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Experimental approach to demonstrating contextuality for qudits
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We propose a method to experimentally demonstrate contextuality with a family of tests for qudits. The
experiment we propose uses a qudit encoded in the path of a single photon and its temporal degrees of freedom.
We consider the impact of noise on the effectiveness of these tests, taking the approach of ontologically faithful
noncontextuality. In this approach, imperfections in the experimental setup must be taken into account in any
faithful ontological (classical) model, which limits how much the statistics can deviate within different contexts.
In this way we bound the precision of the experimental setup under which ontologically faithful noncontextual
models can be refuted. We further consider the noise tolerance through different types of decoherence models
on different types of encodings of qudits. We quantify the effect of the decoherence on the required precision for
the experimental setup in order to demonstrate contextuality in this broader sense.
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I. INTRODUCTION

Contextuality is a fundamental property of quantum mea-
surements originally discovered by Bell and Kochen and
Specker [1,2]. It refers to the special property of measure-
ment outcome statistics to depend on the context in which
they are performed, i.e., on the set of measurements that are
simultaneously performed. This uses the notion of compat-
ibility, which refers to whether several measurements can be
performed without affecting each other, that underlies the idea
of context and naturally corresponds to a set of measurements
that are mutually compatible. Many efforts have been de-
voted to understanding contextuality [3–5]. Contextuality has
shown an advantage in quantum computing [6–9], in quantum
cryptography [10,11], in quantum state discrimination [12],
and in self-testing [13]. Moreover, the simulation of quantum
contextuality by classical systems requires a larger memory
than its equivalent by quantum systems [14–17].

Contextuality generalizes nonlocality [4], and the ability to
experimentally observe these two fundamental properties is
a key point when it comes to their applicability in informa-
tion technology tasks. As for nonlocality, the most common
method to witness contextuality is through inequalities, which
uses the statistics of measurement outcomes performed on one
or more physical systems. The proof of nonlocality with this
method is guaranteed by the spatial separation of the physical
systems involved, whereas for contextuality all measurements
could also be performed on a single system, which makes the
proof of contextuality more subtle.

*sohbi@kias.re.kr

There exist many experimental works regarding the obser-
vation of contextuality, generally for qutrit systems as it is
the smallest dimension to exihibit contextuality [1,2]. They
use different technologies and different types of encoding
using properties of photons such as the polarization and path
[18–21], the orbital momentum [22], the path [22–24], and
temporal properties [20], or different physical systems such as
trapped ions [25], neutrons [26], and superconducting qubits
[27].

Despite all these efforts, when one realizes an experiment,
it is only possible to perform measurements in their different
contexts with finite precision. This raises the question whether
such statistics of measurement outcomes could possibly be
performed by classical theory [28–30]. In [31,32], the authors
try to overcome this issue by using experimental methods.
A theoretical approach was taken by the author in [33], fol-
lowing the idea in [34] and presents an inequality based test
to refute any ontological faithful noncontextual model, i.e.,
a noncontextual model considering the finite precision of the
measurement. This model can also be tested through inequali-
ties which can be interpreted as contextuality inequalities with
an extra penalty term that takes into account the precision
maximum tolerated and the occurrence number of each mea-
surement in different contexts.

There is a deep interest in developping experimental
schemes to manipulate qudits and test their quantumness.
Indeed using qudits instead of qubits can be beneficial in
a range of applications in quantum information such as
quantum simulation [35], quantum algorithms [36–38], quan-
tum error correction [39–41], universal optics-based quantum
computation [42], quantum communication [43,44] and fault-
tolerant quantum computation [45–47], and entanglement
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measurements certification [48]. From a foundational interest
more complex quantum features can be obtained from higher
dimensions such as contextuality [49] or coherence of mea-
surements [50] and temporal correlations [51].

In this work we are interested in unifying an experimen-
tal method to observe contextuality for qudits of dimension
greater than three and the test of ontological faithful noncon-
textuality. The authors in [52] perform a Hardy-like proof of
contextuality with a qutrit system, which has been extended
to a new family of contextuality inequalities in [49] for any
higher dimension. The qutrit case has also been experimen-
tally observed, in particular in [53] for which we provide an
entension to higher dimension via the new family of contex-
tuality inequalities developed in [49]. We also provide for
the experiment realized in [53] based on [52] and our pro-
posed setup based on [49], the bounds to test any ontological
faithful noncontextual model in terms of the precision of the
experimental setup used in the proposed experiment. Contrary
to previously reported contextuality experiments [32], our
approach uses the temporal properties of single photons that
were previously used for various applications such as quantum
computation [54].

Moreover, quantum states have to face the effect of deco-
herence, which makes the quantumness of a physical system
more fragile. For instance in [55], the authors present a Bell
inequality that gives a higher violation for high dimensional
systems, but it has been shown that this advantage vanishes
when decoherence is taken into account [56,57]. Many other
works have shown the effects of decoherence on tests of
nonlocality [58–62]. As the observation of contextuality has
been done using different technologies, we also consider the
noise tolerance of different encodings of the qudit systems for
different relevant models of decoherence. We finally gather
both of these approaches to test their cumulative effect on the
measurement requirements.

The paper is structured as follows. In Sec. II, we present
some preliminary notions; we introduce first an experimen-
tal observation of contextuality for a qutrit, then we recall
how this contextuality test can be extended to any dimension
greater than three and we give the mathematical frame-
work of the ontological faithful noncontextuality inequality.
In Sec. III, we give our method to experimentally observe
contextuality with the contextuality inequalities proposed in
[49]. In Sec. IV, we explain how this experimental method
can be used to test ontological faithful noncontextuality. In
Sec. V, we compare the noise tolerance of different encodings
of qudits for given decoherence models, namely, amplitude
and phase damping. Finally in Sec. VI, we provide a method
to quantify how the decoherence affects the required precision
to test ontological faithful noncontextuality.

