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The LINPACK benchmark reports the performance of a computer for solving a system of linear equations
with dense random matrices. Although this task was not designed with a real application directly in mind,
the LINPACK benchmark has been used to define the list of TOP500 supercomputers since the debut of the
list in 1993. We propose that a similar benchmark, called the quantum LINPACK benchmark, could be used
to measure the whole machine performance of quantum computers. The success of the quantum LINPACK
benchmark should be viewed as the minimal requirement for a quantum computer to perform a useful task
of solving linear algebra problems, such as linear systems of equations. We propose an input model called
the Random Circuit Block-Encoded Matrix (RACBEM), which is a proper generalization of a dense random
matrix in the quantum setting. The RACBEM model is efficient to be implemented on a quantum computer and
can be designed to optimally adapt to any given quantum architecture, with relying on a black-box quantum
compiler. Besides solving linear systems, the RACBEM model can be used to perform a variety of linear algebra
tasks relevant to many physical applications, such as computing spectral measures, time series generated by a
Hamiltonian simulation, and thermal averages of the energy. We implement these linear algebra operations on
IBM Q quantum devices as well as quantum virtual machines, and demonstrate their performance in solving

scientific computing problems.
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I. INTRODUCTION

Quantum computers hold the promise of dramatically ac-
celerating calculations in a wide range of fields, and quantum
supremacy was achieved in 2019 via sampling random quan-
tum circuits [1]. Assume that there are 10 000 quantum
computers (or many more) available now, how should we
select the top 500 best performing computers for scientific
computing applications? The answer in the context of clas-
sical supercomputers is given by the LINPACK benchmark
[2], which measures the floating point computing power of
a classical computer via its performance for solving linear
systems of equations Ax = b. The input matrix A is a dense
pseudorandom matrix, and there is no immediate applica-
tion associated with such a matrix (similar to a quantum
supremacy experiment in this sense). There has been much
controversy over its effectiveness in measuring the capability
of classical computers in scientific computing applications
since the very beginning. However, LINPACK is widely used
and performance numbers are available for almost all rele-
vant systems. The LINPACK benchmark has been used as
the defining criterion of TOP500 supercomputers since the
debut of the list in 1993 [4]. One important reason is that
dense matrices and dense matrix operations are relatively
easy to implement and to optimize on classical computers.
These operations have been tuned to be highly scalable, which
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enabled the performance benchmark of systems that cover a
performance range of 12 orders of magnitude in the past 20
years.

In order to mimic the success of the LINPACK benchmark
on quantum computers, we consider the problem of solving
the quantum linear system problem (QLSP). Many challeng-
ing high-dimensional problems in physics, such as computing
Green’s functions for a quantum many-body system, can be
formulated in terms of QLSP. This field has witnessed signif-
icant progress in the past few years [5—17]. Shortly speaking,
givenA € C?"*?" and |b) € C?', QLSP aims at obtaining an n-
qubit solution vector |x) oc A~! |b). More precisely and using
the language of block encoding [11], QLSP is the problem of
finding an (m + n)-qubit unitary matrix U, such that

W = (0" @ UM @ ) = 12
’ A=t 1B) I
In other words, the solution is obtained upon measuring 0O for
all m ancilla qubits (with a success probability p).

In this paper, we propose the quantum LINPACK bench-
mark, which can be concisely stated as the problem of using
the quantum computer to evaluate the success probability
p for a certain random matrix A. While the rationale of
such a task will be discussed in detail, we first emphasize
that the quantum LINPACK benchmark examines the whole
machine performance of quantum computers, rather than the
performance of a few qubits as often measured by methods
such as randomized benchmarking [18] and gateset tomog-
raphy [19]. There have been a number of whole machine
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FIG. 1. A cartoon illustration of the RACBEM model.

quantum benchmarks proposed in the literature, such as quan-
tum volume [20], cycle benchmarking [21], and the linear
cross-entropy benchmarking as in the supremacy experiment
[1,22]. However, those benchmark methods are proposed for
generic settings, and therefore they are less representative for
the performance on the user-specified applications. In par-
ticular, the error of a structured circuit can be significantly
larger than that of a fully randomized one [23]. The quantum
LINPACK benchmark targets directly at the performance of
quantum computers for scientific computing applications, as
in the case of the LINPACK benchmark for classical super-
computers. We emphasize that the success of the quantum
LINPACK benchmark does not guarantee that the quantum
computer has solved |x) accurately, but should be viewed as
the minimal requirement for a quantum computer to solve
QLSP. Given the wide range of potential applications of QLSP
from quantum many-body problems to quantum machine
learning, it is important for future quantum computers to first
meet the criterion of the quantum LINPACK benchmark, in
order to achieve quantum advantage via the path of solving
linear algebra problems.

In order to perform the quantum LINPACK benchmark,
note that it would be highly inefficient if we first generate a
dense pseudorandom matrix A classically and then feed it into
the quantum computer using, e.g., QRAM [24]. In fact, such
a strong assumption on the input model often lead to dequan-
tized classical algorithms [25]. Instead we focus on matrices
that are inherently easy to generate on quantum computers. In
particular, the supremacy experiment inspires us to generate a
random matrix directly using a random quantum circuit.

We propose an input model called the Random Cir-
cuit Block-Encoded Matrix (RACBEM). We argue that the
RACBEM model is a proper generalization of dense random
matrices in the quantum setting, suitable for linear algebra
tasks. The RACBEM model, and its Hermitian version called
H-RACBEM model, are simple to construct and allow us
to get access to in principle any n-qubit matrix and n-qubit
Hermitian matrix, respectively (up to a scaling factor) by
adding only one ancilla qubit. Together with the recently de-
veloped technique of quantum singular value transformation
(QSVT) [11], we yield a practical algorithm for performing

the quantum LINPACK benchmark on near-term devices with
a shallow circuit depth.

With QSVT and the H-RACBEM model, the circuit used in
the quantum LINPACK benchmark can be designed to adapt
to the coupling map of almost any given gate-based quantum
architecture. All operations can be carried out with straightfor-
ward usage of basic one-qubit gates and CNOT gates, and there
is no complex controlled unitaries involved. Due to the use
of the basic gate set and the adaptivity to the quantum archi-
tecture, the quantum LINPACK benchmark does not require
the explicit use of the compiler, while the randomized bench-
marking requires gate compilation. Furthermore, the number
of ancilla qubits needed is minimal (usually two). By using
the H-RACBEM model, the condition number of the random
matrices is fully controllable which is crucial for reducing the
circuit depth. While the development of quantum hardware
has been very rapid in the past few years, quantum resources
are expected to remain costly and limited for some time,
with or without the fault-tolerant capability. The H-RACBEM
model can also significantly reduce the efforts needed to op-
timize and to compile the QSVT algorithm. The RACBEM
and its Hermitian version provides a simple and reliable way
to generate random matrices on a quantum computer with a
minimal number of ancilla qubits and a fully controllable cir-
cuit depth. Therefore, we expect that the quantum LINPACK
benchmark uses the minimal circuit to gauge the performance
of a quantum computer for solving linear algebra problems.

Furthermore, we demonstrate that using the same quan-
tum circuit but with different parameters, the combination of
QSVT and the H-RACBEM model can be used to perform
many other linear algebra tasks, such as computing spectral
measures and performing time series analysis (without Trotter
splitting). Using the minimally entangled typical thermal state
(METTS) algorithm [26-28], we also show how H-RACBEM
simplifies the computation of the thermal average of the en-
ergy. These linear algebra tasks can also be used to construct
benchmarks similar to the quantum LINPACK benchmark,
whose performance reflects the minimal requirement for a
quantum computer in solving corresponding scientific com-
puting problems. We implement all algorithms on the IBM
Q quantum architecture. Due to the high noise level of the
currently available quantum architecture, we also demonstrate
the numerical performance using quantum virtual machines
(QVM) with tunable, approximate error models derived from
quantum devices.

II. RANDOM CIRCUIT BASED
BLOCK-ENCODING MATRIX

A. Block encoding

Inherently, quantum computers can handle only unitary
operators. Hence any nonunitary operators must be encoded
in terms of unitary operators. Let A € CV*V be an n-qubit
Hermitian matrix (N = 2"). If we can find an (n + 1)-qubit
unitary matrix Uy such that

Uy = (f‘ j) @)

holds, i.e., A is the upper-left matrix block of Uy, then we
may get access to A via the unitary matrix Uy with A =
(0] ® I,)Ua(|0) ® I,). Clearly when the operator norm ||A||,
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is larger than 1, A cannot be encoded by any unitary Uy as in
(2). Generally if we can find «, € € R, and an (m + n)-qubit
matrix Uy such that

A — a({0"] @ L)UA(10™) ® L)l < €, 3)

then U, is called an (o, m, €) block encoding of A. Here
m is called the number of ancilla qubits for block encod-
ing. The block encoding is a powerful and versatile model,
which can be used to efficiently encode density operators,
Gram matrices, positive-operator valued measure (POVM),
sparse-access matrices, as well as addition and multiplication
of block-encoded matrices (we refer to [11] for a detailed
illustration of such constructions).

