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We investigate superpositions of two-mode squeezed states (TMSSs), which have potential applications in
quantum information processing and quantum sensing. We study some properties of these nonclassical states
such as the statistics of each mode and the degree of entanglement between the two modes, which can be higher
than that of a TMSS with the same degree of squeezing. The states we consider can be prepared by inducing
two-mode Jaynes-Cummings and anti-Jaynes-Cummings interactions in a system of two modes and a spin- 1

2
particle, for instance, in the trapped ion domain, as described here. We show that when two harmonic oscillators
are prepared in a superposition of two TMSSs, each reduced single-mode state can be advantageously employed
to sense arbitrary displacements of the mode in phase space. The Wigner function of this reduced state exhibits
a symmetrical peak centered at the phase-space origin, which has the convenient peculiarity of getting narrower
in both quadratures simultaneously as the average photon number increases. This narrow peak can be used as
the pointer of our quantum sensor, with its position in phase space indicating the displacement undergone by the
oscillator.
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I. INTRODUCTION

In quantum mechanics, the superposition principle is the
origin of fascinating nonclassical attributes of quantum states
such as quantum coherence [1], squeezing [2], and entan-
glement [3]. Great efforts, both theoretical and experimental,
have been made in order to generate nonclassical states
and to investigate their properties, since these states have
a wide range of applications in quantum information pro-
cessing [4–10], quantum-enhanced metrology [11–14], and
fundamental tests of quantum mechanics [15,16].

Consider the two-mode squeezed state (TMSS), which is
an entangled state of two bosonic modes [2]. This kind of
correlation exhibits Bell nonlocality [15], a key ingredient
to demonstrate the Einstein-Podolsky-Rosen paradox [17,18]
(fundamental test of quantum mechanics), to implement quan-
tum teleportation in continuous variables [19] (manipulation
of quantum information), and to detect very weak fields
[20] such as the gravitational waves [21] (quantum metrol-
ogy). Another intriguing nonclassical state is the so-called cat
state, a quantum superposition of two diametrically opposed
coherent states, which has been employed to demonstrate
Schrödinger’s famous cat paradox and has been used as a
resource for quantum information processing [22–40].

Here we are interested in nonclassical states that connect
the concepts of both TMSSs and cat states, namely, a su-
perposition of TMSSs with the same amplitudes but opposite
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phases. There are already theoretical proposals for their gen-
eration in microwave cavities [41] (that could also be adapted
for the context of optical cavities or solid-state-based sys-
tems), in trapped ions [42], and by using the parity operator
[43]. Nevertheless, the literature lacks studies of their proper-
ties and applications, which is our goal here.

We first analyze the statistics of each reduced single-
mode state (RSMS) of a superposition of TMSSs. For the
symmetrical balanced superposition, which we call the even
TMSS, we show that there is bosonic superbunching [44,45],
an effect with potential applications for advanced imaging
techniques (such as ghost interference and imaging) as well
as efficient nonlinear light-matter interaction [46–52]. In con-
trast, for small squeezing parameters, each single mode of the
asymmetrical balanced superposition (odd TMSS) presents
two-photon anticorrelation [44,45], a desired behavior for
single-photon sources [53]. Remarkably, each mode of the
even and odd TMSSs behaves as a pseudothermal state,
which consists of thermal states with only even and odd Fock
excitations, respectively. In addition, we investigate the en-
tanglement degree between the modes of such catlike states,
which can be higher than that of the TMSS in certain param-
eter regimes. Since entanglement is a resource of quantum
states, this may be an advantage for quantum information
processing.

Afterward, we show that the RSMS of either the even or
the odd TMSS can be used to sense the amplitude of arbitrary
single-mode displacements acting on a harmonic oscillator.
The Wigner functions of these RSMSs each have a sym-
metrical peak centered at the phase-space origin, which gets
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narrower in both quadratures simultaneously as the squeezing
parameter and the average number of excitations in the state
increase, but without violating Heisenberg’s uncertainty rela-
tion. This narrow peak works as the pointer of our quantum
sensor, with its position in the phase space indicating the
displacement undergone by the oscillator, which could phys-
ically describe, for instance, an optical [40] or a microwave
resonator mode [35,54,55], vibrational modes of trapped ions
[42,56], or a nanomechanical oscillator [57]. In this sense,
our sensor is able to probe any time-dependent classical force
inducing a displacement on a quantum resonator [58].

Several studies have attempted to figure out the ultimate
limits of measuring forces and displacements on an oscillator
[59], beating the standard quantum limit and even reaching the
Heisenberg one [11,54,60–66]. However, it worth stressing
that this is not our goal. Hence, as similarly considered in
Ref. [58], which described the determination of both parame-
ters of a displacement acting on an oscillator, the idea we put
forward here is the possibility of sensing displacements under-
gone by a quantum resonator with a single-mode sensor state
robust against phase errors when measuring a phase-space
quadrature. Furthermore, our results hold regardless of the
displacement strength, not being limited to small amplitudes
as is the case for grid states [58].

The paper is organized as follows. Section II outlines the
procedure for generating superpositions of TMSSs by cou-
pling a two-level quantum system with two bosonic field
modes and presents the expressions for the two-mode su-
perposition and the reduced density matrices. In Sec. III we
present the relevant statistical properties for those states, such
as Wigner functions and populations in the Fock basis, and
also the second-order correlation function g(2)(0), discussing
the properties of antibunching and superbunching, and show
that odd TMSSs can be used as a source of single photons in
two modes. Section IV provides the entanglement properties
of the superpositions of TMSSs and shows that, for a certain
regime of parameters, the superpositions of TMSSs show
more entanglement than TMSSs. In Sec. V we present basic
concepts of quantum metrology and discuss potential appli-
cations of even and odd TMSSs in detecting small coherent
forces in any direction (they are sensitive to displacements in
all directions in phase space). In Sec VI a simulation of the
process for generating even and odd TMSSs in the trapped-
ion domain is presented. The process involves coupling the
electronic state of the ion with two of its motional degrees of
freedom using a two-color laser field. We also discuss the pro-
cess of probing the Wigner function. Section VII summarizes
the results and presents the conclusions.

