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Classical model of a delayed-choice quantum eraser
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Wheeler’s delayed-choice experiment was conceived to illustrate the paradoxical nature of wave-particle
duality in quantum mechanics. In the experiment, quantum light can exhibit either wavelike interference patterns
or particlelike anticorrelations, depending upon the (possibly delayed) choice of the experimenter. A variant
known as the quantum eraser uses entangled light to recover the lost interference in a seemingly nonlocal
and retrocausal manner. Although it is believed that this behavior is incompatible with classical physics, here
we show that, using postselection, the observed quantum phenomena can be reproduced by adopting a simple
deterministic detector model and supposing the existence of a random zero-point electromagnetic field.
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I. INTRODUCTION

Wave-particle duality is one of the oldest and most per-
plexing aspects of quantum theory [1]. Although the wavelike
nature of light had been well established by the 19th cen-
tury, experiments of the early 20th century brought about
the notion of light as a particle, what we now call a photon
[2–4]. Maintaining this notion of light as being composed of
discrete particles can, however, be rather paradoxical at times,
as numerous real and gedanken experiments have shown
[5–10].

One particular experiment that has captured recent interest
and attention is the delayed-choice quantum eraser. First con-
ceived by Scully and Drühl in 1982 [11], the quantum eraser
is a variant of Wheeler’s delayed choice experiment in which
measurements on one of a pair of entangled light beams are
used to recover an interference pattern, and hence wavelike
behavior, that would otherwise be lost with the introduction
of which-way path information in a Mach-Zehnder interfer-
ometer [12–16]. For Wheeler, the delayed-choice experiment
was an argument for antirealism, the notion that quantum
objects, such as photons, do not have definite, intrinsic prop-
erties that are independent of the measurement context [17].
Some, however, have interpreted the results of delayed-choice
quantum eraser experiments as evidence for a form of retro-
causality [18].

More recently, a series of delayed-choice experiments has
been performed that rule out a certain class of nonretrocausal
hidden-variable models described by Chaves, Lemos, and
Pienaar [19]. The general model they describe can provide
a causal description of the standard delayed-choice exper-
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iment, but it fails to describe a variant of this experiment
using variable phase delays in the arms of the interferometer.
This variant has been the subject of recent experimental in-
vestigations, which are consistent with theoretical predictions
[20–22]. These experiments place certain dimensional restric-
tions on the class of nonretrocausal hidden-variable models
that can be consistent with theory and observations.

In this paper, we revisit Wheeler’s delayed-choice experi-
ment, its recent experimental variants, and the more elaborate
quantum eraser experiment within the context of a sim-
ple, physically motivated classical model [23,24]. Although
loophole-free experiments have already been performed to
rule out local realism [25–27], the identification of precisely
which phenomena defy a classical interpretation remains an
open question and one of practical relevance to ensure the
security and efficacy of emergent quantum technologies. Our
approach is modeled after stochastic electrodynamics (SED)
in assuming a reified (i.e., nonvirtual) zero-point field (ZPF)
corresponding to the vacuum state [28,29]. A significant de-
parture from standard SED in our approach is the introduction
of a deterministic model of detectors using an amplitude
threshold crossing scheme. We find that these simple assump-
tions, combined with standard experimental postselection and
data analysis techniques, adequately describe the observed
quantum phenomena.

The structure of the paper is as follows: In Sec. II we
consider a simple delayed-choice experiment using weak
coherent light as a notional single-photon source. We re-
place the coherent light with a source of entangled light
in Sec. III, within the context of a quantum eraser experi-
ment, and demonstrate how postselection, not causality, is the
mechanism whereby path information is effectively erased.
With these two results established, we revisit the theoretical
arguments of Chaves and Bowles in Sec. V and argue that
their assumptions are overly restrictive. Section VI considers
a variant of these experiments using entangled light sources
and shows that these, too, can be understood within a clas-
sical framework. Finally, we summarize our conclusions in
Sec. VII. Figures and numerical experiments were created
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and performed using a custom simulation tool, the Virtual
Quantum Optics Laboratory (VQOL) [30].

II. SIMPLE DELAYED-CHOICE EXPERIMENT

Consider the Mach-Zehnder interferometer of Fig. 1. A
laser (LAS) provides a source of coherent, horizontally polar-
ized light that is strongly attenuated by a neutral density filter
(NDF) before entering the first beam splitter (BS1). Under
our model, the laser light exiting the NDF is represented by
a stochastic Jones vector of the form

a =
(

aH

aV

)
=

(
α

0

)
+ σ0

(
z1H

z1V

)
, (1)

where α ∈ C describes the mean amplitude and phase of the
light, σ0 = 1/

√
2 is the scale of the ZPF (corresponding to

a modal energy of 1
2 h̄ω), and z1H and z1V are independent

standard complex Gaussian random variables. (We say that z
is a standard complex Gaussian random variable if E[z] = 0,
E[|z|2] = 1, and E[z2] = 0). Note that z1H and z1V play the
role of hidden variables. This model is mathematically equiv-
alent to the corresponding quantum coherent state |α〉 ⊗ |0〉
whose Wigner function is a bivariate Gaussian probability
density function identical to that of a. The fact that we are
using explicit random variables in our representation amounts
to a reification of the ZPF. The effect of the NDF is to ensure
that |α| � 1.

Passage through the first 50/50 beam splitter (denoted by
BS1) splits the beam into two orthogonal spatial modes, a
right-traveling mode (denoted by →) and a down-traveling
mode (denoted by ↓). In addition, there is a down-traveling
vacuum mode that enters the top input port of BS1, repre-
sented by the independent stochastic Jones vector

b =
(

bH

bV

)
= σ0

(
z2H

z2V

)
, (2)

where z2H and z2V are independent standard complex Gaus-
sian random variables (which are also independent of z1H and
z1V ). The two spatial modes may be represented by a pair of

FIG. 1. VQOL experimental setup for a simple delayed-choice
experiment. The different colors (or shades of gray) in the beams
correspond to different polarizations.

stacked Jones vectors as follows:⎡
⎢⎢⎢⎣

aH

aV

−−
bH

bV

⎤
⎥⎥⎥⎦

BS1−−→ 1√
2

⎡
⎢⎢⎢⎣

aH + bH

aV + bV

− − −−
aH − bH

aV − bV

⎤
⎥⎥⎥⎦. (3)

Note that the second term on the right-hand side is again
a standard complex Gaussian random vector, owing to the
unitarity of the beam splitter transformation.

