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Adiabatic theorem revisited: The unexpectedly good performance of adiabatic passage
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Adiabatic passage employs a slowly varying time-dependent Hamiltonian to control the evolution of a
quantum system along the Hamiltonian eigenstates. For processes of finite duration, the exact time-evolving
state may deviate from the adiabatic eigenstate at intermediate times, but in numerous applications it is observed
that this deviation reaches a maximum and then decreases significantly towards the end of the process. We
provide a straightforward theoretical explanation for this welcome but often unappreciated fact. Our analysis
emphasizes a separate adiabaticity criterion for high-fidelity state-to-state transfer and it points to new effective
shortcut strategies for near-adiabatic dynamics.
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I. INTRODUCTION

A robust and practical method to evolve quantum states
employs adiabatic passage where the system at all times oc-
cupies an eigenstate of a slowly varying Hamiltonian that
connects the desired initial and final states. Its resilience to
variations in the physical parameters makes adiabatic passage
ideal for applications with inhomogeneities and slowly vary-
ing perturbations. The usual condition for adiabaticity [1,2]
states that the nonadiabatic coupling due to the time depen-
dence of the eigenstate basis should be much weaker than the
Bohr frequencies between the energy eigenstates.

Figure 1 shows near-adiabatic processes in four differ-
ent systems: the two-level Landau-Zener model [3–6], the
three-level stimulated Raman adiabatic passage (STIRAP)
process [7,8], wave-packet tunneling dynamics in a time-
dependent triple well potential [9,10], and a multiatom
STIRAP process preparing an entangled state by the pres-
ence of Rydberg excitation blockade [11,12]. In all the
cases shown, the system is initialized in an eigenstate of
the Hamiltonian, but the system does not exactly follow
the time-dependent adiabatic eigenstate during the process.
Remarkably, however, towards the end of each process the
population, depicted in the lower panels of the figure, returns
towards the desired adiabatic eigenstate, Padiabatic(tfinal) ∼ 1.
As the time evolution is unitary, it is not possible to remove
just any small intermediate deviation from the adiabatic eigen-
state by the last part of the process. The lack of adiabaticity
in the first part of the process seems to be, almost magically,
canceled by the nonadiabatic evolution in the last part. As we
shall show by a simple argument in this article, the system,
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indeed, follows a very specific trajectory which differs from
the adiabatic eigenstate of the time-dependent Hamiltonian,
but nevertheless it connects the adiabatic eigenstates in the be-
ginning and the end of the process: “all’s well that ends well.”
The purpose of this article is to offer a simple explanation
of why this occurs in general in adiabatic processes and to
propose that this insight be exploited more systematically in
experiments.

The usual criterion of adiabaticity has been subject to long
debate, pointing to its insufficiency, e.g, when weak but tem-
porarily modulated variations of the Hamiltonian are resonant
with the energy splitting [13]. With the precaution of either
supplemental criteria on the time derivatives of the Hamilto-
nian [14,15] or explicit exclusion of resonant oscillations [16],
the usual criterion does ensure the adiabatic following [17,18]
to a high degree of precision. Insights from this discussion
have also informed the use of adiabatic processes with degen-
erate Hamiltonians [19].