II. PRELIMINARY NOTIONS

A graph formalism can be used to represent compatibility
and exclusivity relations of dichotomic measurements and to
derive noncontextuality inequalities from the graph properties
[5].

We consider N dichotomic measurements for which we
associate the outcome Xi [Xi = 0 (“no”) or Xi = 1 (“yes”)]
to the vertex i of a graph G(V, E ), where the edges represent

the exclusivity and the compatibility of the measurements.
Measurements are compatible if it is possible to perform them
simultaneously. A context C is a set of pairwise compatible
measurements and C = {i1, . . . , i j |(ik, ik′ ) ∈ E}. Dichotomic
measurements are exclusive if they cannot both have an output
“yes” simultaneously, i.e., it is not possible that exclusive
measurements have the outcome 1 simultaneously. Hence,
∀(i, j) ∈ E : P(11|i, j) = 0. In this framework, a contextuality
inequality takes the form

β =
∑
i=1

〈Xi〉 � βcl, (1)

where βcl is the classical (noncontextual) bound on the statis-
tics, found by assigning values to Xi in a consistent way across
all contexts. Graphically this corresponds to the independence
number of the graph (see, e.g., [33]). The quantum bound can
be higher, and graphically corresponds to the Lovasz function
of the graph.

In [53] the authors present an experimental observation
of contextuality on qutrits using the so-called Klyachko-
Can-Binicioğlu-Shumovsky (KCBS) inequality [63] under the
conditions of the logical based proof of contextuality de-
veloped in [52]. We provide a review of their approach in
Appendix A.

A family of graphs which is associated to a family of
inequalities that extends the KCBS inequality and for which a
logical based proof of contextuality was derived in [49] (see
Appendix B). In order to violate a specific inequality in the
family, there is a minimum requirement on the dimension, d ,
of the quantum system.

However, it is practically impossible to guarantee that the
same measurement is performed in the exact same manner in
different contexts. It is only possible with a finite precision. If
we build a classical theory with independent random variables
to represent the outcome statistics of the same measurement
in different contexts, then it is possible for such model to per-
form as well as the quantum models [28–30,64]. However, in
[33] was introduced the ε-ontologically faithful noncontextual
model, where the random variables of the same measurement
are no longer independent and the probability to have dif-
ferent outcomes associated to a measurement is lower than
ε. An equivalent definition is imposed on the projectors of
the same measurement performed in different contexts (see
Appendix C).

It is possible to adapt directly a contextuality inequality to
consider an ε-ontologically faithful noncontextual model and
for a quantum violation of βQ, the inequality can be rewritten

ε � βQ − βcl∑
i(ki − 1)

. (2)

A physical experiment that can violate this inequality can-
not be described by an ε-ontological faithful noncontextual
model.

III. PROPOSED QUDIT EXPERIMENT

Compared to the pentagon, the family of graphs developed
in [49] may have contexts with more than two measure-
ments, hence polarization is not enough to store the outcomes
of each intermediate measurement if one wants to use the
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FIG. 1. Proposed setup for a context of three measurements
which corresponds to the case N = 6. The initial state is prepared in
the state |ψini〉. The detection of the path and the delay of the single
photon give the outcomes of the measurements.

experimental setup in [53]. Instead of using the polarization of
the single photon, we propose to use its temporal properties.
Hence, instead of using a wave plate to change the polarization
of the photon, we propose to use a delay �ti corresponding
to a measurement that could be applied to the photon. Each
measurement of a context (except the last one for which the
outcome is known only from the path) has its own character-
istic time delay to be able to recognize which path the photon
has used. Experimentally, the time delay of a photon can be
known if the experimental setup uses a deterministic single
photon source or a photon pair where one of the photons is
used for the contextuality test and the other one as a time
reference.

The initial quantum state, |ψini〉, is

|ψini〉 = |η〉 ⊗ |0〉t , (3)

=
(∑

i∈C

αi|vi〉 + αχC |χC〉
)

⊗ |0〉t , (4)

where |η〉 is the quantum state used to demonstrate contextu-
ality, |0〉t corresponds to zero time delay, and where we have
expanded for a given context C in the associated vectors.

In this case we encode onto time delay instead of the polar-
ization, which similarly corresponds to a control unitary—a
time delay controlled by the path. Employing the same strat-
egy of sandwiching this control delay between the unitary
operators encoding the measurement basis, with delay �ti for
Ui, we get the final state before measurement

|ψ f 〉 = αi f |vi f 〉 ⊗ |0〉t +
∑

i∈C,i �=i f

αiUi f |vi〉 ⊗ |�ti〉t

+ αχCUi f |χC〉 ⊗ |0〉t , (5)

where Ui f is the unitary operator of the last measurement and
|vi f 〉 is the eigenvector with eigenvalue 1 of the projector of
the last measurement. The first term in Eq. 5 corresponds to
the case where the outcome will be Xi f = 1 and Xi∈C/i f = 0,
the second term corresponds to Xi f = 0 and there exist j ∈
C/i f such that Xj = 1 and Xi∈C/{i f , j} = 0, and the last term
corresponds to Xi∈C = 0.

In Fig. 1 there is a summary of the process in the case N =
6 where each context is composed by three measurements.

