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Optimal implementation of two-qubit linear-optical quantum filters
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We design optimal interferometric schemes for the implementation of two-qubit linear-optical quantum filters
diagonal in the computational basis. The filtering is realized by the interference of the two photons encoding the
qubits in a multiport linear-optical interferometer, followed by conditioning on presence of a single photon in
each output port of the filter. The filter thus operates in the coincidence basis, similarly to many linear-optical
unitary quantum gates. The implementation of a filter with linear optics may require an additional overhead in
terms of a reduced overall success probability of the filtering and the optimal filters are those that maximize the
overall success probability. We discuss in detail the case of symmetric real filters and extend our analysis also to
asymmetric and complex filters.
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I. INTRODUCTION

Quantum information processing with linear optics [1–3]
relies on the encoding of qubits into states of single pho-
tons and the implementation of various quantum operations
by multiphoton interference, followed by photon counting
measurements and postselection based on the measurement
outcomes. Scalable linear-optical quantum gates can be in
principle realized with the use of auxiliary single photons
and feedforward operations controlled by the outcomes of
measurements on auxiliary modes [4,5]. During the past two
decades, quantum information processing with linear optics
has evolved rapidly, driven in recent years by important ad-
vances in the design of integrated quantum optics circuits on a
chip [6], and highly efficient superconducting single-photon
detectors [7,8] and single-photon sources [9,10]. Although
full-scale quantum computing with linear optics still appears
to be technologically very demanding, the linear-optics plat-
form proved to be very useful for proof-of-principle tests
of various concepts and protocols in quantum information
processing, and small-scale linear-optical quantum processors
may find their applications in advanced quantum communi-
cation networks, where the role of light as the information
carrier is indispensable.

A central topic in quantum computing with linear optics
is to design and realize various two-qubit [5] and multi-
qubit [11–15] linear-optical quantum gates. Besides unitary
gates, nonunitary quantum operations, commonly referred to
as quantum filters, also play an essential role in quantum
information processing. A quantum filter can be defined as a
trace-decreasing completely positive map with a single Kraus
operator M that satisfies M†M � I and transforms a general
input state ρin as ρout = MρinM†. This output state is not
normalized and PS = Tr[ρout] is the probability of successful
filtering. Quantum filters find their applications for instance in
optimal quantum state discrimination [16,17], entanglement
concentration and distillation [18–21], or in the engineering

of highly nonclassical states of light by conditional photon
addition or subtraction [22–26].

In the present work we investigate the optimal linear-
optical implementation of a two-qubit quantum filter diagonal
in the computational basis,

M = m00|00〉〈00| + m01|01〉〈01| + m10|10〉〈10| + |11〉〈11|,
(1)

where |mjk| � 1, and without loss of generality we set
m11 = 1. We concentrate on the resource-effective implemen-
tation that does not require any auxiliary photons. The filter
is realized by the interference of the two photons encoding
the qubits in a suitably designed multiport optical interfer-
ometer, and successful filtering is heralded by the presence
of a single photon in each output of the filter. The filter thus
operates in the coincidence basis, similarly to a number of
linear-optical unitary quantum gates designed and realized to
date. In practice, the verification of the presence of a single
photon in each output of the filter would require destructive
coincidence two-photon detection. The quantum filters M can
be considered as a generalization of two-qubit controlled-
phase gates, where phase modulation is replaced by amplitude
modulation. Specifically, for m00 = 1 and m01 = m10 = 0 the
filter (1) becomes the quantum parity check [27–29] that is
useful for implementation of a linear-optical controlled-NOT

(CNOT) gate [28,30,31] and for the generation of entangled
multiphoton cluster states [32].

It turns out that, depending on the filter parameters, it may
not be possible to implement the filter without an additional
reduction of the probability of success. This means that in-
stead of filter M we implement an equivalent but less efficient
filter

√
PLM, where PL is the probability reduction factor im-

posed by the linear-optical setup. Our goal is to design optimal
interferometric schemes for the two-qubit quantum filters (1),
that maximize the probability PL. This task is similar to the
design of optimal two-qubit linear-optical phase gates oper-
ating in the coincidence basis [33,34]. However, in contrast
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FIG. 1. Two-qubit linear-optical quantum filter operating in the
coincidence basis. Qubits are encoded into states of single photons in
pairs of modes A0, A1 and B0, B1. The scheme involves also auxiliary
input modes Cj that are all prepared in a vacuum state. All modes are
coupled in a multiport optical interferometer described by a unitary
matrix U . The filter is conditionally implemented if each pair of
output modes A0, A1 and B0, B1 contains a single photon, and this
conditioning is represented in the figure by projectors �A and �B

onto the two-dimensional single-photon subspaces of the respective
pairs of modes. In practice, confirmation of a successful filter opera-
tion can be achieved in a destructive manner by conditioning on the
coincidence detection of two photons, one in modes A0, A1, the other
in modes B0, B1.

to the optimal controlled-phase gate, we find that different
mode-coupling configurations are optimal depending on the
filter parameters. Importantly, fully analytical results can be
obtained for the optimal interferometer parameters and the
resulting maximum success probability PL.

The rest of the paper is organized as follows. In Sec. II we
present a general description of the linear-optical interfero-
metric scheme that implements the two-qubit quantum filters.
In Sec. III we discuss in detail the realization of a symmetric
filter with real coefficients and in Sec. IV we extend our analy-
sis to asymmetric and complex filters. Finally, Sec. V contains
a brief summary and conclusions. The Appendix contains
technical proof of the allowed structure of the interferometer
that implements the quantum filter.

