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Derivation of a quantum master equation for a system weakly coupled to a bath which takes into account
nonsecular effects, but nevertheless has the mathematically correct Gorini-Kossakowski-Lindblad-Sudarshan
form (in particular, it preserves positivity of the density operator) and also satisfies the standard thermodynamic
properties is a known long-standing problem in theory of open quantum systems. The nonsecular terms are
important when some energy levels of the system or their differences (Bohr frequencies) are nearly degenerate.
We provide a fully rigorous derivation of such equation based on a formalization of the weak-coupling limit for
the general case.
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I. INTRODUCTION

Quantum master equations are at the heart of theory of
open quantum systems [1–3]. They describe the dynamics
of the reduced density operator of a system interacting with
the environment (“bath”) and are widely used in quantum
optics, condensed matter physics, charge and energy transfer
in molecular systems, biochemical processes [4], quantum
thermodynamics [5,6], etc. The Redfield and Davies quan-
tum master equations are well-known microscopically derived
equations for a system weakly coupled to a bath and are
crucial for understanding many physical phenomena.

The Davies quantum master equation [7,8] is derived
in a mathematically rigorous way and has the Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) form [9–11],
which guarantees that the corresponding dynamics of
the reduced density operator is well defined. The Davies
equation also satisfies a number of properties important
for thermodynamics: stationarity of the Gibbs state, the
detailed balance condition, a covariance law (related to
the first law of thermodynamics [12–14]), non-negativity
of the entropy production (i.e., the second law of
thermodynamics) [1,5,6,15–17].

However, this equation assumes that all distinct Bohr fre-
quencies (differences between the energy levels) of the system
are well separated from each other. In other words, all dif-
ferences between distinct Bohr frequencies are much higher
than the dissipation rates (the secular approximation). This
assumption is not satisfied if some energy levels or Bohr fre-
quencies are nearly degenerate (but not exactly degenerate),
which is often the case in physical systems.

The Redfield master equation [18] does not adopt the sec-
ular approximation and thus is more general. It is widely used
in various physical applications, the role of the nonsecular
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terms is studied, e.g., in Refs. [19–21]. But, unfortunately, it
is not of the GKLS form and, in particular, does not preserve
positivity of the density operator, thus leading to unphysical
predictions. Also, this equation does not have the mentioned
thermodynamic properties.

Derivation of a mathematically correct quantum mas-
ter equation which takes into account nonsecular effects is
actively studied. Several heuristic approaches turning the Red-
field equation into an equation of the GKLS form without the
(full) secular approximation have been proposed. One possi-
bility is the time coarse graining [22–27]. Another method is a
partial secular approximation followed by the approximation
of slow variation of the spectral density [28–31]. Also, in
certain cases, the so-called local approach is considered as
an alternative to the secular approximation and is largely de-
bated [32–40]. But, like the Redfield equation, these equations
do not satisfy all the mentioned thermodynamic properties.
Moreover, it has been explicitly shown that the local master
equation violates the second law of thermodynamics [41].

In this paper, we derive a unified master equation for
the weak-coupling regime in a mathematically rigorous and
systematic way, which leads to the GKLS form and all the
desired thermodynamic properties. The derivation is based on
a rigorous formalization of the weak-coupling limit for the
general (nonsecular) case. The unified equation has a simple
and intuitive structure similar to that of the Davies equation.

Interestingly, this equation coincides with the refined (ther-
modynamically consistent) form of the local master equation
when the local approach is expected to be valid. Thus, we
rigorously justify the correct form of the local master equation
(popular due to its simplicity) and complete the results of
Ref. [42].

Note that the general idea was also proposed in Ref. [1]
and master equations for a particular system were rigorously
derived in Ref. [43]. General properties of the dynamics
of particular models of open quantum systems with nearly
degenerate spectrum were also rigorously established in
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Refs. [44,45]. Here we derive a master equation for the gen-
eral situation.

II. REDFIELD EQUATION AND SECULAR
APPROXIMATION

Consider the system-bath Hamiltonian

H = HS + HB + λHI , (1)

where HS is the isolated system Hamiltonian, HB is the iso-
lated bath Hamiltonian, HI = ∑

α Aα ⊗ Bα is the interaction
Hamiltonian (with Aα being system operators and Bα being
bath operators), and λ is a formal small dimensionless param-
eter. Let HS have a purely discrete spectrum: HS = ∑

j ε jPj ,
where ε j are the distinct eigenvalues and Pj are the corre-
sponding eigenprojectors. The differences ε j′ − ε j are called
the Bohr frequencies. Denote F the set of all (positive, nega-
tive, and zero) Bohr frequencies.

Let the initial system-bath state be ρ0 ⊗ σB, where ρ0 is
the initial state of the system and σB is a reference state of
the bath such that e−iHBtσBeiHBt = σB for all t (e.g., a thermal
state). The dynamics of the reduced density operator of the
system is given by

ρ(t ) = TrB[e−iHt (ρ0 ⊗ σB)eiHt ],

where TrB is the partial trace over the bath. The density oper-
ator in the interaction picture is ρ̃(t ) = eiHStρ(t )e−iHSt .

The derivation of the quantum master equation is based
on the idea of the separation of different timescales. In
the rigorous derivation, this intuition is formalized by the
Bogolyubov–van Hove limit: λ → 0, t → ∞, λ2t = τ =
const (see Refs. [3,7,8,46]). The standard “physical” deriva-
tion [2,3] leads to the Redfield equation (we express it in a
GKLS-like form [27]):

d

dt
ρ̃(τ ) = −i[HLS(τ ), ρ̃(τ )] +

∑
ω,ω′∈F

∑
α,β

γαβ (ω,ω′)

× ei(ω′−ω) τ

λ2

(
Aβωρ̃(τ )A†

αω′ − 1

2
[A†

αω′Aβω, ρ̃(τ )]

)
,

(2)

where

HLS(τ ) =
∑

ω,ω′∈F

∑
α,β

Sαβ (ω,ω′)ei(ω′−ω) τ

λ2 A†
αω′Aβω, (3)

(the subindex LS stands for the Lamb shift),

Aαω =
∑

j, j′:ε j−ε j′ =ω

Pj′AαPj, [HS, Aαω] = −ωAαω, (4)

γαβ (ω,ω′) = �αβ (ω) + �∗
βα (ω′),

Sαβ (ω,ω′) = 1

2i
[�αβ (ω) − �∗

βα (ω′)]

�αβ (ω) =
∫ ∞

0
ds eiωsCαβ (s) (5)

(we assume that the last integral converges). Here

Cαβ (s) = Tr[e−iHBsB†
αeiHBsBβσB] (6)

are bath correlation functions.

The matrix γαβ (ω,ω′) [with two double indices i = (α,ω′)
and j = (β, ω)] is, in general, not positive semidefinite, so,
the equation is not of the GKLS form and defines the dynam-
ics which violates positivity.

As λ → 0, the exponents ei(ω′−ω)τ/λ2
for ω �= ω′ rapidly

oscillate and the corresponding terms can be neglected (the
secular approximation). After this, the equation becomes of
the first standard GKLS form [1,2] since, for each ω, the
matrix γαβ (ω,ω) ≡ γαβ (ω) (with the indices α and β) is
well known to be positive semidefinite. We will refer to this
equation as the secular or the Davies master equation.