II. GENERATION OF SUPERPOSITION OF TWO-MODE
SQUEEZED STATES

Two-mode squeezed states can be generated by coupling
two bosonic modes with a two-level quantum system (a qubit)
via the Hamiltonian (h̄ = 1)

H = −(χ∗ab + χa†b†)σx

= −(χ∗abσ+ + χa†b†σ−) − (χ∗abσ− + χa†b†σ+),
(1)

where χ is the coupling strength; a (a†) and b (b†) are
the annihilation (creation) operators for the bosonic modes;
σx = |+〉〈+| − |−〉〈−| is the Pauli-X operator, with |±〉 =

1√
2
(|g〉 ± |e〉), where |e〉 (|g〉) is the excited (ground) state of

the two-level system; and σ± = 1
2 (σx ± iσy) are the fermionic

raising and lowering operators. The two terms in the second
line of Eq. (1) are a two-mode Jaynes-Cummings interaction
and a two-mode anti-Jaynes-Cummings interaction.

The coupling Hamiltonian H can be realized in various
platforms. In Sec. VI we describe how it may be implemented
in a trapped-ion setup.

We consider the case where the two-level system is ini-
tially in the superposition state |φ0〉 = 1√

2
(|−〉 + eiϕ |+〉) ≡

[cos(ϕ/2)|g〉 + i sin (ϕ/2)|e〉] while the two bosonic modes
are both in the vacuum state |ψ0〉 = |0, 0〉. Thus the initial
state of the composite system is separable |�0〉 = |φ0〉|ψ0〉
(the tensor product symbol is omitted for brevity). After
applying the coupling H for time τ the composite system
evolves to

|�τ 〉 = e−iHτ |�0〉 = 1√
2

[|−〉|ψ (ξ )〉 + eiϕ |+〉|ψ (−ξ )〉],
(2)

where

|ψ (ξ )〉 = e(ξ∗ab−ξa†b† )|0, 0〉

= 1

cosh r

∞∑
n=0

(−eiθ tanh r)n|n, n〉 (3)

is the TMSS which we parametrize by ξ = −iχτ = reiθ , with
the squeezing parameter r = |χ |τ and squeezing angle θ =
arg(ξ ) [67].

From Eq. (2) the bosonic modes are projected onto a
TMSS by measurement of the two-level system in the X
basis {|+〉, |−〉}. Starting from the TMSS, the reduced density
matrix of one mode (found by tracing out the variables of the
other mode) is a thermal state

ρth = (1 − λr )
∞∑

n=0

λn
r |n〉〈n| =

∞∑
n=0

〈n〉n
th

(1 + 〈n〉th)n+1
|n〉〈n|, (4)

with the average number of excitations 〈n〉th = Tr(a†aρth ) =
sinh2 r = λr

1−λr
and λr = tanh2 r [67].

More interesting results emerge when the two-level system
is projected onto the Z basis {|e〉, |g〉}. In this basis Eq. (2)
becomes

|�(ξ, ϕ)〉 = 1

2N+
|g〉|ψ+(ξ, ϕ)〉 − 1

2N−
|e〉|ψ−(ξ, ϕ)〉, (5)

where

|ψ±(ξ, ϕ)〉 = N±[|ψ (ξ )〉 ± eiϕ |ψ (−ξ )〉] (6)

are superposition states of two diametrically opposed TMSSs,
with |N±|2 = 1

2
1+λr

(1+λr )±εϕ (1−λr ) and εϕ = cos ϕ. When the two-
level system is projected onto |g〉 (|e〉) the bosonic modes
are projected onto the catlike state |ψ+(ξ, ϕ)〉 [|ψ−(ξ, ϕ)〉].
Since ϕ ∈ [0, 2π ) and |ψ+(ξ, ϕ)〉 = |ψ−(ξ, ϕ + π )〉, it is
sufficient to analyze just the properties of one of these
states, e.g., |ψ+(ξ, ϕ)〉. We refer to the states that emerge
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when ϕ = 0 and ϕ = π as even and odd TMSSs, respec-
tively, |ψE (ξ )〉 ≡ |ψ+(ξ, 0)〉 = |ψ−(ξ, π )〉 and |ψO(ξ )〉 ≡
|ψ+(ξ, π )〉 = |ψ−(ξ, 0)〉, because they comprise only even
and odd bosonic excitations

|ψE (ξ )〉 =
√

1 − λ2
r

∞∑
n=0

( − λ1/2
r eiθ

)2n|2n, 2n〉, (7)

|ψO(ξ )〉 =
√

1 − λ2
r

λr

∞∑
n=0

( − λ1/2
r eiθ

)2n+1|2n + 1, 2n + 1〉.

(8)

When the two modes are in the state |ψ+(ξ, ϕ)〉 the reduced
density matrix of each mode is

ρ(r, ϕ) = 2(1 − λr )|N+|2
∞∑

n=0

λn
r [1 + (−1)n cos ϕ]|n〉〈n|,

(9)
which is independent of the squeezing angle θ . Specifically
for the even and odd TMSSs, we have the RSMSs

ρE = (
1 − λ2

r

) ∞∑
n=0

λ2n
r |2n〉〈2n|, (10)

ρO = (
1 − λ2

r

) ∞∑
n=0

λ2n
r |2n + 1〉〈2n + 1|. (11)

As the even and odd TMSSs [Eqs. (7) and (8)] are built
from the superposition of TMSSs, whose reduced single-
mode states are described by thermal states [Eq. (4)], it is
not surprising that the reduced single modes of the even and
odd TMSSs behave as pseudothermal states. We can indeed
identify that by rewriting Eqs. (10) and (11) in terms of 〈n〉th

and comparing them with ρth, namely,

ρE = 1 + 2〈n〉th

1 + 〈n〉th

∞∑
n=0

〈n〉2n
th

(1 + 〈n〉th )2n+1
|2n〉〈2n|, (12)

ρO = 1 + 2〈n〉th

〈n〉th

∞∑
n=0

〈n〉2n+1
th

(1 + 〈n〉th)(2n+1)+1
|2n + 1〉〈2n + 1|.

