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Hardy-type arguments manifest Bell nonlocality in one of the simplest possible ways. Except for demonstrat-
ing nonclassical signature of entangled states in question, they can also serve for device-independent self-testing
of states, as shown, e.g., in Phys. Rev. Lett. 109, 180401 (2012). Here we develop and broaden these results to
an extended version of Hardy’s argument, often referred to as Cabello’s nonlocality argument. We show that, as
in the simpler case of Hardy’s nonlocality argument, the maximum quantum value for Cabello’s nonlocality is
achieved by a pure two-qubit state and projective measurements that are unique up to local isometries. We also
examine the properties of a more realistic case when small errors in the ideal constraints are accepted within the
probabilities obtained and prove that also in this case the two-qubit state and measurements are sufficient for
obtaining the maximum quantum violation of the classical bound.
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I. INTRODUCTION

Over the years Bell inequalities have evolved from study in
the foundations of quantum mechanics [1–3] to invaluable re-
source for many applications in quantum information science
[4–8]. The key finding from violations of Bell inequalities is
that, on sharing entangled quantum states, it is possible to gen-
erate nonlocal correlations between parties that are spacelike
separated.

A fundamental aspect is to learn about the maximum pos-
sible violation of Bell inequalities in quantum mechanics;
these are referred to as device-independent quantum bounds
[5]. One such bound was first derived by Cirel’son [9] for
the paradigmatic Bell-CHSH inequality [10]. The quantum
bounds on violation of Bell inequalities are termed as device
independent because on considering state and measurements
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as black box [6], solely from the collected experimental statis-
tics of a corresponding Bell-type experiment, one can extract
very useful information about the actual quantum state and
measurements. Moreover, sometimes from such experimental
statistics alone, one can learn (up to isometry) even the exact
quantum state and (or) measurements inside the black box;
this is a topic of research known as self-tests of quantum state
and measurements [11,12]. More broadly, deriving device-
independent bounds for Bell inequalities leads to knowing
more about the geometry of the set of quantum correlation
[13–19] as these bounds are achieved on the boundary of the
quantum set [13,15].

For certifying nonlocal correlations, one can also provide
nonlocality arguments of the type introduced by Hardy [20].
The Hardy-type demonstrations of nonlocality are simple
(often referred to as the simplest demonstration of Bell non-
locality [21]) and yet they can reveal rich structures in the
quantum set of correlations [22–28]. Recently, such results
derived for Hardy and Hardy-type correlations have been
shown to be useful for witnessing postquantum correlations
[27], for constructing a device-independent dimension witness
[29], and for devising quantum random number generators
[30–32].

2469-9926/2021/103(6)/062219(7) 062219-1 ©2021 American Physical Society

https://orcid.org/0000-0001-9393-7203
https://orcid.org/0000-0001-6876-2085
https://orcid.org/0000-0002-1437-0980
https://orcid.org/0000-0003-1535-9764
https://orcid.org/0000-0001-8036-790X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.062219&domain=pdf&date_stamp=2021-06-23
https://doi.org/10.1103/PhysRevLett.109.180401
https://doi.org/10.1103/PhysRevA.103.062219


ASHUTOSH RAI et al. PHYSICAL REVIEW A 103, 062219 (2021)

One of the characteristic features of Hardy-type nonlo-
cality arguments is that, unlike standard Bell inequalities,
they follow from certain prior constraints placed on some
of the outcome probabilities. Geometrically it means that,
while studying Hardy or Hardy-type correlations, we study
the quantum set (and its boundary) in the cross sections de-
fined by the underlying constraints. Then a natural question
to ask is what are the device-independent bounds on nonlo-
cality demonstrated by Hardy or Hardylike arguments? Along
this direction Rabelo, Zhi, and Scarani [23] have derived the
device-independent bound for Hardy’s nonlocality argument,
as well as some more interesting results about self-testing
of the maximal Hardy state, and an experimentally imple-
mentable nonideal version of Hardy’s tests. In this work,
we ask and try to answer such questions for a Hardy-type
nonlocality argument often referred to as Cabello’s nonlocal-
ity argument [33–35], which is a generalization of Hardy’s
argument with fewer constraints on outcome probabilities.
We derive the optimal degree of success (device-independent
bound) for Cabello’s test of nonlocality. Then we prove that
the state(s) leading to the device-independent bound are self-
testable up to the application of local isometries. Finally, we
analyze an experimentally feasible nonideal version of Ca-
bello’s test and show that, similar to the ideal Cabello’s test
of nonlocality, pure qubit state and projective measurements
are sufficient for a nonideal test.