However, as pointed out above, the secular approximation
is not always valid. If so, the formal mathematical limit in the
present form does not correspond to physics. There is no limit
in a concrete physical system, but all physical quantities have
concrete values. The limit λ → 0 is just a mathematical ex-
pression of the fact that the dissipative dynamics caused by the
coupling to the bath is much slower than all other timescales,
but this is not the case if two different Bohr frequencies ω

and ω′ are close to each other. Obviously, nearly degenerate
energy levels is a particular case.

III. UNIFIED MASTER EQUATION

A. Derivation

If we claim that, for a given physical system, a difference
ω − ω′ is small and, hence, the term ei(ω′−ω)τ/λ2

is not rapidly
oscillating (with respect to the timescale of the dissipation),
then, in the formal derivation, the difference ω′ − ω should be
treated as infinitesimal and, moreover, of the order of λ2. This
should be explicitly formalized in the mathematical language
of the limit.

Let us express the system Hamiltonian HS as

HS = H (0)
S + λ2δHS, (7)

where [H (0)
S , δHS] = 0 and all nearly degenerate Bohr fre-

quencies in HS are exactly degenerate in H (0)
S . In other words,

all distinct Bohr frequencies of H (0)
S are well separated.

Proportionality of the remaining part to λ2 mathematically
expresses the fact that some oscillations ei(ω′−ω)τ/λ2

occur on
the same timescale as the dissipation.

Due to commutativity and since H (0)
S may be more degener-

ate than HS , its spectral decomposition is H (0)
S = ∑

k ε
(0)
k P(0)

k ,
where ε

(0)
k are the distinct eigenvalues and each eigenprojector

P(0)
k is either one of Pj or a sum of several Pj .

Denote F (0) the set of the Bohr frequencies of H (0)
S . Then,

each Bohr frequency ω of the original system Hamiltonian HS

can be expressed as ω = ω + λ2δω, where ω ∈ F (0) and δω

is a Bohr frequency of δHS . In other words, the set of Bohr
frequencies F of HS is divided into disjoint subsets (clus-
ters) Fω of the Bohr frequencies centered around ω ∈ F (0).
The difference between any pair of Bohr frequencies from
the same cluster is proportional to λ2. Physically, the Bohr
frequencies from different clusters are well separated, while
those from the same cluster are not:

ω′ − ω = ω − ω′ + λ2(δω′ − δω). (8)
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So, the exponent exp[i(ω′ − ω)τ/λ2] is rapidly oscillating (as
λ → 0) if and only if ω and ω′ belong to different clusters
(ω �= ω′).

Using this, let us drop the rapidly oscillating terms from the
Redfield equation (2) (i.e., apply the secular approximation
with respect to H (0)

S , which is a partial secular approximation
with respect to HS). Also, let us perform the limit λ → 0 in the
arguments of γαβ , i.e., γαβ (ω,ω′) → γαβ (ω,ω) = γαβ (ω) for
ω,ω′ ∈ Fω. Then we arrive at the following master equation:

d

dτ
ρ̃(τ ) = −i[HLS(τ ), ρ̃(τ )]

+
∑

ω∈F (0)

∑
ω,ω′∈Fω

∑
α,β

ei(ω′−ω)τ γαβ (ω)

×
(

Aβωρ̃(τ )A†
αω′ − 1

2
[A†

αω′Aβω, ρ̃(τ )]

)
, (9)

HLS(τ ) = eiHSτ HLSe−iHSτ (HLS is given below). In the
Schrödinger picture and in the original timescale t , the equa-
tion takes the form

d

dt
ρ(t ) = −i[HS + λ2HLS, ρ(t )] + λ2D[ρ(t )] ≡ L[ρ(t )],

(10)

Dρ =
∑

ω∈F (0)

∑
α,β

γαβ (ω)

(
AβωρA†

αω − 1

2
[A†

αωAβω, ρ]

)
,

(11)

HLS =
∑

ω∈F (0)

∑
ω,ω′∈Fω

∑
α,β

Sαβ (ω,ω′)A†
αω′Aβω, (12)

where

Aαω =
∑
ω∈Fω

Aαω =
∑

k,k′:ε(0)
k −ε

(0)
k′ =ω

P(0)
k′ AαP(0)

k , (13)

[
H (0)

S , Aαω

] = −ωAαω. (14)

A rigorous result (a theorem) is given in Appendix A. Since
the matrix γαβ (ω) is positive semidefinite for an arbitrary ω,
Eqs. (9) and (10) are of the first standard GKLS form.

Equations (9) and (10) are different expressions of the uni-
fied quantum master equation of weak-coupling limit type. A
simple algorithm of its construction in the Schrödinger picture
is as follows:

(i) The dissipator D is constructed as if the system Hamil-
tonian was H (0)

S , with the secular approximation with respect
to H (0)

S .
(ii) The Lamb-shift Hamiltonian HLS is as for the Redfield

equation with the secular approximation with respect to H (0)
S

[compare Eqs. (3) and (12)].
If we want to describe a concrete physical system, a ques-

tion about the value of λ arises. Formally, in order to apply the
proposed analysis to a concrete physical system, we should
express HS − H (0)

S and the spectral density of the bath (indi-
cating the strength of the system-bath coupling) as products
of a small dimensionless parameter λ2 and energy quantities
of the same order as the zeroth-order system energies ε

(0)
k .

In this case, λ2 is the actual ratio of the scale of the small

parameters to the scale of the large parameters (both are of
energy dimensionality). So, λ is defined up to an order of
magnitude.

Moreover, λ can be treated to be incorporated into the
Hamiltonian (as it is often assumed in the physical litera-
ture). Indeed, if we denote λ2δHS = δH ′

S and λHI = H ′
I , then

λ2HLS and λ2D in Eq. (10) can be substituted by H ′
LS and

D′, where the latter expressions are derived for the interaction
Hamiltonian H ′

I . The system Hamiltonian is then expressed
as HS = H (0)

S + δH ′
S . So, in practice, for a given system, we

should express its Hamiltonian as a sum of a reference part
H (0)

S , where all nearly degenerate Bohr frequencies are exactly
degenerate, and a small perturbation δH ′

S , and then apply
Eq. (10) (formally, with λ = 1 since λ is implicitly incorpo-
rated into the Hamiltonian now). An explicit separation of a
small factor λ was required only in a formal derivation.

Let us summarize the physical conditions of validity of
master equation (10):

(i) The usual weak system-bath coupling condi-
tion [1–4,47]. Roughly, it can be expressed as |�(ω)| 
  for
all Bohr frequencies ω, where  is a characteristic decay rate
of the bath correlation functions (6). For the Drude–Lorentz
spectral density,  is an explicit parameter; see below. This
condition means that the dissipative dynamics of the system is
much slower than the bath relaxation. As a consequence, the
system-bath state is always close to ρ(t ) ⊗ σB, which leads to
a Markovian dissipative dynamics for the system.

(ii) Secular approximation with respect to H (0)
S , i.e., oscil-

lations ei(ω′−ω)t are much faster than the dissipative dynamics.
Formally, |�(ω)| 
 |ω′ − ω| for all different ω and ω′.

(iii) The functions �αβ (ω) do not change significantly
within the clusters of Bohr frequencies emerging due to the
perturbative part δH ′

S of the system Hamiltonian. Formally,

| Re[�′
αβ (ω)]|�ω 
 | Re[�αβ (ω)]|,

| Im[�′
αβ (ω)]|�ω 
 | Im[�αβ (ω)]|,

where

�ω = max
ω∈Fω

|ω − ω|.

