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Complementarity between one-particle visibility and two-particle visibility in discrete systems can be ex-
tended to bipartite quantum-entangled Gaussian states implemented with continuous-variable quantum optics.
The meaning of the two-particle visibility originally defined by Jaeger, Horne, Shimony, and Vaidman with the
use of an indirect method that first corrects the two-particle probability distribution by adding and subtracting
other distributions with varying degree of entanglement, however, deserves further analysis. Furthermore, the
origin of complementarity between one-particle visibility and two-particle visibility is somewhat elusive and
it is not entirely clear what is the best way to associate particular two-particle quantum observables with the
two-particle visibility. Here, we develop a direct method for quantifying the two-particle visibility based on
measurement of a pair of two-particle observables that are compatible with the measured pair of single-particle
observables. For each of the two-particle observables from the pair is computed corresponding visibility, after
which the absolute difference of the latter pair of visibilities is considered as a redefinition of the two-particle
visibility. Our approach reveals an underlying mathematical symmetry as it treats the two pairs of one-particle
or two-particle observables on equal footing by formally identifying all four observable distributions as rotated
marginal distributions of the original two-particle probability distribution. The complementarity relation between
one-particle visibility and two-particle visibility obtained with the direct method is exact in the limit of infinite
Gaussian precision where the entangled Gaussian state approaches an ideal Einstein-Podolsky-Rosen state. The
presented results demonstrate the theoretical utility of rotated marginal distributions for elucidating the nature
of two-particle visibility and provide tools for the development of quantum applications employing continuous
variables.

DOI: 10.1103/PhysRevA.103.062211

I. INTRODUCTION

The particle nature of quantum theory is inbuilt in the
tensor product composition of Hilbert spaces for composite
physical systems [1–3]. The composite tensor product Hilbert
space allows for realization of quantum-entangled states that
are superpositions of tensor products of basis vectors for
individual quantum systems such that the resulting compos-
ite quantum probability amplitudes are not separable [4].
For studying quantum entanglement in continuous-variable
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quantum systems, we have chosen to focus on entangled
systems of superposed Gaussians as a minimal toy model
due to relatively straightforward analytic integration of the
resulting two-dimensional quantum probability distributions.
Furthermore, entangled Gaussian states are practical for im-
plementation in quantum technologies because such states can
be readily produced [5], reliably controlled [6], and efficiently
measured [7–11].

The presence of quantum entanglement in bipartite sys-
tems could be manifested in the form of varying degrees of
visibility of quantum interference patterns of single quantum
observables or in the form of correlations of observable out-
comes for pairs of compatible quantum observables [12–15].
Motivated by the pioneering work by Jaeger, Horne, Shi-
mony, and Vaidman [16,17] on quantum complementarity
of one-particle and two-particle interference in four-beam
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interferometric setups, we have undertaken a detailed in-
vestigation aimed at finding the origin of this reported
complementarity and elucidating the meaning of one-particle
and two-particle visibilities in the case of continuous vari-
ables. Within the context of bipartite entangled Gaussian
states, we have addressed the following questions.

First, what is two-particle visibility? Also tightly related
to this first question, what are the mathematical techniques
and corresponding physical operations to determine interfer-
ence visibilities from available multidimensional probability
distributions? Suppose that we are granted the ability to de-
termine the upper and lower envelopes of any interference
pattern with a negligible experimental error. Even within
such an idealized scenario, the original definition of visi-
bility given as a ratio between the difference and the sum
of upper and lower envelopes is well defined only for one-
dimensional distributions. Apparently, this original definition
can still be applied if the multidimensional distribution is
mathematically preprocessed to reduce the overall number of
dimensions to one. However, the dimensional reduction can
be performed in at least two alternative ways. One procedure
corresponding to the creation of a conditional distribution is
slicing of the multidimensional distribution along an axis.
The second procedure corresponding to the creation of an
unconditional distribution is marginalization of the multidi-
mensional distribution along an axis (the two procedures will
be described by exact mathematical expressions within the
following sections). Previous works on the problem [16–18]
were focused on the former approach, i.e., application of
slicing through a given multidimensional distribution fol-
lowed by fixing the ensuing unwanted consequences using the
so-called corrections of the original multidimensional distri-
bution. Here, we present the advantages of the latter approach,
i.e., marginalization as a direct method of finding the visibil-
ities without any correction of the original multidimensional
distribution.