The remaining sections of the paper are organized along
these lines. In Sec. II we first introduce Cabello’s nonlocality
argument. Then, in Sec. III we characterize all pure two-qubit
states that can pass Cabello’s test of nonlocality. In Sec. IV we
derive the device-independent bound on the degree of success
for Cabello’s nonlocality argument and in Sec. V we show that
quantum state(s) giving the device-independent bound can be
self-tested. Next, in Sec. VI we modify the ideal Cabello’s test
to an experimentally realizable nonideal version and derive
the results and its implementation. Finally, we summarize our
work in the concluding Sec. VII.

II. CABELLO’S NONLOCALITY ARGUMENT

Cabello’s nonlocality argument [34,35] can be summarized
as follows. Suppose two parties, Alice and Bob, share parts of
a physical system. On her part, Alice can choose to perform
one or the other measurement x ∈ {A0, A1}, whereas Bob on
his part has a similar choice of measuring y ∈ {B0, B1}. Let
any choice of measurement by Alice and Bob have binary
outcomes, say a ∈ {±1} for Alice and b ∈ {±1} for Bob. Then
a Cabello nonlocality argument constitutes four joint proba-
bilities with two of them constrained to take the value zero as
follows:

P(+, + | A0, B0) ≡ q, (1)

P(+, − | A1, B0) = 0, (2a)

P(−, + | A0, B1) = 0, (2b)

P(+, + | A1, B1) ≡ p. (3)

In the above, note that there are only two equality constraints,
those given by Eq. (2a) and Eq. (2b), whereas p and q, appear-
ing respectively in Eq. (1) and Eq. (3), are only given names
to the joint probabilities and they can take arbitrary possible

values. Now, the statement of Cabello’s nonlocality argument
is that if, for some outcome probability distribution along with
satisfying the two equality constraints, the condition p > q is
also true, then it cannot be described by any local realistic
theory. A proof of the statement is following. Suppose there is
some set of deterministic (realistic) local hidden variables �

such that one can write

P(a, b|x, y) =
∑
λ∈�

pr(λ)x(λ)y(λ),

i.e., for any hidden variable λ ∈ � the outcome x(λ) [y(λ)]
of local observable x [y] takes a definite value from
{±1} [here pr(λ) is the probability distribution of hidden
variables λ]. From condition p > q we have p > 0, and
then Eq. (3) implies that there is a nonempty subset S� ⊂ �

such that, for all λ ∈ S�, A1(λ) = +1 and B1(λ) = +1.
Further, for all λ ∈ S�, from Eq. (2b) we get A0(λ) = +1,
and similarly Eq. (2a) gives B0(λ) = +1. Therefore,
P(+1,+1|A0, B0, S�) = P(+1,+1|A1, B1) = p. However,
S� ⊂ � implies P(+1,+1|A0, B0, S�) � P(+1,+1|A0, B0),
i.e., p � q; this contradicts the assumption p > q. Thus one
can conclude that any correlation satisfying condition p > q,
along with the two constraint equations, must be nonlocal.
The degree of success for Cabello’s nonlocality argument can
then be defined as

S = p − q > 0. (4)

To sum up, when constraint Eqs. (2a) and (2b) are satisfied:
on observing some value S � 0 the resulting correlation is
local; on the other hand, we start to witness nonlocal correla-
tions when we find that S > 0. Here we note that Cabello’s
nonlocality argument is a generalization of the nonlocality ar-
gument by Hardy which constitutes three constraints [20,23],
i.e., in a corresponding Hardy’s test, along with constraint
Eqs. (2a) and (2b), additionally the probability in Eq. (1) is
also constrained as P(+1,+1|A0, B0) ≡ q = 0, and nonlocal-
ity is certified when p > 0.