This process allows one to also check the exclusivity condi-
tions between the measurements because if the delay obtained
for the single photon does not correspond to a single �ti but
a combination of different �ti, then the exclusivity relations
imposed by the graph are not satisfied. The compatibility
conditions can be validated by checking that the statistics of
the measurements is invariant by the order in which the blocks

of unitary operations are applied. Moreover the values of the
�ti need to be taken such that none of the time delays is a sum
of other time delays. Hence, ∀i ∈ V ,

�ti �=
∑
k �=i

λk,i�tk, (6)

where λk,i ∈ {0, 1}. This ensures we can keep track of the out-
come of each measurement in the context and experimentally
verify the exclusivity.

IV. REFUTING ONTOLOGICALLY FAITHFUL
NONCONTEXTUALITY

In this section we derive minimum bounds on the precision
required in order to escape the possibility of an ontologically
faithful noncontextual model, that is, to demonstrate contex-
tuality in this broader sense. We present what this means in
terms of matrices of the beam splitters. We do this explicitly
for the KCBS and N = 6 cases; similar studies can be easily
made for larger graphs.

A. Testing with the KCBS inequality

In Appendix A, we present an example of an experimental
observation of contextuality that uses the KCBS inequality
[53] under the conditions of the paradox developed in [52].

An inequality can be used to test the ontologically faithful
noncontextuality to overcome the impossibility to measure
perfectly the same observable in its different contexts (see [33]
and Appendix C).

To see how this works in our case, we assume that the finite
precision ε used in ontologically faithful noncontextuality in
[33] is due to an imperfection of the beam splitters used in
the experiment to build the unitary operators in [53]. For
simplicity, we consider the same typical error denoted δ for
all beam splitters (in absolute value). In Appendix D 1, we
present the unitary operators where the factor δ has been
introduced in each beam splitter. We neglect the phase errors
on the reflectance and transmission.

In the case of the pentagon, the necessary condition to
verify ontologically faithful noncontextuality is ε < 1

45 [33],
where ε is an upper bound on the distance between the projec-
tion Pi = |vi〉〈vi| and its experimental realization in different
contexts. Experimentally, each projector Pi is realized thanks
to the unitary operation Ui. We define Pi,δ = |vi,δ〉〈vi,δ| and
Ui,δ|vi,δ〉 = |0〉, the projector and the unitary operation, when
the typical error δ is considered. Hence,

�i = ‖Pi − Pi,δ‖ < ε,

�i = ‖|vi〉〈vi| − U †
i,δ|0〉〈0|Ui,δ‖ < ε, (7)

where the states in the first term are given in Eq. (A2) and the
second term can be calculated with the unitary operators given
in Appendix D 1. The norm of the matrix Mi,δ is

‖Mi,δ‖ = max |σi(δ)|, (8)

where σi(δ) are the singular values of Mi,δ .
In the case of the KCBS inequality, if we have maximum

quantum violation, for it to correspond to an ontologically
faithful noncontextual model we would require max |σi(δ)| <
1

45 , ∀i ∈ V .
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FIG. 2. Distance �i between theoretical and the expected ex-
perimental operators as a function of δ. The ontologically faithful
noncontextuality bound is 1

45 and is represented by the upper hori-
zontal line. The other curves correspond to the largest eigenvalues of
the unitary U1 (represented by two curves σ1,φ={0,1}) and U2 (which is
also U5 because the beam splitters are the same) which are functions
of δ. The gray area represents the values of δ leading to a violation.
The lower horizontal line corresponds to the ontologically faithful
noncontextuality bound with the experimentally obtained violation
in [53].

In Fig. 2 we show the curves of �i of the different unitary
operations, in order to compare with the value of ε represented
by the upper horizontal line. Equation (C3) is violated, hence
refuting any ε ontologically faithful noncontextuality only in
the range of parameter δ where the curves representing �i

are below the upper line representing the ε bound. Because
the implementation of the unitary operators U3 and U4 (Ap-
pendix D 1) does not require the use of any beam splitters (but
requires one to relabel the paths instead), they are not shown
in the figure. Moreover, because U2 and U5 are very similar
(Appendix D 1), we have �2 = �5, so they are shown as one
in Fig. 2. Finally, U1 requires the use of an additional factor
called φ (Appendix D 1); this is because this unitary operator
is composed of two beam splitter operators and while both
have the same error δ, we consider the case where one has
error δ and the other one has ±δ. Additionally, we added a
lower horizontal line which corresponds to the ontologically
faithful noncontextuality bound with the experimentally ob-
tained violation in [53]. This value corresponds to the value of
ε when Eq. (C3) is saturated for the experimentally obtained
violation in [53].

The maximum value of δ for a violation is then the max-
imal δ for which all curves are below the horizontal line.
Thus we get the value δth = ±0.016 497 4. This corresponds
to a maximum tolerated error of 1.6% of the coefficient of
transmission and reflection of the beam splitters.

B. Testing with the extension of the KCBS inequality for N = 6

This method can be extended to other inequalities. We
propose to study the particular case of the graph N = 6 (see
Fig. 8) of the inequalities developed in [49] with the exper-
iment we propose. In this case (d = 4), the quantum state

and the eigenvectors of rank one projective measurements are
given in [49]:

|η〉 = 1√
6

(
√

2, 1, 1,
√

2)T , (9)

|v1〉 = 1√
6

(−
√

2, 1, 1,−
√

2)T , (10)

|v2〉 = (1, 0, 0, 0)T , (11)

|v3〉 = 1

2
(0, 1, 1,

√
2)T , (12)

|v4〉 = 1√
2

(0,−1, 1, 0)T , (13)

|v5〉 = 1

2
(
√

2, 1, 1, 0)T , (14)

|v6〉 = (0, 0, 0, 1)T . (15)

By computing βQ = ∑6
i=1 |〈vi|ψ〉|2, one can derive the

value βQ = 2 + 1
9 which violates the inequality shown in

Eq. (C2).
To obtain the unitary operators {Ui}i∈V as Ui|vi〉 = |0〉 [see

Eq. (A8)], the following technique is applied. The first step
is to count the number of nonzero components of each |vi〉 in
the path basis, to determine the number of beam splitters. By
adjusting the coefficients of reflection and transmission of a
beam splitter, it is possible to cancel an unwanted component
of the vector Ui|vi〉 until a single nonzero component to the
desired path is obtained. In this way we can obtain the unitary
Eq. (A8) as a circuit of beam splitters. The number of beam
splitters required is the number of unwanted components and
is optimum. U1 requires three beam splitters: two for U3 and
U5, one for U4, and zero for U2 and U6. The unitary operators
for N = 6 are given in Appendix E 1.

