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We present a theoretical study of coherent quantum dynamics of a single magnetic fluxon (MF) trapped in
Josephson-junction parallel arrays (JJPAs) with large kinetic inductances. The MF is the topological excitation
carrying one quantum of magnetic flux, �0. The MF is quantitatively described as the 2π kink in the distribution
of Josephson phases, and for JJPAs with high kinetic inductances the characteristic length of such distribution
(the “size” of MF) is drastically reduced. Characterizing such MFs by the Josephson phases of three consecutive
Josephson junctions we analyze the various coherent macroscopic quantum effects in the MF quantum dynamics.
In particular, we obtain the MF energy band originating from the coherent quantum tunneling of a single MF
between adjacent cells of JJPAs. The dependencies of the band width � on the Josephson coupling energy EJ ,
charging energy EC and the inductive energy of a cell EL , are studied in detail. In long linear JJPAs the coherent
quantum dynamics of MF demonstrates decaying quantum oscillations with characteristic frequency fqb = �/h.
In short annular JJPAs the coherent quantum dynamics of MF displays complex oscillations controlled by the
Aharonov-Casher phase χ ∝ Vg, where Vg is an externally applied gate voltage. In the presence of externally
applied dc bias, I , a weakly incoherent dynamics of quantum MF is realized in the form of macroscopic Bloch
oscillations leading to a typical “nose” current-voltage characteristics of JJPAs. As ac current with frequency f
is applied the current-voltage characteristics display a set of equidistant current steps at In = 2en f .
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I. INTRODUCTION

Great attention has been devoted to a study of solitons,
i.e., stable spatially distributed macroscopic structures formed
in different nonlinear media [1]. The solitons have been ob-
tained in various complex solid-state, optical, chemical, and
biological systems [2,3]. An interesting example of topo-
logical solitons [4] are so-called magnetic fluxons (MFs)
found in low-dimensional superconducting systems, e.g.,
two-dimensional Josephson-junction arrays, long Josephson
junctions or Josephson-junction parallel arrays [5,6]. Such
MFs are vortices of persistent superconducting current, each
of them carrying one quantum of magnetic flux, �0.

An ideal experimental platform to study the classical dy-
namics of MFs is Josephson-junction parallel arrays (JJPAs).
A single MF can be trapped in such systems and the dynamics
of MF is controlled by externally applied current bias. A
large amount of fascinating physical effects in the dynamics
of MFs has been theoretically predicted and experimentally
observed, e.g., dc current induced resonances [5], the relativis-
tic dynamics of MF [6], bunching of MFs [7], the Cherenkov
radiation of plasma modes by moving MF [8], ac current in-
duced dynamic metastable states [9], just to name a few. From
mathematical point of view the classical dynamics of MF is
determined by a large set of coupled nonlinear differential
equations [6] and a single MF is described as 2π kink in the
spatial distribution of Josephson phases [5,6].

The next question that naturally arises in this field is: Is it
possible to obtain macroscopic coherent quantum-mechanical
phenomena in the dynamics of topological magnetic fluxons?
Indeed, the incoherent macroscopic quantum tunneling of
magnetic vortices has been theoretically analysed [10] and
observed in two-dimensional Josephson-junction arrays [11],
macroscopic quantum tunneling, and energy level quantiza-
tion of a single MF have been theoretically studied [12–15],
and it has been observed in the dynamics of a single MF
trapped in a long Josephson junction [16]. Notice here that
in all these works the size of MF greatly exceeded a typical
size of artificially prepared potential, e.g., a cell size of JJPAs,
and therefore, the continuous limit was used. However, coher-
ent quantum effects in the dynamics of MFs have not been
observed yet.

Observation of coherent quantum dynamics of topological
MFs is hampered by severe obstacles: unavoidably present
dissipation, decoherence, and low-frequency offset charge
noise induced by fluctuating charged impurities on small
superconducting islands [17,18], and a large size of MF
formed in JJPAs with low (geometrical) inductances, not
allowing us to map the initial many-body problem to the
quantum dynamics of a single degree of freedom. However,
an intensive study of various superconducting lumped ele-
ments biased in quantum regime, i.e., superconducting qubits,
and networks of interacting superconducting qubits, has al-
ready resulted in a substantial reduction of dissipation and
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decoherence [19]. A second problem of reducing the size of
MF can be solved by replacement of low geometrical induc-
tances with large kinetic inductances that allows us to shrink
the 2π kink distribution. Moreover, in such JJPAs all small
superconducting islands are shunted by large kinetic induc-
tances and, therefore, the offset charge noise is drastically
reduced [20]. Large kinetic inductances can be implemented
in JJPAs by two methods: embedding in each cell of JJPAs
series arrays of large Josephson junctions [20–23], or us-
ing disordered superconducting materials [24–26]. Recently,
some coherent quantum-mechanical effects in the dynamics
of MFs trapped in JJPAs with high kinetic inductances were
theoretically studied in Ref. [27].

In this paper we systematically study the coherent quantum
dynamics of a single MF trapped in JJPAs with large kinetic
inductances. The large kinetic inductance is provided by series
arrays of large Josephson junctions, and thus, the size of MF
becomes much smaller than the cell size. In this case that is
close to anticontinuous limit [28] we obtain explicitly that the
dynamics of MF is determined by the collective coordinate,
i.e., a single degree of freedom. By making use of a previously
well-elaborated analysis of the coherent quantum dynamics
of a single degree of freedom we study in detail the MF
energy spectrum originating from the macroscopic quantum
tunneling in the effective intrinsic Peierls-Nabarro potential,
and the coherent quantum oscillations (quantum beats) of
MFs occurring in long linear and short annular JJPAs. We
show that the frequency of quantum oscillations obtained
in short annular JJPAs can be controlled by the Aharonov-
Casher phase [29]. In the presence of externally applied dc
bias current and taking into account a weak dissipation we
obtain Bloch oscillations [30,31] in the dynamics of a single
MF.