III. TWO-QUBIT STATES SHOWING CABELLO’S
NONLOCALITY

In order to provide examples and to characterize the two-
qubit state and measurements which can lead to Cabello’s
nonlocality, let us consider the following general pure two-
qubit state shared between two parties Alice and Bob:

|�〉AB = c00|00〉 + c01|01〉 + c10|10〉 + c11|11〉,
such that

∑
i, j∈{0,1}

|ci j |2 = 1,

and let the (projective) measurement of Alice be x =
|u+

x 〉〈u+
x | − |u−

x 〉〈u−
x |, and that of Bob be y = |v+

y 〉〈v+
y | −

|v−
y 〉〈v−

y |. One can choose the basis for the measurements
x ∈ {A0, A1} and y ∈ {B0, B1} as follows:

A0 ≡
{|u+

A0
〉 = |0〉,

|u−
A0

〉 = |1〉

}
, (5a)

A1 ≡
{|u+

A1
〉 = cos

(
α
2

)|0〉 + eiφ sin
(

α
2

)|1〉,
|u−

A1
〉 = − sin

(
α
2

)|0〉 + eiφ cos
(

α
2

)|1〉

}
(5b)
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B0 ≡
{|v+

B0
〉 = |0〉,

|v−
B0

〉 = |1〉

}
, (5c)

B1 ≡
{|v+

B1
〉 = cos

(
β

2

)|0〉 + eiξ sin
(

β

2

)|1〉,
|v−

B1
〉 = − sin

(
β

2

)|0〉 + eiξ cos
(

β

2

)|1〉

}
, (5d)

where 0 < α, β < π and 0 � φ, ξ < 2π . We remark that
there is no loss of generality by fixing observable A0 = B0 =
σz ≡ |0〉〈0| − |1〉〈1| provided we keep the other two observ-
ables A1 and B1, and the state |�〉AB, in the most general
form. This is due to the following invariance property for
measurement statistics:

P(a, b|x, y) = ∣∣〈�̃∣∣ũa
x ⊗ ṽb

y

〉∣∣2

= ∣∣〈�̃∣∣U †U
∣∣ũa

x ⊗ ṽb
y

〉∣∣2

= ∣∣〈�∣∣ua
x ⊗ vb

y

〉∣∣2
,

where U = UA ⊗ UB is some (product) unitary transforma-
tion such that UA(UB) act on the local state space of Alice
(Bob) and vectors |ũa

x〉 (|ṽb
y 〉) define some arbitrary projective

measurement by Alice (Bob). In particular, on applying uni-
tary defined by a map U |ũa

A0
⊗ ṽb

B0
〉 	→ | 1−a

2 〉 ⊗ | 1−b
2 〉, where

a, b ∈ {±1}, we get a general pure state |�〉 = U |�̃〉 and
observables of the form given by Eqs. (5a)–(5d).

From the state and measurements in the considered
canonical form, all the two-qubit pure states respecting the
constraints Eqs. (2a) and (2b) in Cabello’s test must satisfy
the following two orthogonality conditions:

|�〉AB ⊥ |u+
A1

〉 ⊗ |1〉, (6a)

|�〉AB ⊥ |1〉 ⊗ |v+
B1

〉. (6b)

On imposing the above two conditions, it turns out that the
class of all possible pure two qubit states (up to multiplication
by some global phase) is of the form

|�C〉AB = eiδ
√

1−c2
{
1+tan2

(
α
2

)+tan2
(

β

2

)}|00〉
− c

{
e−iφ tan

(
α
2

)|01〉 + e−iξ tan
(

β

2

)|10〉}
+ c|11〉, (7)

where parameters c and δ satisfy 0 � c � 1 and 0 � δ < 2π .
Then, computing the degree of success for Cabello’s nonlo-
cality argument yields

Squbits = 1
4

{
cos(α) cos(β ) + cos(α) + cos(β ) − 3

− 2c sin(α) sin(β ) cos(δ + ξ + φ)

×
√

c2[− tan2
(

α
2

)
]− 2c2

cos(β )+1 +1

+ 2c2[cos(α)[cos(β ) − 1] + 2 tan2
(

α
2

)
− cos(β ) + 2 tan2

(
β

2

) + 1]
}
. (8)

There are many values of state and measurement parame-
ters for which Squbits > 0 and thus certify quantum nonlocality
through Cabello’s nonlocality argument; for instance, if state
parameters take the value δ = 0, c = √

9/15 and the mea-

surement parameters take the values α = β = π/3, φ = ξ =
π/2, then Squbits = 3/80 > 0.