To test ontologically faithful noncontextuality with the ex-
tension of KCBS inequality it is required that the distance
between the projection Pi and the corresponding projections
measured in each context Pi,δ is less than 1

9(N+3) = 1
81 [49].

Following the same process described in the previous section,
we can compute all the �i from Eqs. 7 and 9 and the unitary
operations described in Appendix E 1.

In Fig. 3, the different curves represent the maximum val-
ues of σi(δ) of each unitary operator built with beam splitters.
As the optical networks to build U2 and U6 have no beam split-
ters they do not appear in the figure. The horizontal line is the
threshold above which there is no observable violation. The
upper bound to violate is the value of δ for which all curves
are below the horizontal line ε = 1

81 . Thus we obtain the value
δth = 0.0049. This corresponds to a maximum tolerated error
of 0.49% of the coefficients of reflection and transmission for
each beam splitter. The tolerance is smaller than what was
obtained for the pentagon.

While the violation of the contextual inequality seems con-
stant for all graphs [49], it seems that the ontologically faithful
noncontextuality is becoming more difficult to refute when the
number of vertices increases. This can be understood by the
fact that the largest dimensions require more elements in the
experimental setup as resulting in a greater accumulation of
errors.
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FIG. 3. Distance between ideal and the expected experimental
operators depending on δ. The ontologically faithful noncontextu-
ality bound is 1

81 and is represented by a horizontal line. The other
curves correspond to larger values of the different unit operations.
U1 (for every combination of φ1 and φ2), U3 (with U5), and U4

are functions of δ. U2 and U6 are not shown as they do not need
beam splitters. The gray area represents the values of δ leading to a
violation.

V. DECOHERENCE EFFECTS ON THE EXTENSION
OF THE KCBS INEQUALITY

A. Robustness of the KCBS inequality against decoherence

In our experimental proposal, the main noisy effects would
be the errors due to the imperfection of the beam splitters,
and photon loss. We have treated the first case in the previ-
ous section and in these experiments we would effectively
be postselecting onto the no-photon-loss case. However, we
are also interested in investigating the case of other noise
models for further potential implementations. We therefore
consider in this section the experimental limitation for various
decoherence models. In the spirit of [60], we consider two
decoherence models, amplitude and phase damping, and we
compute the threshold, i.e., the maximum tolerated noise,
until the violation is lost in each case. For that we use the
Kraus operators formalism for these two models for any qudit
of dimension d:

(1) For amplitude damping:

Ak =
d−1∑
r=k

√(
r

k

)√
(1 − γ )r−γ γ k|r − k〉〈r|, (16)

where k is a positive integer verifying k � d − 1 and γ ∈
[0, 1] is the noise factor.

(2) For phase damping:

Pk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d−1∑
r=0

(1 − λ)r2/2|r〉〈r| if k = 0,

√
[1 − (1 − λ)r2 ]|r〉〈r| otherwise,

(17)

where k is a positive integer verifying k � d − 1 and λ ∈
[0, 1] is the noise factor.

FIG. 4. Noise factor threshold for amplitude and phase damping
(γ and λ) for the three types of encoding.

In the first instance we are interested to know the threshold
on the noise factors, i.e., the value of λ or γ above which the
inequalities in Eq. (B1) are not violated anymore.

Moreover, we apply these decoherence models into three
different types of encoding of qudits:

(1) Single qudit. We apply the Kraus operators as they are
presented in Eqs. 16 and 17. In this case the noise is applied
onto the single qudit quantum system.

(2) System composed by qubits. The use of qubits imposes
restrictions on the possible dimension of the qudit. In fact,
the dimension of the qudit has to match with the product of
the different subsystems, i.e., the dimension d of the qudit
has to be equal to 2n, where n is the number of qubits in the
composite system. In this case the Kraus operators are applied
on each subsystem.

(3) State composed by a symmetric state. In this case the
qudit is a composite system of qubits forming a symmetric
state, where the dimension of the qudit matches with the
dimension of the symmetric subspace of the qubits, i.e., the
dimension of the qudit is equal to n + 1 for n qubits forming
a symmetric state. The noise is then applied to each qubit
separately via the Kraus operators.

In Fig. 4, we show that the threshold on the noise factor
decreases when the number of vertices in the graph increases
for all types of noise and types of encoding. The use of a
composite system of qubits seems more advantageous for both
types of noise. Phase damping seems to have a smaller effect
on the qubit composite systems and the symmetric states,
whereas amplitude damping has a smaller effect onto the
unique qudit system. This behavior might not be a general
trend and could depend on the inequality that is considered.

It is actually nontrivial to compare the different encoding
systems. However, it is possible to understand why there
are such differences. This is because a noise model will act
differently on different encodings. For instance, for a d = 4
qudit, we can decide to encode it into the indistinguishable
photon number basis {|0〉, |1〉, |2〉, |3〉} or with the two distin-
guishable photon numbers basis {|00〉, |01〉, |10〉, |11〉}. If one
applies an amplitude damping model on the third vector of
each basis |2〉 gives |1〉, that is the second vector of the basis,
whereas in the second case |10〉 gives |00〉, which results in
the first vector of the basis. This effect will affect the outcome
of the measurement, hence the possible violation.
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FIG. 5. Threshold on the error εth as a function of the noise
parameter λ of γ for N = 6.