B. Comparison with the secular master equation

Let us describe explicitly the terms neglected in the sec-
ular (Davies) master equation and taken into account in the
presented unified master equation. We will use the common
terms “populations” and “coherences” for, respectively, the
diagonal and off-diagonal elements of the density matrix in
some energy eigenbasis (not unique if some levels are degen-
erate). If HS |ei〉 = εi |ei〉 and HS |e j〉 = ε j |e j〉, we say that
the coherence 〈ei|ρ|e j〉 corresponds to the Bohr frequency
ε j − εi.

The secular master equation describes (i) transfer between
populations, (ii) decay of coherences, (iii) transfer between
coherences corresponding to equal Bohr frequencies, and (iv)
transfer between populations and coherences corresponding
to the zero Bohr frequency (i.e., coherences inside the eigen-
subspaces of HS).

The unified master equation describes the same pro-
cesses with the following corrections: (iii′) transfer between
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FIG. 1. Scheme of energy levels and Bohr frequencies of two
weakly interacting qubits. Left: The secular quantum master equa-
tion treats all distinct Bohr frequencies as well separated. Right:
Nearly degenerate Bohr frequencies constitute clusters. Namely, the
frequencies ω1 and ω2 constitute a cluster with the center at ω =
(ω1 + ω2)/2 and the frequencies 0 and ±ω0 constitute a cluster with
the center at 0.

coherences corresponding to close Bohr frequencies and (iv′)
transfer between populations and coherences corresponding
to Bohr frequencies which are equal or close to zero (i.e.,
coherences inside the eigensubspaces of H (0)

S ).
This is illustrated on Fig. 1 for the example given below.

C. Comparison with other non-secular GKLS master equations

Equations similar to the unified quantum master equation
(but not exactly the same) appeared in the framework of
the partial secular approximation [28–31,48]. Let us com-
pare our equation with the similar ones. Grouping the Bohr
frequencies and taking the function γ in the centers of the
clusters makes the equation simpler in comparison with those
in Refs. [28–30]. Also, due to this, the obtained equation
has the desired properties important for thermodynamics; see
below.

In contrast to one of equations in Ref. [48] (derived in more
detail in Ref. [31]), which also adopts the clustering of the
Bohr frequencies and � taken in the centers of the clusters,
the free dynamics in Eq. (9) (manifested in the exponents)
is defined by the original Hamiltonian HS (not H (0)

S ). Also,
the functions Sαβ in the Lamb-shift Hamiltonian have their
original arguments.

D. Particular cases: Refined Lamb-shift Hamiltonian

If δHS = 0, then the unified master equation is reduced
to the Davies master equation. In contrast, the case H (0)

S = 0
(i.e., all Bohr frequencies are small) is known to be equivalent
to the so-called singular coupling limit [1–3,46,49,50]. In this
case, the unified master equation coincides with the master
equation obtained in this limit, but with the refined Lamb-shift
Hamiltonian.

We can simplify the Lamb-shift Hamiltonian HLS (12) if
we replace Sαβ (ω,ω′) by Sαβ (ω,ω) (i.e., perform the limit
λ → 0 in the arguments of the functions Sαβ , analogously to
γαβ). In other words, both the dissipator and the Lamb-shift
Hamiltonian would be constructed as if the system Hamilto-
nian was H (0)

S . If H (0)
S = 0, the corresponding master equation

is the well-known master equation for the singular coupling
limit. But in some cases (see Appendix C), solutions of
this master equation significantly deviate from the exact dy-
namics, while the proposed master equation with the refined

Lamb-shift Hamiltonian gives good results. So, we have ob-
tained an improved version of the singular coupling limit
master equation.

From the other side, we could keep the Lamb-shift Hamil-
tonian from the Redfield equation HLS (i.e., without even
partial secular approximation). The equation would be still
of the GKLS form, but without the desired thermodynamic
properties.

E. Properties

The Davies generator is well known to be covariant with
respect to the unitary group eiHSt [15]. This simplifies the
structure of the dynamics and the steady states. Moreover,
this property is related to the total (system and bath) energy
conservation (hence, to the first law of thermodynamics) and
for the resource theory of coherence [12–14]. The unified
generator (10) shares this property, but with respect to the
unitary group eiH (0)

S t :

e−iH (0)
S t (Lρ)eiH (0)

S t = L
(
e−iH (0)

S tρ eiH (0)
S t

)
(15)

This relation is satisfied in view of Eq. (14) and since H (0)
S

commutes with both HS and HLS (HS = ∑
k P(0)

k HSP(0)
k and

the same is true for HLS). Note that HLS commutes with H (0)
S ,

but, in general, not with HS .
If the bath is thermal with the inverse temperature β

(not to be confused with the subindex), then the Kubo-
Martin-Schwinger (KMS) condition γαβ (−ω) = e−βωγβα (ω)
guarantees the stationarity of the thermal (Gibbs) state with
respect to the bare system Hamiltonian H (0)

S : Lρβ = 0, where

ρβ = e−βH (0)
S /Tre−βH (0)

S . The same properties guarantee that
the quantum dynamical semigroup eLt satisfy the detailed
balance property [1,15,16] with respect to ρβ .

Remark 1. Note that the true system steady state is ex-
pected to be not the Gibbs state with respect to HS (i.e.,
proportional to e−βHS ), but the so-called mean force Gibbs
state, i.e., proportional to TrBe−β(HS+λHI ). In the zeroth order
with respect to λ, it coincides with ρβ (the Gibbs state with
respect to H (0)

S ). However, the first nontrivial correction (pro-
portional to λ2) does not coincide with the Gibbs state with
respect to HS , but takes into account system-bath steady-state
correlations [51].

Let the system weakly interact with several baths with
the inverse temperatures βn and the corresponding generators
Ln, so that L = −i[HS, · ] + λ2 ∑

n Ln. We can consider the
quantity of entropy production according to the general for-
malism [15]. It is a sum of the increase of the von Neumann
entropy of the system S(ρ) = −Trρ ln ρ and the entropy flows
from the system to the baths:

d

dt
S(ρ(t )) − λ2

∑
n

βnTr{HS Ln[ρ(t )]}.

Up to terms of the order O(λ4) (i.e., of a higher order with
respect to the second-order master equation), HS here can
be substituted by H (0)

S . Then the expression is non-negative
according to the analysis in Ref. [15] since Lnρβn = 0. We
cannot calculate the fourth-order contribution to the entropy
production using the second-order master equation. For the
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same reason, all other thermodynamic properties are also
satisfied with respect to the zeroth-order system Hamiltonian
H (0)

S . In other words, resolution of small energy differences in
the weak-coupling regime requires higher order corrections to
the dissipator.

IV. EXAMPLE: TWO WEAKLY INTERACTING QUBITS

Consider a system of two weakly interacting qubits with
the Hamiltonian

HS = E1σ
(1)
z + E2σ

(2)
z + Jσ (1)

x σ (2)
x , (16)

where σz = |1〉 〈1| − |0〉 〈0| and σx = |1〉 〈0| + |0〉 〈1| are
the Pauli matrices, the superindex denotes a qubit, E1 �
E2 > 0. Let qubits interact with three bosonic thermal
baths (with different temperatures). The interaction Hamilto-
nian is HI = HI,0 + HI,1 + HI,2, HI, j = Aj ⊗ Bj . Here Aj =
κ jxσ

( j)
x + κ jzσ

( j)
z , where κ jx and κ jz are real numbers and,

for the unified notations, we put σ (0)
z,x = σ (1)

z,x + σ (2)
z,x . Further,

Bj = ∫
dk [gj (k)a j (k) + g j (k)a†

j (k)], where a j (k) [a†
j (k)] is

an annihilation [creation] operator for the kth mode of the
jth bath and g j (k) are complex-valued functions. So, bath
0 is a common bath interacting with both qubits and baths
1 and 2 are individual baths for the corresponding qubits.
The model has been taken from Ref. [37]. In general, a
two-qubit system is nontrivial (in particular, has nontrivial
thermodynamic properties) and often used as a benchmark for
comparison of various descriptions of open quantum system
dynamics [25,34,36,41,42].