The paper is organized as follows. In Sec. II we present
our model for JJPAs with large kinetic inductances, derive
the total Lagrangian of such a system. In Sec. III we pro-
vide a macroscopic quantum-mechanical description of the
coherent quantum dynamics of a single fluxon trapped in
such JJPAs. For that we elaborate a special approximation
where a single fluxon is characterized by Josephson phases
of three consecutive Josephson junctions. In Sec. IV we apply
this generic description to analyze in detail various macro-
scopic quantum phenomena occurring in the dynamics of a
single magnetic fluxon, i.e., the MF energy bands, decay-
ing macroscopic quantum oscillations in long linear JJPAs,
macroscopic quantum beats controlled by the Aharonov-
Cashier phase in short annular JJPAs. In Sec. V a weakly
incoherent quantum dynamics of MF in the presence of dc
and ac bias currents is discussed. The Sec. VI provides
conclusions.

II. JJPAS WITH LARGE KINETIC INDUCTANCES:
MODELS AND LAGRANGIAN

We consider JJPAs with large kinetic inductance com-
posed of M superconducting cells coupled by small Josephson
junctions (it is indicated in Fig. 1 by blue crosses). The
classical dynamics of such JJPAs is determined by a set of
time-dependent Josephson phases, ϕi(t ). In the presence of

(a)

(b)

FIG. 1. The schematics of JJPAs with large kinetic inductances:
(a) a linear JJPA; (b) an annular JJPA. The bias dc current I and
the gate voltage, Vg together with the capacitance Cg are shown. The
Josephson phases of small (ϕi), and large (δi) Josephson junctions are
indicated.

a single MF trapped in a JJPA, the Josephson phases vary
from zero to 2π on the whole length of JJPA. In order to
observe the quantum-mechanical effects in the MF dynamics,
the parameters of small Josephson junctions have to be chosen
as EJ � EC , where EJ and EC are the Josephson coupling
energy and the charging energy, accordingly. A high kinetic
inductance of JJPAs is provided by embedding of series ar-
rays of N large Josephson junctions in the upper branch of
each cell [20,21] (it is indicated in Fig. 1 by red boxes). The
Josephson coupling energy EJa, and the charging energy ECa

of these large Josephson junctions were chosen as EJa � ECa

in order to suppress the quantum phase slips in series arrays.
The dynamics of Josephson junctions built in series arrays
is characterized by the time-dependent Josephson phases, δi.
Each cell is pierced by an externally applied magnetic flux �i,
and the dc current I is applied in each node. The schematics
of various JJPAs are presented in Fig. 1(a) (the linear JJPA)
and Fig. 1(b) (the annular JJPA). Notice here, that in JJPAs of
annular form [see Fig. 1(b)], the quantum dynamics of MF can
be controlled by an externally applied gate voltage Vg inducing
an additional charge on the central superconducting island.
Here, Cg is the gate capacitance.

By making use of the Kirhhoff’s circuit laws we
write the Lagrangian of the system in the following form
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[32]:

L = K[ϕ̇i; δ̇i] − U [ϕi; δi]

=
M∑

i=1

EJ
(
ϕ̇i − 2eCg

h̄C Vg
)2

2ω2
p

+ EJaδ̇
2
i

2ω2
pa

− EJ (1 − cos ϕi ) − EJ
I

Ic
ϕi − NEJa(1 − cos δi ), (1)

where ωp = √
8EJEC/h̄ and ωpa = √

8EJaECa/h̄ are the
plasma frequencies of small and large Josephson junctions,
accordingly; Ic is the critical current of a Josephson junction;
C is the capacitance of small Josephson junctions. The mag-
netic flux quantization in each cell leads to a set of constraints
on the Josephson phases ϕi and δi [33]:

Nδi + ϕi+1 − ϕi = 2π

[
ni + �i

�0

]
, i = 1, . . . M, (2)

where �0 is the magnetic flux quantum, and ni is a number
of magnetic flux quanta penetrating the ith cell. Using such
constraints and excluding the phases δi from (1) we obtain for
the potential energy U the following expression:

U ({ϕi}) = EJ

M∑
i=1

(1 − cos ϕi ) + EJ
I

Ic
ϕi

+NEJa

M∑
i=1

(
1−cos

[
ϕi−ϕi+1

N
+ 2π (ni + �i )

�0N

])
.

(3)

As N � 1 expanding the second term in Eq. (3) up to the
second order in 1/N we obtain the potential energy

U ({ϕi}) = EJ

M∑
i=1

(1 − cos ϕi ) + EJ
I

Ic
ϕi

+ EL

M∑
i=1

(
ϕi − ϕi+1 + 2π

(ni + �i )

�0

)2

, (4)

where the inductive energy EL = EJa/(2N ).