The right-traveling beam next undergoes a transformation
via a half-wave plate (denoted by HWP) with a fast-axis angle
θ ∈ [0, π/4] relative to the horizontal axis. It subsequently
undergoes a phase delay (denoted by PD) that applies a global
phase angle φ ∈ [0, 2π ]. Finally, a pair of mirrors (denoted
by M1 and M2) swap the two spatial modes. The resulting
stacked Jones vector after these three transformations is now

1√
2

⎡
⎢⎢⎢⎣

aH + bH

aV + bV

− − −−
aH − bH

aV − bV

⎤
⎥⎥⎥⎦

HWP, PD, M1, M2−−−−−−−−−−→

⎡
⎢⎢⎢⎢⎣

a′
H

a′
V

−−
b′

H

b′
V

⎤
⎥⎥⎥⎥⎦, (4)

where a′
H = (aH − bH )/

√
2, a′

V = (aV − bV )/
√

2, and

b′
H = eiφ

√
2

[cos 2θ (aH + bH ) + sin 2θ (aV + bV )], (5a)

b′
V = eiφ

√
2

[sin 2θ (aH + bH ) − cos 2θ (aV + bV )]. (5b)

In the absence of the second beam splitter (denoted by
BS2), the Jones vectors (a′

H , a′
V )T and (b′

H , b′
V )T will deter-

mine if a detection is made on the right-traveling mode (by
detector D1) or the down-traveling mode (by detector D2).
We adopt an amplitude threshold crossing scheme as a model
to determine whether a given detector makes a detection (or
“clicks”) [23]. Under this scheme, a detector clicks if the
amplitude of either the horizontal or the vertical polarization
component of the impinging beam falls above a given thresh-
old, γ � 0.

Each detector has placed before it a polarizer (denoted by
P1 and P2) oriented to admit horizontally polarized light. A
polarizer can be modeled as a polarizing beam splitter for
which one of the output ports is ignored [31]. Consequently,
an independent vacuum mode will be present in the second
input port, resulting in the transformation(

a′
H

a′
V

)
P1−→

(
a′

H

σ0z′
1V

)
, (6)

where z′
1V is an independent standard complex Gaussian

random variable corresponding to the vacuum mode of the
notional second input port. Similarly, passage through P2 will
result in the transformation(

b′
H

b′
V

)
P2−→

(
b′

H

σ0z′
2V

)
, (7)

where z′
2V is, again, an independent standard complex Gaus-

sian random variable.
Thus, detector D1 clicks, according to this model, if the

random variables z1H , z1V , z2H , z2V , z′
1V , and z′

2V are such that
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they fall with the event set

D1 = {|a′
H | > γ or |σ0z′

1V | > γ }. (8)

The deterministic nature of the detector model lies in the fact
that a click occurs only when a particular random realization
of the hidden variables is such that at least one of the two
amplitudes falls above the threshold γ . Similarly, detector D2
clicks under the event set

D2 = {|b′
H | > γ or |σ0z′

2V | > γ }. (9)

Clearly, the probabilities for these events are independent of
the phase angle φ, since only the amplitudes of a′

H and b′
H are

considered. Thus, no interference effects would be observed
by simply varying φ.

One may consider the alternative counterfactual case in
which the second beam splitter, BS2, is present. In this case,
we have a further transformation,⎡

⎢⎢⎢⎢⎣

a′
H

a′
V

−−
b′

H

b′
V

⎤
⎥⎥⎥⎥⎦

BS2−−→ 1√
2

⎡
⎢⎢⎢⎢⎣

a′
H + b′

H

a′
V + b′

V
− − −−
a′

H − b′
H

a′
V − b′

V

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a′′
H

a′′
V

−−
b′′

H

b′′
V

⎤
⎥⎥⎥⎥⎦. (10)

Detector D1 now clicks under the event

D′
1 = {|a′′

H | > γ or |σ0z′
1V | > γ }, (11)

while detector D2 clicks under the event

D′
2 = {|b′′

H | > γ or |σ0z′
2V | > γ }. (12)

Both a′′
H and b′′

H contain a relative phase term, resulting in
a dependence on φ for the probabilities of the two events.
Thus, the addition or removal of the second beam splitter
may causally create or destroy, respectively, an interference
pattern, even if this action is taken well after the light has
passed through the first beam splitter.

We note this general qualitative behavior is itself unre-
markable and may be observed more directly in the intensities
of classical light (for which |α| 
 1 or, equivalently, σ0 ≈ 0),
as in this regime we find

|a′
H |2 ≈ 1

2 |α|2, (13)

|a′′
H |2 ≈ 1

4 |α|2|1 + eiφ cos 2θ |2. (14)

We further note that nonzero values of θ can provide which-
way information, insofar as they may completely destroy, for
θ = π/2, or merely reduce, for 0 < θ < π/2, the intensity
inference pattern. To observe the more subtle particlelike be-
havior, we must consider the statistical properties of detection
events, which we shall now do.

The random variables a′
H and b′

H obey a proper complex
Gaussian distribution with expectation values of

E[a′
H ] = α√

2
, (15)

E[b′
H ] = α√

2
cos 2θ (16)

and a common variance of σ 2
0 . They are furthermore indepen-

dent, owing to the unitarity of the transformations involved.
Thus, |a′

H | and |b′
H | each follow a Rician distribution [32].