The eigenvalues and eigenvectors of HS are as follows:

ε11 = +
√

E2
12 + J2, |e11〉 = cos θ |11〉 + sin θ |00〉 ,

ε00 = −
√

E2
12 + J2, |e00〉 = cos θ |00〉 − sin θ |11〉 ,

ε10 = +
√

�E2 + J2, |e10〉 = cos ϕ |10〉 + sin ϕ |01〉 ,

ε01 = −
√

�E2 + J2, |e01〉 = cos ϕ |01〉 − sin ϕ |10〉 ,

where E12 = E1 + E2, �E = E1 − E2, θ = 1
2 arctan J

E12
, and

ϕ = 1
2 arctan J

�E . The Bohr frequencies are shown on Fig. 1.
We consider the case of large E1 and E2, but small �E and
J , so that the energy levels 01 and 10 are almost degenerate
and close to zero. Also the Bohr frequencies ω1 and ω2 almost
coincide.

So, we choose the following decomposition (7):

HS = ε11P11 + ε00P00 + (ε10P10 + ε01P01)

= ε11P11 + ε00P00 + λ2(ε′
10P10 + ε′

01P01),

where Pab = |eab〉 〈eab|. Here λ2 is a ratio of a characteristic
large energy (i.e., ε11) to a characteristic small energy (e.g.,
ε10 or spectral densities of the baths), so that ε′

10,01 = ε10,01/λ
2

are of the order of ε11 and ε00.
With such decomposition, we have five clusters of

Bohr frequencies: the clusters F+ω = {ω1, ω2} and F−ω =
{−ω1,−ω2} with the centers at ±ω = ±ε11, the cluster F0 =
{±ω0, 0} with the center at 0, and the clusters with single
elements Fω12 = {ω12} and F−ω12 = {−ω12}.

Now we have all information to construct the unified maser
equation; see Appendix B for details.

FIG. 2. Comparison of calculations of the dynamics of the two-
qubit system according to the Redfield equation (blue dash-dotted
line), secular (Davies) master equation (green dotted line), and the
unified approach (red solid line). Left: Trace distance to the nu-
merically exact solution of the HEOM. Right: The dynamics of the
coherence that gives the main contribution to the error for the secular
master equation. The solution of the HEOM is shown by the black
solid line. The parameters are given in the text.

An example of calculations is presented in Fig. 2. We have
chosen the same Drude-Lorentz spectral density for all three
baths,

J j (ω) ≡
∫

|g j (k)|2δ(ω(k) − ω) dk = 2ηω

π (ω2 + 2)
, (17)

with η = 1 cm−1 and −1 = 100 fs ( ≈ 53.08 cm−1). The
temperatures of the baths are T1 = 300 K, T2 = 400 K, and
T0 = 350 K. The parameters of the system Hamiltonian are as
follows: E1 = E2 = 50 cm−1, J = 2 cm−1. These parameters
of the baths and the system Hamiltonian are mainly taken
from Ref. [52] as model parameters for excitation energy
transfer in a molecular dimer. Let us specify the interaction
Hamiltonian: κ jx = 0 and κ jz = 1 for j = 1, 2, κ0x = 1, and
κ0z = 0. The initial state is ρ(0) = |01〉 〈01|.

In Fig. 2, we compare solutions according to different
master equations with the numerically exact nonperturbative
method of the hierarchical equation of motion (HEOM) in the
high-temperature approximation, according to Ref. [52]. We
see the breakdown of the secular master equation, while the
unified master equation correctly describes the dynamics.

It is worthwhile to recall that the HEOM is a numeri-
cally exact but computationally expensive method (in terms
of both time and memory), especially for the low-temperature
case. Quantum master equations are much simpler to solve
numerically. Also, a relatively simple structure of the mas-
ter equation gives more insights into mechanisms of various
quantum dynamical phenomena. A two-qubit system interact-
ing with high-temperature reservoirs was chosen since it is a
simple (but nontrivial) model which can be solved also by the
HEOM; i.e., approximate descriptions can be compared with
the numerically exact one.

V. DISCUSSION

A. Global versus local approach

The local and global approaches to open quantum dy-
namics are largely debated in the literature [32–42]. On the
one hand, the unified approach is global, i.e., adopts the
eigenvalues and eigenprojectors of the whole system Hamil-
tonian HS rather than of the Hamiltonian of noninteracting
sites (corresponding to J = 0 in our example). On the other
hand, in our example, J 
 E1 + E2, so we can neglect θ and
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approximately put |e00〉 = |00〉 and |e11〉 = |11〉. This cor-
responds to the rotating-wave approximation in the system
Hamiltonian. Thus, H (0)

S corresponds to J = 0 and leads to
a local dissipator. This is exactly the case where the lo-
cal approach is shown to be better than the secular global
one [32–35,37,40]. However, the same factor γ j (ω) in the
dissipators of the two local baths instead of different factors
γ j (2E1) and γ j (2E2) in the “naive” local approach make the
obtained local equation consistent with the second law of
thermodynamics.

Thus, if the intersite couplings are small, the local approach
can be used, but the arguments of the dissipation coefficients
γ should be the same for the sites with close local energies. If
the difference between the local energies (�E in our example)
is large such that the secular approximation can be used, but
the intersite couplings are still small, then the local approach
can be justified as an approximation to the secular or unified
(i.e., global) quantum master equation [42].

B. Unified versus Redfield master equation

Our numerical results (see Fig. 2 and also Fig. 3 in Ap-
pendix C) suggest that the Redfield equation is, in most cases,
more precise that the unified GKLS master equation. This
agrees with the results of Ref. [48]. So, the choice between
the Redfield equation and the unified GKLS master equation
depends on our purposes. If our priority is the numerical
precision and we do not care the possible small violation of
positivity, then the Redfield equation is preferable. If we want
to have an equation with good theoretical properties, with the
absence of nonphysical predictions, and with a reasonable
error, then the proposed unified GKLS master equation of
weak-coupling limit type is a good candidate.

Also, a “hybrid” variant can be used to use the unified
GKLS master equation for the initial short-time period (where
the Redfield equation can violate positivity) and then to switch
to the Redfield equation. Other concatenation schemes for
open quantum systems where different descriptions are used
for the initial short-time period and for further timescales are
considered in Refs. [53,54].

C. Arbitrary scaling of the Bohr frequency spacing

Instead of Eq. (7), an arbitrary scaling of the Bohr fre-
quency spacing can be considered:

HS = H (0)
S + λνδHS, ν > 0. (18)

Rigorous results for particular models were obtained in
Refs. [43–45]. However, as these results suggest, a kind of
a dynamical phase transition occurs exactly in the case ν = 2.
This can be understood also in terms of the present analysis.
Namely, ν < 2 means that the oscillations eiλν (ω′−ω)τ/λ2

in
Eq. (2) are much faster than the dissipative dynamics. Hence,
the full secular approximation can be applied, which leads to
the Davies master equation.