Maximum degree of success for two-qubit states

Now we like to maximize the degree of success for Ca-
bello’s nonlocality argument over all two-qubit states and two
outcome positive-operator-valued-measure (POVM) measure-
ments. First we note that, since any mixed state can be written
as a convex mixture of pure states, it is sufficient to perform
optimization over a set of all pure two-qubit states. Next we
further note that any two outcome POVM measurement on
a qubit can always be implemented as a classical mixture
of two outcome projective measurements [36]. One can see
this as follows: a two outcome POVM measurement, say
M ≡ {E , I − E}, on a qubit can be represented as a set of two
positive semidefinite operators acting on a Hilbert space C2

such that the sum of the two operators is I. In order to satisfy
the positive semidefiniteness conditions, operator E takes the
following form:

E = a0I + η â · σ, such that

0 � a0 � 1 and 0 � η � min {a0, 1 − a0},

where â is a unit vector in R3 and σ = (σx, σy, σz ) is the vector
of three Pauli matrices. Now, on considering the three pro-
jective measurements, M1 ≡ {I, 0}, M2 ≡ {0, I}, and M3 ≡
{ 1

2 (I + â · σ ), 1
2 (I − â · σ )}, one can easily verify that

M = (a0 − η)M1 + (1 − a0 − η)M2 + 2ηM3.

Thus POVM measurement M can be implemented as a classi-
cal mixture of three projective measurements M1, M2, and M3.
Therefore, we can now say that it is sufficient to perform the
optimization over all projective measurements and pure two-
qubit states, i.e., an optimization of the expression derived in
Eq. (8) over all the parameters α, β, φ, and ξ . On performing
the optimization we find that the maximum possible value of
Cabello’s nonlocality argument over qubit states is as follows:

Squbits
max = 1

3

(
3
√

(307+39
√

78)2−29
3
√

307+39
√

78
− 5

)
� 0.1078, (9)

when parameters take the following values:

α = 2 tan−1

√(
3
√

359−12
√

78+ 3
√

359+12
√

78
)
−1

12 , (10a)

β = α � 1.6136, (10b)

δ = π − φ − ξ, (10c)

c = 1

6

(
3
√

(307+39
√

78)2−29
3
√

307+39
√

78
− 2

)
� 0.5539. (10d)

The pure two-qubit state which gives the maximum value
then, on substituting Eqs. (10a)–(10d), is of the form

|�C
max〉AB = κ00 e−i(ξ+φ)|00〉

+ κ01
{
e−iφ |01〉 + e−iξ |10〉} + κ11|11〉, (11a)
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where

κ00 = 1

6

(
4−

3
√

(53−6
√

78)2+1
3
√

53−6
√

78

)
� −0.1573, (11b)

κ01 =

⎛
⎜⎝12 − 31×62/3

3
√

67
√

78−414
+ 3

√
6
(
67

√
78 − 414

)
12

⎞
⎟⎠

1
2

� −0.5781, (11c)

κ11 = 1

6

(
3
√

(307+39
√

78)2−29
3
√

307+39
√

78
− 2

)
� 0.5539. (11d)

For achieving the maximum value, the two parameters φ and
ξ can be assigned any real values; however, each of the two
parameters should take the same value in the quantum state
Eq. (11a) and measurements Eqs. (5a)–(5d); in addition, the
value of parameters α and β appearing in the measurements
is given by Eqs. (10a) and (10b). Thus we note here that,
for any arbitrarily fixed value of parameters φ and ξ , the
two-qubit state which gives the maximum success is unique.
Moreover, all the two-qubit states giving the optimal value
form an equivalence class under local unitary operations.

IV. DEVICE-INDEPENDENT BOUND ON CABELLO’S
NONLOCALITY

In this section, we will show that the maximum success
of Cabello’s test over all two-qubit states is in fact also the
optimal value that can be achieved with bipartite quantum
states of any (finite) dimension.