II. LINEAR-OPTICAL TWO-QUBIT QUANTUM FILTERS

A conceptual scheme of a linear-optical setup implement-
ing the two-qubit quantum filter (1) is depicted in Fig. 1. Each
qubit is encoded into the state of a single photon that can prop-
agate in two modes denoted as A0, A1, and B0, B1 for qubits A
and B, respectively. The presence of a photon in mode A0, B0

represents a logical state |0〉 while a photon in mode A1, B1

encodes a logical state |1〉. The quantum filter is implemented
by the interference of the two photons in a multiport optical
interferometer followed by verification of the presence of a
single photon in each pair of output modes A0, A1 and B0, B1.
In practice, this verification can be performed destructively
by conditioning on suitable two-photon coincidence detec-
tion. The linear-optical quantum filter thus operates in the
coincidence basis, similarly to certain linear-optical two-qubit
CNOT and controlled-phase gates [5,35–37]. This approach is
applicable in practice provided that the quantum filter repre-
sents the last operation on the qubits before their detection
at the output of the optical quantum information processing
network.

Alternatively, one can perform a nondemolition detection
of a single photon in each pair of modes. However, within
the linear-optics setting, this would require ancilla photons
[38] and would significantly increase the complexity of the
filter and reduce its success rate. Alternatively, the nonde-
structive implementation of a two-qubit quantum filter with
ancilla photons may be also achieved by imprinting the filter
into an ancilla two-photon entangled state, similarly to imple-
mentations of a nondestructive two-qubit linear-optical CNOT

gate [30,31].
A multiport optical interferometer can be described by a

unitary matrix U that specifies the coupling between the input
and output modes. Note that in addition to the four modes
that encode the qubits, the interferometer may contain also
additional auxiliary modes. In terms of creation operators c†

j
associated with each mode we have

c†
j,in =

∑
k

Uj,kc†
k,out. (2)

Throughout the paper we use a boldface font for the Fock
states and a lightface font for the logical qubit basis states.
Let

|1Aj , 1Bk 〉 = c†
Aj

c†
Bk

|vac〉, (3)

where j, k ∈ {0, 1} and |vac〉 is the vacuum state, denote the
input two-photon Fock state corresponding to the two-qubit
product state | j〉A|k〉B. The projectors �A and �B on two-
mode single-photon subspaces indicated in Fig. 1 can be
expressed as

�A = |1A0 , 0A1〉〈1A0 , 0A1 | + |0A0 , 1A1〉〈0A0 , 1A1 |,
�B = |1B0 , 0B1〉〈1B0 , 0B1 | + |0B0 , 1B1〉〈0B0 , 1B1 |. (4)

Conditional on the observation of a single photon in each pair
of output modes A0, A1 and B0, B1, the input two-photon Fock
state (3) transforms according to

|1Aj , 1Bk 〉 →
1∑

m,n=0

WAm,Bn|Aj ,Bk |1Am , 1Bn〉, (5)

where

WAm,Bn|Aj ,Bk = UAj ,AmUBk ,Bn + UAj ,BnUBk ,Am . (6)

Correct implementation of the quantum filter (1) requires that

WAm,Bn|Aj ,Bk = √
PLmjkδ jmδkn, (7)

where PL � 1 is an additional factor that may reduce the
overall probability of implementation of the linear-optical
quantum filter. Our goal is to find for a given filter (1) the
optimal interferometer that maximizes PL.

The design of optimal linear-optical quantum filters is sim-
ilar to the construction of an optimal linear-optical two-qubit
quantum controlled-phase gate operating in the coincidence
basis [33,34]. In particular, one can show that correct func-
tioning of the two-qubit quantum filter as specified by Eq. (7)
can be achieved only if only one pair of information-encoding
modes is interferometrically coupled (see the Appendix for
a proof). Consequently, the 4×4 matrix UAB = (Uj,k ), where
j, k ∈ {A0, B0, A1, B1}, has a block-diagonal structure, con-
sisting of a general 2×2 matrix describing the coupling of

062408-2



OPTIMAL IMPLEMENTATION OF TWO-QUBIT … PHYSICAL REVIEW A 103, 062408 (2021)

two modes and two additional diagonal elements specifying
the amplitude transmittances for the other two modes. For
an explicit example of such matrix, see, e.g., Eq. (10) below.
In what follows, we will frequently use the conditions under
which a 2×2 matrix V = (Vj,k ) is a submatrix of a unitary
matrix. Define two row vectors �v j = (Vj,0,Vj,1). Matrix V is a
submatrix of a unitary matrix if and only if the vector norms
and scalar product satisfy the inequalities,

|�v0|2 � 1, |�v1|2 � 1,

|�v0 · �v1|2 � (1 − |�v0|2)(1 − |�v1|2). (8)

Here, the last inequality guarantees that the vectors �v0 and �v1

can be completed to orthogonal vectors of unit length.

III. SYMMETRIC REAL FILTER

In this section we investigate the optimal interferometric
schemes for the implementation of a two-qubit real symmetric
quantum filter specified by the Kraus operator

M = a|00〉〈00| + b(|01〉〈01| + |10〉〈10|) + |11〉〈11|, (9)

where 0 � a � 1 and 0 � b � 1. Note that if a = b2, then the
filter factorizes and becomes a product of two single-qubit
filters that each attenuate the amplitude of the basis state |0〉
by a factor b. Otherwise, the quantum filter is an entangling
operation that can create entangled states from input separable
states. When optimizing the success probability PL, it is nec-
essary to consider three different configurations: the coupling
of modes A0 and B0, the coupling of modes A1 and B1, and
finally also the coupling of modes B0 and A1. Note that due to
the symmetry of the filter, the fourth possible configuration,
where modes B1 and A0 are coupled, is fully equivalent to
the configuration where modes A1 and B0 are coupled, and
therefore need not be considered separately. In what follows
we discuss each of the above listed configurations in detail.