If, on the contrary, ν > 2, then these oscillations are much
slower than the dissipative dynamics. This leads to emer-
gence of the two timescales described in Refs. [43–45]: a
relaxation to a manifold of quasistationary states (stationary
if δHS = 0) and a slower relaxation to a final stationary state.

Formal derivation for this scaling according to Sec. III A again
leads to the unified master equation. Namely, the secular ap-
proximation with respect to H (0)

S and the limit λ → 0 in the
arguments of γαβ are still valid. So, the unified master equa-
tion can be applied irrespective of whether some oscillations
occur on the same timescale as the dissipative dynamics or on
a larger scale.

VI. CONCLUSIONS

The unified approach allows one to derive the correct quan-
tum master equation for a specific physical systems (for a
specific structure of energy levels) in a rigorous and system-
atic way. The unified master equation has the GKLS form
(hence, preserves positivity) and all the desired properties
important for thermodynamics: stationarity of the Gibbs state,
the detailed balance condition, the covariance law related to
the first law of thermodynamics, and non-negativity of the en-
tropy production (the second law of thermodynamics). Thus,
the unified quantum master equation can be used in a wide
range of physical applications.
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APPENDIX A: RIGOROUS RESULT

We consider a quantum system specified by an either finite-
or infinite-dimensional Hilbert space HS and a Hamiltonian of
the form

HS ≡ H (λ)
S = H (0)

S + λ2δHS, (A1)

where the operators H (0)
S and δHS are commuting self-adjoint

operators with purely discrete spectra. Hence, the spectrum of
the operator H (λ)

S is also purely discrete. Also we assume that
the operator δHS is bounded.

Like in Davies’s paper [7], for simplicity, we consider the
case when the bath is fermionic. Namely, the bath is described
by a quasifree representation of the canonical anticommuta-
tion relations (CAR) with an infinite number of degrees of
freedom. Denote the corresponding Hilbert space by HB and
the single-particle Hilbert space by H(1)

B . For each f ∈ H(1)
B ,

there is a bounded operator a( f ) acting on HB with an anti-
linear dependence on f which satisfies the anticommutation
relations

a( f )a†(g) + a†(g)a( f ) = 〈 f |g〉 ,

a( f )a(g) + a(g)a( f ) = 0.

The single-particle free evolution is given by ft = e−ith f ,
where h is the single-particle Hamiltonian (on H(1)

B ). There is
a Hamiltonian HB on HB and a cyclic vector |〉 ∈ HB such
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that HB |〉 = 0 and

eiHBt a( f )e−iHBt = a(eiht f ).

If, for example, H(1)
B = L2(Rd ), then the anticommutation

relations can be rewritten in terms of the operator-valued
distributions:

a(k)a†(k′) + a†(k′)a(k) = δ(k − k′),

a(k)a(k′) + a(k′)a(k) = 0,

k, k′ ∈ Rd . The distribution and operator pictures are related
to each other by the formula

a( f ) =
∫
Rd

f (k)a(k) dk.

If, further, h f (k) = ω(k) f (k) for a real-valued function ω(k),
then ft (k) = e−itω(k) f (k) and

HB =
∫
Rd

ω(k)a†(k)a(k) dk.

Writing 〈·〉 for the expectation with respect to |〉, we have

〈a†(gm) . . . a†(g1)a( f1) . . . a( fn)〉 = δnm det{〈 fi|R|g j〉} (A2)

(the quasifree state property), where R is the defining operator
on H(1)

B . Since HB |〉 = 0, we have eiht Re−iht = R. For the
equilibrium state at the inverse temperature β and the chemi-
cal potential μ,

R = (eβ(h−μ) + 1)−1.

The full Hamiltonian is given by

H (λ) = H (λ)
S + HB + λHI ,

where the interaction Hamiltonian HI is given by a finite sum
HI = ∑

α Aα ⊗ Bα with Aα and Bα being bounded operators
in HS and HB, respectively. We assume that each Bα is a
linear combination of a(gα ) and a†(gα ) for some gα ∈ H(1)

B . In
particular, 〈Bα〉 = 0. Denote Cαβ (t ) = 〈eiHBt B†

αe−iHBt Bβ〉 the
correlation functions and let∫ ∞

0
|Cαβ (t )|(1 + t )δ dt < ∞ (A3)

for some δ > 0.
The evolution of the open quantum system is given by

T (λ)
t ρ = TrB{e−iH (λ)t (ρ ⊗ σB)eiH (λ)t }

for an arbitrary trace-class operator ρ on HS , where σB =
|〉 〈|.

Remark 2. Let us stress that |〉 is the vacuum vector in a
Fock space only in the case of the zero temperature. Other-
wise, this is a cyclic vector in the representation of the CAR
algebra. In the physical literature, the notation e−βHB/Tre−βHB

is used for a thermal state instead of |〉 〈|, but, strictly
speaking, the former is not a genuine density operator because
the trace of e−βHB is ill defined in the case of an infinite
number of degrees of freedom.

As a remedy, in the physical literature, one often considers
a finite number N of the bath modes and then tends this num-
ber to infinity. But, strictly speaking, this may cause issues
with the order of the limit N → ∞ and the Bogolyubov–van
Hove limit λ → 0, t → ∞, λ2t = τ = const.

So, in the rigorous derivation, an infinite number of degrees
of freedom is considered from the beginning, and a thermal
state can be understood only in a “generalized” sense: as a
functional on the CAR algebra. The state represented by a
cyclic vector |〉 with property (A2) is a formalization of this
situation. Thus, physically, σB is an arbitrary stationary state
of the bath with property (A2). In particular, it can be associ-
ated with the thermal state with an arbitrary temperature.

Theorem Under the described assumptions,

lim
λ→0

sup
0�λ2t�τ1

∥∥T (λ)
t ρ − e(−i[H (λ)

S +λ2HLS, · ]+λ2D)tρ
∥∥ = 0 (A4)

for any τ1 > 0 and a trace-class operator ρ on HS .
Here D and HLS ≡ H (λ)

LS are given in Eqs. (11) and (12) and
‖ · ‖ denotes the trace norm.

Proof. Let us introduce the operators L(λ)
0 = [H (λ)

S +
HB, · ], LI = [HI , · ], and L(λ)

I (s) = [H (λ)
I (s), · ] acting on the

Banach space B of the trace-class operators on HS ⊗ HB, and
the operators L(λ)

S = [H (λ)
S , · ] and δLS = [δHS, · ] acting on

the Banach space BS of the trace-class operators on HS . Here
H (λ)

I (s) = ei(H (λ)
S +HB )sHI e−i(H (λ)

S +HB )s.
According to Theorems 1.2 and 1.3 of Ref. [8], Theo-

rems 3.1–3.5 of Ref. [7] (with minor modifications noted in
Ref. [49]), and assumptions of our theorem,

lim
λ→0

sup
0�λ2t�τ1

∥∥ T (λ)
t − e(−iL(λ)

S +λ2K(λ) )t
∥∥ = 0, (A5)

where

K(λ)ρ = −
∫ ∞

0
TrB

[
L(λ)