III. QUANTUM DYNAMICS OF A SINGLE MF TRAPPED
IN A HIGHLY INDUCTIVE (EJ � EL) JJPA

Next, we study a particular case, EJa � EJ and EC � ECa,
as the quantum dynamics of the Josephson junctions built in
series arrays is strongly suppressed. It results in the absence
of both the plasma oscillations and macroscopic quantum
tunneling (quantum phase slips) in Josephson junctions of
series arrays, and therefore, one can neglect the charging
energies of series arrays of Josephson junctions in (1), and
set all ni to zero in (4). In arbitrary JJPAs a single trapped
MF is described as 2π kink in the distribution of Josephson
junctions phases, ϕi, and for low inductive JJPAs (EJ � EL)
such distribution spreads over many cells. Here, we assume
that JJPAs are highly inductive ones, i.e., EJ � EL, and the
spatial distribution of Josephson phases becomes a sharp one.
In this case we use a particular approach elaborated previously
to study the classical dynamics of macroscopic topological

(a)

(b)

FIG. 2. (a) The highly inductive JJPA with a single trapped MF
and (b) the Josephson phase distribution of a small size MF.

objects in so-called anticontinuous limit [28,34–36] as a sin-
gle MF is characterized by the Josephson phases of three
consecutive Josephson junctions, and other Josephson phases
close to zero or 2π . More precisely, we present the MF as
a particular static Josephson phase configuration: {ϕi}MF =
{0, . . . , ϕk−1, ϕk, 2π − ϕk+1, . . . , 2π} where the Josephson
phases ϕk±1 are small. Such distribution is schematically pre-
sented in Fig. 2.

Substituting such Josephson phase configuration in (4) we
obtain the effective potential energy Ueff as follows (here, we
consider a specific case I = 0):

Ueff[{ϕi}MF] = EJ (3 − cos ϕk−1 − cos ϕk − cos[ϕk+1])

+ EL

[(
−ϕk−1 + 2π

�k−2

�0

)2

+
(

−ϕk+1 + 2π
�k+1

�0

)2

+
(

ϕk−1 − ϕk + 2π
�k−1

�0

)2

+
(

ϕk − 2π + ϕk+1 + 2π
�k

�0

)2]
. (5)

Since we are interested in the low-frequency dynamics of
Josephson phases, and the Josephson phases ϕk±1 display the
high-frequency dynamics only, one can expand the potential
Ueff up to second order in ϕk±1 and minimize the potential
energy with respect to them. Using this procedure we write the
effective potential Ueff(ϕk ) depending on a single macroscopic
degree of freedom ϕk , in the following form:

Ueff(ϕk ) = EJ (1 − cos ϕk )

+ 2EL

(
ϕk − π

[
1 + �k−1 − �k

�0

])2

(6)

Here for simplicity we set the externally applied magnetic
fluxes �k−2 and �k+1 to zero, and the condition, EJ � EL is
used. The magnetic fluxes �k−1 and �k allow one to control
the positions and the relative depths of potential minimums,
and for a most relevant case as �k−1 − �k = 0, the depen-
dence of Ueff(ϕk ) is presented in Fig. 3. In this analysis we
neglect the interaction of MF with plasma oscillations in tails
of MF, i.e., excitations of ϕk−1 and ϕk+1. This assumption is
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FIG. 3. The effective potential energy Ueff(ϕk ) (solid blue line)
for �k−1 − �k = 0. Here, the parameter EL = 0.04EJ was chosen.
Dashed and dotted lines represent parabolic and cos terms in the
Eq. (6), respectively.

valid because the strength of such interaction decreases with
EL, and it becomes rather small for typical JJPAs with high
kinetic inductances.

Next, we construct the effective periodic potential energy
describing the motion of a single MF along a JJPA. First,
we use a precise mapping between ϕk and the coordinate x
(the center of MF shown by black dots in Fig. 4) defined as
x = d (2π − ϕk )/(2π ), where d is the size of a single cell,
and the origin of x axis is located in the center of (k − 1)th
cell. This procedure illustrated in Fig. 4 allows one to describe
the dynamics of MF in the anticontinuous limit by a single
collective coordinate x. The potential (6) describing a single
MF located in the right half of (k − 1)th cell [Figs. 4(a), 4(b)]
or the left half of kth cell [Fig. 4(c)] of the JJPA, is written
down as the Ueff(x) on the interval 0 � x � d .

Ueff(x) = EJ

(
1 − cos

2πx

d

)
+ 2EL

(
2πx

d
− π

)2

. (7)

Here, we set the magnetic fluxes as �k−1 − �k = 0.
Expanding the Ueff(x) in Fourier series we obtain the po-

tential energy of a single MF, which is valid on a whole axis x
[Fig. 4(d) indicates the MF with the coordinate x > d]:

UMF(x) = 2ELπ2

3
+ EL

∞∑
n=1

8

n2
cos

2πnx

d

+ EJ

(
1 − cos

2πx

d

)
. (8)

The sum can be also expressed as

UMF(x) = 2EL

(
π2

3
+ 2 Li2[ei 2πx

d ] + 2 Li2[e−i 2πx
d ]

)

+ EJ

(
1 − cos

2πx

d

)
, (9)

(a)

(b)

(c)

(d)

FIG. 4. The snapshots of the Josephson phase distribution of a
small size MF. The MF motion from (a) left cell to (c), (d) right
cell is shown. The mapping between the Josephson phases (indicated
by red circles) and continuous variable (indicated by black dots) is
presented.

where

Lis(z) =
∞∑

k=1

zk

ks
(10)

is the polylogarithm function [37]. The potential UMF(x) is
presented in Fig. 5.