Figure 1 permits the opposite observation: the usual adia-
batic criterion does not necessarily have to be strictly fulfilled
since the time-evolving state may deviate from the adia-
batic eigenstate and still find its way back to the adiabatic
eigenstate at the end of the process. This is a common
observation for many processes and it is in agreement with nu-
merous theoretical analyses. For instance, the Landau-Zener
transition model is analytically solvable [3–6] and yields a
loss of population that is exponentially small in the pro-
cess duration, i.e., for a slow process its dependence on
the rate of change of the Hamiltonian and its eigenstates is
weaker than any power law. The same exponential suppres-
sion has been recovered by more general arguments for a
wider range of models [20–23], and detailed analyses have as-
sessed the important consequences of this favorable behavior
for the prospects of adiabatic quantum computing, see, e.g.,
Refs. [24,25].
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FIG. 1. Examples of application of adiabatic passage in different physical systems. In column (a), the top figure depicts the energy diagram
for the Landau-Zener transition [3–6], describing, e.g., a frequency-chirped laser excitation of a two-level atom. The lower panels show the
time-dependent detuning � (purple solid line) and Rabi frequency � (green dashed line), and the population in the adiabatically followed
eigenstate (black line), respectively. In column (b), the top figure depicts the energy diagram for stimulated Raman adiabatic passage (STIRAP)
in a � system [7,8]. The lower panels show the Rabi frequencies of the pump �12 (purple solid line) and Stokes �23 (green dashed line) pulses,
and the population in the adiabatically followed eigenstate (black line), respectively. In column (c), the top figure depicts the triple-well
trapping potential to transport a particle via spatial adiabatic passage (SAP) [9,10]. The lower panels show the three trap center positions
(purple solid, green dashed, and blue dotted lines) and the atom density (gray shading), and the population in the adiabatic eigenstate of the
Hamiltonian (black line), respectively. In column (d), the top figure depicts the energy diagram of three-level atoms with an upper Rydberg
state causing a Rydberg excitation blockade which permits adiabatic creation of highly entangled states [11,12]. The two lower panels show
the Rabi frequencies of the pulses �1 (purple solid line) and �r (green dashed line), and the population in the adiabatic many-atom eigenstate
of ten atoms.

It is the purpose of the present article to offer a simple and
practical explanation of the results shown in Fig. 1. Without
embarking on the mathematical analysis leading to the expo-
nential suppression of the nonadiabatic loss of population, we
use perturbation theory to demonstrate in a straightforward
manner how the time-dependent state can deviate from the
adiabatic eigenstates to linear order while the final state devi-
ates to a higher order in the rate of change of the eigenstates.
Insights from the same analysis are then used to propose
modifications to adiabatic processes that make them operate
at any finite duration.

In Sec. II we shall apply first-order perturbation theory to
the equations of evolution in the adiabatic basis and present
simple analytical arguments for why the intermediate state
error is of first order in the inverse of the process duration
while the final state is generally reached with an error that
is of a higher order. This result calls the relevance of the
conventional adiabaticity criterion into question, and it raises
attention to other equally significant criteria for the conver-
gence of the adiabatic passage process. In Sec. III we shall
discuss shortcut-to-adiabaticity strategies which add correct-
ing terms to the Hamiltonian to yield a state evolution that
meticulously follows the eigenstate of the originally imposed
time-dependent Hamiltonian irrespective of the process dura-
tion. We shall show that it is possible to apply these strategies
but with weaker correction terms and secure the exact follow-
ing of higher-order, so-called superadiabatic states, which lead
to the same perfect final states. In Sec. IV we conclude the
article, and we comment on the perspectives of the results for
different applications of adiabatic passage processes

II. PERTURBATION THEORY OF NONADIABATIC
TRANSITIONS

In adiabatic processes, we subject a quantum system
to a time-dependent Hamiltonian H(t ), and we aim for
the system to follow one of its eigenstates H(t )|m(0)(t )〉 =
E (0)

m (t )|m(0)(t )〉 for t ∈ [0, T ]. We introduce the rescaled time
τ = t/T = εt (T ≡ 1/ε), exploring the fixed interval τ ∈
[0, 1], so that the Schrödinger equation can be written (h̄ = 1)

iε∂τ |ψ (τ )〉 = H(τ )|ψ (τ )〉. (1)

To simplify expressions, we will occasionally suppress the τ

dependence in the following.
By expanding the quantum state in the time-dependent

adiabatic basis |ψ〉 = ∑
m c(0)

m |m(0)〉, the Schrödinger equa-
tion (1) yields equations for the state amplitudes

iε∂τ c(0)
n = E (0)

n c(0)
n − iε

∑
m

〈n(0)|∂τ m(0)〉c(0)
m , (2)

where the so-called nonadiabatic coupling terms are due to the
time evolution of the basis states, and we use the short-hand
notation, |∂τ m(0)〉 = ∂τ |m(0)〉.