The block-encoding model also has its limitation. Take
an n-qubit, d-sparse matrix A (i.e., the number of nonzero
entries in each row or column does not exceed d) for example,
assuming access to its row and column entries via certain
sparse-access oracles, then we can construct a block encoding
using n + 3 ancilla qubits [11]. Any further manipulation of
Uy, such as quantum signal processing, would require using
(n + 4)-qubit Toffoli gates, which are relatively expensive to
implement [29,30]. Another example is that A is given by
a linear combination of K terms, each term being a tensor
product of Pauli matrices. In the setting of the Hamiltonian
simulation, ¢4’ can be simply approximated by exponentiat-
ing each term individually following a certain order via the
Trotter-Suzuki formula. However, the block-encoding model
would essentially require using linear combination of unitaries
[31], which not only requires [log, K| ancilla qubits, but
also usage of ([log, K| 4 1)-qubit Toffoli gates to implement
the prepare and select oracles needed to obtain the linear
combination. Such operations are essentially forbidden for
near-term applications due to high error rates and are still chal-
lenging when the number of qubits and the gate depth remain
a limitation in reaching the desired accuracy on fault-tolerant
devices.

B. RACBEM

To harness the power of the block-encoding model and
to avoid its pitfalls, we propose the Random Circuit Block-
Encoded Matrix (RACBEM) model as follows. Instead of
first identifying A and then finding its block encoding Uy, we
reverse this thought process: we first identify a unitary Uy that
is easy to implement on a quantum computer, and then ask
which matrix can be block encoded by Uy.

It turns out that any matrix A with ||A]|, < 1 can be given
by a (1,1,0) block encoding. Consider any n-qubit matrix with
its singular value decomposition (SVD) A = WXV, where
all singular values in X belong to [0,1]. Then we can construct
an (n + 1)-qubit unitary matrix

U A w1, — X2
A\ = s >
(W 0 p) VI, =Z2\ (vl 0
\0 L)\, — %2 -3 0 L)
which is a (1,1,0)-block encoding of A. Since a random circuit

with poly(n) depth can approximate an n-qubit Haar measure
at least according to the criterion of the 2-design [32], a

FIG. 2. Coupling map of quantum computing backend
ibmgq_burlington provided on IBM Q website [3]. The encircled
number stands for the label of qubit where the color represents the
noise rate of one-qubit gates on it. If two qubits are related by an
arrow, the CNOT gate is directly available between these two qubits.

sufficiently general (n 4 1)-qubit unitary U, can give access
to in principle any n-qubit nonunitary matrices A (up to a
scaling factor). Furthermore, such a random circuit U can
be constructed using only basic one-qubit unitaries and CNOT
gates. The matrix A obtained by measuring the first qubit (or in
fact, any qubit used as the ancilla) is called a RACBEM. Since
the Haar measure is the uniform distribution of unitary matri-
ces, we conclude that RACBEM is a proper generalization of
dense matrices on quantum computers suitable for performing
linear algebra tasks. The layout of the two-qubit operations
can be designed to be compatible with the coupling map of
the hardware. We give a cartoon illustration of the RACBEM
model in Fig. 1.

For instance, for the ibmq_burlington device with its cou-
pling map shown in Fig. 2, we can choose qubit 1 as the
RACBEM ancilla qubit, which results in a RACBEM model
with three system qubits 2,3,4. The qubit O is not used here
and is reserved as the signal qubit for quantum singular
value transformation to be discussed later. An example of the
RACBEM circuit is shown in Fig. 3, which is constructed with
respect to the coupling map in Fig. 2.

C. H-RACBEM

In many applications, such as Hamiltonian simulation,
thermal state preparation, etc., we are interested only in Her-
mitian matrices. It is possible to find a general circuit Uy
that coincidentally block encodes a Hermitian matrix, but this
can become increasingly difficult as n increases. A useful
fact is that once a random circuit Uy is given, its Hermitian
conjugate U, /I is easily accessible by conjugating the each gate
and reversing the gate sequence. We will show below that this
allows us to get access to in principle any n-qubit Hermitian
matrix.

Consider the quantum circuit in Fig. 4 denoted by U,
where ¢y, ¢1 € [—m, 7). Direct calculation (see Appendix A)
shows that

9= (0’| ® L)Ux(10%) @ 1,)
= [—25sin(2¢pp) sin @1 JATA + cos(2pp — ¢1).  (4)
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a0 10) —— Un(5.12) ———] 05(3.09, 2.64,2.83) | U5(5.99, 6.27,0.798) | { U(4.51,5.13,0.165) @
a1 10) @ g U(573)] [, (0137,0709) |—{ v, (0.833,4.42)| @ U5(5.78,1.22,0.301)
@ 0) M—T—{ Us(3.9,4.32,0.171) —— 05 (5.16,3.67) —— 15 (1.39, 1.36) F———— [Us(5.38,3.58,4.07) |
as: [0) {460 [t298)] {661,374 v, (266,307} L

g (continue) Uy(5.25) U, (5.68,2.7) 1(0.034) Uy (6.1,1.35)

a1 (continue) Us(4.21,5.36,3.3) [v,(0.703)} L [U,(363,1.84)] T [0:(234,4.58) Uy (5.45)

g (continue) —] Us(1.05, 1.55, 5.24) /L [Us(3.4,5.71,3.6) U (6.27,2.12)] {i@21)} [05(3.09,4.85,5.24)

g3 (continue) @ @ ® [Us(0.614,1.83,4.87) F——] 11 (0.782) F——] 1, (1.67,2.85)} U (0.783)}

FIG. 3. A RACBEM circuit constructed using the basic gate set {U;, U, Uz, CNOT}. The CNOT gates are directly implementable according
to the coupling map in (a). qo, q1, g2, g3 refer to qubits 1,2,3,4 in (a), where qubit 0 is excluded as a signal qubit. The circuit at the bottom is a
continuation of the top circuit. The block-encoded matrix and its singular values are given in Fig. 14.

Here $ is a Hermitian matrix. We refer to it as a Hermitian
RACBEM (H-RACBEM), and Uy, is its (1,2,0)-block encod-
ing. In particular, choosing ¢y = /8, ¢; = —m /4, then ) =
ATA is Hermitian positive semidefinite. This will be referred
to as a canonical H-RACBEM. In other words, a canonical H-
RACBEM is constructed from its (nonunique) matrix square
root A.

In Fig. 4, the CNOT gate controlling on O instead of 1 is
mainly for notational convenience, and in fact not all CNOT
gates are necessary here. For example, in order to implement
a canonical H-RACBEM, we need only one application of Uy,
one application of U T, two H gates, two standard CNOT gates,
one ST gate, and two T gates (see Appendix A). Since any
matrix with singular values bounded by 1 can be represented
as a RACBEM, we immediately have that any Hermitian pos-
itive semidefinite matrix with eigenvalues bounded by 1 can
be represented as a canonical H-RACBEM, with a sufficiently
flexible Uy.

D. Quantum singular value transformation
Given the SVD A = WXV, and a smooth function f(x)
of even parity, we define the quantum singular value transfor-
mation (QSVT) as

P =V 5)

Here the right-pointing triangle reflects that only the right sin-
gular vectors V are kept. Clearly f>(A) = f(~/ATA), where
the right-hand side is the standard matrix function. Now let f
be a real even polynomial of degree 2d that satisfies | f(x)| <
1 for any x € [—1, 1]. Let Uy be a (1, m,0) block encod-
ing of A. Then following [[11], Corollary 11], there exists a
(1, m + 1, 0) block encoding of f>(A), denoted by Upe(a)-
The circuit to implement Uss(4) is given in Fig. 5, which
can be constructed using d queries of Uy and d queries of
U AT .Here @ := (¢, . .., ¢aq) are called the phase factors. One

challenge in QSVT is to find the phase factors ®. Besides the
methods for obtaining ® by polynomial factorization [11,33],
recently an optimization-based method is proposed to find &
up to very high degrees [34]. A brief description of the method
is given in Appendix B.

Therefore Fig. 4 implements a QSVT for a second-order
polynomial $) = h™(A) with a symmetric choice of phase
factors ® = (¢o, @1, ¢o), where

h(x) = [—2sin(2¢pp) sin @1 1x* + cosRpp — ¢1).  (6)

A canonical H-RACBEM is given by h(x) = x.