The same procedure was used for a single MF in the
presence of charging energy, i.e., the kinetic energy term in
(1), and externally applied current I in order to obtain the
Lagrangian of a single MF trapped in a JJPA

L = EJ (2π )2

2ω2
pd2

(ẋ − αVg)2 − 2ELπ2

3
− EL

∞∑
n=1

8

n2
cos

2πnx

d

− EJ

(
1 − cos

2πx

d

)
− EJ

I

Ic

2πx

d
, (11)

where α = edCg/(π h̄C).
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FIG. 5. Spatial dependence of the potential UMF(x) [Eq. (8)]. The
parameter EL = 0.04EJ was chosen.

IV. MACROSCOPIC QUANTUM EFFECTS IN THE
COHERENT DYNAMICS OF A SINGLE MF

Introducing the operator of momentum as P̂ = −ih̄d/dx
we write the Hamiltonian of a single trapped MF as

Ĥ = (P̂ + mαVg)2

2m
+ 2ELπ2

3
+ EL

∞∑
n=1

8

n2
cos

2πnx̂

d

+ EJ

(
1 − cos

2π x̂

d

)
+ EJ

I

Ic

2π x̂

d
, (12)

where we define the effective mass of MF, m =
EJ (2π )2/(ωpd )2.

A. Energy bands

In the absence of both externally applied current I and the
gate voltage Vg the coherent quantum dynamics of a single
MF is reduced to the quantum dynamics of a single quantum
particle moving in the periodic potential UMF(x) (9). It is
well known that the eigenfunctions of such quantum problem
are determined by the quasimomentum p, and the energy
spectrum Es(p) is composed of infinite number of bands
[38]. Moreover, the lowest energy band has a simple form
as E0(p) = E0 − � cos(pd/h̄), where E0 � EJ , and the corre-
sponding eigenfunctions are ψp(n) = (1/

√
M ) exp(ipdn/h̄),

where n = 0,±1,±2 . . . is the cell number of JJPAs. In the
limit of EJ � EC the width of energy band � is exponentially
small, and the parameter � determined by tunneling between
adjacent potential wells of UMF(x), is obtained in the quasi-
classical approximation as [31,39,40]

� = h̄ω0

2
exp[−S]

S = 1

h̄

∫ x2

x1

√
2m|UMF(x) − UMF(x1)|dx, (13)

where x1 and x2 are minimums of the potential UMF(x) on the
interval 0 < x < d , and ω0 is the frequency of small oscilla-
tions, ω0 � ωp. Numerically calculating the integral in (13)
we obtain the dependence of parameter S = ln[2�/(h̄ω0)]
on βL = EJ/EL � 1, and this dependence is shown in Fig. 6

FIG. 6. The dependence of the lowest band width S =
ln[2�/(h̄ω)] on the JJPAs dimensionless inductive energy, EL/EJ .
Solid line: exact numerical result; dashed line: linear approximation
(14). The parameters are chosen as EC = 0.1EJ , EJ/(h̄ωp) = 1.

(solid line). As the parameter βL is extremely large, i.e.,
βL � 1, we obtain in a linear approximation (see details of
calculation in the Appendix A):

S = S0

(
1 − 7ζ (3)

βL

)
, S0 = 8EJ

h̄ωp
. (14)

This dependence is shown in Fig. 6 by dashed line.

B. Coherent quantum oscillations of MF in long linear JJPAs

At low temperatures as the excitations to upper energy
bands are strongly suppressed, for long linear JJPAs [see,
Fig. 1(a)] the quantum dynamics of MF demonstrates the
wave function spreading, and the time-dependent probability
Pl (x, t ) to obtain MF at the position with coordinate x is
written as

Pl (x, t ) =
∣∣∣∣d

∫ ∞

−∞

d p

2π h̄
exp

[
− i�

h̄
t cos

pd

h̄
− ipx

h̄

]∣∣∣∣
2

, (15)

and, e.g., the probability to find the MF in the center of
n-cell varies with time as Pl (n, t ) = J2

n (�t/h̄) displaying the
decaying quantum beats with the frequency of the order h̄/�.
The time-dependent probability to obtain the MF at the initial
position, i.e., the center of zeroth cell, is shown in Fig. 7.

C. Coherent quantum dynamics of MF in a short annular JJPA:
The Aharonov-Casher phase

Here, we consider the coherent quantum dynamics of MF
trapped in a short annular JJPA in the presence of an ex-
ternally applied gate voltage Vg but the current bias I is
still absent. As one can see from the Hamiltonian (12) the
amplitude of coherent tunneling of MF between the neigh-
boring cells accumulate the additional phase ±χ , where χ =
mdαVg/h̄, and the positive (negative) sign corresponds to the
tunneling in clockwise (anticlockwise) direction [41]. The
phase χ is the seminal Aharonov-Casher phase intensively
studied previously in quantum dynamics of magnetic vor-
tices trapped in superconductors or two-dimensional arrays of
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FIG. 7. The time-dependent probability of Pl (0, t ) to obtain
quantum MF at the initial position in a long linear JJPA.

Josephson junctions [10,29,42,43] or various n-Josephson
junctions SQUIDs [41,44].