The formal structure of the equations of evolution, Eq. (2),
is equivalent to the Schrödinger equation with a time-
dependent Hamiltonian

iε∂τ |ψ (τ )〉 = [H(0)(τ ) + εV (0)(τ )]|ψ (τ )〉, (3)
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where

H(0)(τ ) =
∑

m

E (0)
m (τ )|m(0)〉〈m(0)|, (4)

V (0)(τ ) =
∑
n,m

V (0)
n,m(τ )|n(0)〉〈m(0)|, (5)

and where we merely regard

V (0)
n,m(τ ) ≡ −i〈n(0)|∂τ m(0)〉 (6)

as the matrix elements of a perturbation in a fixed basis
{|m(0)〉}.

For a vanishing ε, the system follows the adiabatic
eigenstates of H(τ ) = H(0)(τ ), while the off-diagonal ele-
ments of V (0)

n,m(τ ) cause transfer-of-state amplitude of order
εV (0)

n,m/(E (0)
m − E (0)

n ) among the eigenstates. The diagonal
terms E (0)

m (τ ) and V (0)
n,n (τ ) impose accumulation of the dy-

namical phase and the Berry phase [26], respectively, on the
adiabatic eigenstates. We assume a nondegenerate spectrum of
H in which case energy conservation suppresses nonadiabatic
transitions. Still, starting from an eigenstate of H we expect
a deviation of the time-evolved state from the corresponding
time-dependent adiabatic eigenstate of first order in ε = 1/T .

Equation (3) is the same time-dependent Schrödinger equa-
tion as Eq. (1), but by the explicit Eqs. (4) and (5) for the
energy and coupling terms, the time-dependent quantum state
is represented in the frame of a different, time-dependent
basis. It is a key point in the present analysis that, also in
this frame, the Hamiltonian terms are slowly evolving and the
solution of Eq. (3) may thus adiabatically follow the time-
dependent eigenstates {|n(1)〉} of the Hamiltonian H(1)(τ ) ≡
H(0)(τ ) + εV (0)(τ ).

To explore the nonadiabatic corrections to the evolution
along the eigenstates of H(1)(τ ) we exploit the smallness
of ε, and determine the eigenvalues and eigenstates of the
Hamiltonian in Eq. (3) by first-order perturbation theory

E (1)
n (τ ) = E (0)

n (τ ) + ε〈n(0)|V (0)(τ )|n(0)〉 + O(ε2) (7)

and

|n(1)(τ )〉 = |n(0)〉 + ε
∑
k �=n

M (0)
k,n(τ )|k(0)〉 + O(ε2), (8)

where we introduced

M (0)
k,n(τ ) ≡ 〈k(0)|V (0)(τ )|n(0)〉

E (0)
n (τ ) − E (0)

k (τ )
. (9)

Applying these expressions in the expansion of the time-
evolving quantum state |ψ (τ )〉 = ∑

n c(1)
n (τ )|n(1)(τ )〉, we

obtain to second order in ε,

iε∂τ c(1)
n (τ ) = E (1)

n (τ )c(1)
n (τ ) + ε2

∑
m

V (1)
n,mc(1)

m (τ ), (10)

where we introduced the coupling terms

V (1)
n,m ≡ − i

ε
〈n(1)(τ )|∂τ m(1)(τ )〉

= −i(1 − δn,m)∂τ M (0)
n,m + O(ε). (11)

Analogous to Eqs. (1) and (3), we can write Eq. (10) in the
form

iε∂τ |ψ (τ )〉 = [H(1)(τ ) + ε2V (1)(τ )]|ψ (τ )〉, (12)

where the Hamiltonian operators, describing the dynamics
in the frame with the time-dependent basis states |n(1)(τ )〉,
are defined by the matrix element specified above. Note the
ε2 factor in Eq. (10) and Eq. (12), which cause the transfer
of amplitude between the adiabatic eigenstates |n(1)(τ )〉 of
H(1)(τ ) to be proportional with ε2 = 1/T 2 rather than with ε.

