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Efficient bit encoding of neural networks for Fock states
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We present a bit encoding scheme for a highly efficient and scalable representation of bosonic Fock number
states in the restricted Boltzmann machine neural network architecture. In contrast to common density matrix
implementations, the complexity of the neural network scales only with the number of bit-encoded neurons
rather than the maximum boson number. Crucially, in the high occupation regime its information compression
efficiency is shown to surpass even maximally optimized density matrix implementations, where a projector
method is used to access the sparsest Hilbert space representation available.
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I. INTRODUCTION

In recent breakthroughs, artificial neural networks have
been successfully utilized for the description of quantum
states [1–8] and open quantum systems with Markovian dy-
namics [9–12]. In particular, the restricted Boltzmann machine
(RBM) neural network architecture has been established as
a natural and highly efficient representation of the density
matrix for spin and small molecular quantum systems [1,13–
20], as it allows for a one-to-one mapping of spins to artificial
neurons and enables direct access to the stationary state via
iterative application of a variational principle [21,22]. While
the implementation of periodic spin systems and spin systems
with symmetries of translational invariance results in high
numerical performance and fast convergence times [9–12,23–
25], adaptive strategies for the sampling of input system con-
figurations have been shown to render accurate calculations of
asymmetric open spin systems feasible as well [26].

In this article, we expand the representational power of
the RBM architecture toward hybrid spin systems compris-
ing bosonic Fock number states. To this end, a bit encoding
scheme is applied to the Fock state basis, enabling a direct
mapping of bosonic number states to the visible neuron layer
without modification of the underlying neural network struc-
ture itself. Strikingly, we find that in the regime of high Fock
state occupation numbers, the bit-encoded neural network in-
formation compression efficiency surpasses even a maximally
optimized density matrix representation in stationary state,
where a projector method is employed to access the sparsest
Hilbert space representation available. We demonstrate the
accuracy of the presented neural encoding of Fock states
by calculating the stationary boson number statistics of a
generic one-atom laser model [27–31] and providing com-
parison benchmark calculations. Moreover, we demonstrate
the methods’ scalability potential into the large boson num-
ber regime where the information compression of the neural
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network becomes most efficient. Aside from the goal of ad-
vancing the paradigm of the RBM as a universally applicable
neural network architecture for the simulation of open quan-
tum systems, specific applications of the presented method
include, e.g., neural network realizations of boson sampling
algorithms [32,33] or of recent attempts to quantify quantum
coherence via Fock state superposition [34].

The article is organized as follows: The investigated model
system is introduced in Sec. II. In Sec. III, we derive the neural
bit encoding scheme for Fock number states to enable a direct
mapping to the visible neuron layer of the RBM. Afterwards,
details on the implementation and the training procedure of
the neural network are provided in Sec. IV. In Sec. V, the
information compression efficiency of the bit-encoded RBM
is compared to both a regular and a highly optimized den-
sity matrix implementation with respect to the required Fock
state basis dimension. To this end, we compare the scaling
of complexity for the considered model system, featuring a
highly sparse Hilbert space in a stationary state that can be
truncated by making use of a Heisenberg projector method
for maximum efficiency. Yet, in the regime of high Fock state
occupations we find that the bit-encoded neural network still
outperforms the competing approach with respect to com-
pression efficiency. Finally, in Sec. VI we demonstrate the
accuracy of the presented method by calculating the stationary
boson number statistics, before a confirmation of the methods’
scalability potential for an accurate depiction of large Fock
state occupations is provided in Sec. VII. Lastly, we summa-
rize our findings in Sec. VIII.