For a single MF trapped in an annular JJPA with
M cells [see Fig. 1(b)] the eigenfunctions of MF are
ψpm (n) = (1/

√
M ) exp(ipmdn/h̄), where pm = 2πm/M, m =

0, 1, 2, . . . , M − 1, and the energy spectrum of the lowest
band E0(pm) controlled by the Aharonov-Casher phase χ , has
the following form:

E0(pm) = E0 − � cos(pmd/h̄ + χ ). (16)

The coherent quantum dynamics of MF in short annular JJPAs
of a size M is completely described by probabilities PM (n, t )
to obtain MF in the n cell at time t if MF was initially located
in the zeroth cell. Such probabilities are obtained as follows:

PM (n, t ) = 1

M2

∣∣∣∣∣
M−1∑
m=0

exp

[
i
2πmn

M
− i

�t

h̄
cos

(
2πm

M
+ χ

)]∣∣∣∣∣
2

(17)

Thus, for M = 2 we obtain PM=2(0, t ) = cos2[� cos(χ )t/h̄],
and therefore, for χ = 0 the quantum beats with the frequency
of fqb = �/h are realized, but for χ = π/2 the quantum beats
are completely suppressed, and MF is localized in the zeroth
cell. The typical dependencies of PM (0, t ) for annular JJPAs
of different sizes (M = 4, 5) and a few values of χ are pre-
sented in Fig. 8. Notice here, that for M = 4 the dependencies
PM=4(0, t ) for χ = 0 and χ = π/2 accidentally coincide.

The location of MF and corresponding quantum oscilla-
tions for both long and short JJPAs of different geometries
can be experimentally verified by the spectroscopy of plasma
excitations interacting with a single MF as it was proposed in
Ref. [23].

V. WEAKLY INCOHERENT QUANTUM DYNAMICS
OF A SINGLE MF

In the presence of externally applied current I (t ), the
weakly dissipative dynamics of a single quantum MF trapped
in a JJPA of large kinetic inductances can be described as fol-
lows: by making use of the quasimomentum p representation
we obtain the operator of MF center x̂ as x̂ = −ih̄d/d p. A

(a)

(b)

FIG. 8. The time-dependent probability of PM (0, t ) to obtain the
quantum MF at the initial position in short annular JJPAs of different
sizes: (a) M = 4 and (b) M = 5. The values of Aharonov-Casher
phase χ are chosen as χ = 0 (dashed lines), χ = π/8 [green (light
gray) solid lines] and χ = π/4 [red (gray) solid lines].

weak dissipation can be modeled as the interaction of the MF
degree of freedom x with the bath of harmonic oscillators yi

[45]. The total Hamiltonian is Ĥtot = Ĥ + Ĥosc + Ĥint, where
the interaction Hamiltonian is determined as Ĥint (x, yi ) =
gx̂

∑
i ŷi [45,46]. In this case the Heisenberg equation of mo-

tion for the operator ˙̂x is written as

˙̂x =
[

d

d p̂
, Ĥ

]
= dEs( p̂)

d p̂
, (18)

where Es(p) are the energy bands of the macroscopic quantum
particle moving in the potential, UMF(x) [see, Eq. (8)]. In the
presence of dissipation the Heisenberg equation of motion for
the operator p̂ is written as

˙̂p = −1

h̄
[ p̂, Ĥ ] − 1

h̄
[ p̂, Ĥint], (19)

For a weakly dissipative case we can trace out the bath degrees
of freedom [30,46], and obtain the equation of motion:

˙̂p = 2πEJ

dIc
I (t ) − γ m ˙̂x. (20)
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FIG. 9. The periodic dependence of the voltage, V (t ), on time
for two values of parameter I/It , i.e., I/It = 1.1 (dashed line) and
I/It = 2 [red (gray) solid line].

Here, we introduce the phenomenological parameter γ (the
inverse relaxation time) characterizing the interaction of the
moving topological MF with the environment, i.e., dissipation
and decoherence processes. Substituting (18) in (20), we ob-
tain the dynamic equation for the quantum MF as

ṗ = 2πEJ

dIc
I (t ) − γ m

dEs(p)

d p
. (21)

Since voltage V is determined by the Josephson relationship
as 2eV = h̄ϕ̇ = (2π h̄/d )ẋ, and using (18) we obtain the ex-
pression for the voltage as

V = π h̄

ed

dEs(p)

d p
. (22)

Notice here that a similar analysis has been carried out long
time ago in Refs. [30,31] for small Josephson junctions sub-
ject to applied external current I .

1. Bloch oscillations and current-voltage characteristics

First, we analyze the weakly dissipative dynamics of a sin-
gle MF in the presence of applied dc current, I . The Eq. (21)
has a stationary solution ṗ = 0 as I < It , where

It = 2πγ�

h̄ω2
p

Ic. (23)

In this regime the voltage V linearly depends on the current
I as V = [h̄ω2

p/(2eIcγ )]I . As the current I > It the solution
p(t ) of (21) is a nonstationary one, and by taking into account
a single lowest energy band we obtain the solution analyti-
cally (see details in Appendix B). In this regime the voltage
depends periodically on time (see Fig. 9), and the period T
(see Appendix B) is written as

T = 2π

ω0

It√
I2 − I2

t

, I > It (24)

where we introduce the typical frequency of MF Bloch oscil-
lations, ω0 = (2π )2EJγ�/(ωph̄)2 = π It/e. Notice here that
the period T increases up to infinity as the current I ap-
proaches It . Substituting the solution of the dynamic equation
[see Eq. (B2)] to (22) we obtain the voltage V (t ) oscillating

FIG. 10. The nose-type of current-voltage characteristics of JJ-
PAs with a single MF.

in time with the frequency, fBl =
√

I2 − I2
t /(2e). The depen-

dence of V (t ) displaying the periodic Bloch oscillations with
the frequency fBl , is presented in Fig. 9 for two different
values of I/It .