We conclude that the system prepared at t = 0 in one
of the states |n(1)〉 will follow the time dependence of that
eigenstate adiabatically apart from nonadiabatic corrections
that are second order in ε = 1/T . We emphasize that we
have not imposed any modification of the time-dependent
Hamiltonian H in the Schrödinger equation, Eq. (1). It is
merely due to the use of different time-dependent bases that
Eqs. (3) and (12) appear with different instantaneous diag-
onal parts and different perturbative corrections. Certainly,
the basis states |n(1)(τ )〉 in Eq. (8) deviate from the adia-
batic eigenstates of the original Hamiltonian H by a linear
amount in ε, but if we ensure that these deviations vanish at
both t = 0 and t = T , the final state will occupy the desired
eigenstate |n(0)〉 of the final Hamiltonian H with, at most, a
second-order correction. While this relaxes the criterion on the
smallness of ε, it demands that |n(1)(τ = 0)〉 = |n(0)(τ = 0)〉
and |n(1)(τ = 1)〉 = |n(0)(τ = 1)〉, which is fulfilled if V (0)(τ )
vanishes at those times, i.e., if the rate of evolution of the
Hamiltonian H is continuous and goes to zero at the end and
beginning of the process.

This analysis explains why first-order deviations from the
adiabatic eigenstates may readily occur during time evolution,
why they disappear, and why the accumulated nonadiabatic
correction at the end of the process is easily restricted to be
of a higher order, cf. the lower panels in Fig. 1. The reader
may also consult the upper panels of column (a) in Figs. 3
and 4, where the solid, purple curve shows the population
of the time evolved state on the adiabatic basis state, while
the dashed, green curve shows the near-unit population on the
corresponding first superadiabatic basis state. The initial and
final vanishing of the rate of evolution of the Hamiltonian, and
hence of V (0)(τ ), is important, and the commonly used linear
interpolation between a pair of initial and final Hamiltonians
H(t ) = (1 − t/T )HA + (t/T )HB, as well as STIRAP laser
pulses with truncated Gaussian or sinusoidal shapes, may
all introduce first-order corrections. Corrections of this order
may, however, be readily eliminated by merely tapering these
functions to their initial and final values in a more smooth
manner. While this is possible only at the expense of leaving
a shorter time for the remaining time evolution, the effective
increase of ε is easily outweighed by the absence of first-order
coupling terms in Eq. (12). There is nothing magic about the
initial and final times, and if H smoothly approaches constant
values at definite time intervals during a process, the deviation
from the instantaneous eigenstate will also be of second order
or higher in ε at those times. This result may be related to
recent empirical studies of open system dynamics that show
that pausing the dynamics may increase the ground-state yield
in quantum annealers [27].

We note that the realization that the nonadiabatic cou-
pling can be treated as a perturbation on the adiabatically
evolving Hamiltonian may be exploited in a more direct,
formal transformation without the explicit reference to the
first-order perturbed eigenstates. Indeed, the Schrieffer-Wolff

062215-3



ALBERT BENSENY AND KLAUS MØLMER PHYSICAL REVIEW A 103, 062215 (2021)

transformation [28] employs a unitary operator exp(S), where
[H(0), S] = εV (0), to transform H(0) + εV (0) into the Hamil-
tonian H̃ = H(0) + [S, εV (0)]/2 + [S, [S, εV (0)]]/3 . . . , which
is at least second order in the perturbation as S is of the same
order as εV (0).

III. SHORTCUT TO SUPERADIABATICITY

For many quantum state control problems, the action of
dissipation, loss, and external perturbations may be at variance
with the time needed to ensure reliable state transfer by adi-
abatic protocols. This has inspired efforts to find strategies to
correct and counteract the nonadiabatic couplings while main-
taining a finite duration of the process. Indeed, it is possible
to cancel these couplings and follow the eigenstates {|n(0)〉} of
H exactly by adding the following counterdiabatic term to the
Hamiltonian [29]:

HCD = iε
∑

n

(|∂τ n(0)〉〈n(0)| − 〈n(0)|∂τ n(0)〉|n(0)〉〈n(0)|). (13)