B. Effects of the decoherence on ontological faithful
noncontextuality inequalities

In Sec. V A, we have seen only the threshold of tolerated
noise, i.e., the maximum value of noise above which we do
not observe the violation of the inequality. However, this
arises from a continuous process where the noise gradually in-
creases and the violation decreases consequently. During this
transition, as the violation decreases, the value of ε reduces ac-
cordingly because ε is proportional to the difference between
the quantum violation and the classical bound. We define εth,
the value of ε that saturates Eq. (C3). It depends on the noise
parameters λ or γ because βQ is dependent on the noise. As βQ

decreases when λ or γ increases, εth decreases as well. This is
shown in Fig. 5 where the values εth are plotted as a function
of the noise parameters λ and γ for the different encoding
and decoherence models used in Fig. 4. In these processes
we consider the beam splitters without imperfection. Hence,
these values correspond to where the threshold shown as the
horizontal bar in Fig. 2 (the upper one) and Fig. 3 would be
when taking into account both damping models with the beam
splitter imperfections at the same time.

With this information, one can assess the practicality of
being able to demonstrate noncontextuality against any onto-
logically faithful model.

In Fig. 2, the lower horizontal line corresponds to the
ontologically faithful noncontextuality bound with the ex-
perimentally obtained violation in [53]. In this case, as the
violation is lower, the threshold on the precision is δth =
±0.0116. This corresponds to a maximum tolerated error of
1.16% on the coefficients of the reflection and transmission
for all beam splitters.

VI. CONCLUSION

In this article we address the challenges of an experimental
observation of contextuality, in particular through the onto-
logically faithful noncontextuality model described in [33].
We propose an experiment which can theoretically be used
for any arbitrary dimension of qudit with an arbitrary number
of successive measurements. This is possible by encoding the
qudit in a path of a single photon and its temporal prop-
erties by using a control-time-delay operation. Considering
specific experimental limitations enables the derivation of an

ontologically faithful noncontextuality in terms of practical
factors such as the reflectivity of the beam splitters in this
case. We can derive what are the conditions to satisfy the
violation of the simplest example of the extension of the
KCBS inequality in [49]. Our method can be systematically
used in different experimental proposals as long as there is
a theoretical model for the imprecision in the experiment.
Our method could potentially be extended to the cases where
there is no valid theoretical model and this problem could
be addressed via tomography. This would be useful when
the source of imperfection is hard to define correctly or to
verify the theoretical model. Moreover, we also investigate
how the decoherence can be taken into account together with
the ontologically faithful noncontextuality tests.

While we had to make assumptions such as the ontolog-
ically faithful noncontextuality to address the challenges of
the observation of contextuality, we do not know how these
assumptions affect the various advantages of contextuality
in quantum information processing. Further investigation is
needed in this direction.
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APPENDIX A: OBSERVING CONTEXTUALITY WITH THE
PENTAGON INEQUALITY

The so-called KCBS inequality [63] corresponds to a
pentagon graph shown in Fig. 6 and can be written in the
following form:

β =
5∑

i=1

〈Xi〉 � 2, (A1)

where {Xi} are the outcomes of the dichotomic measurements
that have the compatibility and the exclusivity relations given
by the edges of the graph in Fig. 6.

In the quantum case, rank-one projectors can be used
to represent the dichotomic measurements. By doing so the
maximum quantum violation is known be equal to βQ =∑5

i=1〈Xi〉 = √
5 [63].

In [53] the authors present an experimental observation of
contextuality on qutrits using the KCBS inequality under the
conditions of the logical based proof of contextuality devel-
oped in [52]. In this case, the eigenvectors {|vi〉} of the five
rank-one projective measurements {Pi = |vi〉〈vi|} they used
are

|v1〉 = 1√
3

(1,−1, 1)T , (A2)

|v2〉 = 1√
2

(1, 1, 0)T , (A3)

|v3〉 = (0, 0, 1)T , (A4)

|v4〉 = (1, 0, 0)T , (A5)
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FIG. 6. For the KCBS inequality the relations of compatibility
and exclusivity are represented by a pentagon.

|v5〉 = 1√
2

(0, 1, 1)T . (A6)

The quantum state of the qutrit to be measured is

|η〉 = 1√
3

(1, 1, 1)T . (A7)

The quantum state is encoded into the path of a single pho-
ton. The computational basis vectors (|0〉, |1〉, |2〉) correspond
to different distinct paths that the photon can use with |0〉
being the uppermost path.

To determine a measurement’s outcome it is convenient
that each outcome can be associated with a specific set of
paths. To do that, we follow the idea presented in [53] by
rotating the basis to the eigenvector basis of the desired mea-
surement. In particular in our case, the outcome “1” should
be associated with a unique path. For each vector |vi〉 we
associate a unitary operator Ui which identifies it with the
upper path through

Ui|vi〉 = |0〉. (A8)

In the experimental setup, these unitary operators can be
implemented by using only beam splitters. Note that this
equation alone does not fix uniquely Ui and we do not impose
that the full basis of paths is assigned to a particular Ui. This
freedom allows some optimization over the number of beam
splitters.