Since, furthermore, z1V and z2V are also independent, the
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FIG. 2. Plot of the expected counts, minus dark counts, for a
delayed-choice experiment versus the phase delay angle φ in the
upper arm of the interferometer. The dashed line corresponds to
when BS2 is removed, and the solid lines correspond to when
BS2 is present. Interference patterns are observed when there is
no which-way information [θ = 0◦, red (light gray) line] or only
partial which-way information [θ = 30◦, blue (dark gray) line]. The
interference pattern vanishes with complete which-way information
(θ = 45◦, black solid line).

probability of a single click on detector D1 (and not D2) is
given by

p1(θ, φ) = Pr[D1 ∩ D̄2] = Pr[D1](1 − Pr[D2]), (17)

where

Pr[D1] = 1 − F

(
α√
2

)
F (0), (18)

Pr[D2] = 1 − F

(
α√
2

cos 2θ

)
F (0), (19)

and F (α) = Pr[|α + zH | � γ ] is given by the Marcum Q
function as [23,33]

F (α) = 1 − Q1(
√

2|α|/σ0,
√

2γ /σ0). (20)

Note that Q1(0,
√

2γ /σ0) = e−γ 2/σ 2
0 .

A similar analysis may be used when the second beam
splitter is in place, albeit using a′′

H and b′′
H instead. The proba-

bility of a single click on detector D1 is now

p′
1(θ, φ) = Pr[D′

1](1 − Pr[D′
2]), (21)

where

Pr[D′
1] = 1 − F

(
α

2
(1 + eiφ cos 2θ )

)
F (0), (22)

Pr[D′
2] = 1 − F

(
α

2
(1 − eiφ cos 2θ )

)
F (0). (23)

In Fig. 2 we have plotted the expected number of counts,
in excess of the dark counts, for the cases with and without
BS2 present and for different values of θ . The number of
notional trials was taken to be N = 106. The laser and NDF
were taken to be such that α = 0.1, and the detectors were
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such that γ = 1.95, corresponding to a dark count probability
of pd = 0.001. Without BS2 present, the expected counts are
N p1(θ, φ) − N pd ; with BS2 in place, they are N p′

1(θ, φ) −
N pd . The HWP fast-axis angle, θ , was taken to be either 0◦,
30◦, or 45◦, corresponding to no, partial, or complete which-
way information, respectively.

As expected, there is no interference pattern when BS2 is
removed. With BS2 in place, there is a strong interference
pattern when there is no which-way information (i.e., θ = 0◦).
When partial which-way information is available, correspond-
ing to a nonzero vertical component of the mean polarization,
the interference pattern is diminished but remains discernible.
If complete which-way information is available, correspond-
ing to a mean vertical polarization in the upper arm of the
interferometer, the interference pattern is diminished to the
point of being no longer present. These effects are completely
causal and arise from the interference of classical, albeit
stochastic, waves. The particlelike behavior, manifested by
single-detection events, is a consequence of the low intensity
of the input beam, for which detections on both detectors are
rare, and the fact that we have removed nondetection events
through postselection.

In the parameter regime we have chosen, the interference
pattern matches a scaled and shifted version of the cos2(φ/2)
probability predicted by quantum mechanics for a single-
photon state. Larger values of α may exhibit deviations from
this prediction, as the corresponding coherent state |α〉 may
no longer be considered a good approximation of a vacuum-
plus-single-photon state.

As a final note, the ability to causally model a standard
delayed-choice experiment has already been demonstrated by
Chaves et al. [19]. In Secs. V and VI we consider a more
sophisticated version of the delayed-choice experiment, as
suggested by Ref. [19], and demonstrate how it, too, can be
explained by our classical model.

III. DELAYED-CHOICE QUANTUM ERASER

Wheeler’s delayed-choice experiment can be changed to
a quantum eraser experiment by replacing the laser and the
NDF with an entanglement source (ENT). The experiment is
illustrated in Fig. 3, where we have also added a third polarizer
and a third detector, denoted P3 and D3, respectively. Unlike
the other two polarizers, P3 is rotated by 45◦ so as to admit
diagonally polarized light.

The entanglement source is modeled classically as a type-
I parametric down-conversion process for which the inputs
states are a pump laser (not shown) and classically modeled
vacuum modes from the ZPF [24]. The Jones vectors for the
right-traveling (→) and left-traveling (←) spatial modes of
the entanglement source, denoted a and c, respectively, are
given by

a =
(

aH

aV

)
= σ0

(
z1H cosh r + z∗

3H sinh r

z1V cosh r + z∗
3V sinh r

)
(24)

and

c =
(

cH

cV

)
= σ0

(
z3H cosh r + z∗

1H sinh r

z3V cosh r + z∗
1V sinh r

)
, (25)

FIG. 3. VQOL experimental setup for a delayed-choice quantum
eraser experiment. The entanglement source is labeled ENT.

where z1H , z1V , z3H and z3V are independent standard com-
plex Gaussian random variables and r � 0 is the squeezing
strength of the entanglement source. We note that a and c are
statistically dependent for r > 0.

The joint probability density function of a and c is identical
to the Gaussian Wigner function of a four-mode entangled
squeezed state [34]. If r � 1, this squeezed state may be
approximated as a superposition of a vacuum state and the
entangled Bell state

|	〉 = |H〉 ⊗ |H〉 + |V 〉 ⊗ |V 〉√
2

, (26)

where the left and right kets in each tensor product indicate
the spatial modes traveling to the left and right, respectively.

As before, b denotes the Jones vector of the down-traveling
(↓) vacuum mode entering BS1 and given by

b =
(

bH

bV

)
= σ0

(
z2H

z2V

)
, (27)

where, again, z2H and z2V are independent standard complex
Gaussian random variables.

The transformations of a and b through the interferometer
are identical to those in the simple delayed-choice experiment
discussed previously, as given by Eqs. (5) and (10). We shall
again denote these by a′′ and b′′ and by a′ and b′ for the
cases with and without BS2, respectively. Passage through the
polarizers P1 and P2 results in the transformations

(
a′

H

a′
V

)
P1−→

(
a′

H

σ0z′
1V

)
(28)

and (
b′

H

b′
V

)
P2−→

(
b′

H

σ0z′
2V

)
, (29)

with similar transformations for a′′ and b′′.
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Upon passing through polarizer P3, c becomes(
cH

cV

)
P3−→ cD√

2

(
1
1

)
+ σ0z3A√

2

(
1

−1

)
, (30)

where cD = (cH + cV )/
√

2 is the diagonal component of c
and z3A is an independent standard complex Gaussian random
variable corresponding to the missing antidiagonal component
of the ZPF.