Averaging the voltage V (t ) over the period allows one to
obtain the universal form of the current-voltage characteristics
(the I-V curve):

〈V 〉 = π�

e
· I −

√
I2 − I2

t

It
, I > It

〈V 〉 = π�

e
· I

It
, I < It . (25)

Such nose type of I-V curve [30,31] is the fingerprint of
Bloch oscillations in the dynamics of a quantum MF in a JJPA
of large kinetic inductances, and it is presented in Fig. 10.
In this analysis we neglect the Landau-Zener transitions to
upper bands, and since the probability of such transitions is
determined as pLZ � exp[−π (ωp)2md/F ], where F is the
slope of the effective potential [the last term in the Eq. (11)],
this approximation is valid as I � Ic. In the presence of both
dc current I and ac current with the frequency f , the seminal
current steps located at In = 2en f can be obtained [30,31].

VI. CONCLUSION

In conclusion, we studied in detail various phenomena
occurring in macroscopic quantum dynamics of a topologi-
cal MF trapped in JJPAs with high kinetic inductances. An
implementation of high kinetic inductances in the form of
series arrays of large Josephson junctions allows one to ele-
gantly solve two problems, i.e., reducing drastically the MF
size less than the size of a single cell d and diminishing the
low-frequency offset charge noise [20,22]. In this case the
quantum dynamics of a single MF is precisely described by
a single degree of freedom, i.e., the coordinate of the MF
center x. By using such description we obtain the MF effective
mass m, the MF effective kinetic energy controlled by the gate
voltage Vg, the MF effective potential energy that, in turn,
depends on the externally applied current I [see Eq. (11)].
In the absence of externally applied current I the effective
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potential depends periodically on the coordinate x, and the
energy spectrum of MF contains of infinite number of energy
bands. The width of the lowest energy band, �, increases with
the inductive energy EL (see Fig. 6). For long linear JJPAs [see
the schematic in Fig. 1(a)] the parameter � determines the
typical frequency of decaying quantum oscillations in the MF
wave packet spread (see Fig. 7). For short annular JJPAs [see
the schematic in Fig. 1(b)] the coherent quantum dynamics
of MF demonstrates complex quantum oscillations controlled
by an external gate voltage Vg through the Aharonov-Casher
phase χ ∝ Vg (see Fig. 8). In particular, we obtain that for
a two-cells annular JJPA the frequency of quantum beats is
determined as fqb = � cos(χ )/h, and therefore, for χ = π/2
the quantum beats are completely suppressed. These quantum
oscillations can be experimentally observed through the spec-
troscopy of plasma oscillations as it was proposed in Ref. [23].

As the external dc bias current I < Ic is applied the quan-
tum dynamics of MF displays the seminal Bloch oscillations
in the time dependence of the voltage V (t ) (see, Fig. 9). These
Bloch oscillations result in the nose-type I-V curves (Fig. 10),
and the current steps as both dc and ac currents are applied.
Finally, we notice that the Bloch oscillations and the current
steps in the current-voltage characteristics are very sensitive to
the offset charge noise, and, therefore, the JJPAs with large ki-
netic inductances in which the charge fluctuations are shunted
[20,22] can be used for the field of quantum metrology with
topological MFs.
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APPENDIX A: ANALYTICAL CALCULATION OF THE
ENERGY BAND WIDTH AS βL � 1

To obtain the energy band width in the limit of βL � 1 we
expand S up to the first order in EL:

S ≈ 1

h̄

∫ d

0

√
2mEJ

(
1 − cos

2πx

d

)
dx

−
√

2m

EJ

4ELπ2

h̄d2

∫ x2

x1

(x − d + dx1)(x − dx1)√
cos 2πx1

d − cos 2πx
d

dx. (A1)

The first integral in (A1) was calculated exactly:

S0 =
∫ d

0

√
2mEJ

(
1 − cos

2πx

d

)
dx = 4

√
mEJd

π
= 8EJ

h̄ωp
.

(A2)

The dependence of S on EL is written as

S = S0 −
√

2m

EJ

4π2

h̄d2
I (EL ), (A3)

where

I (EL ) =
∫ d−ηEL

ηEL

(x − d + dηEL )(x − dηEL )√
cos 2πηEL

d − cos 2πx
d

dx. (A4)

Here, the limits of integration are written as

x1 ≈ 0 + ηEL

x2 ≈ d − ηEL. (A5)

The exact expression of η is not important here. In the first-
order approximation over EL one can obtain

S = S0 −
√

2m

EJ

4π2

h̄d2
I (0), (A6)

and the integral I (0) is calculated explicitly as

I (0) = 7d3ζ (3)√
2π3

≈ 0.19d3, (A7)

where ζ (x) is the Riemann zeta function [37].

APPENDIX B: CURRENT-VOLTAGE CHARACTERISTICS
OF JJPA WITH A TRAPPED QUANTUM MF

Introducing the dimensionless variables, i.e., z = pd/h̄ and
τ = ω0t , we obtain the dynamic equation in the following
form:

dz

dτ
= I

It
− sin(z). (B1)

For I > It the solution of Eq. (B1) is written as

z(τ ) = 2 arctan

[√
a2 − 1 tan (τ−τ0 )

√
a2−1

2 + 1

a

]
, (B2)

where a = I/It > 1 and τ0 is determined by the initial con-
dition. This solution increases with time and periodically
oscillates with the dimensionless period T̃ = 2π/

√
a2 − 1.

[1] T. Dauxois and M. Peyrard, Physics of solitons (Cambridge
University Press, Cambridge, 2006).

[2] Y. V. Kartashov, B. A. Malomed, and L. Torner, Solitons in
nonlinear lattices, Rev. Mod. Phys. 83, 247 (2011).