Consider any real polynomial g(x) of degree d without
parity constraint, satisfying |g(x)| < 1 for any x € [—1, 1].
Then using the identity

8(9) = (go M (A) := f7(4), (7

any matrix function g($) can be expressed as a QSVT with
respect to an even polynomial f = go h of degree 2d. We
remark that when g does not have a definite parity, the as-
sociated QSVT of A is much more involved. It generally
requires using a linear combination of block encoding of
the even and odd parts, which in turn requires implementing
controlled Uy [11]. Normally such controlled operations have
significant overhead. For instance, if we would like to imple-
ment a controlled-RACBEM, generally we need to convert all
quantum gates in the circuit of Uy to the controlled version.
By expressing g($)) as a QSVT associated with an
even polynomial, we have not only eliminated the need of
controlled unitary operations, but also saved one additional
qubit. This is because if we first construct a H-RACBEM £
and then construct g($)), we need three ancilla qubits in total,
and possibly a LCU circuit when g does not have a definite
parity. On the other hand, by considering the composite func-
tion f, the parity constraint on g is completely removed, and
we need only two ancilla qubits (the same as that needed for a
H-RACBEM). Furthermore, each controlled gate in Fig. 5 is

0) e '0% [P D{e 02 |-0 Pz |-
0) L j

UA UJ;
|4)

FIG. 4. Quantum circuit for generating a (1,2,0)-block encoding of a H-RACBEM from a (1,1,0) block encoding U, and its Hermitian

conjugate. H is the Hadamard gate, and Z is the Pauli-Z gate.
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FIG. 5. Quantum circuit for quantum singular value transformation of a real matrix polynomial of degree 2d. For QSVT of a H-RACBEM,

the number of ancilla qubits m can be set to 1.

a standard CNOT gate rather than a Toffoli gate. Therefore the
H-RACBEM model has a salient advantage and significantly
simplifies the implementation.

In many applications, such as a LCU circuit and the
Hadamard test, we do need to get access to controlled Ug,
or Uyg)y. In such a case, the fact that §) is a H-RACBEM is
also helpful: Note that if we remove all Z rotations in the
first line of Fig. 5, the circuit implements an identity operator
since Uy, U, AT always appear in pairs due to that f = goh is
an even polynomial. Therefore a controlled version Uy ) can
be simply implemented by controlling all the Z-rotation gates

[11].

III. PROPOSAL OF QUANTUM LINPACK BENCHMARK

The RACBEM, as well as the H-RACBEM model provides
a solution to the read-in problem using only basic quantum
gates, and we can design them to be optimally adapted to the
hardware architecture without resorting to complex quantum
compilers. Hence they can be regarded as the proper general-
ization of “test dense matrices” in the quantum setting.

In this section, we demonstrate that the usage of the H-
RACBEM model for solving QLSP. We assume A = §) is
a H-RACBEM, and without loss of generality we may take
|b) = |0"). Let the condition number of ) be denoted by «,
which is the ratio between the maximum and the minimum of
the singular values of ). It is believed that the computational
complexity for solving QLSP cannot generally be better than
O(x'~?) for any 8 > 0 [12], and the cost of using QSVT to
solve general linear systems scales as O(Kzlog(l/e)) [11].
So the treatment of ill-conditioned matrices is very difficult
especially on near-term devices. To reduce the circuit depth, in
the near future it may be more productive to focus on solving
well-conditioned linear systems.

Note that if A has at least one singular value that is zero
(or near zero), a canonical H-HRACBEM ) is not invertible (or
very ill-conditioned). Such events can occur more frequently
as n becomes large. It can be difficult to diagnose such a
problem without first obtaining some spectral information of
A, which is perhaps a more difficult task than solving the linear
system problem itself.

The H-RACBEM model offers a new and natural way to
solve this problem. From Eq. (4), assuming cos(2¢y — ¢;) >
0 and —2sin(2¢p)sin @; > 0, and use that 0 < ATA < 1, the
condition number of §) can be bounded from above:

cos(2¢y + ¢1)
cos(2pp — 1)

Therefore the condition number of a H-RACBEM is fully
tunable by changing the phase factors ¢y, ¢;. According to
Eq. (6), this changes the second-order polynomial function

k($) <

h(x), so that § := h”(A) > 0 has a tunable, bounded condi-
tion number.

In order to solve QLSP, we are interested in finding a
polynomial g(x) of degree d so that

lgx) —x 7' <e, xelc ' 11

Following [[35], Corollary 69], there can be satisfied by an
odd polynomial g(x) with degree d ~ O(x log(1/€)), which
gives an upper bound on d. Numerical results shows that a
better approximation to g(x) can be obtained by solving a
minimax problem using the Remez algorithm [34], and the
polynomial can be chosen to be either even or odd. Fig-
ure 6 shows the shape of the optimal polynomial even or
odd approximation to x~! on the interval [« !, 1] found by
the Remez algorithm to reach a target accuracy of 10~ with
k = 10. In particular, the usage of an even polynomial can
further reduce the polynomial degree, which will be used in
the numerical tests below.

We may then construct a degree 2d polynomial f = goh
as in Sec. II. Once we find the associated phase factors, the
circuit in Fig. 5 implements g($) |b), which satisfies the er-
ror bound ||g(9) |b) — k197! |b) ||, < € for any normalized
vector |b). The success probability of measuring the ancilla

2.0 A
/\
Iy
1.5+ 1’
1
,’ \
1.0 1 \
]
/ A\
0.5 4 P "
f’ h u
_05 — \\\
—-1.0 1 \
~1.5- — 1/(kx), k=10
——- even, deg=50
—2.01 odd, deg=69
-1.0 -0.5 0.0 0.5 1.0
X

FIG. 6. Approximate polynomials obtained by the Remez algo-
rithm. The even and odd polynomials are generated such that the
maximal approximation error to 1/(«x) on [k, 1] is 1073. We find
that the polynomial degree of the even approximation is lower than
that of the odd approximation.
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qubits and obtaining an all 0 output (will be referred to as the
success probability for short) is

p=1g® b3 > (™' =€),

which can be of modest size given « is not too large.

Since measuring the accuracy of all entries of the solution
is not a practical goal, our proposal of the quantum LINPACK
benchmark is to measure the success probability p, i.e., the
probability of measuring the two ancilla qubits and obtaining
|00}, and to compare it with the numerically exact probabil-
ity (denoted by pexact) computed using a classical computer.
When «, €, and H-RACBEM are given, the quantum LIN-
PACK benchmark reports the relative error |p — Pexact|/ Pexact
to describe the accuracy of a quantum computer for solv-
ing QLSP. In the future we may also take into account the
wall clock time, or a quantity analogous to the floating point
operations per second (FLOPS) for classical computers to
measure the efficiency of a quantum computer. The quantum
LINPACK benchmark uses only basic single-qubit gates and
CNOT gates, and hence is easy to implement even on near-term
devices.

Clearly, the success of the quantum LINPACK benchmark
is only a necessary condition for the accurate solution of
QLSP. However, as will be shown in numerical experiments,
this task can already be challenging for near-term devices due
to the presence of noise, and therefore the benchmark provides
a meaningful and easily implementable criterion for measur-
ing the accuracy of quantum computers. Furthermore, due
to the very flexible construction of U, and the near-minimal
usage ancilla qubits and other primitive gates, we also expect
that the success of quantum LINPACK benchmark is the min-
imal requirement in order to achieve quantum advantages by
solving QLSP or similar linear algebra tasks.

IV. OTHER QUANTUM LINEAR
ALGEBRA APPLICATIONS

Since QSVT implements a general matrix function, its
application is therefore not limited to solving QLSP. Here we
demonstrate a few more applications. Throughout the section
$ is a H-RACBEM defined via a unitary matrix Uy and h(x)
is a second-order polynomial.

A. Time series analysis

Given an n-qubit state |1 ), consider the computation of the
following time series:

s@t) = (Yl ). 8)

When §) is a H-RACBEM, we can evaluate s(¢) by measuring
the its real and imaginary components separately:

s(t) = (Y| cos(HO)|Y) + i (Y| sin($H0)|¢)
= 2(y | 3(cos($H1) + 1,) | ¥)
+ 2i(y | 3(sin($9H10) + L) [ ¥) — (1 +10)
=:2[18e. (9) 1Y) 15 + 2illgs. (9 1Y) 15 — (A +0). (9)

Here we introduce the functions for the cosine and sine part,
respectively,

gc,,(x>=,/%, gx,,(x>=,/%.