Theorem 1. The maximum possible value for the degree
of success in Cabello’s test of nonlocality over all bipartite
quantum states of finite dimensions can be achieved just
with projective measurements on a two-qubit pure state, i.e.,
SQ

max = Squbits
max .

Proof: The proof follows by applying similar analysis as
in Refs. [23,37]. Say a general bipartite state ρ is shared
between Alice and Bob. Let �a|x be the measurement operator
associated with outcome a when Alice measures observable x.
Similarly, �b|y denotes the measurement operator associated
with outcome b when Bob measures observable y. Then the
joint probability of getting outcomes (a, b) for measurements
(x, y) is

P(a, b|x, y) = Tr(ρ�a|x ⊗ �b|y).

Since there is no restriction on dimension, by applying
Neumark’s dilation theorem, we consider only projective
measurements. The observables of Alice and Bob are then
Hermitian operators, with eigenvalues ±1, which can be ex-
pressed as

x = (+1)�+|x + (−1)�−|x, where x ∈ {A0, A1},
y = (+1)�+|y + (−1)�−|y, where y ∈ {B0, B1}.

Note that Alice’s observable constitutes two pairs of pro-
jection operators {�+|A0 , �−|A0} and {�+|A1 , �−|A1}, which
satisfy �+|A0 + �−|A0 = I and �+|A1 + �−|A1 = I , and sim-
ilarly for Bob. So we can use a lemma proved in Ref. [38].

The lemma essentially states that for four projection operators,
let us say �+|O0 , �−|O0 , �+|O1 , and �−|O1 , which act on a
Hilbert space H and satisfy conditions �+|O0 + �−|O0 = I
and �+|O1 + �−|O1 = I , there is an orthonormal basis in H
where all four projectors are simultaneously block diagonal
with each block of the size either 2 × 2 or 1 × 1. Then such a
basis induces a direct sum decomposition of the Hilbert space
as H = ⊕sHs, where the dimension of each component sub-
space Hs is at most two and all four projection operators have
a decomposition �±|O0(1) = ⊕s �s

±|O0(1)
, such that �s

±|O0(1)

acts (as nonidentity) only on subspace Hs. The projector
on subspace Hs can be written as �s = �s

+|O0
+ �s

−|O0
=

�s
+|O1

+ �s
−|O1

.
The stated lemma when applied to observable {A0, A1}

of Alice which induce a decomposition HA = ⊕iHi
A, and

observable {B0, B1} of Bob which induce a decomposition
HB = ⊕ jH j

B, gives

P(a, b|x, y) =
∑
i, j

μi j Tr(ρi j �
i
a|x ⊗ �

j
b|y) (12a)

≡
∑
i, j

μi j Pi j (a, b|x, y), (12b)

where μi j = Tr(ρ �i ⊗ � j ) and ρi j = (�i⊗� j ρ �i⊗� j )
μi j

. Notice

that μi j � 0 for all i, j and
∑

i, j μi j = 1, and ρi j is a trace one
positive operator acting on a subspace of types C ⊗ C, C ⊗
C2, C2 ⊗ C, C2 ⊗ C2.

Now the concluding argument of the proof is as follows. If
the joint probability P(a, b|x, y) satisfies the two constraints
Eq. (2a) and Eq. (2b) in Cabello’s test, then it follows from
Eq. (12b) that the joint probability Pi j (a, b|x, y) generated
from the subspace Hi

A ⊗ H j
B will also satisfy the constraint

equations. Moreover, the degree of success for Cabello’s non-
locality argument can be expressed as

S = p − q =
∑
i, j

μi j (pi j − qi j )

� max
i, j

(pi j − qi j ) = Squbits
max . (13)

Here pi j = Pi j (+,+|A1, B1) and qi j = Pi j (+,+|A0, B0).
Thus, from Eq. (13), it follows that the maximum value of S
over any finite dimensions should be upper bounded by the
maximum value achieved with two-qubit states and projective
measurements, i.e., Squdits

max � Squbits
max . However, we also have

the opposite inequality Squdits
max � Squbits

max , which leads us to
conclude that Squdits

max = Squbits
max .