Individual detection events for D1, D2, and D3 for the case
in which BS2 is not present may now be defined as follows:

D1 = {|a′
H | > γ or |σ0z′

1V | > γ }, (31)

D2 = {|b′
H | > γ or |σ0z′

2V | > γ }, (32)

D3 =
{∣∣∣∣cD + σ0z3A√

2

∣∣∣∣ > γ or

∣∣∣∣cD − σ0z3A√
2

∣∣∣∣ > γ

}
. (33)

The events D′
1, D′

2, and D′
3, for the case in which BS2 is in

place, are defined similarly by replacing a′
H and b′

H with a′′
H

and b′′
H . (Both cD are z3A are, of course, unchanged).

Let us consider detection events with BS2 in place and
with the HWP rotated to θ = 45◦, corresponding to complete
which-way information. Ignoring the detections on detector
D3, the probability of a single-detection on detector D1 is, as
before,

p′
1(φ) = Pr[D′

1 ∩ D̄′
2]. (34)

If we postselect on events for which detector D3 also clicks,
this probability becomes

p′
13(φ) = Pr[D′

1 ∩ D̄′
2 | D′

3]. (35)

We do not have a closed-form expression for the joint
distribution of a and c; however, these probabilities may be
estimated numerically. Taking γ = 1.95, as before, and r = 1,
we estimated the probabilities p′

1(φ) and p′
13(φ) for an en-

semble of N = 106 realizations. (Each realization assigns a
particular set of values for the hidden variables; in VQOL,
each time step generates an independent realization). The re-
sults are shown in Fig. 4. As expected, the interference pattern
is recovered when we postselect on D3 detections.

In the language of quantum mechanics, we have “erased”
the which-way information by collapsing the state with a
projective measurement at D3. In truth, all we have done is
sample from a subensemble of ZPF realizations for which
there is a detection on D3. Classically, there is no causal
mechanism by which detection events at D3 affect those at
D1 or D2. It is merely a reflection of the pre-existing corre-
lations between a and c and their modification as a result of
postselection. Of course, it does not matter whether BS2 was
inserted before or after the light had passed through BS1, so
there is no need for retrocausal explanations either.

IV. QUANTUM-CONTROLLED EXPERIMENTS

In the quantum eraser experiment of the previous sec-
tion, the second beam splitter was either present or absent,
resulting in the presence or absence of an interference pat-
tern, respectively. A similar experiment was performed by
Jacques et al. using a quantum random-number generator
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FIG. 4. Plot of the probability of a single-detection on D1 with
either no conditioning on D3 [p′

1(φ), blue (dark gray) line] or with
postselection of a detection on D3 [p′

13(φ), red (light gray) line].

and a classical switch [5]. Ionicioiu and Terno have sug-
gested using a controlled quantum gate in place of a classical
switch and, furthermore, have argued that this scheme may
be used to rule out a certain class of hidden-variable models
[6,10]. Subsequently, this proposal was implemented experi-
mentally using a programmable nuclear magnetic resonance
device [7], a reconfigurable integrated photonic device [8],
and a polarization-dependent beam splitter (PDBS) [9]. All
experiments showed the expected continuum of wavelike
and particlelike behavior for different experimental settings
controlling which-way path information. In this section, we
consider a classical model for the PDBS experiment.

To this end we have implemented the experimental setup
described in Ref. [9] with a PDBS that behaves as a 50/50
beam splitter for horizontally polarized light and is transparent
(except for a swapping of spatial modes) for vertically polar-
ized light (see Fig. 5). For Jones vectors a and b corresponding
to light entering from the top and left, respectively, of the
PDBS, the transformed polarization states are given by⎡

⎢⎢⎢⎣
a′

H

a′
V

b′
H

b′
V

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎝

1√
2

0 1√
2

0

0 0 0 1
1√
2

0 − 1√
2

0

1 0 0 0

⎞
⎟⎟⎟⎠

⎡
⎢⎢⎢⎣

aH

aV

bH

bV

⎤
⎥⎥⎥⎦. (36)

As before, the phase delay (PD) is set to an angle of
φ ∈ [0, 2π ], and we have added a half-wave plate, HWP3,
with a fast-axis angle of θ ∈ [0, π/4]. The other two half-
wave plates, HWP1 and HWP2, have fast-axis angles of π/8
in order to measure the output of the interferometer in the
diagonal-antidiagonal basis.

In quantum mechanical terms, the initial entangled state
is given by Eq. (26), and the final quantum state, prior to
polarizing beam splitters PBS1, PBS2, and PBS3, is given by

|	 ′〉 = 1√
2

[Â†
w cos 2θ + Â†

p sin 2θ ]ĉ†
H |0〉

+ 1√
2

[Â†
w sin 2θ − Â†

p cos 2θ ]ĉ†
V |0〉 , (37)

062213-5



BRIAN R. LA COUR AND THOMAS W. YUDICHAK PHYSICAL REVIEW A 103, 062213 (2021)

FIG. 5. VQOL experimental setup for a quantum-controlled
delayed-choice quantum eraser experiment using a polarization-
dependent beam splitter (PDBS). The PDBS is composed of a beam
splitter surrounded by four polarizing beam splitters that transmit
(reflect) horizontal (vertical) light, and a beam blocker (black
square). The beam blocker absorbs ZPF modes entering from the
unused input ports of the top and left PBS of the PDBS.

where |0〉 is the vacuum state, Â†
w is the “wave” creation

operator

Â†
w = 1

2
√

2
[(1 + eiφ )(â†

H + â†
V ) + (1 − eiφ )(b̂†

H + b̂†
V )],

(38)

Â†
p is the “particle” creation operator

Â†
p = 1

2 [eiφ â†
H − eiφ â†

V + b̂†
H − b̂†

V ], (39)

and the operators â†
H , â†

V , b̂†
H , b̂†

V , ĉ†
H , and ĉ†

V are the creation
operators for the modes corresponding to detectors D1, D2,
D3, D4, D5, and D6, respectively.