I (s)LI (ρ ⊗ σB)
]

ds (A6)

is an operator on BS .
The norm of the integrand in Eq. (A6) is upper bounded by

the integrable function∑
α,β

4‖AαAβ‖ |Cαβ (s)| ‖ρ‖

independent from λ (the factor 4 comes from the two commu-
tators in LI and L(λ)

I resulting in four terms). Since H (0)
S and

δHS commute, eitL(λ)
0 = eitL(0)

0 eiλ2tδLS . Since δHS is bounded,
‖eiλ2tδLS − 1‖ → 0 as λ → 0. So, by the Lebesgue’s domi-
nated convergence theorem, it is easy to show that ‖K(λ) −
K(0)‖ → 0 as λ → 0. Then (the proof is completely analo-
gous to that of Theorem 1.2 of Ref. [8]),

lim
λ→0

sup
0�λ2t�τ1

‖ e(−iL(λ)
S +λ2K(λ) )t − e(−iL(λ)

S +λ2K(0) )t ‖ = 0. (A7)

It is interesting to note that the generator −iL(λ)
S + λ2K(λ)

differs from the usual Redfield generator, which is −iL(λ)
S +

λ2R(λ), where

R(λ) = −
∫ ∞

0
TrB

[
LIL(λ)

I (−s)(ρ ⊗ σB)
]

ds.

The generator K(λ) is similar to the Redfield generator. In par-
ticular, it is also non-GKLS and does not preserve positivity.
Its explicit form also can be described by Eqs. (2) and (3) if we
replace γ (ω,ω′) and S(ω,ω′) there by γ (ω′, ω) and S(ω′, ω).

The secular approximation with respect to the reference
system Hamiltonian H (0)

S (which corresponds to a partial
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secular approximation with respect to the original system
Hamiltonian H (λ)

S ) can be expressed as

Asec = lim
T →∞

1

2T

∫ T

−T
eiL(0)

S uAe−iL(0)
S u du, (A8)

for an arbitrary operator A on the Banach space BS . According
to Theorem 1.4 of Ref. [8],

lim
λ→0

sup
0�λ2t�τ1

‖e(−iL(0)
S +λ2A)tρ − e(−iL(0)

S +λ2Asec )tρ‖ = 0 (A9)

for all ρ ∈ BS .
Obviously, the secular approximation applied to K(0) and

R(0) gives the same result −iL̃LS + D, where D is as required
[i.e., given by Eq. (11)] and L̃LS = [H̃LS, · ]. Here, in the
notations of the main text,

H̃LS =
∑

ω∈F (0)

∑
α,β

Sαβ (ω)A†
αωAβω, (A10)

Sαβ (ω) ≡ Sαβ (ω,ω).
The term δLS is already secular since H (0)

S and δHS com-
mute. Hence, the secular approximation applied to −iδLS +
K(0) and −iδLS + R(0) gives the same result. Since, due to
Eq. (A9), the corresponding semigroups are close to the same
third semigroup, they are close to each other in the same sense:

lim
λ→0

sup
0�λ2t�τ1

‖e(−iL(λ)
S +λ2K(0) )tρ − e(−iL(λ)

S +λ2R(0) )tρ‖ = 0

(A11)
for all ρ ∈ BS .

The decomposition of R(λ) = −iL(λ)
LS + D(λ) into the

Lamb-shift Hamiltonian L(λ)
LS = [H

(λ)
LS , · ] and the dissipator

D(λ) [cf. Eq. (2), where HLS ≡ H
(λ)
LS because HLS depends on

the spectrum of H (λ)
S ] can be expressed in the general form as

follows:

L(λ)
LS ρ = 1

2i

∫ ∞

0
TrB[HI HI (−s) − HI (−s)HI , ρ ⊗ σB] ds,

D(λ)ρ =
∫ ∞

0
TrB

[
HI (ρ ⊗ σB)H (λ)

I (−s)

+ H (λ)
I (−s)(ρ ⊗ σB)HI

− 1

2

{
HI H

(λ)
I (−s) + H (λ)

I (−s)HI , ρ ⊗ σB
}]

ds.

Analogously to the proof of Eq. (A7), we can prove that

lim
λ→0

sup
0�λ2t�τ1

‖ e(−iL(λ)
S −iλ2L(λ)

LS +λ2D(λ) )t

− e(−iL(λ)
S −iλ2L(λ)

LS +λ2D(0) )t ‖ = 0. (A12)

Finally, due to Eq. (A9) applied to A = −iδLS − iL(λ)
LS +

D(0), we obtain

lim
λ→0

sup
0�λ2t�τ1

∥∥ e(−iL(λ)
S −iλ2L(λ)

LS +λ2D(0) )tρ

− e(−iL(λ)
S −iλ2L(λ)

LS +λ2D)tρ
∥∥ = 0, (A13)

for all ρ ∈ BS , where L(λ)
LS = [H (λ)

LS , · ] and H (λ)
LS is obtained

by dropping the nonsecular terms from H
(λ)
LS and is given by

Eq. (12).
A combination of Eqs. (A5), (A7), (A11), (A12), and (A13)

gives the required Eq. (A4).
Remark 3. The proof is a bit cumbersome because we

wanted to have the Lamb-shift Hamiltonian from the Redfield
equation (up to the secular approximation with respect to
H (0)

S ). However, the Davies method gives another generator
−iL(λ)

S + λ2K(λ), which is different from the Redfield one
−iL(λ)

S + λ2R(λ). Both generators give the same result after
the secular approximation and the Davies method does not
say which one is more precise, but our numerical results
suggest that the Redfield generator is more precise than the
“nonsecular Davies” generator −iL(λ)

S + λ2K(λ). Also, our
unified GKLS generator −iL(λ)

S − iλ2L(λ)
LS + λ2D is more pre-

cise than the GKSL generator with the same D, but the
Lamb-shift Hamiltonian constructed from the operator K(λ)

instead of R(λ) [i.e., with S(ω,ω′) in Eq. (12) replaced by
S(ω′, ω)].

Also, mathematically, it would be more natural to deal with
the generator with the same D and the simplified Lamb-shift
Hamiltonian (A10), i.e., with the generator obtained by the
application of the secular approximation to R(0) or, equiva-
lently, K(0). Such possibility was discussed in the main text:
In this case, both the dissipator and the Lamb-shift Hamilto-
nian are constructed as if the system Hamiltonian was H (0)

S .
Of course,

lim
λ→0

sup
0�λ2t�τ1

∥∥T (λ)
t ρ − e(−i[H (λ)

S +λ2H̃LS, · ]+λ2D)tρ
∥∥ = 0 (A14)

is also true as a consequence of Eqs. (A5), (A7), and (A9)
(so, the proof is easier). However, in Appendix D, we give an
example where such generator gives significant error, while
the proposed generator with a refined Lamb-shift Hamiltonian
gives good results.

Remark 4. Expressions (A4) and (A14) assert that the
quantum dynamical semigroups approach the exact reduced
dynamics in the limit λ → 0 on arbitrarily long but finite
time segments [0, τ1] (in the rescaled time). This restriction
is important if we study the long-time limit limτ→∞ ρ(τ/λ2).
Recently [55], for the standard weak-coupling limit (i.e., lead-
ing to the secular master equation), it was shown that the
quantum dynamical semigroup approaches the exact reduced
dynamics uniformly on the whole time half-line τ ∈ [0,∞).
Probably, the same result can be proved also for our limiting
regime (A1).