(13)

From these expressions one can recognize ρE and ρO as
even and odd thermal states (pseudothermal states), respec-
tively [68], which are particular cases of binomial negative
states [69]. Even thermal states (even RSMSs) can also be
generated through a parametric pumping field with fluctua-
tions [70].

III. STATISTICAL PROPERTIES

Let us discuss the properties of each single mode
of the catlike state. Since ρ(r, ϕ) is diagonal in the
Fock basis, with populations Pn(ϕ) = 2(1 − λr )|N+|2λn

r [1 +
(−1)n cos ϕ], the Wigner function of this state can be writ-
ten as W (q, p) = ∑∞

n=0 PnWn(q, p), in which Wn(q, p) =
(2/π )(−1)nLn(4s2)e−2s2

is the Wigner function of the Fock
state |n〉, with the Laguerre polynomial Ln(x) and s2 = q2 +
p2. Here q and p are the eigenvalues of the position and
momentum quadrature operators of the mode q̂ = a + a† and

FIG. 1. Statistical properties of the reduced single-mode states:
populations in the Fock basis of the (a) thermal state (Pth

n ) and for
each mode of the (c) even (PE

n ) and (e) odd (PO
n ) TMSSs for the

squeezing parameter r = 1.5 (light gray for odd occupation) and
(b), (d), and (f) Wigner functions for the same reduced single-mode
states, respectively.

p̂ = i(a† − a), respectively, representing the dimensionless
amplitudes of the mode quadratures in phase space [71].

First we observe that ρ(r, ϕ) reduces to the thermal state
ρth when ϕ = {π

2 , 3π
2 } because |ψ+(ξ, ϕ = π

2 , 3π
2 )〉 reduces to

|ψ (ξ )〉 except for a global phase factor. The Wigner function
of the thermal state ρth is given by the two-dimensional Gaus-
sian function

Wth(q, p) = 2

π

exp
( − 2 (q2+p2 )

2〈n〉th+1

)
2〈n〉th + 1

= 2

π

1 − λr

1 + λr
exp

(
−2

1 − λr

1 + λr
(q2 + p2)

)
, (14)

while for each single mode of the even (ρE ) and odd (ρO)
TMSSs the Wigner functions are each described by sums of
two two-dimensional Gaussian functions

WEO (q, p)

= �EO

(
(1 − λr ) exp

[
−2

(
1 − λr

1 + λr

)
(q2 + p2)

]

± (1 + λr ) exp

[
−2

(
1 + λr

1 − λr

)
(q2 + p2)

])
, (15)

with �E = π−1 and �O = (πλr )−1.
Figure 1 shows the populations and the Wigner function

for ρth (Pth
n and Wth), ρE (PE

n and WE ), and ρO (PO
n and WO) for

the squeezing parameter r = 1.5. We observe that the profile
of the populations for ρE and ρO are very similar, namely,
PO

2n+1 = PE
2n = (1 − λ2

r )λ2n
r , that is, the probability distribu-
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FIG. 2. (a) Second-order correlation function at zero-time delay
g(2)(0) as a function of the squeezing parameter r, via λr = tanh2(r),
for the thermal state (ρth) (black solid line), the RSMSs of the
even (ρE ) (orange dashed line) and odd (ρO) (blue dot-dashed line)
TMSSs, and the single-mode squeezed state (|SS〉) (black dotted
line). (b) Probability of projecting onto the odd TMSS (PO) (ascend-
ing blue line) and probability of it having a single-photon in each
mode (PO

1 ) (descending orange line) as a function of λr .

tion of ρO is shifted by one unit compared with the distribution
of ρE .

Accordingly, the average number of excitations is related
by 〈n〉O = 〈n〉E + 1, where 〈n〉E = Tr(a†aρE ) = 2λ2

r /(1 −
λ2

r ). Moreover, we notice that PE
n and PO

n are very similar to
Pth

n , except for a normalization factor and for being nonzero
only for even and odd Fock numbers, respectively, which
illustrates the pseudothermal behavior of each mode of the
even and odd TMSSs. It is also important to notice in Fig. 1 a
concentrated profile of Wigner functions around the phase-
space origin for both ρE and ρO, which can be useful for
metrological purposes, as we discuss in Sec. V.

We can also investigate the statistics of ρE and ρO using the
second-order correlation function at zero-time delay g(2)(0) =
〈a†a†aa〉/〈a†a〉2,

g(2)
E (0) = 2 + 1 − λ2

r

2λ2
r

� 2 for ρE , (16)

g(2)
O (0) = 2 − 2

(
1 − λ2

r

)
(
1 + λ2

r

)2 � 2 for ρO. (17)

For large values of the squeezing parameter (λr → 1 or,
equivalently, for r 
 1) we observe that the correlation func-
tions g(2)(0) of ρE and ρO become indistinguishable and tend
to the thermal one, i.e., g(2)

th (0) = 2. In contrast, when the
squeezing parameter is small, the RSMSs of the even and
odd TMSSs present completely opposite statistics: While ρO

exhibits antibunching [g(2)
O (0) < 1], ρE displays superbunch-

ing [g(2)
E (0) > 2]. To be more specific, g(2)