A. Coupling of modes A0 and B0

Assuming the coupling of modes A0 and B0 and the
ordering of modes A0, B0, A1, and B1, we can write the corre-
sponding 4×4 submatrix of U as follows (see the Appendix),

UAB =

⎛
⎜⎝

τAb τAx 0 0
τBy τBb 0 0
0 0 τA 0
0 0 0 τB

⎞
⎟⎠. (10)

Here, τA and τB represent the amplitude attenuation of modes
A1 and B1, respectively, and the parameters x and y specify
the strength of the interferometric coupling between modes
A0 and B0. Without loss of generality, we can assume that all
matrix elements of UAB are real. The parameters x and y are
related by the condition

xy = a − b2. (11)

The chosen parametrization of the matrix elements of UAB to-
gether with the condition (11) ensures that the set of equations
(7) is satisfied, where m00 = a, m01 = m10 = b, m11 = 1, and

PL = τ 2
Aτ 2

B . (12)

We are thus left with three free parameters τA, τB, and x that
shall be optimized to maximize the probability PL.

Since UAB is a submatrix of a unitary matrix, the following
constraints must be satisfied [cf. also Eq. (8)],

τ 2
A � 1, τ 2

B � 1. (13)

τ 2
A (b2 + x2) � 1, τ 2

B (b2 + y2) � 1, (14)

and

τ 2
Aτ 2

Bb2(x + y)2 � [1 − τ 2
A (b2 + x2)][1 − τ 2

B (b2 + y2)]. (15)

Taking into account the constraint (11), and introducing new
parameters z, τB = zτA, and γ = |y/x|z, this last inequality
can be rewritten as

√
PLb2(z−1 + z) + √

PL|a − b2|(γ −1 + γ )

− PL(2b2 − a)2 � 1. (16)

Since

x + x−1 � 2, ∀x > 0, (17)

we get

2
√

PL(b2 + |a − b2|) − PL(2b2 − a)2 � 1. (18)

This inequality yields a nontrivial upper bound on PL if
a > b2. Assuming equality in Eq. (18), and carefully analyz-
ing the two roots of the resulting quadratic equation for

√
PL,

√
PL = a ± 2b

√
a − b2

(2b2 − a)2
= 1

(b ∓ √
a − b2)2

, (19)

we find that PL is upper bounded by the smaller root, and

PL � 1

(b + √
a − b2)4

, a > b2. (20)

Another useful inequality can be obtained by taking the prod-
uct of the two inequalities (14). We get

PL[b4 + b2|b2 − a|(μ + μ−1) + (b2 − a)2] � 1, (21)

where μ = |x/y|. With the use of inequality (17) this yields

PL � 1

(b2 + |b2 − a|)2 . (22)

We now explicitly present the optimal interferometric config-
urations that are all symmetric, τA = τB = τ and x = ±y. We
have to distinguish four different cases according to the values
of the filter parameters a and b.

(i) a � b2, 2b2 − a < 1. As shown in Fig. 2(a), in this case
it is optimal to couple the modes A0 and B0 on a beam splitter
with amplitude transmittance

t = b√
2b2 − a

. (23)

Subsequently, each of the modes A0 and B0 is attenuated with
an amplitude factor

ν =
√

2b2 − a (24)

by sending it through a beam splitter with an amplitude trans-
mittance ν whose auxiliary mode is prepared in a vacuum
state. Since we postselect on the presence of a single photon
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FIG. 2. Optimal optical interferometers implementing the two-
qubit quantum filters (9) by the interferometric coupling of modes
A0 and B0. The labels of the beam splitters indicate their amplitude
transmittances. Mode attenuation is realized by propagation through
a beam splitter with a suitable transmittance, whose auxiliary input
mode is prepared in the vacuum state. The four schemes (a)–(d) rep-
resent optimal setups for different values of the filter parameters a
and b. For details, see the text.

in each pair of output modes, this mode attenuation only
reduces the amplitude of the corresponding Fock state |1〉 but
it preserves coherence and pure input states are conditionally
mapped onto pure output states, as described by Eq. (5). With
the setup shown in Fig. 2(a) we get PL = 1 and the linear-
optical implementation does not impose any extra reduction
of the overall success probability of the quantum filtering.

(ii) a � b2, 2b2 − a > 1. The optimal scheme is drawn in
Fig. 2(b) and is similar to that in case (i). However, instead of
attenuating modes A0 and B0 we have to attenuate modes A1

and B1 with amplitude transmittance

τA = τB = 1√
2b2 − a

. (25)

Subsequently, the probability PL drops below 1 and we get
PL = (2b2 − a)−2. The scheme is optimal because PL satu-
rates the inequality (22).

(iii) a > b2, b + √
a − b2 � 1. The optimal interferometric

scheme is shown in Fig. 2(c). Modes A0 and B0 are injected
into a Mach-Zehnder interferometer formed by two balanced
beam splitters. One arm of the interferometer is attenuated
with amplitude transmittance t and the other with amplitude
transmittance t ′, where

t = b −
√

a − b2, t ′ = b +
√

a − b2. (26)

In this case we achieve PL = 1.

(iv) a > b2, b + √
a − b2 > 1. The optimal scheme is

shown in Fig. 2(d) and is similar to the scheme for case (iii).
However, only one of the interferometer arms is attenuated,
with amplitude transmittance

t = b − √
a − b2

b + √
a − b2

. (27)

Furthermore, modes A1 and B1 are each attenuated by a factor

τA = τB = 1

b + √
a − b2

. (28)

Consequently, we have

PL = 1

(a + 2b
√

a − b2)2
. (29)

The scheme is optimal because the achieved PL saturates the
bound (20).