In the quantum mechanical description, a single detection
on either D5 or D6 results in a collapse of the wave function
onto one of two subspaces, each of which is a superposition
of wavelike and particlelike states. A single detection on D1
or D2, say, conditioned on a single detection on D6 would
therefore have a probability of

q(θ, φ) = cos2(φ/2) sin2(2θ ) + 1
2 cos2(2θ ). (40)

Thus, for θ = 0 (θ = π/4) we expect fully particlelike (wave-
like) behavior. This result is equivalent to that found in
Ref. [9], which uses θ and α in place of φ and 2θ and con-
ditions on the horizontal, rather than vertical, mode at PBS3
due to opposite PDBS conventions.

For our classical model we take our initial states to be the
Jones vectors a, b, and c as defined in Eqs. (24), (27), and
(25), respectively. The final Jones vectors for the light entering

PBS1, PBS2, and PBS3 are then found to be a′, b′, and c′,
respectively, where a′ is given by

a′
H = 1 + eiφ

2
√

2
aH + eiφ

2
aV − 1 − eiφ

2
√

2
bH + eiφ

2
bV , (41a)

a′
V = 1 + eiφ

2
√

2
aH − eiφ

2
aV − 1 − eiφ

2
√

2
bH − eiφ

2
bV , (41b)

b′ is given by

b′
H = 1 − eiφ

2
√

2
aH + 1

2
aV − 1 + eiφ

2
√

2
bH − 1

2
bV , (42a)

b′
V = 1 − eiφ

2
√

2
aH − 1

2
aV − 1 + eiφ

2
√

2
bH + 1

2
bV , (42b)

and c′ is given by

c′
H = cH cos 2θ + cV sin 2θ, (43a)

c′
V = cH sin 2θ − cV cos 2θ. (43b)

Unlike the quantum description, there is no clear dis-
tinction between modal subspaces. For θ = 0, say, a single
detection on D6 will occur when |cV | is large and |cH | is small.
Since c and a are statistically correlated, this will tend to occur
when |aV | is large and |aH | is small as well. This, in turn,
implies that a′

H and a′
V are dominated by the particlelike aV

term, versus the wavelike aH term, thereby giving rise to more
particlelike behavior. However, the effects of the wavelike
aH term will not be completely absent, particularly since, in
amplitude, it may be up to a factor of

√
2 larger than the

particlelike aV term. Thus, some wavelike interference will
persist, and a mixture of wavelike and particlelike behavior
will always be exhibited.

As before, we may define the individual detection events
for each detector as follows:

D1 = {|a′
H | > γ or |σ0z′

1V | > γ }, (44a)

D2 = {|a′
V | > γ or |σ0z′

1H | > γ }, (44b)

...

D6 = {|c′
V | > γ or |σ0z′

3H | > γ }, (44f)

where z′
1H , . . . , z′

3V are independent standard complex Gaus-
sian random variables corresponding to the unused input ports
of PBS1, PBS2, and PBS3.

We may now define the four relevant coincident detection
events, C16, C26, C36, and C46, as follows:

C16 = D1 ∩ D̄2 ∩ D̄3 ∩ D̄4 ∩ D̄5 ∩ D6, (45a)
...

C46 = D̄1 ∩ D̄2 ∩ D̄3 ∩ D4 ∩ D̄5 ∩ D6. (45d)

Finally, the conditional probability of a single detection on
D1 or D2, given a coincident detection with D6, is

p(θ, φ) = Pr[C16 ∪ C26]

Pr[C16 ∪ C26 ∪ C36 ∪ C46]
. (46)

Our task is now to compare p(θ, φ) to q(θ, φ).
To do this, we generated N = 5 × 106 random realizations

for each θ and φ, corresponding 5 s of simulation time in
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FIG. 6. Surface plot of q(θ, φ) and point estimates of p(θ, φ)
(black circles) based on numerical experiments. The small vertical
lines represent approximate 95% confidence intervals. No fitting was
performed on the data.

VQOL. We took γ = 1.95 and r = 0.25, to better match the
results of Ref. [9]. For these settings we found an average of
125 coincidences per run, about 5 of which may be consid-
ered accidental. In Fig. 6 we have plotted q(θ, φ) as well as
estimates of p(θ, φ) from our numerical experiments. We find
that the results compare favorably with Fig. 4 of Ref. [9] and
exhibit a clear morphing between particlelike and wavelike
behavior, although there are deviations from the ideal quan-
tum prediction. We note also the slight vestige of wavelike
behavior at θ = 0 and particlelike behavior at θ = π/4, in-
dicating that these results are qualitatively similar to, albeit
quantitatively different from, the ideal two-photon quantum
predictions.

Given these results, we should like to return to the proof by
Ionicioiu and Terno [6,10] that conformity with the quantum
predictions should rule out a certain class of hidden-variable
models, as this would seem to be at variance with our re-
sults. This class is specified by three defining characteristics:
(i) wave-particle objectivity, (ii) determinism, and (iii) local
independence.

Our model is clearly deterministic: given a particular real-
ization of all ZPF modes, the detection outcomes are uniquely
determined. It is approximately consistent with wave-particle
objectivity, which states that the set of hidden-variable states
corresponding to the presence or absence of a second beam
splitter should be disjoint. The notional idea is that there
is a hidden variable that determines whether particlelike or
wavelike behavior is exhibited. Certainly the sets of hidden-
variable states for which a detection occurs on either D5 or
D6 (i.e., the sets D5 ∩ D̄6 and D̄5 ∩ D6) are disjoint, but condi-
tioning on these events provides only approximate conformity
with the ideal two-photon quantum predictions. Even under
conditioning, the outcomes are a mixture of particlelike and
wavelike behavior.

Finally, local independence is the property that the hidden-
variable space may be separated into two sets of statistically
independent variables controlling, on the one hand, detec-
tions at the output of the interferometer and, on the other,
the presence or absence of the second beam splitter. Since
the experimental setup is not a proper implementation of the

FIG. 7. VQOL experimental setup for dimension witness
experiment.

Ionicioiu-Terno scheme, this condition cannot be satisfied.
Specifically, the right spatial mode of the entanglement source
is used both as a control and an input to the interferometer.
Although the ZPF modes, which may be construed as the
hidden variables, are all statistically independent, they cannot
be uniquely associated with either control or input due to the
experimental setup and, in particular, use of the PDBS. Of
course, the presence or absence of the second beam split-
ter could be controlled by a separate, independent classical
random variable, but this reduces to the quantum eraser ex-
periment of the previous section.