The first term in HCD exactly cancels the term εV (0) in
Eq. (3) and is sufficient to suppress the transitions between
the eigenstates. It is customary, however, to include the second
term since this will lead to the Berry phase evolution, which
is of geometric character, and herewith the shortcut dynamics
acquires the same value as under perfect adiabatic evolution.
The application of H + HCD leads to so-called transitionless
quantum driving [29] and has inspired the development of
the rich field of shortcuts to adiabaticity [30,31]. If HCD can
be implemented exactly, or approximately [32,33], this may
provide good laboratory solutions for controlled quantum dy-
namics, and in theory studies it may be combined with optimal
control theory [34] to ensure unit fidelity while minimizing
cost functions representing, e.g., dissipation and experimental
limitations.

The cancellation of the nonadiabatic terms is exact, but
one of the challenges of transitionless driving is to provide
the required strength of the counterdiabatic Hamiltonian. Our
demonstration in the previous section that the true evolution of
our quantum state differs from a perturbed basis state |n(1)(τ )〉
to second order in ε suggests to employ a counterdiabatic
Hamiltonian to remove the time evolution with respect to that
basis, i.e., to establish the transitionless driving in the |n(1)〉
rather than the |n(0)〉 basis. For a classical analogy, a rider on
a bobsleigh race track may apply sideways forces to always
remain at the bottom of the track, the (adiabatic) equilibrium
position at vanishing forward speed. At finite speed, the rider
thus fights the tendency to climb the inclined outer barrier at
every turn of the race track. Allowing that motion to linear
order in the forward speed and applying only the sideways
forces to correct higher-order dependencies may clearly be
a much less strenuous task for the rider, who may still have
ample time to reach the bottom curve in the final linear section
of the race track.

Since we aim to make the quantum evolution follow a given
basis state exactly, the perturbative expressions in Eq. (8) do
not suffice, and we follow instead the so-called superadiabatic
bases [23]. These are formal series expansions of orthonor-
mal basis states |λ(m)

n (τ )〉 of maximum power εm, and they
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FIG. 2. Parameters for the numerical simulations. (a) Sweep of
the mixing angle θ (τ ) between 0 and π/2. (b) Constant value of
H (τ ) = 1.

are followed adiabatically by solutions to the time-dependent
Schrödinger equation up to a correction of order εm+1.

We illustrate this scheme with the example of a spin-1/2
particle subject to a magnetic field with constant magnitude
and a direction that sweeps from z to the x direction [23]. The
Hamiltonian can be written as the 2 × 2 system matrix

H0 = H

(
cos θ sin θ

sin θ − cos θ

)
, (14)

where H is a constant and θ (τ ) is swept between 0 and π

for τ ∈ [0, 1]. A symmetric function, θ (1 − τ ) = π − θ (τ ),
with θ (0) = 0 and θ (1) = π , and vanishing derivatives un-
til the third order for τ = 0, 1 is given by the function
θ (τ ) = π (35τ 4 − 84τ 5 + 70τ 6 − 20τ 7), shown in Figs. 2(a)
and 2(b).

H0 has the eigenvalues ±H and the eigenstates

|λ+〉 =
(

cos θ/2

sin θ/2

)
, |λ−〉 =

(
sin θ/2

− cos θ/2

)
. (15)

The time derivatives of the eigenstates |∂τλ±〉 = ∓(θ̇/2)|λ∓〉
yield the magnitude εθ̇/2 of the counterdiabatic driving
Hamiltonian (13).

Here we shall consider transitionless driving with respect
to the first superadiabatic basis, i.e., in contrast to Eq. (13)
which is linear in ε, and we shall provide a counterdiabatic
driving Hamiltonian of strength ∝ ε2 that ensures exact trans-
fer between the initial and final eigenstate of H. Following
Ref. [23], the first-order superadiabatic basis states can be
written as

|λ(1)
− 〉 = N [iεA1|λ+〉 + (1 + iεB1)|λ−〉], (16)

|λ(1)
+ 〉 = N [(1 − iεB1)|λ+〉 + iεA1|λ−〉], (17)