In the pentagon case, each context is composed of two
measurements (see Fig. 6). In order to be able to measure
a second projector on the same initial quantum system, the
photon is not detected at first but the outcome is stored in
a different degree of freedom: the polarization of the pho-
ton. The polarization of a photon can be represented in the
basis {|H〉, |V 〉}, where |H〉 and |V 〉 represent horizontal and
vertical polarization, respectively. When the photon traverses
the path associated with the outcome “1” its polarization is
rotated to a vertical position while in the two other paths its
polarization remains in a horizontal position. The polarization
of the photon becomes entangled with its path. In this way one
can keep track of the outcome despite the use of the operation
U †

i .
Then the second operation Uj is applied which corresponds

to the second measurement of the context. Finally the position
and the polarization of the photon are measured, which pro-
vide the outcome of both projectors of the context. In order to

FIG. 7. Summary of the measurement process. The three paths
correspond to the basis vectors {|0〉, |1〉, |2〉}. After preparing the
state |ψini〉, we perform U1 and U †

1 , associated to outcome |ψ1〉,
with a half-wave plate which flips the polarization in the upper
arm in between. Then we proceed to the second measurement by
applying the operator U2 giving the state |ψ f 〉. Finally, polarizing
beam splitters followed by the photon detection give the polarization
and the path. Two detectors are required for each path.

do that we can use polarizing beam splitters followed by the
photon detection to give the polarization and the path of the
photon. Two detectors are then required for each path.

We describe the evolution of the quantum state step by step,
as depicted in Fig. 7. The state |η〉 = 1√

3
(1, 1, 1)T is prepared

first. Including the polarization degree of freedom, the initial
state is

|ψini〉 = |η〉 ⊗ |H〉
= (α1|v1〉 + α2|v2〉 + αχ |χ〉) ⊗ |H〉, (A9)

where in the second line we expand into the orthogonal states
{|v1〉, |v2〉, |χ〉} which represents the context with the vertices
{1, 2} from the pentagon.

Next, U1 is applied, which encodes the vector |v1〉 onto the
upper path [see Eq. (A8)]. The encoding of the polarization
flip onto the upper path is done via a half-wave plate. The
corresponding unitary is a control flip (a flip in polarization
contolled by the path). This is followed by U †

1 . In this way,
the quantum state between U †

1 and U2 in Fig. 7 is

|ψ1〉 = α1|v1〉 ⊗ |V 〉 + (α2|v2〉 + αχ |χ〉) ⊗ |H〉. (A10)

After the operation U2 in Fig. 7 the quantum state is

|ψ f 〉 = α2|0〉 ⊗ |H〉 + α1U2|v1〉 ⊗ |V 〉 + αχU2|χ〉 ⊗ |H〉,
(A11)

where the first term corresponds to the outcome X2 = 1 and
X1 = 0, the second term corresponds to the outcome X2 = 0
and X1 = 1, and the last term corresponds to the outcome
X1 = X2 = 0.

The number of beam splitters needed varies for each uni-
tary in {Ui}i∈V . The matrices of unitary operators are then
described by the product of the matrices of each used beam
splitter. They are presented in Appendix D.

By following this procedure for the full set of unitary
operators corresponding to all contexts, [53] obtains

βQ,exp = 2.078 ± 0.038, (A12)

which demonstrates an experimental violation of the KCBS
inequality.
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FIG. 8. The graph construction for odd N (N = 6). The two
complete subgraphs GA and GB are formed respectively by the set
of vertices VA = {2, 3, 4} and VB = {4, 5, 6}.

APPENDIX B: GRAPH FAMILY FOR AN EXTENSION
OF THE KCBS INEQUALITY

In [49], a family of graphs is developed, associated to a
family of contextuality inequalities that gives an extension
to the KCBS inequality and logical based proof of contex-
tuality in [52]. The graph construction goes as follows. For
|V | = N � 5, we define a G = (V, E ), such that it contains
two complete (i.e., edges between all nodes) subgraphs GA

and GB such that
(1) VA = {2, . . . , (N + 1)/2} and VB = {(N + 1)/2 +

1, . . . , N} for N odd.
(2) VA = {2, . . . , N/2 + 1} and VB = {N/2 + 1, . . . , N} for

N even.
(3) The vertices 2 and N are connected.
(4) The vertex 1 is connected to all vertices except 2 and

N .
The two subgraphs can share a vertex, if N is even VA ∩

VB = {N/2 + 1}. The graph represented in Fig. 8 is an even
case, N = 6, and in Fig. 9 an odd case, N = 7.

In particular, for the case N = 6, there are five different
contexts:

(1) C1 = {i ∈ {2, 3, 4}},
(2) C2 = {i ∈ {1, 3, 4}},
(3) C3 = {i ∈ {4, 5, 6}},
(4) C4 = {i ∈ {1, 4, 5}},
(5) C5 = {i ∈ {2, 4, 6}},

where each context corresponds to a complete subgraph in
Fig. 8 composed by three vertices leading to the three mea-
surements per context.

FIG. 9. The graph construction for odd N (N = 7). The two
complete subgraphs GA and GB are formed respectively by the set
of vertices VA = {2, 3, 4} and VB = {5, 6, 7}.

The contextuality inequality is

N∑
i=1

〈Xi〉 � 2. (B1)

In [49] it is shown that there exist a quantum state and a set
of measurements for each graph such that βQ = 2 + 1

9 which
provides a violation of inequality Eq. (B1).

APPENDIX C: ONTOLOGICALLY FAITHFUL
NONCONTEXTUALITY

In order to make an experimental observation of contex-
tuality it is needed to perform the same measurement in its
different contexts. Unfortunately, it is only possible to ensure
with a finite precision ε that a specific measurement is per-
formed in the same way in all its contexts when taking into
consideration the experimental limitations. If a measurement
in its different contexts is treated differently by a classical
theory by assigning different random variables depending on
the context, it is then possible to simulate its outcome statistics
with such a classical theory [28–30,33,64]. The idea behind
[33] is that a classical theory that would treat the same mea-
surement differently in its different contexts also needs to fol-
low some constraints that capture the precision ε; such a clas-
sical theory is called ε-ontologically faithful noncontextual.