V. SELF-TEST OF STATE LEADING TO MAXIMAL
CABELLO’S NONLOCALITY

From the result derived in the previous section, we can
now prove a self-test result for the pure two-qubit state
|�C

max〉AB, which gives the maximum degree of success for
Cabello’s nonlocality argument. In light of the proof for the
device-independent bound that is given for Cabello’s test,
it is intuitive that if the value SQ

max = Squbits
max is achieved in

an experiment with a quantum system of unknown (finite)
dimension, then the state of the system must be the direct sum
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of copies of |�C
max〉AB. In what follows we formally state and

prove such a result.
Theorem 2. If the degree of success SQ

max is observed in
Cabello’s test of nonlocality on measuring some unknown
quantum state |χ〉AB, then the state of an unknown system is
equivalent up to local isometries to |σ 〉AB ⊗ |�C

max〉A′B′ , where
|�C

max〉 is given by Eqs. (11a)–(11d) and |σ 〉 is an arbitrary
bipartite state.

Proof: The theorem is proved following the same argu-
ment as in Ref. [23]. Observables A0 and B0 can be chosen
such that both of them have their eigenstates {|0〉, |1〉, |2〉, . . .}
(i.e., vectors of the computational basis, where the length of
the basis set is determined from the local dimension of the
Hilbert space on which the observables act). Note that this
does not affect the general analysis, provided we keep the
other observables A1, B1 and the state |χ〉 in the most general
representation. Then corresponding to observables A0 and B0,
the decomposed projectors on Hi

A and H j
B subspaces can be

respectively expressed as

�i
+|A0

= |2i〉〈2i|, �i
−|A0

= |2i + 1〉〈2i + 1|,
�

j
+|B0

= |2 j〉〈2 j|, �
j
−|B0

= |2 j + 1〉〈2 j + 1|,
where i, j ∈ {0, 1, 2, . . .}. Now, the degree of success of Ca-
bello’s test pi j − qi j in Hi

A ⊗ H j
B subspace can take the value

SQ
max if and only if ρi j = |�C

max〉i j〈�C
max|, where |�C

max〉i j is
the two-qubit state given by Eqs. (11a)–(11d). Therefore,
the unknown state |χ〉 can give the maximal value of p −
q = ∑

i, j μi j (pi j − qi j ), the success for Cabello’s test, if and
only if

|χ〉 =
⊕

i, j

√
μi j

∣∣�C
max

〉
i j . (14)

We note that here the parameters φ and ξ for state |�C
max〉i j

are independent of the indices i, j, since they are determined
uniquely by the measurement operators which, on achieving
the maximal value, take the same form in all subspaces Hi

A

and H j
B. Finally, we provide local isometries �A and �B such

that

(�A ⊗ �B)| χ〉AB|00〉A′B′ = |σ 〉AB ⊗ ∣∣�C
max

〉
A′B′ , (15)

where components of the |00〉A′B′ are local ancilla qubits ap-
pended to the unknown state | χ〉AB, and after application of
the local isometry �A ⊗ �B we like to get the target state
|�C

max〉A′B′ along with some bipartite junk state |σ 〉AB. Such
an isometry map is as follows:

�A = �B = �,

� |2k, 0〉XX ′ 	→ |2k, 0〉XX ′ , (16a)

� |2k + 1, 0〉XX ′ 	→ |2k, 1〉XX ′ , (16b)

where XX ′ ∈ {AA′, BB′}.
This concludes our proof.

VI. CABELLO’S TEST FOR NONIDEAL CONSTRAINTS

The constraints appearing in an ideal Cabello’s test de-
mands that two of the joint probabilities in the test should
be zero. This may be very difficult to ensure in any real

experiment. In experiments, a more realistic constraint can be
of the form

P(+, − | A1, B0) � ε, (17a)

P(−, + | A0, B1) � ε, (17b)

where ε � 0 is some small error bound. Note that on choosing
different error bounds say ε1 and ε2 respectively in Eqs. (17a)
and (17b), one can always define a same error bound for both
the probabilities as ε = max{ε1, ε2}. With a considered error
bound on the constrained probabilities, i.e., from Eqs. (17a)
and (17b), the local bound on the degree of success in a
nonideal Cabello’s test takes the form

S = P(+,+|A1, B1) − P(+,+|A0, B0) � 2ε. (18)