[3] A. C. Scott, Solitons in biological molecules, Emerging Synthe-
ses in Science (CRC Press, 2018).

[4] N. Manton and P. Sutcliffe, Topological Solitons (Cambridge
University Press, Cambridge, 2004).

062410-8

https://doi.org/10.1103/RevModPhys.83.247


QUANTUM DYNAMICS OF A SINGLE FLUXON IN … PHYSICAL REVIEW A 103, 062410 (2021)

[5] Y. S. Kivshar and B. A. Malomed, Dynamics of soli-
tons in nearly integrable systems, Rev. Mod. Phys. 61, 763
(1989).

[6] A. Ustinov, Solitons in josephson junctions, Physica D 123, 315
(1998).

[7] I. Vernik, N. Lazarides, M. So/rensen, A. Ustinov,
N. F. Pedersen, and V. Oboznov, Soliton bunching in
annular josephson junctions, J. Appl. Phys. 79, 7854
(1996).

[8] A. Wallraff, A. V. Ustinov, V. V. Kurin, I. A. Shereshevsky, and
N. K. Vdovicheva, Whispering Vortices, Phys. Rev. Lett. 84,
151 (2000).

[9] M. V. Fistul and A. V. Ustinov, Libration states of a nonlinear
oscillator: Resonant escape of a pinned magnetic fluxon, Phys.
Rev. B 63, 024508 (2000).

[10] R. Fazio and H. Van Der Zant, Quantum phase transitions and
vortex dynamics in superconducting networks, Phys. Rep. 355,
235 (2001).

[11] H. S. J. Van der Zant, W. J. Elion, L. J. Geerligs, and J. E.
Mooij, Quantum phase transitions in two dimensions: Exper-
iments in josephson-junction arrays, Phys. Rev. B 54, 10081
(1996).

[12] T. Kato and M. Imada, Macroscopic quantum tunneling of a
fluxon in a long josephson junction, J. Phys. Soc. Jpn. 65, 2963
(1996).

[13] Z. Hermon, A. Stern, and E. Ben-Jacob, Quantum dynamics of
a fluxon in a long circular josephson junction, Phys. Rev. B 49,
9757 (1994).

[14] A. Shnirman, E. Ben-Jacob, and B. Malomed, Tunneling and
resonant tunneling of fluxons in a long josephson junction,
Phys. Rev. B 56, 14677 (1997).

[15] A. Wallraff, Y. Koval, M. Levitchev, M. Fistul, and A. Ustinov,
Annular long josephson junctions in a magnetic field: engineer-
ing and probing the fluxon interaction potential, J. Low Temp.
Phys. 118, 543 (2000).

[16] A. Wallraff, A. Lukashenko, J. Lisenfeld, A. Kemp, M. Fistul,
Y. Koval, and A. Ustinov, Quantum dynamics of a single vortex,
Nature (London) 425, 155 (2003).

[17] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Coherent control
of macroscopic quantum states in a single-Cooper-pair box,
Nature (London) 398, 786 (1999).

[18] M. B. Metcalfe, E. Boaknin, V. Manucharyan, R. Vijay, I.
Siddiqi, C. Rigetti, L. Frunzio, R. J. Schoelkopf, and M. H.
Devoret, Measuring the decoherence of a quantronium qubit
with the cavity bifurcation amplifier, Phys. Rev. B 76, 174516
(2007).

[19] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, A quantum engineer’s guide to superconduct-
ing qubits, Appl. Phys. Rev. 6, 021318 (2019).

[20] V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Fluxonium: Single cooper-pair circuit free of charge offsets,
Science 326, 113 (2009).

[21] K. A. Matveev, A. I. Larkin, and L. I. Glazman, Persistent
Current in Superconducting Nanorings, Phys. Rev. Lett. 89,
096802 (2002).

[22] I. N. Moskalenko, I. S. Besedin, I. A. Tsitsilin, G. S.
Mazhorin, N. N. Abramov, A. Grigor’ev, I. A. Rodionov, A. A.
Dobronosova, D. O. Moskalev, A. A. Pishchimova et al., Planar
architecture for studying a fluxonium qubit, JETP Lett. 110, 574
(2019).

[23] I. N. Moskalenko, I. S. Besedin, S. S. Seidov, M. V. Fistul, and
A. V. Ustinov (unpublished).

[24] N. Maleeva, L. Grünhaupt, T. Klein, F. Levy-Bertrand,
O. Dupre, M. Calvo, F. Valenti, P. Winkel, F. Friedrich,
W. Wernsdorfer et al., Circuit quantum electrodynamics of
granular aluminum resonators, Nature Commun. 9, 3889
(2018).

[25] T. M. Hazard, A. Gyenis, A. Di Paolo, A. T. Asfaw,
S. A. Lyon, A. Blais, and A. A. Houck, Nanowire Superin-
ductance Fluxonium Qubit, Phys. Rev. Lett. 122, 010504
(2019).

[26] O. Astafiev, L. Ioffe, S. Kafanov, Y. A. Pashkin, K. Y.
Arutyunov, D. Shahar, O. Cohen, and J. S. Tsai, Coherent
quantum phase slip, Nature (London) 484, 355 (2012).

[27] A. Petrescu, H. E. Türeci, A. V. Ustinov, and I. M. Pop, Fluxon-
based quantum simulation in circuit qed, Phys. Rev. B 98,
174505 (2018).

[28] S. Flach and C. R. Willis, Discrete breathers, Phys. Rep. 295,
181 (1998).