where N−1 =
√

1 + ε2(A2
1 + B2

1), B1 = ∫
(θ̇2/8H )dτ ′, and

A1 = θ̇/4H = 2Ḃ1/θ̇ . To first order in ε, these states are in
agreement with the perturbed basis in Eq. (8), and we expect
that it only requires a Hamiltonian correction of the order of
ε2 to follow these states exactly. We evaluate the negative
of the nonadiabatic terms −iε〈λ(1)

n |∂τλ
(1)
m 〉, and we obtain the

counterdiabatic Hamiltonian explicitly in the same fixed basis
as H0 (14),

H(1)
corr =

(
δ ω

ω∗ −δ

)
, (18)
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FIG. 3. Comparison of the adiabatic following of different Hamiltonians with the parameters in Fig. 2 and for ε = 0.2. (a) Solution for the
Hamiltonian H0. (b) Solution for H0 with the counterdiabatic term HCD. (c) Solution for H0 with the counterdiabatic term H(1)

corr. The top row
represents the projection on the adiabatic (purple solid line) and first superadiabatic (green dashed line) basis states. The bottom row shows the

elements of the respective Hamiltonians written as H = (δ+ ω

ω δ−
). For clarity, in (b, c) we show only the perturbation on top of H0.

where

δ = ε2N 2[(cos θA1 − sin θB1)θ̇/2 − sin θ Ȧ1]

− ε4N 4A2
1θ̇/2(2A1 cos θ + 2B1 sin θ ), (19)

ω = ε2N 2[cos θ Ȧ1 + (B1 cos θ + N 2A1 sin θ )θ̇/2]

+ iε3N 2[N 2A2
1θ̇ − B2

1θ̇/2 − Ȧ1B1
]

+ ε4N 4θ̇A1
[

cos θA1B1 + sin θ
(
B2

1 − A2
1

)
/2

]
. (20)

These results verify that with respect to the first superadia-
batic basis, the counterdiabatic Hamiltonian is of second (and
higher) order in ε.

In Fig. 3, we illustrate the application of the conventional
counterdiabatic Hamiltonian and the counterdiabatic Hamilto-
nian with respect to the first superadiabatic basis for the evo-
lution of a spin subject to a rotating magnetic field. Time and
energy are given in dimensionless units, and the rate param-
eter is ε = 0.2, corresponding to a total duration T = 5/H .
The upper plots show the populations of the adiabatic eigen-
states (solid purple curve) and of the first superadiabatic basis
state (dashed green curve). The lower plots show the diagonal
elements of the Hamiltonian as solid purple and dashed green

curves, and the real(imaginary) part of the off-diagonal ele-
ments of the Hamiltonian as dotted blue (dot-dashed orange)
curves. In Fig. 3(a) we show the populations when the system
is subject to only the original Hamiltonian H(τ ), and we see
how the population decreases to 80% and recovers to about
98% in the adiabatic basis, in analogy with the lower plots in
Fig. 1. In the first superadiabatic basis, the intermediate loss
of population is smaller, while reaching the same final value.
In Fig. 3(b) we apply the counterdiabatic Hamiltonian terms
shown in the lower plot in the basis of the adiabatic eigenstates
to ensure perfect following of an adiabatic eigenstate of H(τ ),
cf. the purple curve in the upper panel. In Fig. 3(c), we apply
the counterdiabatic Hamiltonian terms shown in the lower
plot in the original spin eigenstate basis to ensure perfect
following of the first superadiabatic basis state (green dashed
line). We note that as expected it requires a weaker correction
Hamiltonian to follow the superadiabatic basis state.

We repeated the calculations with the parameter ε = 0.05
and we show the corresponding results in Fig. 4. Due to
the smaller value of ε the process is almost adiabatic, and
compared to Fig. 3, it takes a four times weaker counterdia-
batic Hamiltonian to ensure exact following of an adiabatic
eigenstate of H(τ ), while an approximately 13 times weaker
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FIG. 4. Comparison of the adiabatic following of different Hamiltonians. Same as Fig. 3, but for ε = 0.05.
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correction is required to ensure perfect following of the first
superadiabatic basis state than for ε = 0.2.