Now the quantities in Eq. (9) can be directly obtained via the
success probability of the QSVT circuit with f., :=g.,0h
and f;, := g, o h, respectively (with a suitable polynomial
approximation of g.,, gs,). Note that the access to the matrix
square root of $ here is crucial: though g, is an even function
itself, g;, does not have a definite parity, and therefore the
direct implementation of g, ,($)) would require a LCU circuit
and hence controlled unitary operations. In the setting of H-
RACBEM, the treatment of g, ; and g, , can be put on the same
footing due to the composition with the even polynomial 4.

In order to accelerate the convergence of the polynomial
approximation, in practice, we may introduce another tunable
parameter 2> 1 in the formulation so that

3c,t,n(x) - \/@’ gs.t,r](.x) = \/@

and then

$(1) = 2l1ge.rn () [V 15 + 2illgsr.y () 1¥)115 = n(1 4 d).

For instance, n can be set to 1.0 or 1.5, and the details are
given in Table II below.

In [36] the time series analysis is used for eigenvalue es-
timation, which is implemented via the Hadamard test and
requires a controlled Hamiltonian evolution procedure, fol-
lowed by a Fourier transform. The procedure above removes
the need of performing controlled Hamiltonian evolution. We
also remark that in terms of quantum estimation of eigenval-
ues, the method using the spectral measures to be discussed
below can be more advantageous, which does not require a
subsequent Fourier transform, and the resulting spectral mea-
sure is guaranteed to be non-negative.

B. Spectral measure

Given an n-qubit state |1}, in order to approximately eval-
uate the spectral measure, we can use the Plemelj formula

S(E) = (y16(H — E)ly)
= lim lIm WH—-—E—in~ '), Eel-1,1].
n—0+ 7T
(10)

By choosing a finite n as the broadening parameter, we need
to evaluate

sy(E) = gw (B —EY + 1) ).
Now define

1

772 2
gne(x) = (m) ;

which satisfies |g, g| < 1 forx € [—1, 1], then g, g o h can be
approximated by an even-order polynomial. Therefore

1
sy(E) = n—nllgn,E(ﬁ) )3,
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and it can be obtained via the success probability of the
QSVT circuit with f = g, g o h (with a suitable polynomial
approximation of g, g).

C. Thermal averages

In order to evaluate the thermal average of the energy (B is
the inverse temperature)

Tr[$HHe #9]
Trle=#9] "’

we can use the minimally entangled typical thermal state
(METTYS) algorithm [26-28]. Let Z = Tr[e#9], and

1
E@B) = ) (il 22072y =3 pi(gil91gi)

i€[N] i€[N]

EB) =

Here i loops over all states of the computational basis,
each represented by an n-bit string. From the unnormalized
states |¢;) = e #9/2|i), we define a probability distribution
pi = (¢il¢:i) /Z, and corresponding normalized states |¢;) =

|$[) /+/ {@il@;). For each i, the contribution to the energy can
be expressed as

e el llgnp(9) 10113
il = Gy T lga s () 10112

(1)

Here we define

gup(x) = e P2,

for the numerator and the denominator, respectively, and with-
out loss of generality we assume $) > 0. The numerator and
the denominator can be obtained via the success probability
of the QSVT circuit with f,, g := gsg o hand f; 3 :== ga g o h,
respectively (with a suitable polynomial approximation of
8n,B> gdﬂ)

Unlike Metropolis-type algorithms which follows an ac-
ceptance and rejection procedure, the METTS algorithm
samples the states {|¢;)} as follows. We start from a computa-
tional basis state |i) (e.g., |i) = |0")). Then

(1) Evaluate the contribution to the energy from the state
|¢;) via Eq. (11).

(2) Collapse |¢;) to a new state in the computational basis
i’y with probability | (i'|¢;) |?, and repeat step 1.

Note that step 2 of the METTS algorithm is very simple
to implement: we only need to construct a QSVT circuit
for preparing the unnormalized state |¢;), which is readily
available when computing the denominator in Eq. (11). Then
collapsing to |i) can be implemented by measuring all n
system qubits in the computational basis.

The evaluation of f, g := g, g © h requires approximating
the square root function. When §j is a canonical H-RACBEM
with h(x) = x2, an alternative method is to approximate
an odd function f, 4(x) = xe #*'/2 instead of f, 4. Then
the complexity for thermal average calculation can be only
O(/Blog(1/¢€)) [[35], Corollary 64].

gap(x) = e P2,

V. NUMERICAL RESULTS

The source code of RACBEM is available in the Github
repository [37]. We use the optimization-based algorithm

which is described in Appendix B to generate phase factors,
and the source code is available in the Github repository [38].
We demonstrate the numerical performance of the RACBEM
model for solving various numerical quantum linear algebra
tasks. The algorithms are performed on the IBM Q quantum
device, as well as QVM with approximate noisy running envi-
ronment retrieved from quantum devices. All numerical tests
are implemented in python3.7 and Qiskit [39]. In order to con-
struct an adjustable noise model, we retrieve the noise model
from real quantum devices provided by IBM Q backends. The
magnitude of the noise level is then made to be fully tunable
through a single parameter . When o = 0, the only noise
contribution comes from the Monte Carlo error in measure-
ments, which can be systematically reduced by increasing the
number of samples. When o = 1, the noise model contains all
the readout errors and quantum errors associated with a prob-
ability distribution given by the retrieved noise model (see
Appendix C for details). Unless otherwise noted, the number
of measurements (shots) is fixed to be 8192 throughout this
section. As the quantum linear algebra tasks are solved via
QSVT, the overall error consists of contributions from the
polynomial approximation, the noise from the device, and the
Monte Carlo sampling error. We remark that in numerical re-
sults we distinguish the setup of “QSVT without error” (only
taking into account the polynomial approximation error) from
that of “o = 0” (including both the Monte Carlo sampling
error and the polynomial approximation error).

We use Algorithm 1 (in Appendix C) to generate custom
random quantum circuits with respect to a given coupling
map. In each layer of the quantum circuit, we apply a
one-qubit (or two-qubit) gate to each qubit (or a pair of
qubits) randomly selected from the basic gate set. Though
CNOT gates can increase the entanglement among the qubits,
their error rate is much higher than that of one qubit gates on
IBM Q backends. So we control the number of CNOT gates
via a parameter to determine the probability that a CNOT gate
is drawn. Unless otherwise noted, this probability is set to
be p = 0.5. The circuit depth is the same as the number of
layers in the generating circuit. We would like to emphasize
that the circuit depth must not be too small. Otherwise the
block-encoded matrix can sometimes become degenerate
(such as a scaled identity matrix). For an n-qubit system,
we empirically set the depth ¢ to be £ =3 when n =1,
£=7whenn=2,and £ = 15+ 2(n — 3) when n > 3. We
report the statistics of singular-value distributions of the
block-encoded matrix in Fig. 17 (Appendix E) to justify this
adaptive choice of the circuit depth.

According to the random quantum circuit generation algo-
rithm, we measure the total gate count of a quantum circuit
by its logical gate count with respect to the basic gate set,
which is upper bounded by its depth £ times the number of
system qubits n. The available basic gates provided by IBM
Q backends are the CNOT gate and U1, U2, U3 gates, which
are parameterized families of generic one-qubit gates (see
Appendix C for details). In order to reduce the noise due to U3
gates, we restrict the basic gate set in the custom random cir-
cuit generator to be {CNOT, U1, U2}, which is still a universal
gate set. Each controlled rotation in QSVT circuit costs seven
logical gates (four X gates implemented by U2 gates, two
CNOT gates, and one Ul gate). Therefore, given a RACBEM
whose depth is ¢ and with n system qubits, to implement
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FIG. 7. Relative error in success probability of obtaining A |0")
for different number of system qubits. The box ranges from the first
to the third quartiles (25% and 75% percentiles, respectively) of the
data set. The horizontal line inside the box stands for the median of
the data set. The whisker extending from the box indicates the rest of
the data set. The RACBEM’s are generated using our custom random
circuit generator in which the coupling map, basic gates and logical-
to-physical layout are specified. When the number of system qubits
is less than or equal to three, the results are obtained on the five-
qubit backend ibmq_burlington. Other results are obtained using 15-
qubit backend ibmq_16_melbourne. The data set consists of results
from 200 RACBEM’s when n = 1, 2, 3, 300 RACBEM’s when n =
4,5,6,400 RACBEM’s when n = 7 and 500 RACBEM’s when n =
8.

the QSVT of a real polynomial of degree d, the total gate
count for the circuit is upper bounded by 2 + 7(d + 1) + d¢n.
The details about QSVT phase factors used in numerical
experiments can be found in Appendix E. Unless otherwise
noted, the input quantum state of the quantum circuit is set to
|0n+2)'