E (0) > 2 ∀ r � 0

(λr � 0) and g(2)
O (0) < 1 for 0 � λr <

√√
5 − 2 ≈ 0.49 ↔

0 � r < tanh−1 4
√√

5 − 2 ≈ 0.86. Figure 2(a) displays the
change of g(2)(0) with λr for ρth, ρE , ρO and the single-mode
squeezed state |SS〉 = e(re−iθ a2−reiθ a†2 )/2|0〉, with g(2)

SS (0) = 2 +
1/λr . We have included the latter for the sake of comparison,
since it has the same average number of excitations of each
single mode of the TMSS (〈n〉SS = 〈n〉th) and presents super-
bunching. Remarkably, each mode of the even TMSS exhibits
more superbunching than if it were in a single-mode squeezed
state [g(2)

E (0) > g(2)
SS (0) > 2] within the parameter range 0 �

λr <
√

2 − 1 ≈ 0.41 ↔ 0 � r < tanh−1
√√

2 − 1 ≈ 0.76.

Due to the aforementioned attributes, each mode of the
even and odd TMSSs is quite suitable for quantum devices
related to advanced imaging techniques and single-photon
generation, respectively. A single photon may be produced
in each of the two modes when the odd TMSS is produced.
The probability of projecting onto the odd TMSS is PO =
λr/(1 + λr ). The proportion of the odd TMSS described by
two single photons is PO

1 = 1 − λ2
r . Production of high-purity

states of two single photons requires λr → 0, which comes
at the expense of a low production probability PO, as shown
in Fig. 2(b). It is worth noting that the qubit may be used to
herald projection onto the odd TMSS.

IV. ENTANGLEMENT

Considering a bipartite system in a pure state, the degree
of entanglement between the subsystems can be quanti-
fied through the linear entropy E = d

d−1 (1 − γ ), where γ =
Tr(ρ2

1 ) is the purity of one of the subsystems described by
the reduced density matrix ρ1 and d = dim ρ1. Since our sub-
systems are bosonic modes, with infinite-dimensional Hilbert
spaces, 0 � E � 1 such that E = 0 for separable states while
E = 1 for maximally entangled continuous-variable states.

For the TMSS |ψ (ξ )〉, the degree of entanglement is

ETMSS(r) = 1 − 1 − λr

1 + λr
, (18)

while for the general superposition |ψ+(ξ, ϕ)〉,

Eϕ (r) = 1 −
(

1 − λ2
r

1 + λ2
r

)
(1 + εϕ )2 + λ2

r (1 − εϕ )2

[(1 + εϕ ) + λr (1 − εϕ )]2
. (19)

Here Eϕ (r) = ETMSS(r) for any r when ϕ = {π
2 , 3π

2 } → εϕ =
0, which is not a surprise, since we have seen in Sec. III that
ρ(r, ϕ) reduces to ρth for these values of ϕ. The same degree of
entanglement also occurs when λr = √

(1 + εϕ )/(1 − εϕ ) or
r → ∞. Notably, Eϕ (r) > ETMSS(r) for ϕ ∈ ( π

2 , π ) ∪ (π, 3π
2 )

provided 0 < λr <
√

(1 + εϕ )/(1 − εϕ ). In this range, for
the same value of the squeezing parameter r, the entan-
glement degree in the catlike TMSSs becomes higher than
that in the TMSS. Curiously, it can reach high values even
for r � 1, namely, Eϕ (r) ≈ 0.5 for ϕ = π + β and r ≈
|β|/2 considering |β| � 1, for which we have |ψ+(ξ, ϕ)〉 ≈
(|0, 0〉 − sgn(β )ei(θ+π/2)|1, 1〉)/

√
2, i.e., a maximally entan-

gled qubit state. By contrast, ETMSS(r) ≈ β2/2 � 1 under
the same conditions, for which we have |ψ (ξ )〉 ≈ (|0, 0〉 −
(|β|/2)eiθ |1, 1〉)/

√
1 + |β|2/4 ≈ |0, 0〉, i.e., a separable state.

This means that it is possible to generate much more entangle-
ment between the modes with a lower squeezing parameter
by exploiting the catlike states instead of the TMSS, in-
dicating an advantage from the point of view of quantum
information science. Figure 3 illustrates the above results.
It is worth noting that the even (ϕ = 0) and odd (ϕ = π )
TMSSs have the same entanglement degree EE (r) = EO(r) =
1 − (1 − λ2

r )/(1 + λ2
r ), which is always smaller than or equal

to that for the TMSS. Despite that, we show in the next section
that their RSMSs can be employed for quantum metrological
purposes.
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FIG. 3. (a) Density plot showing the entanglement between the
two modes [Eϕ (r)], when they are in the catlike state |ψ+(r, ϕ)〉,
as a function of the initial-state relative phase ϕ and the two-mode
squeezing parameter r via λr = tanh2(r). The dashed lines delimit
the region for which Eϕ (r) surpasses the entanglement of the TMSS
[ETMSS(r)]. (b) Entanglement degree as a function of λr correspond-
ing to the states |ψ (ξ )〉 (orange dashed line), |ψ (ξ, ϕ)〉 (blue solid
line), and |ψE ,O(ξ )〉 (green dot-dashed line), considering ϕ = π + β,
with β = π/10. One can notice here that the entanglement outper-
forming occurs even for small values of r, reaching its maximum for
r ≈ |β|/2 (λr ≈ r2) when |β| � 1. Surprisingly, under this condition
an extreme contrast between the entanglement in the catlike state
and in the TMSS takes place; while the latter is essentially a sepa-
rable state given by the two-mode ground state [|ψ (ξ )〉 ≈ (|0, 0〉 −
(|β|/2)eiθ |1, 1〉)/

√
1 + |β|2/4 → ETMSS(r) ≈ 0.05 for the consid-

ered parameters], the former is approximately a maximally entangled
qubit state [|ψ+(ξ, ϕ)〉 ≈ (|0, 0〉 − ieiθ |1, 1〉)/

√
2 → Eϕ (r) ≈ 0.5].