B. Coupling of modes A1 and B1

Let us now investigate the configuration where modes A1

and B1 are interferometrically coupled instead of the modes
A0 an B0. Keeping the same ordering of modes A0, B0, A1, and
B1, the relevant 4×4 submatrix of U can be written as

UAB =

⎛
⎜⎜⎝

τA 0 0 0
0 τB 0 0
0 0 b

aτA τAx
0 0 τBy b

aτB

⎞
⎟⎟⎠, (30)

where

xy = a − b2

a2
(31)

and the probability PL can be expressed as

PL = τ 2
Aτ 2

B

a2
. (32)

The conditions following from the requirement that (30) is a
submatrix of a unitary matrix yield

τ 2
A

(
b2

a2
+ x2

)
� 1, τ 2

B

(
b2

a2
+ y2

)
� 1, (33)

and

2

√
PL

a
(b2 + |a − b2|) − PL

a2
(2b2 − a)2 � 1. (34)

This last inequality was obtained by the same procedure as
the inequality (18) and it implies the following upper bound
on PL,

PL � a2

(b + √
a − b2)4

, a > b2. (35)

By taking the product of the two inequalities (33) and utilizing
the constraint (31) we find that

PL � a2

(b2 + |b2 − a|)2
. (36)

For a < b2 this bound is stricter than the bound (22). Sim-
ilarly, for a > b2 the inequality (35) is stricter than the
inequality (20). It follows from the inequalities (35) and (36)
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that with the coupling of modes A1 and B1 we can achieve
PL = 1 only if a = b2. Physically, for a �= b2 there will always
be a nonzero probability that for the input state |11〉 the two
photons will bunch and will both end up either in mode A1

or B1, resulting in the failure of the filter. We can therefore
conclude that the interferometric coupling of modes A1 and
B1 cannot yield higher PL than the coupling of modes A0

and B0.

C. Coupling of modes B0 and A1

Finally, we consider an asymmetric configuration where
modes B0 and A1 are coupled. The corresponding matrix UAB

can be expressed as

UAB =

⎛
⎜⎝

bτA 0 0 0
0 τB

a
b τBx 0

0 τAy τA 0
0 0 0 τB

⎞
⎟⎠, (37)

where

xy = b − a

b
. (38)

The requirement that UAB is a submatrix of a unitary matrix
yields the constraints

τ 2
A (1 + y2) � 1, τ 2

B

(
x2 + a2

b2

)
� 1, (39)

and

τ 2
Aτ 2

B

(
x + y

a

b

)2
�

[
1 − τ 2

A (1 + y2)
][

1 − τ 2
B

(
x2 + a2

b2

)]
,

(40)

together with τ 2
A � 1 and τ 2

B � 1. The optimal schemes must
saturate at least one of the inequalities (39) and (40). If none of
these inequalities is saturated, then we can increase τA, hence
also PL = τ 2

Aτ 2
B , until at least one inequality is saturated.

Let us first assume that one of the inequalities (39) is satu-
rated. It immediately follows from Eq. (40) that x + ya/b = 0
must hold, which together with (38) yields

x = 1

b

√
a(a − b2), y = −1

a

√
a(a − b2). (41)

This solution exists in the parameter region a > b2. It follows
from the inequalities (39) that the maximum possible values
of τA,B are given by

τ 2
A = a

2a − b2
, τ 2

B = min

(
1,

b2

a(2a − b2)

)
. (42)

Consequently, the maximum achievable PL for this case can
be expressed as

PL = min

(
a

2a − b2
,

b2

(2a − b2)2

)
, a > b2. (43)

Let us now assume that only the inequality (40) is saturated.
Since the saturation means that equality holds in (40), we can
use it to express τ 2

A in terms of x and τB,

τ 2
A = x2[b2 − τ 2

B (b2x2 + a2)]

x2b2 + (b2 − a)2 − x2τ 2
B (2a − b2)2

. (44)

The optimal values of τB and x can be determined by solving
the extremal equations

∂

∂τB

(
τ 2

Aτ 2
B

) = 0,
∂

∂x

(
τ 2

Aτ 2
B

) = 0, (45)

where τ 2
A is given by Eq. (44). In the region a > b2 we recover

the optimality condition (41). In the region a < b2 we obtain
an additional potentially optimal solution

x =
√

a

b

√
b2 − a, y =

√
b2 − a

a
, (46)

and

τ 2
A = a

(
√

b2 − a + √
a)2

, τ 2
B = b2

a

1

(
√

b2 − a + √
a)2

.

(47)

Note that this solution is acceptable only if all the inequalities
(13) and (39) are satisfied. Additionally, we have to consider
also the extremal point τ 2

B = 1. On inserting this into Eq. (44),
we have

PL = τ 2
A = x2(b2 − b2x2 − a2)

x2b2 + (b2 − a)2 − x2(2a − b2)2
. (48)

The optimal x maximizing PL can be found from the extremal
equation

∂PL

∂x
= 0. (49)

After some algebra, this yields two roots,

x2 = (a + b)(a − b2)

b(2a + b − b2)
, PL = (a + b)2

(2a + b − b2)2
, (50)

and

x2 = (b − a)(b2 − a)

b(b2 + b − 2a)
, PL = (a − b)2

(b2 + b − 2a)2
. (51)

We emphasize that formulas (50) or (51) represent valid po-
tential optimal points only if x2 � 0 and if all the inequalities
(13) and (39) are satisfied.