Note that Eq. (18) follows on applying the (realistic) con-
straints to the locality bound given by the CH inequality
[23,39]. In what follows we show that, for sufficiently large
values of the error bound ε, the maximum degree of success S
can still be achieved with pure two-qubit states and projective
measurements on them. Since the analytical technique used to
show such a result in an ideal test is not applicable to the non-
ideal scenario, we will show this numerically. For that, first we
derive a quantum upper bound on the maximum possible value
of S (under the given constraints) by applying the well-known
tool developed by Navascues, Pironio, and Acin (NPA) [13]
implementable through a MATLAB program NPA Hierarchy
[40]. Then, we derive a quantum lower bound, for the same, by
maximizing over a certain class of pure two-qubit states and
projective measurements. We find that for sufficiently large
values of the error bound ε, to a very high order of accuracy,
the obtained lower and upper bounds coincide.

First we note that the quantity S being a difference of two
probabilities cannot exceed the value 1; therefore, the local
bound 2ε is trivially respected for the error bound ε � 1/2.
So we need to consider only the error bounds in the range
0 � ε < 1/2. Then, to obtain quantum upper bounds, we
maximized S under the constraints given by Eqs. (17a) and
(17b), and over all the points in Q3 (the third level of the NPA
Hierarchy). We choose the NPA level Q3 because, in general,
compared to the lower NPA levels Q1, Q1+ab, Q2 the higher
level Q3 should give a tighter upper bound (with an increase
in computational cost which is not too high). Note that, from
the NPA criteria Q ⊆ Q3, therefore, we obtain a quantum
upper bound. Next, for deriving quantum lower bounds we
considered the following class of pure two-qubit states:

|ψ〉AB = s00 e−i(ξ+φ)|00〉
+ s01{e−iφ|01〉 + e−iξ |10〉} + s11|11〉, (19)

and projective measurements defined by Eqs. (5a)–(5b). We
then maximized S numerically over all the state and measure-
ment parameters under the constraints given by Eqs. (17a)
and (17b), and obtained quantum lower bounds for different
values of error bounds 0 � ε � 1/2. The quantum upper and
lower bounds and the locality bounds are plotted in Fig. 1. We
find that the quantum upper and lower bounds coincide with
an order of accuracy at least 10−7 in the error bound range
0 � ε � 0.158. Thus, even in a nonideal Cabello’s test, with
a sufficient margin for errors, pure qubit state and projective
measurements give the optimal quantum value of S .
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FIG. 1. Plots for local bound (solid line), a quantum lower
bound (dotted line), and quantum upper bound (dashed line) for
the maximum degree of success S of the nonideal Cabello’s test of
nonlocality, for different values of error bounds 0 � ε � 1/2. The
range of ε where quantum lower and upper bounds coincide gives
the device-independent bound for the nonideal Cabello’s test.

To further investigate the gap between quantum lower and
upper bounds in the parameter range 0.158 � ε < 1/2, we
have also considered the most general qubit states and projec-
tive measurements. We have seen that the gap remained the
same, showing that the ansatz chosen in Eq. (19) is optimal.
Considering that, in the simplest Bell scenario, at the third
level of NPA hierarchy we have Q3

� Q (to a very high
numerical precision) [13], and the fact that any two outcome
POVM on a qubit can be simulated from two outcome projec-
tive measurements [36], the gap between the lower and upper

bound can potentially be closed only by considering, at least
for one party, a higher than two-dimensional quantum system.

VII. CONCLUSION

To summarize, in this paper, for the simplest Bell scenario,
we studied a generalized Hardy-type nonlocality argument
known as Cabello’s nonlocality argument [30,35]. We derived
the device-independent bound for the degree of success of
Cabello’s test of nonlocality and proved that it can be achieved
with a pure two-qubit state and projective measurements.
Further, we showed that the two-qubit pure state giving the
maximum success can be self-tested in an ideal experiment.
Finally, we showed that even in a nonideal Cabello’s test,
i.e., when constraint probabilities has some nonzero error
bound, device-independent bounds for the degree of success
are saturated by a class of pure qubit states and projective
measurements, over a considerable range for error bounds.
Our results are a natural extension of the results derived in
[23] for Hardy’s test of nonlocality. Along with the founda-
tional relevance of the derived results, the nonideal version of
Cabello’s test can be implementable in future experiments.
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