A. RACBEM

Before presenting results of various numerical linear alge-
bra problems, we measure the effect of noise on RACBEM
directly on quantum computing backends provided by IBM Q.
The numerical results are displayed in Fig. 7. Each data point
is obtained by generating a RACBEM using Algorithm 1, and
we measure the success probability of obtaining the block-
encoded matrix applied to |0"), which is equal to ||A |0") ||%.
The number of repeated measurements (shots) is 8192. Fig-

o
~

I
N

0.0

ibmg_london ibmq_burlington ibmg_essex ibmq_ourense

IBM Q backend (5-qubit)

ibmq_vigo

FIG. 8. Relative error of solving QLSP using the H-RACBEM
model on IBM Q five-qubit backends with identical quantum ar-
chitectures. The condition number of each H-RACBEM is upper
bounded by two and the number of system qubits is three. The size
of the box indicates the first and the third quartiles and the extending
whisker indicates the rest of the data set. The phase factor sequences
of length three and 11 are used to carry out QSVT to solve QLSP.
Each data set is obtained using 100 samples at random. The details
about phase factors are given in Table I.

ure 7 shows that the relative error of the quantum device can
be considerable, ranging from 10% to 30% as n increases.
Since the RACBEM is the building block of all subsequent
quantum linear algebra tasks, we expect that the relative error
of such tasks on quantum computing backends provided by
IBM Q should be at least around the same level.

B. QLSP

According to the discussion in Sec. III, it is possible to
measure the accuracy of the solution to QLSP by sampling
the output distribution of g(£)) |0") using, e.g., a cross-entropy
test similar to that in [1]. Here for simplicity we only mea-
sure ||g($))]0™) ||% as a success probability (of measuring all
ancilla qubits and obtain zeros), and evaluate the relative error
compared to the exact value ||a~'$~!|0") ||§ evaluated on a
classical computer where o is a scaling factor (see Table I
for details). The small relative error in success probability is
a necessary condition to ensure the solution is correct which
yields the benchmark in a weak sense. The condition number
of H-RACBEM is controlled by a second-order polynomial
he(x) := (1 =k x?> + k=" as in Sec. III. Another polyno-

TABLE I. Parameters of the QSVT circuit in solving QLSP, i.e., in Figs. 8 and 9. Numbers in square brackets indicate the power of 10.

K Length of QSVT phase factors d + 1 QSVT approximation error Logical gate count Scaling factor
IBM Q 2 3 2.79722 [-2] 23 4 2¢n 3.59306

2 11 2.44481 [-5] 79 + 10¢n 3.59306
QVM 2 5 6.18245 [-3] 374 44n 2.38234

5 1.90152 [-2] 51 +6¢n 5.86631

10 3 7.45462 [-3] 93 + 12¢n 11.89390

20 9 6.65999 [-3] 1354 18¢n 23.81003
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FIG. 9. Relative error of solving QLSP for different number of system qubits, condition number, and noise magnitude. The numerical
results are obtained by running on QVM with architecture and noise model retrieved from IBM Q backend ibmq_16_melbourne. Each kind of
parameter is computed by solving QLSP of 300 RACBEM’s at random. The marker is the average of each data set, and the shaded area is the
95% confidence interval inferred from the data set. The details about phase factors are given in Table I.

mial g, (x) which approximates x~! is chosen to perform

matrix inversion. The composite polynomial g, o i, can be
implemented by an even order QSVT circuit to carry out the
overall procedure with only two ancilla qubits.

We report the performance of solving linear systems on the
IBM Q device using the H-RACBEM model in Fig. 8. The
architecture of the five backends are identical, and therefore
we may draw a H-RACBEM at random and test it on all
five backends. By tuning A(x), the condition number of
is upper bounded by 2. Therefore we may even use a very
short QSVT circuit with d = 2, and the corresponding number
of phase factors is three. This is essentially a linear approxi-
mation to the inverse, and the accuracy measured by the L*™
error is less than 0.03. In such a case, the total logical gate
count is upper bounded by 113. We can refine the polynomial
approximation by using a more accurate, and deeper QSVT

circuit with d = 10 (the number of phase factors is 11, and
the L™ error is less than 3 x 1077). In a case when d = 10, the
total logical gate count is upper bounded by 529. The results
in Fig. 8 indicate that for the shallow circuit, the relative
error of the success probability is similar to that observed in
Fig. 7, which measures only the success probability of the
block encoding. However, the relative error is significantly
larger using the deeper circuit, despite that the QSVT circuit
implements a more accurate polynomial approximation to the
matrix inverse. Thus, we conclude that when designing the
quantum circuit, a proper choice of QSVT phase factors is
needed which reflects the tradeoff between the polynomial
approximation error and the error caused by the noisy running
environment.

In order to further demonstrate how various parameters can
affect the accuracy of the QLSP solver, we vary the number of
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FIG. 10. Time series computed by using the canonical H-RACBEM model and QSVT. The details about phase factors are given in Table II
and the details about block-encoded matrices are given in Fig. 18. (a) Results obtained on IBM Q backends. The probability of CNOT is
0.1 when generating random circuits. (b) Results obtained on QVM with architecture and noise model retrieved from the IBM Q backend

ibmq_16_melbourne. The probability of CNOT is set to 0.5.

system qubits, the condition number, and the noise magnitude,
and compute the relative error of success probability under
these different settings on QVM. The numerical results are
presented in Fig. 9. In all cases, we find that the QLSP solver
can perform very well when o is small. The error is due only
to the polynomial approximation and the Monte Carlo sam-
pling error. This corresponds to the setting of fault-tolerant
quantum devices. However, the accuracy rapidly deteriorates
as o increases. In the noisy setup, the error also increases
nearly proportionally to the condition number «. This is be-
cause the polynomial degree d should increase as O(k) in
order to achieve constant accuracy, and so is the circuit depth.
The error also increases with respect to the number of system
qubits, but the effect is less significant compared to that due
to k, which increases the circuit depth.

C. Time series analysis

The numerical results regarding the time series analysis
are shown in Fig. 10. The results in Fig. 10(a) are obtained
on the IBM Q backends. When the number of system qubit
is 1 (the circuit uses three qubits in total), the features of
the time series obtained from the quantum device can agree
qualitatively with the exact solution. However, as the number
of system qubits increases to five, the result is dominated by
the quantum noise. In order to investigate the performance of
larger systems and the effects of noise, we use the tunable
QVM instead in Fig. 10(b). The length of phase factors is
chosen adaptively as ¢ increase in order to reduce the error of
the polynomial approximation (details are given in Table II).
When the noise level o is tuned to O, the results from the
QSVT circuit are uniformly accurate for all 7 in [1,10]. How-
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TABLE II. Parameters of QSVT circuits in the time series analysis, i.e., in Fig. 10. Numbers in square brackets indicate the power of 10.

t n Length of QSVT phase factors d +1  QSVT approximation error ~ Logical gate count  Scaling factor
Real part 1 1.0 3 1.23670 [—2] 23 +2¢n 1.21807
2 1.0 3 4.25711 [-2] 23 +2¢n 1.26458
3 1.0 5 9.64293 [-3] 37+ 4¢n 1.21400
4 1.5 7 8.48770 [-3] 51 +6¢n 1.34011
5 2.0 7 2.66925 [—2] 51 +6¢n 1.51827
6 1.5 9 2.10169 [-2] 65 4 8¢n 1.35177
7 1.5 9 3.47455 [-2] 65 + 8¢n 1.39998
8 1.5 9 5.78363 [-2] 65 + 8¢(n 1.44148
9 1.5 11 2.84139 [-2] 79 4+ 10¢n 1.37467
10 15 11 3.26549 [-2] 79 + 10¢n 1.38139
Imaginary part 1 1.0 3 1.14646 [—2] 23 +2¢n 1.16750
2 1.0 3 4.73088 [—2] 23 +2¢n 1.24295
3 1.0 5 1.60676 [—3] 37+ 4¢n 1.19769
4 1.0 5 8.83397 [-3] 37+ 4¢n 1.18742
5 1.5 5 7.76900 [—2] 37 +4¢n 1.23512
6 1.5 7 3.15931 [-2] 51 +6¢n 1.36811
7 1.5 7 6.47625 [-2] 51 +6¢n 1.35109
8 1.5 9 5.50680 [—2] 65+ 8¢n 1.43342
9 1.5 9 5.73218 [-2] 65 + 8¢(n 1.40154
10 15 11 6.46945 [-2] 79 4+ 10¢n 1.41058

ever, since the circuit depth needs to increase proportionally to
t, when the noise level is not 0, the error is significantly larger
as t increases. We also remark that our custom noise model
with o = 1 contains only partial kinds of noise derived from
the real IBM Q device (details in Appendix C). Therefore, in
Fig. 10 the time series computed on the real device behaves
much worse than that computed from the simulation using the
noise model with & = 1 on the QVM.