II. MODEL

To quantify the achievable information compression in
systems comprising bosonic degrees of freedom via the pre-
sented bit-encoded neural network approach, we consider the
paradigmatic open Jaynes-Cummings model, describing a re-
alization of a one-atom laser via the interaction of a single
spin system with a bosonic cavity mode [30]. In rotating-wave
and dipole approximations, the corresponding system Hamil-
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tonian is given by [27–29,31]

H/h̄ = ω0σ
+σ− + ωcc†c + g0(σ+c + σ−c†), (1)

with Pauli spin operators σ± and bosonic creation and annihi-
lation operators c†, c. Here, ω0 and ωc correspond to the spin
and cavity mode frequencies, and g0 denotes the coupling am-
plitude between the system and the cavity mode. In addition,
the spin-1/2 system is incoherently driven at rate �, combined
with an incoherent decay of the bosonic mode occupation at
rate κ . The resulting time evolution dynamics for the density
operator is prescribed by

ρ̇ = Lρ = −i[H/h̄, ρ] + D[
√

κ/2c]ρ + D[
√

�/2σ+]ρ,

(2)
where we have introduced the Lindblad dissipators [35,36]

D[
√

κ/2c]ρ = κ

2
(2cρc† − {c†c, ρ}t ), (3a)

D[
√

�/2σ+]ρ = �

2
(2σ+ρσ− − {σ−σ+, ρ}), (3b)

imposing incoherent excitation and dissipation on the system
and the cavity mode, respectively. In the following calcula-
tions, we choose the parameters g0 = 0.2 ps−1, � = 0.4 ps−1,
ω0 = ωc, and varying bosonic decay rates κ . Moreover, we are
only interested in the stationary state reached at time ts, where
ρ̇(ts) = Lρ(ts) = 0 within numerical precision.

The corresponding system density matrix ρ consists of 2d

elements, with d = 2Nnmax
β for a system comprising N spins

and a single bosonic mode with maximum occupation number
nmax

β . In the case of the Jaynes-Cummings model considered
herein, we have N = 1. Due to the self-adjointness of the
density matrix, only d (d + 1)/2 of its elements must be deter-
mined for a complete system description. Our model choice is
motivated by the high sparsity of the stationary state density
matrix: Using a Heisenberg projector method for maximum
optimization, the full Hilbert space can be projected onto a
subspace spanned by only 2(d − 1) nonzero elements, com-
pletely describing the deterministic density matrix ρ(ts) in a
stationary state [35,37]. In the following, we present a neural
bit encoding scheme of Fock states based on the restricted
Boltzmann machine (RBM) neural network architecture. Here,
the deterministic density matrix ρ is estimated by a probabilis-
tic neural density operator ρϑ, which is fully described by a set
of variational parameters ϑ. In the high boson number regime,
the presented method is shown to yield a drastic reduction of
complexity with respect to the deterministic density matrix
representation, surpassing even the compression efficiency of
the maximally optimized description.

III. NEURAL ENCODING OF FOCK STATES

The RBM neural network architecture can be employed
to create a probabilistic model of the density matrix, and it
is composed of binary neurons, meaning that each neuron
in the network can take on one of two possible config-
urations. Recently, it has been shown to enable a highly
favorable and efficient description of open spin systems via
a one-to-one mapping of spins to binary neurons, estab-
lishing a natural representation of the systems’ degrees of
freedom [1,9–14,23,26,38–42]. The 22N density matrix ele-
ments 〈σ1, . . . , σN | ρ |η1, . . . , ηN 〉 for a system of N spins

FIG. 1. RBM realization of the neural density operator, featur-
ing a visible layer storing the configuration of N spin-1/2 systems
(orange) and the bosonic Fock state occupation bit-encoded in Nβ

neurons (blue), two hidden layers (green), and an ancillary mixing
layer (red) with variational training parameters ϑ = (a, b, c,W ,U ).

σn, ηn = {−1, 1} are constituted by a model distribution re-
ferred to as a neural density operator, which is optimized
by iterative variation of a set of network parameters. This
neural network realization of the density matrix certainly is a
great achievement, however as of yet its potential has not been
fully unleashed. To further expand the representational power
of the RBM, in the following we present a highly efficient
and scalable mapping of Fock number states to the artificial
neurons by subjecting the bosonic Fock state basis to a bit
encoding scheme [43,44].