But, nevertheless, we know (see the same paper Ref. [55]
for a review of the rigorous results about this) that if the bath
is in thermal equilibrium and certain conditions are met, ρ(t )
tends to the state TrBe−βH (λ)

/Tre−βH (λ)
as t → ∞ for an arbi-

trary initial state ρ(0). As λ → 0, this stationary state tends to
ρβ = e−βH (0)

S /Tre−βH (0)
S . As we know from the main text, the

unified master equation correctly predicts the stationarity of
this state. Under the same conditions, this stationary state is
unique.
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APPENDIX B: DETAILS OF CALCULATIONS IN
THE EXAMPLE

The unified quantum master equation for the considered
example has the form

ρ̇ = −i[HS, ρ] +
2∑

j=0

L jρ,

where L j = −i[H ( j)
LS , · ] + D j is the generator corresponding

to the interaction with the jth bath. Here D j = D jω12 + D jω +
D j0,

D jωρ = γ j (ω)
(
AjωρA†

jω − 1
2

{
A†

jωAjω, ρ
})

+ γ j (ω)e−β jω
(
A†

jωρAjω − 1
2

{
AjωA†

jω, ρ
})

,

ω is either ω12 or ω, and

D j0ρ = γ j (0)
(
Aj0ρAj0 − 1

2

{
A2

j0
, ρ

})
.

The jump operator Ajω12 corresponds to an individual Bohr
frequency of HS and defined by Eq. (4): Ajω12 = κz jP00σ

( j)
z P11.

Let us discuss the operators Ajω and Aj0 corresponding to
clusters of Bohr frequencies of HS , or, equivalently, to indi-
vidual Bohr frequencies of

H (0)
S = ε11(P11 − P00) + 0(P01 + P10).

As we see, the eigenprojectors of H (0)
S are P(0)

+ = P11, P(0)
− =

P00, and P(0)
0 = P01 + P10.

According to Eq. (13),

Ajω = P(0)
− AjP

(0)
0 + P(0)

0 AjP
(0)
+

= P00Aj (P01 + P10) + (P01 + P10)AjP11,

= κx j[P00σ
( j)
x (P01 + P10) + (P01 + P10)σ ( j)

x P11],

Aj0 = P(0)
0 AjP

(0)
0 + P(0)

+ AjP
(0)
+ + P(0)

− AjP
(0)
−

= κz j[(P01 + P10)σ ( j)
z (P01 + P10)

+ P00σ
( j)
z P00 + P11σ

( j)
z P11].

Alternatively, these operators can be calculated as sums of the
operators corresponding to the individual Bohr frequencies of
HS from the corresponding clusters:

Ajω = Ajω1 + Ajω2 , Aj0 = Aj0 + Ajω0 + Aj,−ω0 ,

where

Ajω1 = κx j (P00σ
( j)
x P10 + P01σ

( j)
x P11),

Ajω2 = κx j (P00σ
( j)
x P01 + P10σ

( j)
x P11),

Aj0 =
∑

μ=00,01,10,11

PμAjPμ,

Ajω0 = A†
j,−ω0

= P01AjP10.

Further,

H ( j)
LS = S(ω12)A†

jω12
Ajω12 + S(−ω12)Ajω12 A†

jω12

+
∑

ω,ω′∈{ω1,ω2}
[S(ω,ω′)A†

jω′Ajω + S(−ω,−ω′)Ajω′A†
jω]

+
∑

ω,ω′∈{0,±ω0}
S(ω,ω′)A†

jω′Ajω

[recall that S(ω) ≡ S(ω,ω)].
For the baths j = 0, 1, 2, we choose the same Drude-

Lorentz spectral density J j (ω) (17). The correlation function
of the jth reservoir can be expressed as

Cj (s) = 〈Bj (s)Bj〉

=
∫ ∞

0
J j (ω)

[
coth

(
βω

2

)
cos ωs − i sin ωs

]
dω.

(B1)

Here Bj (s) = eiHBsB je−iHBs and 〈·〉 denotes the expectation
with respect to the thermal state with the inverse temperature
β.

We adopt the high-temperature approximation β 
 1.
For example, for the used value  ≈ 53.08 cm−1 and the min-
imal considered temperature T = 300 K, we have β ≈ 0.24.
We have used that β = 1/kBT , where kB ≈ 0.734 cm−1/K is
the Boltzmann constant. In this case, coth(βω/2) in Eq. (B1)
can be approximated as 2/(βω) and

Cj (s) ≈ η

(
2

β
− i

)
e−s, (B2)

� j (ω) =
∫ ∞

0
Cj (s)eiωs ds ≈ η

 − iω

(
2

β
− i

)
. (B3)

So, we have obtained the functions � j (ω) which define both
the dissipation rates γ j (ω) = 2 Re � j (ω) and the Lamb shifts
of the energy levels S j (ω,ω′) = [� j (ω) − �∗

j (ω′)]/2i.

APPENDIX C: IMPORTANCE OF THE REFINED
LAMB-SHIFT HAMILTONIAN

In this section, we will see that the use of the refined Lamb-
shift Hamiltonian (12) instead of the simplified one (A10) is
important in some cases. This is surprising since the Lamb
shift is often believed to be insignificant for the dissipation
processes at all. Namely, we will consider the case when there
is a nontrivial manifold of states stationary for the dissipator,
but only one of them commutes with the Hamiltonian. So,
the Hamiltonian part and, in particular, the refined Lamb-shift
Hamiltonian are crucial for the dynamics toward the unique
stationary state in a manifold of states that are stationary for
the dissipator only. The existence of two different timescales
(dynamics toward a quasistationary manifold and dynamics
toward the unique final equilibrium) for an open quantum
system with nearly degenerate energy levels is rigorously
established in Refs. [44,45].

Let us consider the example from the main text and further
simplify it: Let two identical qubits interact with each other
and with two local dephasing baths. Namely, consider two
identical interacting qubits with the Hamiltonian

HS = E
(
σ (1)

z + σ (2)
z

) + Jσ (1)
x σ (2)

x ,

coupled to two thermal baths of harmonic oscillators. So, the
full Hamiltonian is

H = HS + HB,1 + HB,2 + HI,1 + HI,2,
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where

HB, j =
∫
Rd

ω(k)a†
j (k)a j (k) dk,

a j (k) [a†
j (k)] is an annihilation [creation] operator for the kth

mode of the jth bath and ω(k) is a non-negative real-valued
function of k. The interaction Hamiltonians are HI, j = σ

( j)
z ⊗

Bj , j = 1, 2, where

Bj =
∫

dk [gj (k)a j (k) + g j (k)a†
j (k)]

and g j (k) are complex-valued functions. That is, in the nota-
tions of the main text, we put κ jx = 0, j = 0, 1, 2, κ0z = 0,
κ1z = κ2z = 1, and E1 = E2 = E .

Then, the reduced system dynamics in the subspace
spanned by {|01〉 , |10〉} is independent from that in the sub-
space spanned by {|00〉 , |11〉}. We choose the initial state as
ρ(0) = |01〉 〈01|. So, the reduced system dynamics is con-
fined inside the subspace spanned by {|01〉 , |10〉} and thus
is reduced to the two-dimensional case. Let us restrict our
consideration to this subspace. Then, the system Hamiltonian
is

H̃S = J (|01〉 〈10| + |10〉 〈01|). (C1)

Its eigenvalues are ±J with the corresponding eigenvectors
|±〉 = (|01〉 ± |10〉)/

√
2. The interaction Hamiltonians are

then H̃I, j = (−1) jZ ⊗ Bj , where

Z = |01〉 〈01| − |10〉 〈10| = |+〉 〈−| + |−〉 〈+| .
We again choose the Drude-Lorentz spectral density (17) for
both baths with the coupling strength η = 1 cm−1 and the
cutoff frequency −1 = 100 fs ( ≈ 53.08 cm−1). The tem-
peratures of the baths are T1 = T2 = 300 K. The parameter J
of the system Hamiltonian is J = 2 cm−1.