V. RELATION TO DIMENSION WITNESS

We now turn to some more recent theoretical and experi-
mental results regarding delayed-choice experiments. Bowles,
Quintino, and Brunner have considered the problem of dis-
tinguishing quantum systems from classical counterfeits in
a device-independent manner using a so-called “dimension
witness” [35]. In their scheme, the classical system is assumed
to produce, upon a certain state preparation, a “message”
m ∈ {0, . . . , d − 1}, where d is the Hilbert space dimension
of the corresponding quantum system. (“Classical,” in their
sense, means that only finite, digital information is conveyed).
The final measurement outcome is assumed to depend only on
the message m and some given measurement setting.

Denoting by p(x, y) the probability of a desired outcome
for preparation x and measurement y, both taken to be integer
indexes, Bowles et al. [35] define the matrix

W2 =
(

p(1, 1) − p(2, 1) p(3, 1) − p(4, 1)

p(1, 2) − p(2, 2) p(3, 2) − p(4, 2)

)
. (47)

For a two-dimensional classical system (i.e., one for which
messages are restricted to one of d = 2 values), they show that
only det(W2) = 0 is possible. By contrast, a two-dimensional
quantum system (i.e., one for which the Hilbert space dimen-
sion is d = 2) can achieve values as high as | det(W2)| = 1.

Chaves et al. have used this construction to design a
delayed-choice experiment that can distinguish between a
two-dimensional quantum system and a classical system, so
defined, of the same dimension [19]. One version of the pro-
posed experiment was recently performed using a single qubit
in a polarization-based Mach-Zehnder interferometer and a
pair of phase retarders to provide different preparation and
measurement settings [20].

A simplified version of the experimental setup is shown
in Fig. 7. A laser (LAS) generates horizontally polarized
light, which is attenuated by a neutral density filter (NDF). A
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half-wave plate (HWP1) with a fast-axis angle of 22.5◦ is then
applied to play the role of a beam splitter. Next, a birefringent
phase retarder (PR1) applies a phase factor eiφx to the vertical
polarization component. This constitutes the preparation stage
of the experiment. The measurement stage consists of another
phase retarder, PR2, that applies a phase factor eiσy to the
vertical component. A second half-wave plate, HWP2, rotated
22.5◦ completes the interferometer, and a final polarizing
beam splitter (PBS) and two detectors, D1 and D2, are used to
detect horizontal and vertical polarization, respectively. In the
actual experiment, σy was chosen randomly and set only after
the light had passed through HWP1.

In our model, the initial state following the NDF is repre-
sented, as before, by the stochastic Jones vector(

aH

aV

)
=

(
α

0

)
+ σ0

(
z1H

z1V

)
. (48)

After passing through the phase retarders and HWP2, the state
becomes(

aH

aV

)
MZI−−→ 1

2

[
(1 + ei
xy )aH + (1 − ei
xy )aV

(1 − ei
xy )aH + (1 + ei
xy )aV

]
, (49)

where 
xy = φx + σy.
For each preparation x and measurement y, we define

p1(x, y) as the probability of obtaining a detection on D1,
given that a single detection occurred on either D1 or D2. This
probability is given by

p1(x, y) = Pr[D1 ∩ D̄2]

Pr[D1 ∩ D̄2] + Pr[D̄1 ∩ D2]
, (50)

where

D1 = D+ ∪ {|σ0z2V | > γ }, (51)

D2 = D− ∪ {|σ0z2H | > γ }, (52)

and

D± = {|(1 ± ei
xy )aH + (1 ∓ ei
xy )aV | > γ }. (53)

We similarly define p2(x, y) as the probability of a single
detection on D2. Note that z2H and z2V correspond to the
ZPF components entering from the top input port of the PBS
and constitute an independent source of randomness in the
measurement stage.

Following the experimenters, we construct W2 for the
four preparation settings, φ1 = 0, φ2 = π , φ3 = −π/2, and
φ4 = π/2, and two measurement settings, σ1 = 0 and σ2 =
π/2. Quantum mechanics predicts, for a single photon, that
p(1, 1) = p(3, 2) = 1, p(2, 1) = p(4, 2) = 0, and p(3, 1) =
p(4, 1) = p(1, 2) = p(2, 2) = 1

2 , giving | det(W2)| = 1. Us-
ing our model, we take p(x, y) = p1(x, y) and compute the
matrix W2 using σ0 = 1/

√
2 and γ = 1.95, as before, and

vary α.
In Fig. 8 we have plotted our classical model results

for | det(W2)| as a function of the input intensity, as given
by |α|2. (For a coherent state |α〉, this corresponds to the
average photon number). For 0 < |α|2 � 1, the ZPF domi-
nates and the low coherence results in a small, but positive,
value of | det(W2)|. For |α|2 
 1, | det(W2)| approaches the
ideal single-photon prediction of 1. Note that, although the
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FIG. 8. Plot of | det(W2)| versus |α|2. The dashed line indicates
the ideal quantum prediction. The red (light gray) dot corresponds to
the value of | det(W2)| obtained experimentally in Ref. [20].

limit |α|2 → ∞ corresponds to classical light (i.e., light
for which the ZPF is negligible), postselection on single-
detection events maintains the particlelike anticorrelations of
the interferometer and allows for agreement with the quan-
tum prediction. The experimental value of 0.95 observed in
Ref. [20] corresponds, in our model, to |α|2 = 1.3.

Of course, it is unsurprising that a value of | det(W2)|
greater than 0 can be obtained, as the “messages” between
preparation and measurement in our model are not limited
to discrete values but, rather, can take on a continuum of
possible values in C2. Agreement with quantum mechanics
was further made possible by postselecting on what would
appear to be single-photon detections, as was done in the
actual experiment. It is clear from this example that an
assumption of finite-dimensional classical models is overly
restrictive.

In our model, the measurement outcomes depend on what
may be construed as four hidden variables: z1H , z1V , z2H ,
and z2V . The first two, λ = (z1H , z1V ), may be considered as
part of the preparation stage, while the last two, (z2H , z2V ),
may be considered part of the measurement stage. They are
independent of and unaffected by the choice of preparation
or measurement settings, so it is clear that the model is
completely causal. Nevertheless, it may be useful to examine
measurable bounds on retrocausality.