The fundamental idea is to decompose the Fock state oc-
cupation number into a string of bits, which is then directly
mapped onto the visible binary neurons of the RBM. To
derive a general framework for hybrid systems comprising
both spins and bosonic degrees of freedom, we consider N
spin-1/2 systems and a single bosonic mode, corresponding to
density matrix elements 〈σ1, . . . , σN ; nσ

β | ρ |η1, . . . , ηN ; nη

β〉,
where σn, ηn = {−1, 1} again denote the left and right spin
configurations, and nσ

β , nη

β ∈ N0 correspond to the left and
right number occupation of the bosonic mode. The Fock
state occupations nσ

β , nη

β are each decomposed into Nβ bits
(βσ

1 , . . . , βσ
Nβ

) and (βη

1 , . . . , β
η
Nβ

), following the encoding rule

nβ =
Nβ∑
i=1

2i−1δβi,1, (4)

i.e., allowing for the representation of nβ = {0, 1, . . . , 2Nβ −
1} indistinguishable bosons on each side. In this bit-encoded
format, the Fock state basis can be directly mapped onto
the binary neurons of the RBM analogous to the spin-1/2
systems and without any modification to the neural network
architecture itself. Naturally, the regime of representable Fock
state occupations is limited by the number of employed bits.
For instance, utilizing a total of Nβ = 4 artificial neurons as
bits corresponds to 24 possible Fock state configurations in
total, with the Fock occupation number given by

nβ = 20δβ1,1 + 21δβ2,1 + 22δβ3,1 + 23δβ4,1. (5)

Figure 1 shows a sketch of the resulting bit-encoded
RBM: The neural network features a visible layer of
2(N + Nβ ) sites σ = (σ1, . . . , σN , βσ

1 , . . . , βσ
Nβ

) and η =
(η1, . . . , ηN , β

η

1 , . . . , β
η
Nβ

) representing the full configuration
of the left and right side of the density matrix and consisting
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of N spin-1/2 systems (orange shapes) and the bosonic mode
occupation encoded in Nβ bits (blue shapes). In addition, the
network comprises two auxiliary hidden layers with M sites
hσ and hη each (green shapes), connecting the visible sites
of each side, and an ancillary mixing layer of K neurons

hμ connecting the left and right side of the density matrix
(red shapes). Tracing out the hidden and ancillary degrees
of freedom, the elements of the neural density operator read
[10–12,26,38]

ρϑ(σ, η) = 8 exp

[
N∑

i=1

(aiσi + a∗
i ηi ) +

N+Nβ∑
i=N+1

(
aiβ

σ
i−N + a∗

i β
η
i−N

)]

×
M∏

m=1

cosh

(
bm +

N∑
i=1

Wmiσi +
N+Nβ∑
i=N+1

Wmiβ
σ
i−N

)
cosh

(
b∗

m +
N∑

i=1

W ∗
miηi +

N+Nβ∑
i=N+1

W ∗
miβ

η
i−N

)

×
K∏

k=1

cosh

[
ck + c∗

k +
N∑

i=1

(Ukiσi + U ∗
kiηi ) +

N+Nβ∑
i=N+1

(
Ukiβ

σ
i−N + U ∗

kiβ
η
i−N

)]
, (6)

where ϑ = (a, b, c,W ,U ) denotes a set of complex training
parameters split up into real and imaginary parts, yielding a to-
tal of 2(N + Nβ ) + 2M + K + 2M(N + Nβ ) + 2K (N + Nβ )
elements. These variational parameters constitute the net-
works’ degrees of freedom, consisting of biases a for visible
sites, b for hidden neurons, and c for the mixing layer, and
of complex weights W and U connecting the visible neurons
(σ, η) to the hidden layers hσ , hη and to the ancillary mixing
layer hμ, respectively (see Fig. 1).