D. Spectral measure

In the limit when n — 0, the spectral measure is given by
the summation of Dirac § functions. Hence when » is small,
the spectral measure has sharp features even when 7 takes
a finite value, which in turn requires a polynomial of higher
degree to resolve. So we consider only spectral measures
forn=7,8,9,10 on QVM, and the size of § ranges from
128 to 1024. The numerical results of spectral measures are
presented in Fig. 11. The spectral measures exhibit rather
different features. This is not so much related to the number
of system qubits and is mostly due to the specific instance
of the H-RACBEM. In all cases, the quantum algorithm can
capture at least the qualitative features of the spectral mea-
sures, though the noise plays an important role particularly
for the instance n = 9. We also remark that the functionality
of the QSVT circuit depends only on the set of phase factors
as E sweeps across the spectrum. The length of corresponding
QSVT phase factors is set to 11 for each point. In Tables III
and IV, for points closer to the middle of the spectrum (E =
0.5), we observe that a polynomial of larger degree is needed
to achieve the same accuracy in approximation. Therefore,
it can be seen from Fig. 11 that the deviation between the
value given by noiseless QSVT and the exact one increases
as the parameter moves towards the middle of the spectrum.
The choice of the circuit depth reflects the tradeoff between
approximation error and the effects of noise. To illustrate this,

we also compute the spectral measures in Appendix D by
using a deeper QSVT circuits. Although the deeper circuit can
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FIG. 11. Spectral measure computed by using the canonical H-
RACBEM model and QSVT. The numerical results are obtained by
running on QVM with architecture and noise model retrieved from
IBM Q backend ibmq_16_melbourne. For each number of system
qubits, we draw a canonical H-RACBEM randomly according to the
backend architecture. The probability of CNOT is 0.5 when generating
random circuits. The details about phase factors are given in Table III
and the details about block-encoded matrices are given in Fig. 18.
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TABLE III. Parameters of the QSVT circuit in computing spec-
tral measure, i.e., in Fig. 11. Numbers in square brackets indicate the
power of 10.

Length of QSVT

QSVT phase approximation Logical Scaling
E factors d + 1 error gate count factor
0.0 11 3.20242 [-2] 79 4+ 10¢n 2.14095
0.1 11 5.59268 [—2] 79 4+ 10¢n 2.14095
0.2 11 1.23926 [—1] 79 4+ 10¢n 2.14095
0.3 11 1.32550 [—1] 79 4+ 10¢n 2.14095
0.4 11 1.36737 [—1] 79 + 10¢n 2.14095
0.5 11 1.71503 [—1] 79 4+ 10¢n 2.14095
0.6 11 1.36727 [—1] 79 4+ 10¢n 2.14095
0.7 11 1.32529 [—1] 79 + 10¢n 2.14095
0.8 11 1.23922 [—1] 79 + 10¢n 2.14095
0.9 11 5.59258 [-2] 79 4+ 10¢n 2.14095
1.0 11 3.20242 [-2] 79 4+ 10¢n 2.14095

produce better results in the noiseless setting, the quality of the
spectral measure can significantly deteriorate in the presence
of the quantum noise.

E. Thermal average of the energy

In Fig. 12(a) we compute the thermal average of the energy
of H-RACBEM'’s on IBM Q backends for n from 1 to 5. We
reduce the length of QSVT phase factors as much as possible
while balancing the approximation error and the quantum
error, and the details can be found in Table V. Since METTS
is a Monte Carlo algorithm, we perform a sufficiently large
number of steps to reduce the error due to the METTS al-
gorithm, by monitoring the cumulative moving average of the
thermal average of the energy in Fig. 16 in Appendix D. Com-
pared to the results above obtained on IBM Q, the results for
the thermal average of the energy are somewhat surprisingly
accurate in all cases. We also compute the thermal average
of the energy on QVM to further investigate the effect of
the noise for n = 3,5, and 7. In Fig. 12(b), (i) and (ii), the

TABLE IV. Parameters of the QSVT circuit in computing spec-
tral measure with higher approximation precision, i.e., in Fig. 15(b).
Numbers in square brackets indicate the power of 10.

Length of QSVT

QSVT phase approximation Logical Scaling
E factors d + 1 error gate count factor
0.0 21 9.59006 [—4] 149 +20¢n  2.14095
0.1 27 5.02000 [—3] 191 +26¢n  2.14095
0.2 33 5.48205 [-3] 233 432¢n  2.14095
0.3 37 5.90586 [—3] 261 +36¢n  2.14095
04 41 4.66722 [-3] 289 +40¢n  2.14095
0.5 43 4.38167 [-3] 303 +42¢n 2.14095
0.6 41 4.66727 [-3] 289 +40¢n  2.14095
0.7 39 3.70179 [-3] 2754 38¢n  2.14095
0.8 35 3.29638 [-3] 247 4+ 34¢n  2.14095
0.9 27 5.01941 [-3] 191 +26¢n  2.14095
1.0 19 2.53240 [-3] 135+ 18¢n  2.14095

identical quantum computing task is emulated on different
backends, and the only difference is due to the noise model. It
is evident that the behavior of the solution depends sensitive
on the noise. On the other hand, we find that the solution
remains remarkably accurate as n increases, even when S is
relatively large. For most data points, the thermal average of
the energy decreases monotonically with respect to 8, and we
observe that as o increases, the energy curve shifts downwards
monotonically.

VI. CONCLUSION

Analogous to the LINPACK benchmark for measuring
the performance of classical supercomputers, we have pro-
posed a quantum LINPACK benchmark to measure the
performance of current and future quantum computers for
scientific computing applications. The quantum LINPACK
benchmark solves a well conditioned quantum linear system
problem, which is enabled by the Hermitian RAndom Circuit
Block-Encoded Matrix (H-RACBEM) input model and the
quantum singular value transformation (QSVT). The flexi-
bility provided by the H-RACBEM model also allows us to
perform other linear algebra tasks already on near-term de-
vices, such as computing spectral measures, and time series
generated by a Hamiltonian simulation. We can also compute
the thermal average of the energy, using a quantum version
of the minimally entangled typical thermal state (METTS)
algorithm.

We perform these linear algebra tasks on IBM Q quantum
devices, and quantum virtual machines with a tunable noise
model. Although present quantum devices still suffer from
high noise levels, it is nonetheless encouraging to observe
that the solutions can already be qualitatively obtained in the
noisy environment. Among all numerical tests, the thermal
average of the energy computed via the METTS algorithm
appears to be particularly robust with respect to noise. When
designing the quantum circuit, we need to carefully choose
the length of QSVT phase factors, by balancing the polyno-
mial approximation error and the additional quantum error
caused by the increase of the circuit depth. Our numerical
tests are currently limited to matrices up to 10 qubits (the
corresponding matrix size is 1024) in order to compare with
numerically exact results obtained on classical computers.
However, the number of qubits can be directly increased to
be much larger, especially on future devices with reduced
noise level.

Note that Google’s quantum supremacy experiment is a
benchmark problem (the linear cross-entropy test) and is also
hard for any classical computer. The classical hardness is
justified by that sampling a certain random quantum circuit
(e.g., one that implements a chaotic quantum evolution) and
generating heavy outputs is a difficult task on any classi-
cal computer [32,40—47]. Although the quantum LINPACK
benchmark also involves a supremacy-type random circuits,
the success of the benchmark is defined by measuring only
two ancilla qubits, and the task could therefore possibly be
“classically spoofed” when the block-encoding matrix Uy is
drawn from a known distribution, such as the Haar measure.
We would like to therefore clarify that a quantum benchmark
problem does not need to be classically hard in order to
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TABLE V. Parameters of the QSVT circuit in computing the thermal average of the energy, i.e., in Fig. 12. Numbers in square brackets

indicate the power of 10.