The final maximization of PL must be performed over all
the above considered configurations and all the identified po-
tentially optimal solutions. The maximal PL, optimized over
all the coupling configurations, is plotted in Fig. 3. Remark-
ably, we find that for a certain range of parameters a and b
satisfying a > b2 the asymmetric scheme where modes B0

and A1 are coupled outperforms the symmetric scheme where
modes A0 and B0 are coupled, and achieves higher PL. This
area of parameters where the coupling of modes B0 and A1 is
optimal is depicted in Fig. 4. We note that the interferometric
coupling described by matrix (37) can be realized by the
interference of modes B0 and A1 in a Mach-Zehneder inter-
ferometer formed by two generally unbalanced beam splitters,
and the signal in each interferometer arm should be suitably
attenuated [cf. Fig. 2(c)]. The splitting ratios of the beam
splitters and the attenuation factors can be determined by the
singular value decomposition of the matrix UAB [34].
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FIG. 3. Maximum probability PL for the symmetric two-qubit
quantum filters (9) achievable with linear-optical interferometric
schemes is plotted as a function of filter parameters a and b. The
large yellow area represents filters for which PL = 1. The gray line
indicates the points a = b2 that correspond to filters which factor into
products of single-qubit filters.

IV. ASYMMETRIC AND COMPLEX FILTERS

The optimization procedure discussed in the previous sec-
tion can be extended to asymmetric and complex two-qubit
filters. Here, we illustrate it on the examples of a two-qubit
asymmetric filter with real coefficients and a two-qubit sym-
metric complex filter. We shall focus on the configuration
where modes A0 and B0 are coupled. Configurations where
other pairs of modes are coupled can be treated in a similar
manner. For an asymmetric filter one has to consider sepa-
rately both the coupling of modes A0, B1 and A1, B0 because
the symmetry is broken.

FIG. 4. The black area indicates the range of parameters a and b
of a symmetric two-qubit quantum filter (9) for which the coupling
of modes B0 and A1 leads to maximum success probability PL .

A. Asymmetric real filter

Let us consider the linear-optical implementation of an
asymmetric real filter

M = a|00〉〈00| + bA|01〉〈01| + bB|10〉〈10| + |11〉〈11|, (52)

where 0 � a � 1, and 0 � bA � bB � 1 are real parameters
of the filter. Assuming the coupling of modes A0 and B0, the
matrix UAB can be conveniently parametrized as

UAB =

⎛
⎜⎝

bAτA bAτAx 0 0
bBτBy bBτB 0 0

0 0 τA 0
0 0 0 τB

⎞
⎟⎠, (53)

where

xy = a

b2
− 1, (54)

and we have defined the parameter b = √
bAbB. Since UAB is a

submatrix of a unitary matrix, the following inequalities must
hold, similarly to the previously studied case of a symmetric
filter,

τ 2
A � 1, τ 2

B � 1, (55)

b2
Aτ 2

A (1 + x2) � 1, b2
Bτ 2

B (1 + y2) � 1, (56)

and

η2
Aη2

B(x + y)2 �
[
1 − η2

A(1 + x2)
][

1 − η2
B(1 + y2)

]
, (57)

where ηA = bAτA and ηB = bBτB. With the use of condition
(54), the last inequality can be rewritten as

η2
A(1 + x2) + η2

B(1 + y2) − η2
Aη2

B

(
2 − a

b2

)2
� 1. (58)

For any filter (52), the optimal interferometer maximizing
PL = τ 2

Aτ 2
B can always be designed such that the inequality

(58) is saturated and equality holds. First note that if one of
the inequalities (56) is saturated, then also inequality (57) is
saturated and equality must hold, because both the left- and
right-handed sides of Eq. (57) must be equal to 0. Assume
now a configuration where none of the inequalities (56) and
(57) is saturated. If τA or τB is smaller than 1, then we can
increase their value until either equality holds in (57) or τA =
τB = 1. For an optimal configuration with τA = τB = 1 we can
increase or decrease the free parameter x while keeping the
constraint (54) until the equality holds in Eq. (57).

We now discuss the various options that have to be consid-
ered. Let us first consider the option τA = τB = 1, i.e., PL = 1.
In this case, x and y can be determined by solving Eqs. (54)
and (58), where the equality is assumed to hold. We obtain

x2 = 1

2b2
A

[
q +

√
q2 − 4(a − b2)2

]
,

y2 = 1

2b2
B

[
q −

√
q2 − 4(a − b2)2

]
, (59)

where

q = 1 − b2
A − b2

B + (2b2 − a)2. (60)
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Since x2 and y2 must be real and non-negative, the solution
(59) exists only if

q � 2|a − b2|. (61)

Additionally, the inequalities (56) must also hold, which
reduces to

x2 � 1

b2
A

− 1, y2 � 1

b2
B

− 1, (62)

where x2 and y2 are given by Eq. (59). To sum up, PL = 1 is
achievable with the coupling of modes A0 and B0 if and only
if the inequalities (61) and (62) are satisfied.