Now we should choose a proper decomposition of the
system Hamiltonian into the reference and perturbation parts.
Since J is small with respect to the bath relaxation rate 

and comparable to the dissipation constant η, we treat the
whole system Hamiltonian (C1) as small (i.e., the free dy-
namics takes place on the same time scale as the dissipation):
H̃S ≡ λ2H̃S . In other words, H̃ (0)

S = 0 and δ̃HS = H̃S . As we
mentioned in the main text, this limiting regime is equivalent
to the singular coupling limit.

The unified master equation has the form

ρ̇(t ) = −iλ2[H̃S + HLS, ρ(t )] + λ2D[ρ(t )], (C2)

where

HLS = S(2J ) |+〉 〈+| + S(−2J ) |−〉 〈−| (C3)

and

Dρ = γ (0)(ZρZ − ρ) (C4)

(we have used that Z2 = 1). Here γ (ω) = 2 Re[�1(ω) +
�2(ω)] and S(ω) = Im[�1(ω) + �2(ω)].

The “simplified” version of the unified master equation
(due to a simpler form of the Lamb-shift Hamiltonian) is

ρ̇(t ) = −iλ2[H̃S + H̃LS, ρ(t )] + λ2D[ρ(t )], (C5)

FIG. 3. Comparison of calculations of the dynamics of the two-
qubit system according to the numerically exact HEOM method
(black solid line), the Redfield equation (blue dash-dotted line), sec-
ular (Davies) master equation (green dotted line), the unified master
equation (red solid line), and the simplified unified master equation
(with the simplified Lamb-shift Hamiltonian), which, in this case,
coincides with the known singular coupling master equation (purple
dashed line). The plot shows the dynamics of an off-diagonal element
(in the eigenbasis of the system Hamiltonian). The secular master
equation largely overestimates the rate of decoherence, while the
simplified unified master equation significantly underestimates it.
The Redfield equation and the unified master equation have good
agreement with the numerically exact result.

where

H̃LS = S(0)(|+〉 〈+| + |−〉 〈−|). (C6)

A comparison of performances of master equations (C2)
and (C5) with the numerically exact result of the hierarchical
equations of motion (HEOM) (also with the high-temperature
approximation [52]) is shown on Fig. 3. We see that the
secular master equation highly overestimates the rate of
decoherence, while the simplified unified master equation
significantly significantly underestimates it. The Redfield
equation and the unified master equation have good agreement
with the numerically exact result.

Remark 5. Note that, in this case, the simplified version
of the unified master equation (C5) coincides with the master
equation derived in the singular coupling limit [1–3,46,49,50].
So, we have obtained an improved version (C2) of this
master equation, which, as we see, is crucial in some
cases.

Let us make some analytic explanations of these numerical
results. From the expression of the dissipator (C4), we can
see that a peculiarity of this system is that the initial state
ρ(0) = |01〉 〈01| as well as any state diagonal in the “local”
basis {|01〉 , |10〉} is stationary for the dissipator. However,
only the state I/2, where I is the identity operator [i.e., diag-
onal in both the local basis and the eigenbasis (global basis)],
is stationary for both the dissipator and the Hamiltonian part.
Due to this, the Hamiltonian part and, in particular, the Lamb-
shift Hamiltonian are crucial for the dynamics toward the
unique stationary state in the manifold of states stationary for
the dissipator.

But, as we see from Eq. (C6), the simplified approach (the
standard singular coupling limit) eliminates the Lamb-shift
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Hamiltonian: Since only differences between the energy levels
matter, the addition of the same quantity S(0) to the levels has
no impact.

The initial populations of the eigenstates of HS are equal:
〈±|ρ(0)|±〉 = 1/2. The equal populations are stationary since
they correspond to the same energy level of the reference sys-
tem Hamiltonian (equal to zero). So, the dynamics manifests
itself only in the decoherence in the eigenbasis of HS . Denote
x(t ) = 〈+|ρ(t )|−〉 and y(t ) = 〈−|ρ(t )|+〉. Then, the unified
approach gives such equations for the coherences:

ẋ = −i[2J + S(2J ) − S(−2J )]x + γ (0)(y − x), (C7a)

ẏ = +i[2J + S(2J ) − S(−2J )]y − γ (0)(y − x). (C7b)

The secular approach treats the energy levels as well
separated and thus neglects the coherence-coherence trans-
fer between 〈+|ρ(t )|−〉 and 〈−|ρ(t )|+〉. Namely, it neglects
the terms +γ (0)y and +γ (0)x in the right-hand sides of
Eqs. (C7a) and (C7b), respectively. Doing so, the secular
approximation overestimates the decoherence rate.

The simplified unified approach corresponds to the replace-
ment of S(±2J ) by S(0). So, the terms with S vanish. If the
signs of J and S(2J ) − S(−2J ) coincide, such neglect de-
creases the difference of the rotation rates for the coherences
(in the complex plane) and thus decreases the decoherence
rate because, as we noticed above, the initial state is stationary
for the dissipator and the dynamics is caused by the unitary
rotation (followed by the dissipation).

The same fact can be expressed in the language of eigen-
values of the system (C7). Indeed, the smallest eigenvalue in
magnitude is

−γ (0) +
√

γ (0)2 − [2J + S(2J ) − S(−2J )]2.

If γ (0) is greater than the second term under the square root,
then it can be approximated by

−[2J + S(2J ) − S(−2J )]2/2γ (0).

Anyway, the neglect of the terms S(±2J ) decreases this eigen-
value whenever the signs of J and S(2J ) − S(−2J ) coincide.
Moreover, if S(2J ) − S(−2J ) > 2J , such neglect may cause a
large error.

Recall that both J and S(ω) are small. In the formal the-
ory, both are multiplied by λ2, so S(2J ) − S(−2J ) is of the
order λ4. Hence, in the limit λ → 0, the effect of this term
disappears. This is confirmed by the numerical results if we
multiply J and η by an infinitesimal dimensionless parameter
λ2. Thus, Eq. (A14) is true. However, for the concrete cho-
sen parameters, the simplified equation (the standard master
equation for the singular coupling limit) gives an incorrect
prediction for the decoherence rate, while the equation with
the refined Lamb-shift Hamiltonian provides good results.

Summarizing, the refined Lamb-shift Hamiltonian is im-
portant for the case when there exists a nontrivial manifold of
states stationary for the dissipator, but only one of them is sta-
tionary also for the Hamiltonian part (i.e., commutes with the
Hamiltonian). In this case, the Hamiltonian part is crucial for
relaxation to this unique state. If we are not in such situation,
a simplified Lamb-shift Hamiltonian also can be used. Note
that the considered example is practically important because
this is a model of excitation energy transfer in a molecular
dimer [52]. Finally, it is worthwhile to note that a bit higher
precision of the Redfield equation in comparison with the
unified GKLS master equation seen on Fig. 3 is achieved at
the cost of small violation of positivity on the initial short time
(not seen on the plot).
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