B Length of QSVT phase factors d + 1 QSVT approximation error Logical gate count Scaling factor
Numerator 1 4 8.10003 [—3] 30 4+ 3¢n 0.72602

2 4 3.35247 [-2] 30+ 3¢n 0.53351

3 6 9.27231 [-3] 44 + 5¢n 0.42483

4 6 1.96455 [—2] 44 4 5¢n 0.37029

5 6 3.36597 [—2] 44 4+ 5¢n 0.33182

6 8 9.57788 [-3] 584+ 7¢n 0.29986

7 8 1.51955 [-2] 58 + 7en 0.27823

8 8 2.21488 [-2] 584+ 7¢n 0.26052
Denominator 1 3 1.03401 [-2] 23 +2¢n 1.18530

2 3 3.37925 [-2] 23 +2¢n 1.15324

3 5 7.30555 [-3] 37+ 4¢n 1.18960

4 5 1.40523 [-2] 37 + 4¢n 1.18014

5 5 2.25225 [-2] 37 + 4en 1.16846

6 5 3.22698 [—2] 37 + 4¢n 1.15529

7 7 8.56996 [—3] 51+ 6¢n 1.18781

8 7 1.20692 [—2] 51 +6¢n 1.18290
provide useful information on the performance of quantum or
computers. Indeed, we expect that the success of quantum .
LINPACK benchmark is the minimal requirement in order to UL 1) 1L) =10) (I, —ATA) |[y) — [1) | L) (A2)

achieve quantum advantages via linear algebra tasks such as
QLSP. On the other hand, it is possible to go beyond the quan-
tum LINPACK benchmark, and to formulate a more elaborate
cross-entropy test related to QLSP that is also classically hard.
This requires detailed studied of the statistical properties of
truncated unitaries in the block-encoding model and QSVT
problem, which will be our future work.
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APPENDIX A: DERIVATION OF H-RACBEM

To derive Eq. (4), we start from a state |0) |0) |v), and fol-
low the circuit in Fig. 4. After applying Uy, the state becomes

%(ei% 10) + ¢ [1))(I0) A [9) + [1) |L)). (AL)

Here | L) is an n-qubit state defined through the relation
Ual0) [yr) = [0) A fyr) + 1) [L).
Therefore
10} [¥) = U;UA10) [¥)
= [0) (ATA) [y) + 1) | L) + U [1) | 1)

Here | L') is another n-qubit state. Via the relation (A2), after
applying U ¥, the state (A1) is transformed to

%(e“w“*w“ 10) + e~ * [1))(10) ATA [) + 1) | L))

+ %(e“%—‘m 10) + €0 1))(10) (1, = A"A) [y)

=L (A3)
Finally, carrying out the remaining operations of the circuit in
Fig. 4, and applying (0%| ® I,, we obtain the form in Eq. (4).

The quantum circuit for representing a canonical H-
RACBEM can be simplified using Fig. 13, still denoted by
Ug. Here the two phase shift gates are

10 10
S=<0 i)’ Tz(o eiii)'

Furthermore, we removed the controlled-NOT gates near the
Hadamard gates, and replaced the controlled-NOT gates by the
standard CNOT gate controlled on 1.

Following the same line of calculation above, starting from
|0) |0) |), the state is transformed to

<
V2

after applying Uy, and then to

(10) + €% [1))(0) A [y) + 1) | 1))

1

0) + e '3 1))(j0)ATA 1L
ﬁ(l>+e [I)(0)A'Alr) + [1)[L"))

+ %(e"ﬂm + €5 1))(0) (I, — ATA) W) — 1) L)),
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FIG. 12. Thermal average of the energy computed by using the
canonical H-RACBEM model and QSVT. The details about phase
factors are given in Table VI and the details about block-encoded ma-
trices are given in Fig. 18. (a) Results obtained on IBM Q backends.
The probability of CNOT is 0.1 when generating random circuits.
(b) Results obtained on QVM. The probability of CNOT is set to 0.5.

after applying U ;. Finally, applying the remaining T and H
gates, as well as (0%| ® I,, we obtain the form

H1Y) = (0} ® L,)Us [0%) |¢) = ATA|Y) .

0) T b5t T
0)

Ua Ul
%)

FIG. 13. Quantum circuit for generating a (1,2,0) block encoding
of a canonical H-RACBEM from a (1,1,0) block encoding U, and its
Hermitian conjugate. H is the Hadamard gate, and Z is the Pauli-Z
gate.

APPENDIX B: OPTIMIZATION-BASED METHOD FOR
FINDING PHASE FACTORS

In a recent work [34], the authors proposed an
optimization-based algorithm for finding phase factors.
This is an optimization problem involving matrices only
in SU(2), and is independent of the number of sys-
tem qubits n. The goal is to find a parameterized ma-
trix Ug (x) = 90? ]_[?:1 [ef arecos™X pid;Z] \where phase factors

® := (¢o, ..., Pq) are related to those defined in the main text
by the following relation:
$o+7%, i=0,
pi=1¢i+5, 1<i<d-—1, (B1)
¢+ 7, i=d.

The objective function of the optimization problem is the
distance between a real polynomial f and Re[(0|Uq(-)|0)].
The polynomial f is of degree d and its parity is (d mod 2).
Hence the polynomial can be determined via d = {d%l]
degrees of freedom. Then according to [34], the objective
function can be defined as

1 d
L(®) = = 3 IRe[(01Us ()I0)] — fGpF'. (B2)

j=1

where x; = cos (%), j=1,..., d are the positive roots
of the Chebyshev polynomial 7,;(x). We may further restrict
the set of phase factors to be centrally symmetric. The op-
timization can be implemented using the standard L-BFGS
algorithm, and the running time of the algorithm scales only
quadratically with respect to d.

To approximate a generic real smooth function of definite
parity, we can use either orthogonal projection onto the set of
Chebyshev polynomials on [—1, 1], or use the Remez algo-
rithm to compute the best polynomial approximation on the
given subinterval of [—1, 1]. This streamlines the procedure
of finding the phase factors, and such a procedure can be used
to identify phase factors for a very large polynomial degree
(d > 10000) with high precision.

APPENDIX C: SIMULATION MODELS

1. Architecture of quantum devices

The architecture of near-term quantum devices is charac-
terized by several features including the coupling map, basic
gates, and noise error rates. The coupling map is given by a
directed graph G = (V, E), and the coupling maps of quantum
devices provided by IBM Q are always symmetric. The nodes
(vertices) V are the set of available qubits on the quantum
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FIG. 14. The relevant information of RACBEM circuit in Fig. 3. The upper matrix A is the three-qubit matrix block-encoded as the upper-

left block, namely, identifying g, as the block-encoding qubit. The elements in the lower array are the singular values of the block-encoded
matrix A.
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FIG. 15. Numerical results on QVM by using QSVT phase factors with larger length compared to those in the main text. Other parameters
are set to be the same as those in the main text. (a) Time series. The details about phase factors are given in Table VI. (b) Spectral measure.
The details about phase factors are given in Table IV.
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FIG. 16. Cumulative moving average (CMA) of the thermal average of the energy in the METTS algorithm. (a) CMA of the results
computed on IBM Q backends. Enough samples are used for each parameter to guarantee the convergence of the result. (b) CMA of the results

computed on QVM with noise magnitude o = 1.

device, and the edges E specify the set of CNOT gates between
qubit pairs that can be directly implemented on the device.
The two nodes associated with an edge are assigned to be the
control qubit and the target qubit of the CNOT gate, respec-
tively. Basic gates are the building units of quantum circuits
that can be directly implemented on the quantum device. If
a quantum circuit involves more complicated quantum gates,
these gates must first be decomposed into the composition of
basic gates by a quantum transpiler before implementation on
the quantum hardware. The noise error rate is a measure of
the strength of noise on basic gates acting on permitted each
qubit or qubit pair.

On quantum computing backends provided by IBM Q, the
basic gates are identity gate, CNOT gate, U1, U2, and U3 gate.
Up to a global phase factor, U3 gate is

U3 (0, ¢, 1) = R:(¢ + 31)R (1 /2)R(0 + 7 )R (7w /2)R-(R),

which is a generic single-qubit operation parameterized by
three Euler angles. The Ul and U2 gates are defined by re-
stricting to one or two Z-rotation angles respectively:

Ui(A) =R:(2),  Ua(e, 1)
= R(¢ + 7 /2)R: (7w [2)R (A — 7 /2).

The U3 gate can be used to generate arbitrary single-qubit
operation [48]. Moreover, in the absence of error correction,
the Z-rotation gates can be implemented virtually with in
principle negligible error rate. Hence, the error rate of U3
gate is mainly contributed by two X rotations. Although the
Ul and U2 gate are specific cases of the U3 gate, they are
provided individually for the consideration of reducing error
rate, since they involve only zero or one X -rotation operation,
respectively. Therefore we exclude U3 from the basic gate
set and draw random circuits accordingly with respect to the
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Algorithm 1: Random quantum circuit generation for a given quantum device.

Input: Coupling map G = (V, E) where V is the set of qubits, E is the set of qubit pairs on which CNOT is available, basic gates
' € {Ul, U2, U3, CNOT}, the probability of choosing CNOT gate p € (0, 1), the circuit depth £.