The even and odd TMSSs have the same entanglement degree, which
is always smaller than or equal to that for the TMSS. (c) Populations
of the catlike state [Pn(ϕ)] [blue (dark gray) bars] and the TMSS
(PTMSS

n ) [orange (light gray) bars] for r = β/2 and ϕ = π + β, with
β = π/10.

V. QUANTUM METROLOGY

Quantum metrology takes advantage of the properties of
quantum mechanics to better estimate parameters involved in
dynamical processes, using quantum states as probes [72].
The process of estimating a parameter y follows a specific
sequence of steps, known as the protocol of estimation [73]:
(i) The probe state is prepared in an initial and determined
configuration, represented by the density matrix ρ; (ii) the
initial state evolves through a dynamical process, which is
represented by a unitary evolution operator U (y) such that
the final configuration of the system is dependent on the
parameter y; (iii) the final state ρ(y) is measured, giving
results yest(κ ), with associated probabilities Pκ (y); (iv) these
results are used to estimate the parameter y. It is important
to note that different results κ come from separate processes
of measurement. The average value of the parameter can
then be calculated with the individual estimation yest(κ ) as
〈yest〉 = ∑

κ yest(κ )Pκ (y), with
∑

κ Pκ (y) = 1. The deviation
of the parameter can be defined as (�y)2 ≡ 〈(yest − 〈yest〉)2〉
and its lower bound is proportional to the inverse of the Fisher

FIG. 4. Comparison of the Wigner function and its projections of
the single-mode squeezed state (projections in light gray dot-dashed
curves) with the projections of the RSMS of the even TMSS (black
solid lines), with r = 1.5 and the vacuum state |0〉 (red dashed lines).
The projections of the RSMS of the even TMSS display tails because
they are described by the summation of two two-dimensional Gaus-
sian functions [see Eq. (15)].

information 〈( d ln[Pκ (y)]
dy )2〉 [74,75] with respect to the parame-

ter y and represents the maximum quantity of information that
can be obtained with respect to y through the probability set
{Pκ (y)}, as derived from the Cramér-Rao inequality [76,77].
Although this is the main method of estimation of the param-
eter we discuss, nonlinear methods of estimation for quantum
metrological purposes are also available [78–80].

Given a generator U (y) for the transformation on the den-
sity matrix which leads to the final state ρ(y), the quantum
Fisher information for y with probe state ρ can be written
as F (y) = 4[�U (y)]2 if ρ is a pure state, with [�U (y)]2 =
〈U 2(y)〉 − 〈U (y)〉2, and F (y) = 2

∑
i, j

(δi−δ j )2

δi+δ j
|〈i|U (y)| j〉|2 if

ρ is mixed, where δ j and | j〉 stand for the eigenvalues and
eigenvectors of ρ, respectively.

Single-mode squeezed states are widely used in quan-
tum metrology due to the reduction of fluctuations in one
of the quadratures of the bosonic mode [81–83]. The fact
that the Wigner functions of each mode of the even and
odd TMSSs are invariant under rotations and sharply con-
centrated around the origin of the phase space (Fig. 1)
motivates the study of applications of those states in quantum
metrology.

Figure 4 shows a comparison between the Wigner func-
tions of a single-mode squeezed state, with reduced noise in
one of the quadratures, the RSMS of the even TMSS, for
the same value of the squeezing parameter r, and a vacuum
coherent state. The single-mode squeezed state has a more
concentrated probability distribution profile than the RSMS.
However, we would like to point out that the symmetry of
the Wigner function (around the origin of the phase space)
of the even and odd RSMSs implies a robust and sensitive
scheme for applications in quantum metrology, since that
peak, whose width can be controlled by the squeezing parame-
ter r, allows for probing small displacements in any direction,
as described in detail in the next section. Furthermore, the
Wigner function still presents thermal contributions along
broad regions of the phase space, so, despite the concentrated
peak around the origin, the Heisenberg uncertainty principle
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FIG. 5. (a) Quantum Fisher information FQ as a function of λr

and (b) average number of excitations in the bosonic field 〈n〉 for
each state. If the direction of squeezing in phase space matches the
displacement direction, single-mode squeezed states are well suited
for measuring the displacement. This is shown by the quantum Fisher
information FQ of the solid black curve. If the angle θ between the
squeezing direction and the displacement direction is large, it can
be more efficient to measure the displacement using the RSMS of the
even or odd TMSS. This is seen by comparing the red star curve (the
black dashed and red star curves show the average FQ values obtained
with SMSSs when θ is spread over a range) with the blue circle
and pink square curves. Here λr = tanh2 r describes the amount of
squeezing. Note also that for small values (λr < 0.3) the odd RSMS
presents a larger FQ than the SMSS. In particular, for λ → 0, the
odd RSMS (blue circles) approximates to the single-photon state |1〉
and the SMSS to the vacuum |0〉. From (b) it can be seen that FQ

behaves linearly for all states and, in particular, for small values of
λ, FQ(〈n〉) ≈ 4(2〈n〉 + 1), with 〈n〉 the average number of excitations
for each corresponding state. Note also that the red star, blue circle,
and pink square curves overlap in (b), corresponding to the SMSS
(−π � θ � π ) and odd and even RSMSs, respectively. We also in-
cluded in (b) the quantum Fisher information for a coherent state |α〉
represented by the blue dot-dashed line, which presents a constant
value of FQ = 4.0.

is not violated. For estimation of displacement, we employ
the general quadrature operator X (φ) = ae−iφ + a†eiφ , which
corresponds to position and momentum operators for φ =
0, π/2, respectively. Figure 5 shows the quantum Fisher in-
formation for the RSMSs of the even and odd TMSSs and
for the single-mode squeezed state, for estimation of po-
sition amplitudes of the mode. Although the single-mode
squeezed state shows better results for the quantum Fisher
information (for a specific quadrature), by employing a mea-
surement scheme of the Wigner function [84], the even and
odd RSMSs could be employed to detect small coherent
forces.

