3373 ± 0.0035 0.3464 ± 0.0036 0.6462 ± 0.0036
0.55 0.6230 ± 0.0035 0.3552 ± 0.0036 0.6321 ± 0.0036 0.3702 ± 0.0036 0.3791 ± 0.0036 0.6130 ± 0.0037
0.6 0.5889 ± 0.0036 0.3888 ± 0.0037 0.5993 ± 0.0037 0.4030 ± 0.0036 0.4118 ± 0.0037 0.5799 ± 0.0037
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TABLE II. Experimental conditional probabilities in the PD channel, from the family of P channels.

q Q(z)(H |H ) Q(z)(V |H ) Q(x)(+|+) Q(x)(−|+) Q(y)(L|L) Q(y)(R|L)

0 1.0005 ± 0.0015 −0.0163 ± 0.0014 1.0023 ± 0.0015 −0.0040 ± 0.0015 0.0124 ± 0.0017 0.9928 ± 0.0017
0.05 1.0008 ± 0.0015 −0.0162 ± 0.0014 0.9766 ± 0.0019 0.0214 ± 0.0019 0.0375 ± 0.0020 0.9664 ± 0.0020
0.1 1.0012 ± 0.0015 −0.0161 ± 0.0014 0.9509 ± 0.0022 0.0469 ± 0.0022 0.0625 ± 0.0023 0.9402 ± 0.0023
0.15 1.0016 ± 0.0015 −0.0160 ± 0.0014 0.9252 ± 0.0024 0.0723 ± 0.0024 0.0875 ± 0.0025 0.9140 ± 0.0025
0.2 1.0019 ± 0.0015 −0.0159 ± 0.0014 0.8996 ± 0.0026 0.0977 ± 0.0026 0.1124 ± 0.0027 0.8880 ± 0.0027
0.25 1.0023 ± 0.0015 −0.0159 ± 0.0014 0.8740 ± 0.0028 0.1232 ± 0.0028 0.1374 ± 0.0028 0.8620 ± 0.0029
0.3 1.0027 ± 0.0015 −0.0158 ± 0.0014 0.8484 ± 0.0029 0.1485 ± 0.0029 0.1623 ± 0.0030 0.8361 ± 0.0030
0.35 1.0030 ± 0.0015 −0.0157 ± 0.0014 0.8228 ± 0.0030 0.1739 ± 0.0030 0.1871 ± 0.0031 0.8103 ± 0.0031
0.4 1.0034 ± 0.0015 −0.0156 ± 0.0014 0.7973 ± 0.0032 0.1993 ± 0.0032 0.2120 ± 0.0032 0.7846 ± 0.0033
0.45 1.0038 ± 0.0015 −0.0155 ± 0.0014 0.7719 ± 0.0033 0.2246 ± 0.0033 0.2368 ± 0.0033 0.7590 ± 0.0034
0.5 1.0042 ± 0.0015 −0.0154 ± 0.0014 0.7464 ± 0.0034 0.2499 ± 0.0034 0.2616 ± 0.0034 0.7334 ± 0.0034
0.55 1.0045 ± 0.0015 −0.0153 ± 0.0014 0.7210 ± 0.0034 0.2752 ± 0.0034 0.2864 ± 0.0035 0.7080 ± 0.0035
0.6 1.0049 ± 0.0015 −0.0152 ± 0.0014 0.6956 ± 0.0035 0.3005 ± 0.0035 0.3111 ± 0.0035 0.6826 ± 0.0036
0.65 1.0052 ± 0.0015 −0.0151 ± 0.0014 0.6702 ± 0.0036 0.3257 ± 0.0036 0.3359 ± 0.0036 0.6573 ± 0.0036
0.7 1.0056 ± 0.0015 −0.0150 ± 0.0014 0.6449 ± 0.0036 0.3510 ± 0.0036 0.3605 ± 0.0036 0.6321 ± 0.0037
0.75 1.0060 ± 0.0015 −0.0150 ± 0.0014 0.6196 ± 0.0037 0.3762 ± 0.0037 0.3852 ± 0.0037 0.6070 ± 0.0037
0.8 1.0063 ± 0.0015 −0.0149 ± 0.0014 0.5944 ± 0.0037 0.4013 ± 0.0037 0.4098 ± 0.0037 0.5819 ± 0.0037
0.85 1.0067 ± 0.0015 −0.0148 ± 0.0014 0.5691 ± 0.0037 0.4265 ± 0.0037 0.4345 ± 0.0037 0.5570 ± 0.0037
0.9 1.0071 ± 0.0015 −0.0147 ± 0.0014 0.5439 ± 0.0037 0.4517 ± 0.0038 0.4590 ± 0.0037 0.5321 ± 0.0038
0.95 1.0075 ± 0.0014 −0.0146 ± 0.0014 0.5187 ± 0.0037 0.4768 ± 0.0038 0.4836 ± 0.0037 0.5073 ± 0.0038
1 1.0079 ± 0.0014 −0.0145 ± 0.0014 0.4936 ± 0.0037 0.5019 ± 0.0038 0.5081 ± 0.0037 0.4826 ± 0.0038

and Vhigh = 25.0 V, respectively. We confirmed a visibility of
0.989 between these two voltages, which represents a much
higher value than the fidelity of the state itself, meaning that
any slight imperfection of I and σ operations will weakly
affect the data tendency compared to the noise coming from
the state generation.