Let us now assume that τA = 1 but τB can be smaller than 1.
Assuming equality in Eq. (58), we get

τ 2
B = b2

Ax2
[
1 − b2

A(1 + x2)
]

b4x2 + (a − b2)2 − b2
Ax2(2b2 − a)2 . (63)

The optimal x2 that maximizes τ 2
B can be determined by solv-

ing the extremal equation

∂τ 2
B

∂x
= 0. (64)

This leads to a quadratic equation for x2 with roots

x2 = (a − b2)(1 − bA)

bA(b2 + abA − 2b2bA)
,

x2 = (b2 − a)(1 + bA)

bA(b2 − abA + 2b2bA)
. (65)

These roots represent valid solutions provided that x2 � 0 and
the inequalities (55) and (56) are satisfied, where y2 and τ 2

B
are determined by Eqs. (54) and (63), respectively. For an
asymmetric filter we must also independently consider the
configuration τB = 1 because the symmetry is broken. Fol-
lowing a similar procedure as before, we obtain

τ 2
A = b2

By2
[
1 − b2

B(1 + y2)
]

b4y2 + (a − b2)2 − b2
By2(2b2 − a)2 , (66)

and the potentially optimal y2 read

y2 = (a − b2)(1 − bB)

bB(b2 + abB − 2b2bB)
,

y2 = (b2 − a)(1 + bB)

bB(b2 − abB + 2b2bB)
. (67)

Once again these solutions are valid only if y2 � 0 and the
inequalities (55) and (56) are satisfied.

Finally, we consider the configuration where both τA and
τB can be smaller than 1. Assuming equality in (58), we can
express τA as a function of τB and x,

τ 2
A = b2

By2
[
1 − b2

Bτ 2
B (1 + y2)

]
b4y2 + (a − b2)2 − b2

Bτ 2
By2(2b2 − a)2

. (68)

On inserting this formula into the extremal equations

∂

∂τB

(
τ 2

Aτ 2
B

) = 0,
∂

∂y

(
τ 2

Aτ 2
B

) = 0, (69)

we obtain after some algebra the following expressions for x
and y,

x =
√

|a − b2|
b

, y = sgn(a − b2)

√
|a − b2|

b
. (70)

If a � b2, then x = −y and at least one of the inequalities
(56) is saturated. However, the inequalities (55) may represent
an additional bound. We can succinctly express τA and τB as
follows,

τ 2
A = min

(
1,

b2

b2
A(2b2 − a)

)
,

τ 2
B = min

(
1,

b2

b2
B(2b2 − a)

)
. (71)

If a > b2, then the extremal equations (69) lead to the follow-
ing expressions for τA and τB,

τ 2
A = bB

bA

1

(
√

a − b2 + b)2
, τ 2

B = bA

bB

1

(
√

a − b2 + b)2
. (72)

These formulas represent valid solutions only if the inequali-
ties (55) and (56) are satisfied.

B. Symmetric complex filter

Let us finally investigate the realization of symmetric
two-qubit filters with complex coefficients. Without loss of
generality, we can restrict ourselves to the filters

M = aeiϕ |00〉〈00| + b|01〉〈01| + b|10〉〈10| + |11〉〈11|, (73)

where a and b are real and positive, because the relative phase
shifts of states |01〉 and |10〉 can be set to zero by suitable
phase shifts applied to modes A0 and B0, respectively. We shall
again focus on the configuration where modes A0 and B0 are
coupled. The matrix UAB has the same structure as for real
symmetric filters,

UAB =

⎛
⎜⎝

bτA τAx 0 0
τBy bτB 0 0
0 0 τA 0
0 0 0 τB

⎞
⎟⎠, (74)

only the condition on parameters x and y changes to

xy = aeiϕ − b2. (75)

Since x and y are generally complex, the conditions implied
by UAB being a submatrix of a unitary matrix must be written
as follows,

τ 2
A (b2 + |x|2) � 1, τ 2

B (b2 + |y|2) � 1, (76)

and

b2τ 2
Aτ 2

B |x + y∗|2 �
[
1 − τ 2

A (b2 + |x|2)
][

1 − τ 2
B (b2 + |y|2)

]
.

(77)

Taking into account the symmetry of the filter, one can show
that PL = 1 can be achieved provided that the inequalities
(76) and (77) are satisfied for a symmetric configuration with
|x| = |y| and τA = τB = 1. After some algebra, this yields the
following condition,

b2 + b
√

2(s + a cos ϕ − b2) + s � 1, (78)
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FIG. 5. Two examples of a possible implementation of the two-qubit linear-optical quantum filters. (a) On-chip implementation with path
encoding of the qubit states. Lines represent the optical waveguides and their crossings balanced directional couplers. The open circles indicate
variable phase shifters. Subblocks in colored boxes act as variable beam splitters. Blue boxes serve for mode swapping that ensures coupling
of the desired pair of modes. The two red boxes realize the required interferometric coupling of the selected pair of signal carrying modes,
and the four green boxes serve for tunable signal attenuation in each mode. (b) Bulk-optics implementation with polarization encoding and
interferometers formed by calcite beam displacers that introduce a lateral shift between the vertically and horizontally polarized beams. The
polarization states are transformed with half-wave plates (green elements) that play the role of beam splitters, and the interferometric phase
shifts can be set and controlled by tilting thin glass plates (orange elements).

where

s = |xy| =
√

a2 + b4 − 2ab2 cos ϕ. (79)

If the inequality (78) does not hold, then the optimal configu-
ration is symmetric, with

x = y =
√

aeiϕ − b2, (80)

and

τ 2
A = τ 2

B = 1

b2 + b
√

2(s + a cos ϕ − b2) + s
. (81)

This yields

PL = [
b2 + b

√
2(s + a cos ϕ − b2) + s

]−2
. (82)

For ϕ = 0 we recover the results for a symmetric real filter
derived in Sec. III A. Also, for a = b = 1 we recover from
Eq. (82) the maximum probability of implementation of a
two-qubit linear-optical controlled-phase gate [33,34],

PCP(ϕ) =
[

1 + 2
∣∣∣sin

ϕ

2

∣∣∣ + 2

√∣∣∣sin
ϕ

2

∣∣∣ − sin2 ϕ

2

]−2

. (83)

We note that also for ϕ = π we obtain a filter (9) with real
parameters a and b, where the effective coefficient a be-
comes negative. The results obtained in Secs. III and IV A for
real symmetric and asymmetric quantum filters are straight-
forwardly applicable also if a < 0, and one only needs to
carefully check whether a given potentially optimal solution
is meaningful for a < 0. Recall that a filter with negative bA

or bB can be converted to a filter with positive bA and bB

by single-mode unitary phase shifts. Therefore, it suffices to
allow for negative a to cover the whole class of real filters. A
real filter with a < 0 can be seen as a combination of a filter
with positive real coefficients and a unitary controlled-Z gate.