For our state, differently from the single-mode squeezed
state, one does not need to worry about the phase of the
displacement due to the symmetry of its Wigner function
around the origin, as we see in Fig. 4. Thus, although both
variances of the quadratures X and P increase with the amount
of squeezing λ as (3λ2 + 1)/(1 − λ2) and (λ2 + 3)/(1 − λ2)
for the even and odd RSMSs, respectively, the RSMSs still
can be very useful to detect small displacements and, con-
sequently, small forces, by monitoring the Wigner function
of the reduced mode state. This is described in detail in the
next section, showing in particular how these ideas can be
implemented in trapped-ion systems.

VI. ION IMPLEMENTATION

Two-mode squeezed states can be generated by a com-
bination of Jaynes-Cummings and anti-Jaynes-Cummings
interactions, as we see in Eq. (1). In this section we describe
how these interactions can be realized to produce an entangled
state of two motional modes of a single trapped ion, which
could be used for enhanced force sensing. In Ref. [42] similar
effective Hamiltonians are proposed, but the proposal involves
two trapped ions and other types of two-mode squeezed states
are considered.

Electronic states of a single trapped ion can be coupled
to the ion’s motion using a laser field. When the laser field’s
wave vector projects onto two motional modes (x and y), the
Hamiltonian describing the coupling (within the interaction
picture and after taking the rotating-wave approximation) is

HF = �

2
e−i�t eiηx (ae−iωxt +a†eiωxt )eiηy (be−iωyt +b†eiωyt )σ+ + H.c.,

(20)
where � is the coupling strength, � is the detuning of the
laser field from the atomic resonance, a†, b† and a, b raise and
lower the states of the x and y modes, and ωi are the motion
mode frequencies. In addition, σ+ and σ− act on the ion’s
internal state and the Lamb-Dicke parameters are defined by

ηi = ki

√
h̄

2mωi
, (21)

where ki is the projection of the laser field’s wave vector in the
i direction and m is the ion mass.

When a two-color coupling field satisfying � = ±(ωx +
ωy) is used, provided the system is within the Lamb-Dicke
regime η2

x (2nx + 1) and η2
y (2ny + 1) � 1 (ni is the number of

phonons in the i mode), the coupling Hamiltonian becomes

Heff = − 1
2ηxηy�σ+(ab + a†b†) + H.c.

= − 1
2ηxηy�σx(ab + a†b†) (22)

after another application of the rotating-wave approximation.
Identifying χ = 1

2ηxηy�, this Hamiltonian is equivalent to
Eq. (1) for real-valued χ .

The coupling laser field drives second-order sideband
transitions which are relatively weak. This implementation
requires the coupling dynamics to be faster than the decoher-
ence time ηxηy� 
 γ , also off-resonant excitation of stronger
transitions must be avoided � � ωx + ωy.

If the system is initialized in |�(t = 0)〉 = |g〉|0, 0〉, then
after evolution under HF given by Eq. (22), followed by
projection of the electronic state onto |g〉 (|e〉), the motional
modes of the trapped ion can be prepared in the even (odd)
TMSS in principle. Projective measurement of a trapped ion’s
electronic state is commonly accomplished with near-unity
fidelity by detecting laser-induced fluorescence detection [56].
We note that if the ion is in state |g〉, the scattering of fluores-
cence photons destroys the ion’s motional state. If the ion is
in projected onto the nonfluorescing state (|e〉), the motional
state (the odd TMSS) will be unperturbed.

In Fig. 6 we plot the fidelity of the states which evolve un-
der the effective Hamiltonian Heff [Eq. (22)] as compared with
the states evolved under the full Hamiltonian HF [Eq. (20)].
The effective Hamiltonian describes the squeezing dynam-
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FIG. 6. The squeezing dynamics in a trapped ion system is
captured well by Heff : The fidelity (represented by the red solid
decreasing curve) shows the overlap of the state evolved according to
the effective Hamiltonian Heff (black dot-dashed curve) with the state
evolved according to the full Hamiltonian HF (black solid line). The
evolution of the average number of excitations in the bosonic fields
is also shown.

ics well up to χt = r = 1. The parameters considered are
ωx = 1.0, ωy = 1.2, � = ωx/20, and ηx = ηy = 0.1. We also
show the evolution of the average number of phonons 〈n〉 =
a†a + b†b.

Now we describe how these states can be employed to
detect small forces by measuring the Wigner function of one
of the modes based on the protocol given in Ref. [84]. By
tracing out one of the modes, one can see that the Wigner
function of the reduced state is completely symmetric around
the origin (see Fig. 4). Thus, one does not need to worry about
the phase of the coherent displacement applied to the ion trap.

A weak coherent force applied on either the ion or the ion
trap causes a displacement D(α) = eαa†−α∗a of the mode state,
resulting in a state ρ(α) = D(α)ρvD−1(α), where ρv is the
reduced density operator of the motional state. The phase and
amplitude of the complex parameter α indicate the direction
and intensity of the displacement operation in the phase space.
At this point a laser pulse resonant to the |g〉 ↔ |e〉 transi-
tion (the carrier transition) is applied, whose Hamiltonian is
given by (keeping terms up to η2

x ) Hc = �/2[1 − η2
x (a†a +

1
2 )]σx. Adjusting the interaction time τ such that �η2

xτ/2 =
π/2, the evolution operator will be given by U = e−iHcτ =
e−i(�−πa†a/2), with � = �τ/2 − π/4. As shown in [84], the
evolved state of the system, Uρ(α)|e〉〈e|U −1, will be

[|e〉 cos(� − πa†a/2) − i|g〉 sin(� − πa†a/2)]ρ(α)

× [〈e| cos(� − πa†a/2) + i〈g| sin(� − πa†a/2)] (23)

and then the population inversion Peg = 〈σz〉 of the ion will
give, apart from a constant factor, the value of the Wigner
function at the position α = (q − ip)/2 in phase space, i.e.,
Peg ∝ W (α) [84]. For the even (odd) TMSS, when there is

no force acting on the ion, this results in α = 0 and conse-
quently the maximal (minimal) value of the atomic population
inversion. However, for small values of |α|, which are larger
than the width of the central peak of the Wigner function, the
population inversion would result in nearly zero, thus allowing
us to detect the action of small coherent forces applied in any
direction.