The third source of error is the error propagation that comes
from mixing counts coming from different Pauli operations,

suitably weighted. This error is already included in our Monte
Carlo simulations.

APPENDIX D: EXPERIMENTAL
CONDITIONAL PROBABILITIES

In this Appendix, we show the tables of all two-
photon conditional probabilities Q(α)(A|B) extracted from the

TABLE III. Experimental conditional probabilities in the D channel, from the family of P channels.

q Q(z)(H |H ) Q(z)(V |H ) Q(x)(+|+) Q(x)(−|+) Q(y)(L|L) Q(y)(R|L)

0 0.9983 ± 0.0011 −0.01396 ± 0.00078 1.0001 ± 0.0011 −0.0018 ± 0.0011 0.0145 ± 0.0014 0.9906 ± 0.0014
0.017 0.9642 ± 0.0017 0.0195 ± 0.0015 0.9661 ± 0.0017 0.0329 ± 0.0017 0.0480 ± 0.0019 0.9551 ± 0.0019
0.033 0.9300 ± 0.0021 0.0530 ± 0.0020 0.9322 ± 0.0021 0.0674 ± 0.0021 0.0815 ± 0.0023 0.9199 ± 0.0023
0.05 0.8958 ± 0.0024 0.0866 ± 0.0023 0.8983 ± 0.0024 0.1018 ± 0.0024 0.1149 ± 0.0025 0.8849 ± 0.0026
0.067 0.8617 ± 0.0026 0.1201 ± 0.0026 0.8646 ± 0.0027 0.1360 ± 0.0027 0.1482 ± 0.0028 0.8501 ± 0.0028
0.083 0.8275 ± 0.0028 0.1537 ± 0.0028 0.8311 ± 0.0029 0.1700 ± 0.0029 0.1814 ± 0.0030 0.8156 ± 0.0030
0.1 0.7934 ± 0.0030 0.1872 ± 0.0030 0.7976 ± 0.0031 0.2038 ± 0.0031 0.2146 ± 0.0031 0.7813 ± 0.0032
0.117 0.7593 ± 0.0032 0.2208 ± 0.0032 0.7643 ± 0.0032 0.2375 ± 0.0032 0.2477 ± 0.0033 0.7472 ± 0.0033
0.133 0.7252 ± 0.0033 0.2543 ± 0.0033 0.7310 ± 0.0034 0.2709 ± 0.0034 0.2806 ± 0.0034 0.7133 ± 0.0034
0.15 0.6911 ± 0.0034 0.2879 ± 0.0034 0.6979 ± 0.0035 0.3042 ± 0.0035 0.3135 ± 0.0035 0.6796 ± 0.0035
0.167 0.6570 ± 0.0035 0.3215 ± 0.0035 0.6649 ± 0.0035 0.3373 ± 0.0035 0.3464 ± 0.0036 0.6462 ± 0.0036
0.183 0.6230 ± 0.0035 0.3552 ± 0.0036 0.6321 ± 0.0036 0.3702 ± 0.0036 0.3791 ± 0.0036 0.6130 ± 0.0037
0.2 0.5889 ± 0.0036 0.3888 ± 0.0037 0.5993 ± 0.0037 0.4030 ± 0.0036 0.4118 ± 0.0037 0.5799 ± 0.0037
0.217 0.5549 ± 0.0036 0.4224 ± 0.0037 0.5666 ± 0.0037 0.4356 ± 0.0037 0.4444 ± 0.0037 0.5472 ± 0.0037
0.233 0.5209 ± 0.0036 0.4561 ± 0.0037 0.5341 ± 0.0037 0.4680 ± 0.0037 0.4769 ± 0.0037 0.5145 ± 0.0037
0.25 0.4869 ± 0.0036 0.4898 ± 0.0038 0.5016 ± 0.0037 0.5003 ± 0.0037 0.5093 ± 0.0037 0.4822 ± 0.0037
0.267 0.4529 ± 0.0036 0.5234 ± 0.0038 0.4693 ± 0.0037 0.5324 ± 0.0037 0.5417 ± 0.0037 0.4500 ± 0.0037
0.283 0.4189 ± 0.0036 0.5571 ± 0.0037 0.4371 ± 0.0037 0.5643 ± 0.0037 0.5740 ± 0.0037 0.4180 ± 0.0037
0.3 0.3849 ± 0.0036 0.5908 ± 0.0037 0.4050 ± 0.0036 0.5961 ± 0.0036 0.6062 ± 0.0036 0.3862 ± 0.0036
0.317 0.3509 ± 0.0035 0.6245 ± 0.0037 0.3730 ± 0.0036 0.6276 ± 0.0036 0.6383 ± 0.0036 0.3546 ± 0.0036
0.333 0.3169 ± 0.0034 0.6583 ± 0.0036 0.3411 ± 0.0035 0.6591 ± 0.0035 0.6703 ± 0.0035 0.3232 ± 0.0035
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experimental coincidence measurements. We show the re-
sults for the AD channel in Table I, the PD channel in
Table II, and the D channel in Table III. Due to the

complement rule for orthogonal input states [for instance,
Q(α)(·|H ) = 1 − Q(α)(·|V )], we only show half of the total
data.
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