V. CONCLUSIONS

We have designed optimal interferometric schemes for the
implementation of two-qubit linear-optical quantum filters

operating in the coincidence basis. The considered linear-
optical realization of the quantum filters may impose an extra
cost in terms of a reduced success probability of success-
ful filtering and the designed schemes maximize the success
probability of the filter. The symmetric real filters were an-
alyzed in particular detail and, interestingly, we have found
that for a certain range of parameters the optimal scheme
is asymmetric in the sense that it couples a pair of modes
corresponding to logical state |1〉 of one qubit and logical state
|0〉 of the other qubit, which contrasts the symmetry of the
considered filter. Our investigation of the optimal implementa-
tion of optical quantum filters complements the earlier studies
on the optimal realization of linear-optical unitary quantum
gates. The required interferometric setup can be implemented
on-chip with integrated optics where a tunable beam splitter
can be realized using a Mach-Zehnder interferometer with a
tunable phase shift [6,39,40]. A universal integrated optics cir-
cuit that can realize all of the optimal interferometric schemes
is drawn in Fig. 5(a). As a second example, in Fig. 5(b) we
show a possible bulk optics realization based on polarization
qubit encoding and the utilization of inherently stable inter-
ferometers formed by a sequence of calcite beam displacers
[11,41–43]. The investigated two-qubit linear-optical quan-
tum filters may find applications in linear-optics quantum
information processing and quantum state engineering.
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APPENDIX: DERIVATION OF THE STRUCTURE
OF MATRIX UAB

In this Appendix we determine the most general form
of the 4×4 matrix Uj,k , j, k ∈ A0, B0, A1, B1, that describes
interferometric coupling which enables the implementation of
the diagonal two-qubit quantum filter (9). Recall that the input
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two-photon Fock state |1Aj , 1Bk 〉 transforms as follows,

|1Aj , 1Bk 〉 →
1∑

m,n=0

(
UAj ,AmUBk ,Bn + UAj ,BnUBk ,Am

)∣∣1Am , 1Bn

〉
,

(A1)

where we assume operation in the coincidence basis and re-
strict ourselves to the outputs where a single photon is present
in each pair of modes A0, A1 and B0, B1. Recall also that
the implementation of a diagonal two-qubit quantum filter
M = ∑1

j,k=0 mjk| jk〉〈 jk| requires that

UAj ,AmUBk ,Bn + UAj ,BnUBk ,Am = √
PLmjkδ jmδkn. (A2)

Throughout the following discussion we assume that all four
coefficients mjk are nonzero. Let us first prove that all four
diagonal matrix elements UAj ,Aj and UBk ,Bk must be nonzero.
Assume that UA0,A0 = 0. In order to obtain nonzero mA0,B0 and
mA0,B1 the matrix elements UB0,A0 , UA0,B0 , UA0,B1 , and UB1,A0

must be all nonzero. However, this implies that

UA0,A0UB0,B1 + UA0,B1UB0,A0 (A3)

is nonzero, which is in contradiction with the required struc-
ture (A2). Specifically, the nonzero term (A3) implies that the
input state |1A0 , 1B0〉 is transformed to a state that contains a
nonvanishing contribution of |1A0 , 1B1〉, which is not compat-
ible with the diagonal form of the targeted quantum filter. We
have thus proved by contradiction that UA0,A0 must be nonzero.
The same proof applies also to the other three matrix elements
UA1,A1 , UB0,B0 , and UB1,B1 .

We next show that the four matrix elements UA0,A1 , UA1,A0 ,
UB0,B1 , and UB1,B0 must be zero. We again prove this by con-
tradiction. We provide the proof for UA0,A1 . Equation (A2)
implies that

UA0,A0UB0,B1 = −UA0,B1UB0,A0 ,

UA0,A1UB0,B0 = −UA0,B0UB0,A1 , (A4)

UA0,A1UB0,B1 = −UA0,B1UB0,A1 .

If we take the product of the first two equations (A4) and make
use of the third equality (A4), we obtain

UA0,A1UB0,B1

(
UA0,A0UB0,B0 + UA0,B0UB0,A0

) = 0. (A5)

Since the term in the parentheses is equal to
√

PLm00 and thus
nonzero, we have

UA0,A1UB0,B1 = 0. (A6)

This implies that also

UA0,B1UB0,A1 = 0. (A7)

If UA0,A1 �= 0, then also UB0,A1 �= 0, and UA0,B1 = 0, which
follows from Eqs. (A4) and (A6) and from the above proved
condition UB0,B0 �= 0. It follows that the amplitude

UA0,A1UB1,B1 + UA0,B1UB1,A1 (A8)

is nonzero, although it should vanish. Therefore, UA0,A1 = 0
must hold and similarly we can show that also UA1,A0 =
UB0,B1 = UB1,B0 = 0.