VII. CONCLUSION

In this work we have presented the statistical properties
of superpositions of two-mode squeezed states with relative
phase factors, giving special attention to two cases of rela-
tive phase, corresponding to the even and odd TMSSs. The
reduced single-mode states of the even (ρE ) and odd (ρO)
TMSSs, obtained by tracing out one of the bosonic modes,
present populations in the Fock basis which resemble thermal
distribution, thus illustrating the pseudothermal behavior of
those states. Furthermore, we investigated the second-order
correlation function of ρE and ρO and showed that, for small
squeezing parameters, ρE presents superbunching behavior,
while ρO presents antibunching, thus making it a potential
source of single photons. We studied entanglement between
the two bosonic modes corresponding to the superposition of
TMSSs; for small values of the squeezing parameter r and
specific relative phase angle ϕ, the superpositions show a
larger degree of entanglement than TMSSs, generating a max-
imally mixed state in each of the RSMSs when tracing out one
of the mode variables. We also studied the pseudoprobability
distributions related to ρE and ρO in phase space, given by
the Wigner function W (q, p). We pointed out that the profiles
of both RSMSs narrow around the phase-space origin as the
squeezing parameter is increased. For ρE and ρO, the symme-
try of W (q, p) makes the states sensible to weak forces in any
direction of the phase space, in contrast with the single-mode
squeezed state. Finally, we described how the states discussed
above can be generated and how they can be employed to
measure weak forces in the trapped-ion domain, by deriving
effective two-mode Jaynes-Cummings-like interactions, thus
motivating applications in quantum information processing,
quantum metrology, and quantum sensing of small coherent
displacements.
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[30] M. Stobińska, H. Jeong, and T. C. Ralph, Violation of Bell’s
inequality using classical measurements and nonlinear local
operations, Phys. Rev. A 75, 052105 (2007).

[31] A. P. Lund, T. C. Ralph, and H. L. Haselgrove, Fault-Tolerant
Linear Optical Quantum Computing with Small-Amplitude Co-
herent States, Phys. Rev. Lett. 100, 030503 (2008).

[32] Z. Leghtas, G. Kirchmair, B. Vlastakis, R. J. Schoelkopf, M. H.
Devoret, and M. Mirrahimi, Hardware-Efficient Autonomous
Quantum Memory Protection, Phys. Rev. Lett. 111, 120501
(2013).

[33] D. J. Wineland, Nobel lecture: Superposition, entanglement,
and raising Schrödinger’s cat, Rev. Mod. Phys. 85, 1103
(2013).

[34] S. Haroche, Nobel lecture: Controlling photons in a box and
exploring the quantum to classical boundary, Rev. Mod. Phys.
85, 1083 (2013).

[35] B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio,
S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J.
Schoelkopf, Deterministically encoding quantum information
using 100-photon Schrödinger cat states, Science 342, 607
(2013).

[36] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically pro-
tected cat-qubits: A new paradigm for universal quantum
computation, New J. Phys. 16, 045014 (2014).

[37] C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek,
K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L.
Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret,
and R. J. Schoelkopf, A Schrödinger cat living in two boxes,
Science 352, 1087 (2016).

[38] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas,
B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M.
Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the
lifetime of a quantum bit with error correction in superconduct-
ing circuits, Nature (London) 536, 441 (2016).

[39] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T.
Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin,
B. M. Terhal, and L. Jiang, Performance and structure of single-
mode bosonic codes, Phys. Rev. A 97, 032346 (2018).

[40] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li,
and G. Rempe, Deterministic creation of entangled atom–light
Schrödinger-cat states, Nat. Photon. 13, 110 (2019).

062405-8

https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1038/nature08812
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1103/RevModPhys.81.1301
https://doi.org/10.1038/nature07127
https://doi.org/10.1126/science.1104149
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.107.153601
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/RevModPhys.81.1727
https://doi.org/10.1038/nphoton.2015.154
https://doi.org/10.1103/PhysRevLett.104.103602
https://doi.org/10.1016/j.physrep.2017.04.001
https://doi.org/10.1103/PhysRevA.44.2172
https://doi.org/10.1103/PhysRevA.45.6811
https://doi.org/10.1103/PhysRevA.64.022313
https://doi.org/10.1103/PhysRevA.64.052308
https://doi.org/10.1103/PhysRevA.67.012105
https://doi.org/10.1103/PhysRevA.67.012106
https://doi.org/10.1103/PhysRevA.68.042319
https://doi.org/10.1088/1464-4266/6/8/032
https://doi.org/10.1103/PhysRevA.75.052105
https://doi.org/10.1103/PhysRevLett.100.030503
https://doi.org/10.1103/PhysRevLett.111.120501
https://doi.org/10.1103/RevModPhys.85.1103
https://doi.org/10.1103/RevModPhys.85.1083
https://doi.org/10.1126/science.1243289
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1126/science.aaf2941
https://doi.org/10.1038/nature18949
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1038/s41566-018-0339-5


SUPERPOSITION OF TWO-MODE SQUEEZED STATES FOR … PHYSICAL REVIEW A 103, 062405 (2021)

[41] C. J. Villas-Bôas and M. H. Moussa, One-step generation of
high-quality squeezed and EPR states in cavity QED, Eur. Phys.
J. D 32, 147 (2004).