To study this question, Chaves et al. have proposed the
use of a retrocausality measure RY →� intended to capture
the apparent retrocausal impact of the measurement set-
ting choice on the preparation hidden-variable state [19]. A
hidden-variable model for which RY →� = 0 is completely
causal, while one for which RY →� = 1 is considered strongly
retrocausal. Since, in our model, the preparation hidden vari-
ables are independent of the measurement settings, RY →� =
0. Chaves et al. show that one can measure a bound Rmin such
that any hidden-variable model must satisfy RY →� � Rmin

in order to be consistent with observations [19]. Thus, they
conclude, if Rmin > 0, then such a model must be retrocausal.
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FIG. 9. Plot of the dimension witness IDW versus |α|2. The upper
dashed line indicates the ideal, single-photon quantum prediction,
while the lower dotted line indicates the two-dimensional classical
bound. The red (light gray) dot corresponds to the value of IDW

obtained experimentally in Ref. [20].

The bound Rmin is given in terms of a dimension witness,
IDW [36]. This, in turn, is defined to be

IDW = ∣∣〈B〉11 + 〈B〉12 + 〈B〉21 − 〈B〉22 − 〈B〉31

∣∣, (54)

where 〈B〉xy = p1(x, y) − p2(x, y). In terms of IDW,

Rmin = max

{
IDW − 3

4
, 0

}
. (55)

Algebraically, IDW ∈ [0, 5] and Rmin ∈ [0, 1
2 ]. It has been

shown that IDW � 3 for two-dimensional classical systems,
while a two-dimensional quantum system may achieve up to
IDW = 1 + 2

√
2 ≈ 3.8284 [37]. Consequently, Rmin = 0 for

two-dimensional classical systems, while a two-dimensional
quantum system may achieve up to Rmin = (

√
2 − 1)/2 ≈

0.2071.
Following Ref. [20], we computed IDW for our model using

the preparation settings φ1 = 7π/4, φ2 = 5π/4, and φ3 =
π/2 and the measurement settings σ1 = π/2 and σ2 = 0. As
before, we took σ0 = 1/

√
2 and γ = 1.95 while varying α.

The results are shown in Fig. 9. We find that the classical
bound for two-dimensional models is surpassed for |α|2 >

0.33, with |α|2 = 0.58 giving the value IDW = 3.82 observed
in Ref. [20]. For |α|2 > 0.58, we find that IDW can exceed even
the quantum bound. Such exceedances, while often associated
with post-quantum theories, are in fact a well-known conse-
quence of postselection [38]. Asymptotically, IDW approaches
the algebraic limit of five as |α|2 → ∞. The retrocausality
bound Rmin follows similar behavior.

It may seem curious that a manifestly causal model such
as we have described would give a nonzero lower bound for
the retrocausality measure. Indeed, this would seem to contra-
dict the assertion that RY →� � Rmin. However, the nonzero
values of Rmin are a direct consequence of IDW exceeding
the two-dimensional classical bound. This, in turn, arises
from the process of postselection and gives rise to classical

contextuality and, hence, the illusion of retrocausality. Thus,
there is no contraction between our results and the theoretical
interpretation of Rmin.

VI. PREPARATION VIA HERALDING

The dimension witness has also been considered in a recent
experiment by Huang et al. using an entanglement source
[21]. Instead of an attenuated laser, the experimenters used
heralded detections on a parametric down-conversion source
of entangled light to produce the prepared state. As in the
Polino et al. experiment of Ref. [20], polarization components
are used as a surrogate for the two paths of an interferometer,
and measurement proceeds in much the same way.

A simplified version of the experiment is shown in Fig. 10.
The entanglement source (ENT) is used to prepare the Bell
state given by Eq. (26). The setups for Alice and Bob are
similar in that each uses a phase retarder (PR), a half-wave
plate (HWP) set to 22.5◦, a polarizing beam splitter (PBS) and
a pair of detectors for each polarization mode. Alice’s phase
retarder (PR1) is set to an angle αx, while Bob’s (PR2) is set to
βy. In the experiment of Ref. [21], α1 = π/4 and α2 = π/2,
while β1 = π/2 and β2 = 0. Also, the distance to Alice was
made shorter than the distance to Bob, ensuring that setting
changes by Alice cannot affect Bob. Coincident detections are
determined by the known relative delay.

The setup allows Alice to prepare four different states for
Bob to measure, owing to the two values of αx and the two
detectors (D3 and D4) used by Alice for heralding. Quantum
mechanically, the state entering Alice’s PBS is of the form
|	〉 = |H〉 ⊗ |ψ3x〉 + |V 〉 ⊗ |ψ4x〉, where

|ψ3x〉 = |H〉 + eiαx |V 〉√
2

, (56)

|ψ4x〉 = |H〉 − eiαx |V 〉√
2

. (57)

Thus, a single detection on D3 may be construed as preparing
the state |ψ3x〉 for Bob, while one on D4 may be considered to

FIG. 10. Experimental setup for an entanglement-based dimen-
sion witness measurement.
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TABLE I. Enumeration of the eight preparation and measure-
ment bases, as determined by Alice’s heralding detector and the
settings of the two phase retarders.

Basis Herald (x, y) φ jxy

1 D3 (1,1) π/2 + π/2 = π

2 D3 (2,1) π/4 + π/2 = 3π/4
3 D4 (1,1) (π/2 + π ) + π/2 = 2π

4 D4 (1,1) (π/4 + π ) + π/2 = 7π/4
5 D3 (1,2) π/2
6 D3 (2,2) π/4
7 D4 (1,2) 3π/2
8 D4 (1,2) 5π/4

prepare |ψ4x〉. Note that, since

|ψ4x〉 = |H〉 + ei(αx+π ) |V 〉√
2

, (58)

we may consider a herald on D4 as equivalent to Alice setting
her phase retarder to the angle αx + π .