Set ¢t = 0, initialize an empty quantum circuit C.
while 1 < ¢ do
Reset (V, E) :=G.
while V is not empty do
Draw a random number r uniformly on [0, 1].
if » < p and E is not empty then

P = CNOT.
Pick a pair of qubits uniformly at random from E as operands.
else

Pick an operation P uniformly at random from I'\ {CNOT}.

Pick n, angles uniformly at random on [0, 27r) to form P. n, = 1, 2, 3 for U1, U2, U3, respectively.

Pick a qubit uniformly at random from V' as the operand.
end if
Apply P to its operand(s) in the circuit C.

Remove the operand(s) from V; remove the qubit pairs in which the operand(s) involves from E.

end while
Sett =t+1.
end while

Return: A random quantum circuit C whose depth is £ and each layer is fully filled by one- or two-qubit gates.

coupling map and our restricted basic gates. Note that phase
gate S and 7 /8-gate T can be implemented as Ul gates, and
Hadamard gate H is a U2 gate. Our restricted basic gate set
still has universal representability. The control gates involved
in the QSVT circuit can also be directly implemented using
the restricted basic gate set, and hence our implementation
reduces the usage of noisy U3 gates as much as possible.

2. Custom random circuit generator

The Qiskit package provides a utility routine to generate
random circuits. However, it does not take into account the
coupling map and basic gates available to the target backend,
which can be highly inefficient and error prone. In particular,
a CNOT gate cannot be directly implemented unless the two
qubits are connected according to the coupling map. Therefore
the random circuit generated completely randomly cannot be
executed directly on the quantum hardware before invoking a
quantum transpiler. As a result, we designed a custom random
circuit generator in Algorithm1. The resulting random circuit
can be directly implemented on the quantum hardware with-
out the need of using a quantum transpiler. Note that if two U1
gates appear consecutively, they can be combined together if
needed. The matrix block-encoded in the RACBEM circuit in
Fig. 3 is shown in Fig. 14.

3. Construction of the error model

In order to elucidate the impact of noise magnitude, we
construct an adjustable noise model as follows. We first
retrieve noise models from IBM Q backends which are cali-
brated by the provider. The retrieved noise model is a python
dictionary consisting of the information of each error type.
There are some error modes which are quantum errors and
can be characterized by a discrete probability distribution, for
example, the bit flip error and the phase flip error. Meanwhile,

readout errors in the measurement are also associated with
a discrete probability distribution. We introduce a parameter
o € [0, 1] to smoothly adjust the magnitude of such errors.
The correct operation corresponds to the entry with the
largest magnitude in the probability distribution. Then all
other entries are scaled by a factor o, and the correct entry is
adjusted accordingly to satisfy the normalization condition of
the distribution. For instance, suppose a quantum error mode
is given by the distribution vector p = [0.90, 0.06, 0.04].
Then we identify the quantum operation associated with first
entry as the correct operation. The scaled distribution vector is
then p, = [1 — (1 — 0.90)0, 0.060, 0.040 ]. Therefore, when
o = 1, the scaled error mode is identical to that retrieved
from the backends. When o = 0, only the correct operation
is applied with probability 1, and the corresponding error
symptoms are eliminated.

However, in Qiskit there is another type of quantum error
modes, referred to the “Kraus error.”” These error modes are
not characterized by a discrete probability distribution, and the
corresponding Kraus operator is always applied with probabil-
ity 1. Hence such “Kraus errors” cannot be adjusted using the
same method illustrated above. For simplicity of implementa-
tion, we discarded such error modes in our noise dictionary.
Hence the noise level of our model can be lower than that
retrieved directly from the quantum device, even when o =
1. Nonetheless, our numerical results demonstrate that the
quantum noise in this “diluted” noise model can already sig-
nificantly impact the output of the quantum algorithms.

APPENDIX D: ADDITIONAL NUMERICAL RESULTS

As discussed in the main text, the circuit depth has a
crucial impact on the accuracy of the output. For a given
RACBEM, the circuit depth can be most effectively reduced
by reducing the length of QSVT phase factors. Hence the
choice of a proper length of QSVT phase factors needs to
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TABLE VI. Parameters of the QSVT circuit in time series analysis with higher approximation precision, i.e., in Fig. 15(a). Numbers in

square brackets indicate the power of 10.

~

n Length of QSVT phase factors d + 1

QSVT approximation error ~ Logical gate count  Scaling factor

Real part 1 1.0 5
2 1.0 5
3 1.0 7
4 20 9
5 2.0 11
6 20 13
7 2.5 13
8 2.0 15
9 2.0 17
10 25 17

Imaginary part 1 1.0 5
2 1.0 5
3 1.0 5
4 1.0 7
5 1.5 9
6 20 11
7 3.0 13
8 3.0 15
9 4.0 15
10 3.0 17

1.35882 [—4] 37 + 4tn 1.20020
2.07363 [—3] 37 +4¢n 1.20298
9.83304 [—4] 51+ 6¢n 1.19894
4.56577 [-3] 65 + 8¢n 1.46804
3.37127 [-3] 79 + 10¢n 1.46510
3.17200 [—3] 93 + 12¢n 1.47531
4.32981 [—3] 93 + 12¢n 1.58693
4.40561 [—3] 107 + 14¢n 1.47748
5.14176 [-3] 121 + 16¢n 1.47880
5.05998 [—3] 121 + 16¢n 1.59715
2.88576 [—4] 37 +4¢n 1.15186
1.25689 [—3] 37 +4n 1.19857
1.60676 [—3] 37 +4n 1.19769
4.05038 [—3] 51+ 6¢n 1.19621
3.23071 [—3] 65 + 8¢n 1.34575
6.19908 [—3] 79 + 10¢n 1.48017
3.50032 [—3] 93 + 12¢n 1.70412
2.35584 [—3] 107 + 14¢n 1.70038
3.59205 [—3] 107 + 14¢n 1.90551
3.53947 [—3] 121 + 16¢n 1.70218

balance the error due to the polynomial approximation, and
that caused by the noisy quantum device. To verify this, we
increase the length of QSVT phase factors for computing the
time series and spectral measures (details in Tables VI and
IV). From Fig. 15 it is evident that the numerical results are
more accurate in the absence of noise when o = 0. However,
as the noise magnitude increases, the results with a deeper
quantum circuit become significantly worse compared to
those in Figs. 10 and 11.

The METTS algorithm can be used to compute thermal av-
erages via a Markov chain. The convergence behavior, plotted
using the cumulative moving average (CMA) of the thermal
average of the energy, is given in Fig. 16.

APPENDIX E: SIMULATION DETAILS

In this section we provide the details of QSVT circuits used
in our numerical experiments. The choice of the depth € of the
random quantum circuit for different number of system qubits
n is discussed in the main text. The logical gate count is given
by the number of basic gates used in implementing the circuit,
where we set the basic gate set to I' = {U1, U2, CNOT} in
numerical experiments. We display the statistics of singular-
value distributions of distinct numbers of system qubits in
Fig. 17. From the mean and standard deviation, it is evident
that under our choice of the parameters of random circuit, the
singular values of the block-encoded matrices varies largely.
The singular values of relevant matrices which are used in
the numerical tests in the main text are displayed in Fig. 18.
Those matrices are block encoded in RACBEM circuits gen-
erated according to our setup and Algorithm 1 at random.
Such results indicate that the RACBEM model can generate
at least nontrivial block-encoded matrices useful for testing
the performance of quantum algorithms for numerical linear
algebra tasks.

The details of the parameters used in the QSVT circuits
are given below. We introduce a scaling factor, which is
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FIG. 17. Singular-value distributions of different numbers of
system qubits. The depth of the random circuit is adaptively cho-
sen according to the number of system qubits. When the number
of system qubits is less than or equal to 3, the coupling map
is retrieved from the five-qubit backend ibmq_burlington, other-
wise, the coupling map is retrieved from the 15-qubit backend
ibmq_16_melbourne. The probability of CNOT is 0.5, and the ba-
sic gate is restricted to I' = {U1, U2, CNOT}. We generate 500
RACBEM s for each number of system qubits and compute the
statistics of the difference between the maximal and minimal singular
value of the block-encoded matrix.
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FIG. 18. Singular values of the matrices used in the numerical tests in the main text. The blue dots mark the singular values of the
block-encoded matrix of a RACBEM circuit. When the number of system qubits is less than or equal to 3, the coupling map is identified
as that on the five-qubit backend ibmq_burlington. Other results are obtained using the coupling map retrieved from the 15-qubit backend
ibmq_16_melbourne. (a) Singular values of matrices used in the numerical experiments run on quantum computing backends provided by
IBM Q. The probability of CNOT is 0.1 when generating random circuits. (b) Singular values of matrices used in the numerical experiments
run on QVM. The probability of CNOT is 0.5 when generating random circuits.
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