[42] H.-S. Zeng, L.-M. Kuang, and K.-L. Gao, Two-mode squeezed
states and their superposition in the motion of two trapped ions,
Phys. Lett. A 300, 427 (2002).

[43] A. Karimi, Superposition and entanglement of two-mode
squeezed vacuum states, Int. J. Quantum Inf. 16, 1850003
(2018).

[44] Z. Ficek and S. Swain, Quantum Interference and Coherence:
Theory and Experiments (Springer, Heidelberg, 2005).

[45] H. Paul, Photon antibunching, Rev. Mod. Phys. 54, 1061
(1982).

[46] D. Bhatti, J. von Zanthier, and G. S. Agarwal, Superbunching
and nonclassicality as new hallmarks of superradiance, Sci.
Rep. 5, 17335 (2015).

[47] B. Bai, J. Liu, Y. Zhou, H. Zheng, H. Chen, S. Zhang, Y. He,
F. Li, and Z. Xu, Photon superbunching of classical light in the
Hanbury Brown–Twiss interferometer, J. Opt. Soc. Am. B 34,
2081 (2017).

[48] Y. Zhou, F.-l. Li, B. Bai, H. Chen, J. Liu, Z. Xu, and H. Zheng,
Superbunching pseudothermal light, Phys. Rev. A 95, 053809
(2017).

[49] T. Lettau, H. A. M. Leymann, B. Melcher, and J. Wiersig,
Superthermal photon bunching in terms of simple probability
distributions, Phys. Rev. A 97, 053835 (2018).

[50] J. Liu, J. Wang, H. Chen, H. Zheng, Y. Liu, Y. Zhou, F. li Li,
and Z. Xu, High visibility temporal ghost imaging with classical
light, Opt. Commun. 410, 824 (2018).

[51] M. Marconi, J. Javaloyes, P. Hamel, F. Raineri, A. Levenson,
and A. M. Yacomotti, Far-From-Equilibrium route to Superther-
mal Light in Bimodal Nanolasers, Phys. Rev. X 8, 011013
(2018).

[52] L. Zhang, Y. Lu, D. Zhou, H. Zhang, L. Li, and G. Zhang,
Superbunching effect of classical light with a digitally designed
spatially phase-correlated wave front, Phys. Rev. A 99, 063827
(2019).

[53] B. Lounis and M. Orrit, Single-photon sources, Rep. Prog.
Phys. 68, 1129 (2005).

[54] M. Penasa, S. Gerlich, T. Rybarczyk, V. Métillon, M. Brune,
J. M. Raimond, S. Haroche, L. Davidovich, and I. Dotsenko,
Measurement of a microwave field amplitude beyond the stan-
dard quantum limit, Phys. Rev. A 94, 022313 (2016).

[55] A. Fedorov, A. K. Feofanov, P. Macha, P. Forn-Díaz, C. J. P. M.
Harmans, and J. E. Mooij, Strong Coupling of a Quantum
Oscillator to a Flux Qubit at Its Symmetry Point, Phys. Rev.
Lett. 105, 060503 (2010).

[56] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum
dynamics of single trapped ions, Rev. Mod. Phys. 75, 281
(2003).

[57] C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring
nanomechanical motion with a microwave cavity interferom-
eter, Nat. Phys. 4, 555 (2008).

[58] K. Duivenvoorden, B. M. Terhal, and D. Weigand, Single-mode
displacement sensor, Phys. Rev. A 95, 012305 (2017).

[59] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg,
and M. Zimmermann, On the measurement of a weak classical
force coupled to a quantum-mechanical oscillator. I. Issues of
principle, Rev. Mod. Phys. 52, 341 (1980).

[60] A. Facon, E.-K. Dietsche, D. Grosso, S. Haroche, J.-M.
Raimond, M. Brune, and S. Gleyzes, A sensitive electrometer
based on a Rydberg atom in a Schrödinger-cat state, Nature
(London) 535, 262 (2016).

[61] W. J. Munro, K. Nemoto, G. J. Milburn, and S. L. Braunstein,
Weak-force detection with superposed coherent states, Phys.
Rev. A 66, 023819 (2002).

[62] N. Didier, A. Kamal, W. D. Oliver, A. Blais, and A. A. Clerk,
Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed
Light, Phys. Rev. Lett. 115, 093604 (2015).

[63] S. Schreppler, N. Spethmann, N. Brahms, T. Botter, M. Barrios,
and D. M. Stamper-Kurn, Optically measuring force near the
standard quantum limit, Science 344, 1486 (2014).

[64] D. Mason, J. Chen, M. Rossi, Y. Tsaturyan, and A. Schliesser,
Continuous force and displacement measurement below the
standard quantum limit, Nat. Phys. 15, 745 (2019).

[65] W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Z.-
J. Chen, H. Wang, Y. P. Song, H. Yuan, C.-L. Zou, L.-M.
Duan, and L. Sun, Heisenberg-limited single-mode quantum
metrology in a superconducting circuit, Nat. Commun. 10, 4382
(2019).

[66] M. Zwierz, C. A. Pérez-Delgado, and P. Kok, General Optimal-
ity of the Heisenberg Limit for Quantum Metrology, Phys. Rev.
Lett. 105, 180402 (2010).

[67] C. Gerry and P. L. Knight, Introductory Quantum Optics (Cam-
bridge University, Cambridge, 2005).

[68] V. V. Dodonov and V. I. Man’ko, Theory of Nonclassical States
of Light (Taylor & Francis, New York, 2003), and some refer-
ences therein .

[69] A. Joshi and A.-S. F. Obada, Some statistical properties of the
even and the odd negative binomial states, J. Phys. A: Math.
Gen. 30, 81 (1997).
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