IV. CONCLUSION

In this article we provided a simple explanation of why
adiabatic passage processes seem to repair deviations from the
adiabatic eigenstates accumulated when a system is subject to
a Hamiltonian that changes slowly but in a finite time T . The
time-evolving quantum state deviates only to second or higher
order from a perturbed state that differs, indeed, to first order
from the adiabatic eigenstates of the Hamiltonian, but that
state can be proven to connect the initial and final eigenstates
exactly if only the Hamiltonian changes smoothly around
t = 0 and t = T . In fact, also the second- and higher-order de-
viations can be progressively suppressed by comparing with a
suitable progression of time-dependent superadiabatic states,
which may all match the initial and final states exactly. Note
that we are not modifying the Hamiltonian for this to happen:
the transformed bases in which the dynamics get more and
more suppressed are merely introduced for analysis.

The superadiabatic bases lead to a power series expan-
sion of the error, where coefficients at all finite orders but
the last one vanish. This might seem a disturbing fact, but
it is a confirmation of the exponentially small error found
in Refs. [20–23]. Indeed, the derivatives to any order with
respect to ε of P = exp(−a/ε) vanish as ε → 0. For any finite
value of ε, Berry and Lim showed [35], see also [36], that, due
to an asymptotic divergence of the expansion of the supera-
diabatic basis states, a definite finite order yields the closest
agreement with the exact time-dependent solution and closer
scrutiny of the argument can be used to derive the exponential
suppression of the error. See also a numerical study of the
STIRAP process with similar quantitative conclusions [37].

Even though the formal vanishing of the error to all orders
does not warrant a vanishing final state error, our analysis
signifies a potential for application of adiabatic processes that
goes far beyond the usual adiabaticity criterion. Applications
of adiabatic transitions in quantum information science strive
for extremely small errors, and the difference between an
amplitude error of ∼ε and ∼ε2 can readily become of signif-
icance. This implies that already our perturbation theory for
the lowest-order corrections to the adiabatic dynamics may
suffice to guide experiments in a quantitative sense.

We recalled the strategy of shortcuts to adiabaticity, which
ensures exact following of the adiabatic eigenstates by sup-

plementing the Hamiltonian with counterdiabatic terms. As a
consequence of our analysis we suggest avoiding the effort of
maintaining the exact evolution of the system along the adia-
batic eigenstates and instead apply driving terms that counter
only the deviations from the first superadiabatic states. The
first superadiabatic state connects the desired initial and final
eigenstates of the Hamiltonian. This compensation may be
carried out at an even higher order by use of the correspond-
ing superadiabatic bases. The evaluation of the appropriate
counterdiabatic Hamiltonian, however, becomes increasingly
complicated and the higher order in ε does not guarantee a
weaker interaction if its prefactor in the Hamiltonian grows.
From a pragmatic point of view, in the limit of small ε and
already pretty good adiabatic evolution, the reduction of the
strength of the counterdiabatic terms to merely follow the first
superadiabatic state may already yield a significant advantage.

Adiabatic preparation of complex many-body states suf-
fers from poor a priori scaling with the system size, but for
such systems delicate schemes to permit faster preparation
of the full system were proposed that exploit adiabaticity
sequentially on subsets of particles [38], or which apply so-
called variational quantum adiabatic algorithms to optimize
the ground-state overlap [39]. We believe that the combination
of such ideas with the insights of the present article may hold
potential for further progress in the execution of quantum
simulations on near-term devices [40].

We presented our analysis for quantum state evolution, but
we recall that adiabatic processes have classical counterparts
that may show the same phenomena, cf. our analogy with the
bobsleigh rider. The fact that the initial-to-final state transfer
may be nearly perfect while the intermediate state is not,
presents practical possibilities to allow speed-up of a variety
of processes at low cost on the final result. This would, for
example, apply to the transfer of classical field amplitudes
between wave guides by couplings equivalent to the STIRAP
process [7], and it may apply to the processes in cyclic micro-
scopic and quantum heat engines.
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