IV. TRAINING PROCEDURE

Due to the exponential growth of the Hilbert space di-
mension with increasing system size, an exact mapping of
the density matrix becomes increasingly expensive when
considering large Fock state numbers. The artificial neural
network ansatz approaches this problem by approximat-
ing the unknown density matrix ρ by the neural density
operator ρϑ [Eq. (6)] via iterative optimization of the pa-
rameters ϑ. To this end, configuration space is efficiently
compressed via application of the Metropolis algorithm
[45], where a sequence of Ns samples of left and right
density matrix configurations, i.e., visible neuron configu-
rations of the RBM, is drawn as input data rather than
taking every possible density matrix configuration into ac-
count. The Metropolis algorithm is based on a Markov chain
Monte Carlo method, corresponding to a random walk in
Hilbert space [46–48]: A new system configuration (σ, η) =
(σ1, . . . , σN , βσ

1 , . . . , βσ
Nβ

; η1, . . . , ηN , β
η

1 , . . . , β
η
Nβ

) is drawn
based on the current sample and either accepted or rejected at
a certain acceptance probability to find a subspace accurately
representing the full Hilbert space of the considered system.
In many scenarios involving spin-1/2 systems interacting with
bosonic modes, the number of nonzero combinations of spin
configurations and Fock number occupations is severely lim-
ited by the structure of the spin-boson interaction, resulting
in a highly sparse stationary state density matrix. Since our
goal of training the neural network is to approximate only the
steady state of the considered system, we exploit this fact to
increase sampling efficiency and accuracy by only drawing
samples from the subspace of nonzero steady state density

matrix elements. To propose a new sample, a random selection
rule is employed where the left and right configuration of
each spin σ1, . . . , σN , η1, . . . , ηN is flipped at 50% probability
each. Afterwards, new random Fock number configurations
βσ

1 , . . . , βσ
Nβ

, β
η

1 , . . . , β
η
Nβ

are drawn based on the new spin
configuration. Specifically, only combinations of spin config-
urations and boson numbers that have a nonzero stationary
state contribution are taken into consideration as samples. The
acceptance probability of a newly drawn sample is chosen as

A(n + 1, n) = min

[
1,

p̃ϑ(σn+1, ηn+1)

p̃ϑ(σn, ηn)

]
, (7)

where (σn, ηn) denotes the current and (σn+1, ηn+1) the newly
proposed sample configuration.

Employing the stochastic reconfiguration approach
[49–51], the system observables and the normalized
occurrence probability of a given sample configuration
(σn, ηn) with n = {1, . . . , Ns} are approximated as statistical
expectation values over the Ns samples drawn during one
iteration. As a result, the normalized occurrence probability
is given by

p̃ϑ(σn, ηn) = |ρϑ(σn, ηn)|2∑Ns
n=1 |ρϑ(σn, ηn)|2 , (8)

and diagonal observables can be estimated as statistical aver-
ages 〈X (σ, σ )〉 ≈ 〈〈X (σ, σ )〉〉q [10–12,49–51] with

〈〈X (σ, σ )〉〉q :=
Ns∑

n=1

q̃ϑ(σn)
∑

ξ

X (σn, ξ)
ρϑ(ξ, σn)

ρϑ(σn, σn)
, (9)

where we have introduced the normalized proba-
bility of diagonal system configurations q̃ϑ(σn) =
ρϑ(σn, σn)/[

∑Ns
n=1 ρϑ(σn, σn)]. In this work, we focus

on diagonal observables as figures of merit. As a result,
numerical performance can be further increased by employing
the probability amplitude q̃ϑ(σ) based only on diagonal
samples, which considerably reduces the dimension of
the relevant configuration subspace: During each training
iteration, Ns diagonal samples (σn, σn) are drawn to calculate
q̃ϑ(σ) for the estimation of diagonal observables, and Ns
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unrestricted samples (σn, ηn) are drawn to calculate p̃ϑ(σ, η)
for the training of the network.

The training goal is to determine the steady state of the
considered system, prescribed by the condition ρ̇ = Lρ = 0,
with L denoting the Liouvillian superoperator [35,36]. To
optimize the parameter set ϑ to fulfill this condition, we
define a cost function C(ϑ) = ‖Lρϑ‖2

2 [10,12]. Initially, the
variational parameters are set to small nonzero random values,
ϑ

(0)
l ∈ [−0.01, 0.01]\{0}. Using the standard stochastic gradi-

ent descent algorithm and Ns sample system configurations as
input training data, during each training iteration t → t + 1
the parameters ϑ are updated by the rule

ϑ
(t+1)
l = ϑ

(t )
l − ν∇ϑlC[ϑ(t )], (10)

at a learning rate ν [48]. The required cost function gradient
is evaluated as [10,26]