In the classical case, the ε-ontologically faithful noncon-
textual model is as follows:

(1) For any context C :
∑

i∈C〈Xi,C〉 � 1.
(2) For all measurements in contexts C and C′ associated

with the vertex i ∈ V : Prob(Xi,C �= Xi,C′ ) � ε. The probability
that the result of a measurement is different in two different
contexts must be below ε.

In the quantum case, the result of a projective measurement
Pi is obtained by measuring a projector Pi,C giving the result
Xi,C for each context C. Reference [33] introduces a quantum
model with a finite precision ε as follows:

(1) For any context C :
∑

i∈C〈Xi,C〉 � 1.
(2) For all measurements in a context C associated with the

vertex i ∈ V : ||Pi − Pi,C || � ε, where ||Pi − Pi,C || is the norm
of the distance defined by

‖A − B‖ = max
ρ

|Tr[ρ(A − B)]|, (C1)

where A and B are operators and ρ is a density matrix.
In other words, this model ensures that the distance be-

tween a theoretical projection and any of its experimental
realizations is not greater than ε.

From [33], if one has a contextuality inequality of the form
β = ∑

i〈Xi〉 � βcl as before, for an ε-ontologically faithful
noncontextual model, the inequality becomes

β =
∑

i

〈Xi〉 � βcl + ε
∑

i

(ki − 1), (C2)

where ki is the number of contexts in which the results asso-
ciated with the vertex i appear.
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For a quantum violation of βQ, the inequality can be rewrit-
ten as

ε � βQ − βcl∑
i(ki − 1)

. (C3)

A physical experiment that can violate this inequality can-
not be described by an ε-ontological faithful noncontextual
model.

APPENDIX D: THE UNITARY OPERATIONS
FOR THE KCBS

Based on the beam splitter matrices, we show in Table I the corresponding five unitary operators.

Noisy unitaries

By adding the imperfection factor δ into a 50 : 50 beam splitter as a dissymmetry between the transmission and reflection
coefficients, we obtain

Bδ = 1√
2

(√
1 + 2δ

√
1 − 2δ√

1 − 2δ −√
1 + 2δ

)
, (D1)

TABLE I. Table showing for each vertex i, the value of |vi〉, the matrix Ui, and the resulting optical network using beam splitters.

i |vi〉 Ui Setup

1
1√
3

⎛
⎝ 1

−1
1

⎞
⎠ 1√

6

⎛
⎝

√
2 −√

2
√

2
2 1 −1
0

√
3

√
3

⎞
⎠

2
1√
2

⎛
⎝1

1
0

⎞
⎠ 1√

2

⎛
⎝1 1 0

1 −1 0
0 0

√
2

⎞
⎠

3

⎛
⎝0

0
1

⎞
⎠

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠

4

⎛
⎝1

0
0

⎞
⎠

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

5
1√
2

⎛
⎝0

1
1

⎞
⎠ 1√

2

⎛
⎝ 0 1 1

0 1 −1√
2 0 0

⎞
⎠
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which gives for the reflection or transition the value 1/2 ± δ. The five previous matrices become

U1 = 1√
6

⎛
⎜⎜⎝

√
1 + 3(−1)φδ

√
2 − 3(−1)φδ 0√

2 − 3(−1)φδ
√

1 + 3(−1)φδ 0

0 0
√

3

⎞
⎟⎟⎠

⎛
⎜⎝

√
2 0 0

0 −√
1 + 2δ

√
1 − 2δ

0
√

1 − 2δ
√

1 + 2δ

⎞
⎟⎠,

U2 = 1√
2

⎛
⎜⎜⎝

√
1 + 2δ

√
1 − 2δ 0

√
1 − 2δ −√

1 + 2δ 0

0 0
√

2

⎞
⎟⎟⎠,

U3 =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

U4 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠,

U5 = 1√
2

⎛
⎜⎝

0
√

1 + 2δ
√

1 − 2δ

0
√

1 − 2δ −√
1 + 2δ

√
2 0 0

⎞
⎟⎠, (D2)

where φ = {0, 1}, which permits when there are two beam splitters needed to consider the case where both imperfection factors
change the reflection coefficient in the same way or in an opposite way.

APPENDIX E: THE UNITARY OPERATIONS FOR N = 6

1. Theoretical unitaries

U1 = 1√
3

⎛
⎜⎜⎜⎜⎝

−1 −√
2 0 0

−√
2 1 0 0

0 0
√

3 0

0 0 0
√

3

⎞
⎟⎟⎟⎟⎠

1

2

⎛
⎜⎜⎜⎜⎝

2 0 0 0

0 −1
√

3 0

0
√

3 1 0

0 0 0 2

⎞
⎟⎟⎟⎟⎠

1√
3

⎛
⎜⎜⎜⎜⎝

√
3 0 0 0

0
√

3 0 0

0 0 −1
√

2

0 0
√

2 1

⎞
⎟⎟⎟⎟⎠,

U1 = 1

6

⎛
⎜⎜⎜⎜⎝

−2
√

3
√

6
√

6 −2
√

3

−2
√

6 −√
3 −√

3
√

6

0 3
√

3 −√
3

√
6

0 0 2
√

6 2
√

3

⎞
⎟⎟⎟⎟⎠,

U2 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠,

U3 = 1√
2

⎛
⎜⎜⎜⎜⎝

1 1 0 0

1 −1 0 0

0 0
√

2 0

0 0 0
√

2

⎞
⎟⎟⎟⎟⎠

1√
2

⎛
⎜⎜⎝

0 0 0
√

2
0 1 1 0
0 1 −1 0√
2 0 0 0

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

0 1 1
√

2
0 −1 −1

√
2

0
√

2 −√
2 0

2 0 0 0

⎞
⎟⎟⎠,

U4 = 1√
2

⎛
⎜⎜⎝

0 1 1 0
0 1 −1 0√
2 0 0 0

0 0 0
√

2

⎞
⎟⎟⎠,
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TABLE II. Table showing for each vertex i, the value of |vi〉, the matrix Ui, and the resulting optical network using beam splitters.