Following Bob’s phase retarder and half-wave plate, the
final state entering his PBS is

|ψ ′
jxy〉 = 1

2 (1 + eiφ jxy ) |H〉 + 1
2 (1 − eiφ jxy )|V 〉, (59)

where either φ3xy = αx + βy or φ4xy = αx + π + βy is used,
depending upon whether Alice made a detection on D3 or
D4, respectively. The theoretical quantum prediction for the
probability of a detection on, say, D1, given a single detection
on either D3 or D4, is

q1 j (x, y) = 1
4 |1 + eiφ jxy |2. (60)

A tabulation of the different possible preparation and mea-
surement bases is shown in Table I.

In our classical mode, the entanglement source is modeled
by the random Jones vectors a and b, where

a =
(

aH

aV

)
= σ0

(
z1H cosh r + z∗

2H sinh r

z1V cosh r + z∗
2V sinh r

)
(61)

and

b =
(

bH

bV

)
= σ0

(
z2H cosh r + z∗

1H sinh r

z2V cosh r + z∗
1V sinh r

)
. (62)

Local transformations by the phase retarders and half-wave
plates yield

a −→ a′(x, y) = 1√
2

(
aH + eiαx aV

aH − eiαx aV

)
(63)

and

b −→ b′(x, y) = 1√
2

(
bH + eiβy bV

bH − eiβy bV

)
. (64)

Each of the polarizing beam splitters introduces an addi-
tional vacuum mode from the ZPF. For Bob, we denote this as
σ0(z3H , z3V )T, and for Alice we denote this as σ0(z4H , z4V )T.
The measurement events for a detection on each detector,

regardless of the others, are therefore the following:

D1(x, y) = {|b′
H (x, y)| > γ or σ0|z3V | > γ }, (65)

D2(x, y) = {|b′
V (x, y)| > γ or σ0|z3H | > γ }, (66)

D3(x, y) = {|a′
H (x, y)| > γ or σ0|z4V | > γ }, (67)

D4(x, y) = {|a′
V (x, y)| > γ or σ0|z4H | > γ }. (68)

We now consider the four coincident events (D1, D3),
(D1, D4), (D2, D3), and (D2, D4) for each of the possible
values of αx and βy. (For now, we drop the explicit dependence
on x and y). These events are given as follows:

C13 = D1 ∩ D̄2 ∩ D3 ∩ D̄4, (69)

C14 = D1 ∩ D̄2 ∩ D̄3 ∩ D4, (70)

C23 = D̄1 ∩ D2 ∩ D3 ∩ D̄4, (71)

C24 = D̄1 ∩ D2 ∩ D̄3 ∩ D4. (72)

The experiment considers coincident events

C1 = C13 ∪ C14, (73)

C2 = C23 ∪ C24, (74)

such that C1 is the event that Bob gets a click on just D1 and
Alice gets a click on either D3 or D4 (but not both).

From these events, we may define the conditional proba-
bilities

pi j (x, y) = Pr[Ci j |Ci] = Pr[Ci j (x, y)]

Pr[Ci(x, y)]
. (75)

Conditioning on coincident events is equivalent to adopt-
ing the fair-sampling assumption, which the experimenters
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FIG. 11. Plot of the conditional probability for each of the eight
preparation and measurement bases, as defined in Table I. The
left blue (dark gray) bars are the theoretical quantum predictions
q1 j (x, y), and the right red (light gray) bars are the values of p1 j (x, y)
determined numerically from our model.
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FIG. 12. Plot of the dimension witness IDW versus r. The upper
dashed line indicates the ideal quantum prediction, while the lower
dotted line indicates the upper bound for a two-dimensional classical
model. The red (light gray) dot corresponds to the value of IDW

obtained experimentally in Ref. [21].

in Ref. [21] have used. In Fig. 11 we plot the numerically
determined values of p1 j (x, y), the conditional probabilities
of detections on D1, and compare these against the theoretical
quantum predictions q1 j (x, y). In the simulation, we used r =
1, γ = 1.95, σ0 = 1/

√
2, and N = 106 random realizations.

We find that the agreement between theory and model predic-
tions is comparable to or better than that found experimentally
in Ref. [21].

Finally, we compute the dimension witness

IDW = |B311 + B312 + B321 − B322 − B411|, (76)

where

Bjxy = p2 j (x, y) − p1 j (x, y). (77)

Figure 12 shows a plot of IDW versus the squeezing parameter
r. (All other parameters are the same as those for Fig. 11).
We see that for r < 0.3 the dimension witness falls below
the threshold for a two-dimensional classical system. At r ≈
0.8, IDW achieves the value 3.445 observed in Ref. [21].
For r > 2.6, IDW surpasses the theoretical quantum bound of
1 + 2

√
2. Larger values of r result in numerical instability

but suggest that IDW continues to increase monotonically. The
nonmonotonic behavior for intermediate values of r is due to
higher photon number terms in the Fock-state expansion of
the four-mode squeezed state used to model the entanglement
source, resulting in deviations from an ideal, two-photon Bell
state.

VII. CONCLUSION

Current optical delayed-choice experiments, even those
involving entangled light, can be understood from a strictly
causal, classical perspective. We illustrated this using a spe-
cific, physically motivated classical model with two key
elements: (i) a reified zero-point field and (ii) a deterministic
threshold-based detector model. This model is not restricted
to delayed-choice experiments but is expected to be applicable
to a wide range of quantum optical phenomena, although the
precise domain of validity is not yet known.

The use of a dimension witness as a tool to distinguish clas-
sical from quantum systems was found to be inadequate due to
its overly restrictive assumption of finite classical messaging.
The small class of hidden-variable models that it is capable
of ruling out is of no practical interest, as a simple classical
device with analog messaging can easily spoof the witness.
Likewise the retrocausality measure, which is functionally
related to the dimension witness, was found to provide no
evidence for the presence of retrocausality or other nonclas-
sical behavior, as nonzero values can easily be reproduced by
a strictly causal classical model.

We found instead that the postselection of desired measure-
ment outcomes is critical to reproducing quantum behavior
and appears to be what gives rise to the apparent causal
(or retrocausal) behavior observed in delayed-choice exper-
iments. This is consistent with past experimental tests of
quantum nonlocality that rely upon the fair-sampling assump-
tion and thus may be susceptible to the detection loophole. It
may be possible that a delayed-choice experiment could be
performed that avoids this detection loophole, but this has not
yet been demonstrated.
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