∇ϑlC(ϑ) = 2 Re

{
Ns∑

n=1

p̃ϑ(σn, ηn)L̃†
(σn, ηn)

×
Ns∑

m=1

L(σn, ηn, σm, ηm)
ρϑ(σm, ηm)

ρϑ(σn, ηn)
Oϑl (σm, ηm)

−
[

Ns∑
n=1

p̃ϑ(σn, ηn)Oϑl (σn, ηn)

]

×
[

Ns∑
n=1

p̃ϑ(σn, ηn)L̃†
(σn, ηn)L̃(σn, ηn)

]}
,

(11)

introducing the estimator of the Liouvillian

L̃(σn, ηn) :=
∑
σm,ηm

L(σn, ηn, σm, ηm)
ρϑ(σm, ηm)

ρϑ(σn, ηn)
, (12)

and logarithmic derivatives stored in diagonal matrices with
elements

[Oϑl ]σnηn,σnηn
= Oϑl (σn, ηn) = ∂[ln ρϑ(σn, ηn)]

∂ϑl
, (13)

which correspond to the neural density operator gradients
with respect to all l elements of ϑ and for a given sample
configuration (σn, ηn).

V. NEURAL NETWORK EFFICIENCY GAIN

In a regular density matrix implementation, the number of
required elements for a complete system description scales
polynomially with the maximum boson number nmax

β . For
the model considered herein [Eq. (2)], this corresponds to
2nmax

β (2nmax
β + 1)/2 elements, with nmax

β denoting the chosen
bosonic occupation number limit dictated by the numeri-
cal implementation. In its maximally optimized stationary
state representation, a linear scaling via 2(2nmax

β − 1) can
be achieved. In contrast, in the presented bit-encoded neural
network, the amount of variational parameters arising from
bosonic degrees of freedom scales only with the number of
bits Nβ , with nmax

β = 2Nβ − 1, corresponding to a drastic de-
crease of complexity especially in the limit of large boson
numbers.
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FIG. 2. Required number of parameters for a complete and nu-
merically convergent system description, plotted on a logarithmic
scale with respect to the mean stationary state boson occupation.
The RBM approach (solid light blue line) is compared to a regular
density matrix implementation (solid dark blue line) and a highly
optimized approach with a truncated Hilbert space featuring only
nonzero steady-state density matrix elements (dashed dark blue line).
Inset: Cutout on a linear scale, showing the area where the RBM
implementation becomes the most efficient.

In Fig. 2, we compare the number of parameters required
for a complete and numerically convergent description of the
considered model system with respect to the average boson
occupation number in stationary state 〈nβ (ts)〉 and plotted on
a logarithmic scale. A lower value corresponds to a higher
degree of information compression. The mean stationary Fock
state occupation is tuned by variation of the bosonic decay
rate κ . In the neural network implementation, convergence is
achieved once the number of employed bits Nβ is chosen suffi-
ciently large, and it can be further improved by increasing the
number of samples per iteration Ns. Numerical convergence
of the regular density matrix implementation is assumed if
further expanding the maximum Fock state occupation nmax