[29] B. Reznik and Y. Aharonov, Question of the nonlocality of the
aharonov-casher effect, Phys. Rev. D 40, 4178 (1989).

[30] K. Likharev and A. Zorin, Theory of the bloch-wave oscilla-
tions in small josephson junctions, J. Low Temp. Phys. 59, 347
(1985).

[31] G. Schön and A. D. Zaikin, Quantum coherent effects, phase
transitions, and the dissipative dynamics of ultra small tunnel
junctions, Phys. Rep. 198, 237 (1990).

[32] U. Vool and M. Devoret, Introduction to quantum electromag-
netic circuits, Int. J. Circuit Theory Appl. 45, 897 (2016).

[33] P. Müller, I. Grigorieva, V. Schmidt, and A. Ustinov, The
Physics of Superconductors: Introduction to Fundamentals and
Applications (Springer, Berlin, 2013).

[34] O. M. Braun and Y. S. Kivshar, Nonlinear dynamics
of the frenkel-kontorova model, Phys. Rev. B 43, 1060
(1991).

[35] B. Joos, Properties of solitons in the frenkel-kontorova model,
Solid State Commun. 42, 709 (1982).

[36] K. Furuya and A. O. de Almeida, Soliton energies in the stan-
dard map beyond the chaotic threshold, J. Phys. A: Math. Gen.
20, 6211 (1987).

[37] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Dover, New York, 1964).

[38] L. D. Landau, E. M. Lifšic, E. M. Lifshitz, and L. Pitaevskii,
Statistical Physics: Theory of the Condensed State, Vol. 9
(Butterworth-Heinemann, Oxford, 1980).

[39] L. D. Landau and L. M. Lifshitz, Quantum Mechanics
Non-Relativistic Theory, Third Edition: Volume 3, 3rd ed.
(Butterworth-Heinemann, 1981).

[40] G. Catelani, R. J. Schoelkopf, M. H. Devoret, and L. I.
Glazman, Relaxation and frequency shifts induced by quasi-
particles in superconducting qubits, Phys. Rev. B 84, 064517
(2011).

[41] J. R. Friedman and D. V. Averin, Aharonov-Casher-Effect Sup-
pression of Macroscopic Tunneling of Magnetic Flux, Phys.
Rev. Lett. 88, 050403 (2002).

[42] W. J. Elion, J. J. Wachters, L. L. Sohn, and J. E. Mooij,
Observation of the Aharonov-Casher Effect for Vortices
in Josephson-Junction Arrays, Phys. Rev. Lett. 71, 2311
(1993).

062410-9

https://doi.org/10.1103/RevModPhys.61.763
https://doi.org/10.1016/S0167-2789(98)00131-6
https://doi.org/10.1063/1.362394
https://doi.org/10.1103/PhysRevLett.84.151
https://doi.org/10.1103/PhysRevB.63.024508
https://doi.org/10.1016/S0370-1573(01)00022-9
https://doi.org/10.1103/PhysRevB.54.10081
https://doi.org/10.1143/JPSJ.65.2963
https://doi.org/10.1103/PhysRevB.49.9757
https://doi.org/10.1103/PhysRevB.56.14677
https://doi.org/10.1023/A:1004674908169
https://doi.org/10.1038/nature01826
https://doi.org/10.1038/19718
https://doi.org/10.1103/PhysRevB.76.174516
https://doi.org/10.1063/1.5089550
https://doi.org/10.1126/science.1175552
https://doi.org/10.1103/PhysRevLett.89.096802
https://doi.org/10.1134/S0021364019200074
https://doi.org/10.1038/s41467-018-06386-9
https://doi.org/10.1103/PhysRevLett.122.010504
https://doi.org/10.1038/nature10930
https://doi.org/10.1103/PhysRevB.98.174505
https://doi.org/10.1016/S0370-1573(97)00068-9
https://doi.org/10.1103/PhysRevD.40.4178
https://doi.org/10.1007/BF00683782
https://doi.org/10.1016/0370-1573(90)90156-V
https://doi.org/10.1002/cta.2359
https://doi.org/10.1103/PhysRevB.43.1060
https://doi.org/10.1016/0038-1098(82)90643-3
https://doi.org/10.1088/0305-4470/20/18/021
https://doi.org/10.1103/PhysRevB.84.064517
https://doi.org/10.1103/PhysRevLett.88.050403
https://doi.org/10.1103/PhysRevLett.71.2311


S. S. SEIDOV AND M. V. FISTUL PHYSICAL REVIEW A 103, 062410 (2021)

[43] B. J. van Wees, Aharonov-Bohm–Type Effect for Vortices in
Josephson-Junction Arrays, Phys. Rev. Lett. 65, 255 (1990).

[44] I.-M. Pop, B. Douçot, L. Ioffe, I. Protopopov, F. Lecocq,
I. Matei, O. Buisson, and W. Guichard, Experimental
demonstration of aharonov-casher interference in a josephson
junction circuit, Phys. Rev. B 85, 094503 (2012).

[45] A. Caldeira and A. J. Leggett, Quantum tunnelling in a dissipa-
tive system, Ann. Phys. (NY) 149, 374 (1983).

[46] T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer,
G. Schön, and W. Zwerger, Quantum Transport
and Dissipation, Vol. 3 (Wiley-Vch, Weinheim,
1998).

062410-10

https://doi.org/10.1103/PhysRevLett.65.255
https://doi.org/10.1103/PhysRevB.85.094503
https://doi.org/10.1016/0003-4916(83)90202-6