i |vi〉 Ui Setup

1
1√
6

⎛
⎜⎜⎝

−√
2

1
1

−√
2

⎞
⎟⎟⎠ 1

6

⎛
⎜⎜⎝

−2
√

3
√

6
√

6 −2
√

3
−2

√
6 −√

3 −√
3

√
6

0 3
√

3 −√
3

√
6

0 0 2
√

6 2
√

3

⎞
⎟⎟⎠

2

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠

3
1

2

⎛
⎜⎜⎝

0
1
1√
2

⎞
⎟⎟⎠ 1

2

⎛
⎜⎜⎝

0 1 1
√

2
0 −1 −1

√
2

0
√

2 −√
2 0

2 0 0 0

⎞
⎟⎟⎠

4
1√
2

⎛
⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎠ 1√

2

⎛
⎜⎜⎝

0 1 1 0
0 1 −1 0√
2 0 0 0

0 0 0
√

2

⎞
⎟⎟⎠

5
1

2

⎛
⎜⎜⎝

√
2

1
1
0

⎞
⎟⎟⎠ 1

2

⎛
⎜⎜⎝

√
2 1 1 0

−√
2 1 1 0

0
√

2 −√
2 0

0 0 0 2

⎞
⎟⎟⎠

6

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎠

U5 = 1√
2

⎛
⎜⎜⎝

1 1 0 0
−1 1 0 0

0 0
√

2 0
0 0 0

√
2

⎞
⎟⎟⎠ 1√

2

⎛
⎜⎜⎝

√
2 0 0 0

0 1 1 0
0 1 −1 0
0 0 0

√
2

⎞
⎟⎟⎠ = 1

2

⎛
⎜⎜⎝

√
2 1 1 0

−√
2 1 1 0

0
√

2 −√
2 0

0 0 0 2

⎞
⎟⎟⎠,

U6 =

⎛
⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎠. (E1)

We represent the setup composed by beam splitters in the following Table II.

2. Noisy unitary for N = 6

For N = 6, the noisy unitary operations are:

U1 = 1√
3

⎛
⎜⎜⎝

−
√

1 + 3(−1)φ2δ −
√

2 − 3(−1)φ2δ 0 0
−

√
2 − 3(−1)φ2δ

√
1 + 3(−1)φ2δ 0 0

0 0
√

3 0
0 0 0

√
3

⎞
⎟⎟⎠
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× 1

2

⎛
⎜⎜⎝

1 0 0 0
0 −

√
1 + 4(−1)φ1δ

√
3 − 4(−1)φ1δ 0

0
√

3 − 4(−1)φ1δ
√

1 + 4(−1)φ1δ 0
0 0 0 1

⎞
⎟⎟⎠ 1√

3

⎛
⎜⎜⎝

√
3 0 0 0

0
√

3 0 0
0 0 −√

1 + 3δ
√

2 + 3δ

0 0
√

2 + 3δ
√

1 + 3δ

⎞
⎟⎟⎠,

U2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠,

U3 = 1√
2

⎛
⎜⎜⎝

√
1 + 2δ

√
1 − 2δ 0 0√

1 − 2δ −√
1 + 2δ 0 0

0 0
√

2 0
0 0 0

√
2

⎞
⎟⎟⎠ 1√

2

⎛
⎜⎜⎝

0 0 0
√

2
0

√
1 + 2(−1)φδ

√
1 − 2(−1)φδ 0

0
√

1 − 2(−1)φδ −
√

1 + 2(−1)φδ 0√
2 0 0 0

⎞
⎟⎟⎠,

U4 = 1√
2

⎛
⎜⎜⎝

0 −√
1 + 2δ

√
1 − 2δ 0

0
√

1 − 2δ
√

1 + 2δ 0√
2 0 0 0

0 0 0
√

2

⎞
⎟⎟⎠,

U5 = 1√
2

⎛
⎜⎜⎝

√
1 + 2(−1)φδ

√
1 − 2(−1)φδ 0 0

−
√

1 − 2(−1)φδ
√

1 + 2(−1)φδ 0 0
0 0

√
2 0

0 0 0
√

2

⎞
⎟⎟⎠ 1√

2

⎛
⎜⎜⎝

√
2 0 0 0

0
√

1 + 2δ
√

1 − 2δ 0
0

√
1 − 2δ −√

1 + 2δ 0
0 0 0

√
2

⎞
⎟⎟⎠,

U6 =

⎛
⎜⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎠, (E2)

where φ, φ1, and φ2 ∈ {0, 1}.
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A. Wallraff, K. Goodenough, S. Wehner, K. Juliusson, N. K.
Langford, and A. Fedorov, Nat. Commun. 7, 12930 (2016).

[28] D. A. Meyer, Phys. Rev. Lett. 83, 3751 (1999).
[29] A. Kent, Phys. Rev. Lett. 83, 3755 (1999).
[30] R. Clifton and A. Kent, Proc. R. Soc. London, Ser. A 456, 2101

(2001).
[31] R. Lapkiewicz, P. Li, C. Schaeff, N. K. Langford, S. Ramelow,
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