β

results in a relative deviation of less than 0.1% in 〈nβ (ts)〉.
With increasing degrees of freedom, dynamical Runge-Kutta
calculations typically require an increasingly small time dis-
cretization to achieve numerical convergence. In addition, the
required number of elements scales polynomially, resulting
in a polynomial increase in complexity for rising system
sizes (solid dark blue line). Exploiting the sparsity of the
stationary state density matrix to truncate the corresponding
Hilbert space via application of a projector method, the den-
sity matrix implementation can be maximally optimized to
scale linearly in the required number of parameters (dashed
dark blue line). The number of variational RBM parameters
defining the neural density operator scales with the number of
employed bits Nβ . While increasing the hidden layer sizes of
course results in a less efficient compression, we note that in
our experience numerical convergence of the network can be
improved a lot more efficiently by increasing the bosonic de-
grees of freedom Nβ rather than the hidden layer dimensions
M and K . Therefore, the solid light blue line in Fig. 2 shows
the required number of variational parameters to achieve a
convergent estimation of the density matrix at fixed hidden
layer densities M/(Nβ + 1) = K/(Nβ + 1) = 1, exhibiting a
slow linear increase for rising Fock state basis dimensions.
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As a main result of our study, Fig. 2 illustrates a much more
efficient compression of system information by the RBM
architecture with respect to the regular density matrix imple-
mentation. The inset shows a cutout on a linear scale, where
the bit encoding of the bosonic degrees of freedom results
in a stepwise increase of complexity (solid light blue line).
The maximally optimized, linearly scaling density matrix im-
plementation is comparably efficient and even undercuts the
required number of variational RBM parameters in the low
Fock state occupation regime. Strikingly, the neural network
information compression becomes even more efficient above
〈nβ (ts)〉 ≈ 160 (see the inset). Given the already excellent
Hilbert space compression achieved by the projector method
in the maximally optimized density matrix approach, this is a
remarkable result. In the following, we explicitly demonstrate
the bit-encoded RBMs’ accuracy and scalability potential with
regard to the regime of large Fock state basis dimensions.

VI. ACCURACY

As a proof of principle and to demonstrate the accuracy of
the neural encoding of Fock states, we specifically calculate
the stationary boson occupation number statistics Pn(ts) for
the considered model system [Eq. (2)], with

Pn(t ) = 1

n!
〈c†ncn(t )〉 − 1

n!

nmax∑
m=1

(n + m)!

m!
Pn+m(t ) (14)

denoting the probability of measuring n bosons in the system
at a given time t , calculated up to the highest included bosonic
correlation degree nmax [52,53]. Here we choose a low bosonic
decay rate κ = 0.04 ps−1. In accordance with Fig. 2, we have
chosen Nβ = 5 bits and hidden layer densities M/(Nβ + 1) =
K/(Nβ + 1) = 1 to achieve numerically convergent results.
Calculations are performed at a learning rate ν = 0.01 and
using Ns = 5000 sample configurations per iteration. As a
benchmark, we additionally calculate the system dynamics
up to the steady state using a common density matrix imple-
mentation using identical parameters, nmax

β = 14, and a time
discretization 
t = 0.02 ps.

Figure 3(a) shows the estimated stationary state expec-
tation value of the Fock state occupation number 〈nβ (ts)〉
with respect to the number of training iterations of the RBM
(solid light blue line) and compared to the benchmark result
〈nβ (ts)〉 ≈ 4.56 (dashed dark blue line), exhibiting excellent
agreement after approximately 4000 iterations. The light os-
cillating behavior of the RBM results can be further reduced
by increasing the number of samples per iteration Ns: Ac-
cordingly, a comparison RBM calculation using five times
fewer samples per iteration exhibits increased variations (solid
gray line). Figure 3(b) depicts the steady state boson num-
ber statistics Pnβ (ts ) [Eq. (14)] calculated via training of the
neural network (light blue bars) and compared to benchmark
results (dark blue bars). The two resulting statistics are in
overall very good qualitative agreement, sharing their highest
boson number probability at nβ = 4, with a Kullback-Leibler
divergence of approximately 0.14, which can be further re-
duced by increasing the sample size Ns. It is noted, however,
that the statistics resulting from the RBM implementation
is prone to error accumulation for nβ > 10: The estimated
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FIG. 3. Demonstration of the accuracy of the bit-encoded neu-
ral network implementation of Fock number states. (a) Expectation
value for the stationary Fock state occupation number 〈nβ (ts )〉 ob-
tained from the RBM (solid blue line), compared to a calculation
using fewer samples per iteration (solid gray line) and to the bench-
mark result (dashed line). (b) Steady-state boson number statistics
resulting from the RBM implementation (light blue bars) and com-
pared to benchmark results (dark blue bars).

occurrence probabilities feature statistical deviations arising
from the Monte Carlo sampling procedure. These deviations
are relatively small when considering the boson number ob-
servable 〈nβ〉 = 〈c†c〉 and choosing a sufficiently large sample
size Ns [solid light blue line in Fig. 3(a)]. However, during the
calculation of Eq. (14), the statistical error multiplies for each
increasing correlation order n of 〈c†ncn〉, thus limiting high
accuracy RBM calculations of the boson number statistics to
the low boson number regime for the considered sample size.