Let us now assume that modes A0 and B0 are interfer-
ometrically coupled and UA0,B0 �= 0, as well as UB0,A0 �= 0.
We show that the other pairs of modes Aj and Bk cannot be
coupled. It follows immediately from Eq. (A4) that

UA0,B1 = UB0,A1 = 0. (A9)

We next consider the following amplitudes that should also
vanish,

UB1,B0UA0,A0 + UA0,B0UB1,A0 = 0,

UA1,A0UB0,B0 + UA1,B0UB0,A0 = 0, (A10)

Since UB1,B0 = UA1,A0 = 0 and UA0,B0 �= 0, UB0,A0 �= 0, we get

UA1,B0 = UB1,A0 = 0. (A11)

Finally, from the requirement that the following two ampli-
tudes should vanish,

UA1,B1UB0,A0 + UA1,A0UB0,B1 = 0,

UB1,A1UA0,B0 + UA0,A1UB1,B0 = 0, (A12)

we can deduce that

UA1,B1 = UB1,A1 = 0. (A13)

To summarize our findings: Out of the 16 matrix elements
Uj,k , where j, k ∈ {A0, A1, B0, B1}, only six elements are
nonzero, the four diagonal elements Uj, j and two elements
representing interferometric coupling of a single pair of
modes Aj and Bk , e.g., UA0,B0 and UB0,A0 . The matrix (10)
considered in Sec. III A of the main text (or its variants
obtained by swapping the modes A0 and A1 and/or B0 and B1)
therefore represents the most general permissible interfero-
metric coupling for the implementation of two-qubit diagonal
quantum filters.

We note that, strictly speaking, this result holds only if all
four mjk are nonzero. If two or three filter parameters mjk

vanish, then it can be shown that the filter can be implemented
with PL = 1 and the coupling of one pair of modes is sufficient
to achieve this. In fact, the only nontrivial configuration is
m01 = m10 = 0 while m00 �= 0, and this is covered by the
optimal symmetric quantum filters discussed in Sec. III. Oth-
erwise, m00 = m01m10 holds, and the filter factorizes into a
product of two single-qubit filters. For the remaining case of
one vanishing parameter one can conjecture that the depen-
dence of PL on the filter parameters should be continuous
and therefore it should suffice to consider the above identi-
fied interferometric configurations with one pair of coupled
modes.
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[34] K. Lemr, A. Černoch, J. Soubusta, K. Kieling, J. Eisert, and M.
Dušek, Phys. Rev. Lett. 106, 013602 (2011).

[35] R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki,
Phys. Rev. Lett. 95, 210506 (2005).

[36] N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch,
A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White,
Phys. Rev. Lett. 95, 210504 (2005).

[37] N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter,
Phys. Rev. Lett. 95, 210505 (2005).

[38] P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 66, 063814
(2002).

[39] J. Carolan, C. Harrold, C. Sparrow, E. Martín-López, N. J.
Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M.
Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F.
Matthews, T. Hashimoto, J. L. O’Brien, and A. Laing, Science
14, 711 (2015).

[40] X. Qiang X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara,
L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B.
Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews,
Nat. Photon. 12, 534 (2018).

[41] M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A.
Aspuru-Guzik, and A. G. White, Phys. Rev. Lett. 104, 153602
(2010).

[42] Z.-H. Bian, J. Li, X. Zhan, J. Twamley, and P. Xue, Phys. Rev.
A 95, 052338 (2017).

[43] R. Stárek, M. Miková, I. Straka, M. Dušek, M. Ježek, J.
Fiurášek, and M. Mičuda, Opt. Express 26, 8443 (2018).

062408-10

https://doi.org/10.1063/1.5115814
https://doi.org/10.1088/1361-6633/aad5b2
https://doi.org/10.1038/35051009
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/s41566-019-0532-1
https://doi.org/10.1038/nphoton.2013.13
https://doi.org/10.1364/OL.41.005341
https://doi.org/10.1038/nnano.2017.218
https://doi.org/10.1063/5.0003320
https://doi.org/10.1038/nphys1150
https://doi.org/10.1103/PhysRevLett.111.160407
https://doi.org/10.1126/sciadv.1501531
https://doi.org/10.1038/srep45353
https://doi.org/10.1038/s41534-018-0087-x
https://doi.org/10.1103/PhysRevA.54.3783
https://doi.org/10.1103/PhysRevA.63.040305
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1038/35059017
https://doi.org/10.1038/nphoton.2010.1
https://doi.org/10.1103/PhysRevLett.112.070402
https://doi.org/10.1126/science.1103190
https://doi.org/10.1103/PhysRevLett.92.153601
https://doi.org/10.1126/science.1122858
https://doi.org/10.1103/PhysRevLett.110.130403
http://arxiv.org/abs/arXiv:2006.16985
https://doi.org/10.1103/PhysRevLett.88.257902
https://doi.org/10.1103/PhysRevA.64.062311
https://doi.org/10.1103/PhysRevLett.88.147901
https://doi.org/10.1103/PhysRevLett.93.020504
https://doi.org/10.1103/PhysRevLett.94.030501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1088/1367-2630/12/1/013003
https://doi.org/10.1103/PhysRevLett.106.013602
https://doi.org/10.1103/PhysRevLett.95.210506
https://doi.org/10.1103/PhysRevLett.95.210504
https://doi.org/10.1103/PhysRevLett.95.210505
https://doi.org/10.1103/PhysRevA.66.063814
https://doi.org/10.1126/science.aab3642
https://doi.org/10.1038/s41566-018-0236-y
https://doi.org/10.1103/PhysRevLett.104.153602
https://doi.org/10.1103/PhysRevA.95.052338
https://doi.org/10.1364/OE.26.008443