VII. SCALABILITY

To access the high boson number regime, we calculate
the considered model system [Eq. (2)] once more at a small
bosonic decay rate κ = 0.001 ps−1, resulting in 〈nβ (ts)〉 ≈
199, where the information compression efficiency of the
RBM realization has been shown to surpass even a maximally
optimized density matrix implementation (see Fig. 2). For
training, we employ Nβ = 13 bits and hidden layer densities
M/(Nβ + 1) = K/(Nβ + 1) = 1 at a learning rate ν = 0.003
and Ns = 5000 samples per iteration. Even though 〈nβ (ts)〉
is located well below the maximum Fock state occupation
nmax

β = 2Nβ − 1, choosing fewer bits Nβ yields nonconverging
results, underlining the networks’ need for sufficient degrees
of freedom to facilitate effective training [19]. Thanks to the
favorable scaling of the required number of variational param-
eters with increasing system sizes, calculations are still highly
efficient in this regime. Figure 4 shows the neural network
results for the mean Fock state occupation number 〈nβ (ts)〉
over the course of training iterations (solid blue line). Remark-
ably, already after approximately 400 iterations, it approaches
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FIG. 4. Demonstration of the scalability potential of the bit-
encoded neural network in the large Fock number regime, showing
the mean Fock occupation number 〈nβ (ts )〉 over training iterations
(solid light blue line). The inset shows the spin-down (green bottom
line) and spin-up occupations (orange upper line) of the spin sys-
tem over iterations. Dashed dark blue lines indicate corresponding
benchmark results.

the benchmark value 〈nβ (ts)〉 ≈ 199 (dashed blue line). The
inset shows the steady-state spin-up and spin-down expecta-
tion values of the single spin system obtained from the RBM
implementation (blue and orange lines) and in good agree-
ment with their corresponding benchmark results (dashed blue
lines). To conclude, the required number of neurons employed
as bits Nβ to account for bosonic degrees of freedom exceeds
the actual stationary boson occupation by far. However, the
number of training iterations to achieve numerical conver-
gence is drastically reduced with increasing neuron numbers.
This can be explained by the decreased asymmetry of the spin-
boson interaction [Eq. (1)] in the large boson number regime
n 
 1, where

√
n ≈ √

n + 1, since the RBM architecture is
known to achieve far higher levels of performance and con-
vergence for the representation of systems with symmetries
of translational invariance [26]. At the same time, the bit-
encoded neural network performs more efficiently than even
highly optimized common implementations where a projector
method has been employed to access the sparsest Hilbert

subspace available, underlining the performance of the bit-
encoded neural network representation of Fock states in the
high occupation regime.

VIII. CONCLUSION

We have presented a bit-encoded realization of Fock num-
ber states in the RBM neural network architecture, extending
its applicability of high-performing approximate mappings of
the density matrix to hybrid spin systems featuring bosonic
degrees of freedom, further advancing the paradigm of a
universally applicable neural network architecture for open
quantum systems. Crucially, in the limit of large Fock state oc-
cupation numbers, the RBM implementation requires severely
fewer parameters for a complete system description than
common density matrix approaches and even surpasses the
information compression efficiency of a maximally optimized
implementation, where the corresponding Hilbert space has
been truncated to the sparsest possible representation by ap-
plication of a projector method. We have demonstrated the
accuracy of the presented neural encoding of Fock states by
calculating the stationary state boson number statistics of a
model system, exhibiting good agreement with benchmark
calculations. Moreover, to illustrate the scalability potential
and the performance of our method, we have calculated the
mean stationary Fock state occupation in the high boson num-
ber regime, where the information compression of the neural
network becomes the most efficient. Once numerical conver-
gence is achieved by tuning the number of visible neurons in
the network, it can be further improved, e.g., by increasing the
number of samples per iteration or via application of adaptive
sampling strategies [26].
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