Second, how can the two-particle visibility be mea-
sured? Also tightly related to this second question, what are
the complementary quantum observables corresponding to
the one-particle and two-particle interference visibilities? The
original definition of two-particle visibility by Jaeger, Horne,
Shimony, and Vaidman [16,17] was given in terms of slicing
through a “corrected” two-dimensional distribution, which
was constructed by addition and subtraction of other two-
dimensional distributions. The first technical issue is that the
slicing produces conditional distributions, which means that
the two-particle visibility is expressed in some form of inter-
dependence of a pair of observables where one of the two
observables is postselected to a specific value. The second
technical issue is that the correction of the two-dimensional
quantum distribution may not guarantee the existence of
a single quantum observable whose observable distribution
is used to calculate the two-particle visibility for varying
strength of entanglement; i.e., since the “correction” varies
depending on the entanglement strength, it is not immediately
clear why the sought-after single quantum observable can-
not also vary as the entanglement varies. Here, we explicitly
identify a pair of two-particle observables whose measure-
ment is utilized to determine the two-particle visibility. This

fact manifests a mathematical symmetry with the observation
that single-particle visibilities are determined from a pair of
single-particle observables.

Third, what is the origin and the physical mechanism
that generates complementarity between the one-particle and
two-particle interference visibilities? In single quantum sys-
tems, it is well known that quantum complementarity is due
to the uncertainty relations between mutually unbiased ob-
servables acting on their Hilbert space [19–21]. In bipartite
quantum systems, however, the tensor product composition
of Hilbert spaces allows for the existence of quantum-
entangled states whose measurement allows for extraction
of useful information about one of the systems by measur-
ing the other system [22]. Here, we show that in different
bases the composite bipartite quantum state can always be
decomposed in two complementary ways: either into a su-
perposition of separable states or into a superposition of
maximally entangled states. Noteworthy, these two comple-
mentary decompositions also display clearly as variables the
sought-after one-particle and two-particle observables that
are used for evaluating the one-particle and two-particle vis-
ibilities. The complementarity originates from an existing
π
4 shift in the trigonometric functions appearing in the two
decompositions.

The outline of the present work is as follows: In Sec. II,
we introduce the bipartite partially entangled Gaussian state,
which is used for studying one-particle and two-particle vis-
ibility. Furthermore, for different bases we present pairs of
complementary decompositions, either in separable states or
in maximally entangled states, which clearly pinpoint the ori-
gin of complementarity between one-particle and two-particle
interference. Next, in Sec. III, we introduce the concepts
of compatible (commuting) one-particle and two-particle ob-
servables, discuss their formal relation to marginalization over
a rotated axis with resulting rotated marginal distributions,
and derive a complementarity relation for symmetric setups.
Then, in Sec. IV, we generalize the complementarity rela-
tion between one-particle and two-particle observables for
asymmetric setups. In Sec. V, we present another quantum
complementarity relation involving incompatible (noncom-
muting) measurements for estimation of the one-particle
visibility and the correlation between positions in the slits
of the two entangled particles. Finally, we conclude with a
discussion of the main findings and their significance. The
meaning of essential technical jargon is clarified in the Ap-
pendixes.

II. PARTIALLY ENTANGLED GAUSSIAN STATE
IN DIFFERENT BASES

Throughout this work, we will study the geometric struc-
ture of a partially entangled Gaussian state ψ that can be
utilized for the creation of one-particle and two-particle in-
terference patterns. One possible physical realization of such
a state is through entangled photons in a paired double-
slit setup [12–15,23,24] (Fig. 1). In the position basis,
the partially entangled Gaussian state can be written as
a superposition of maximally correlated and anticorrelated
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terms [18]

ψ (x1, x2) =
√

a

2π
B

[(
e−a(x1−h1 )2

e−a(x2−h2 )2 + e−a(x1+h1 )2

e−a(x2+h2 )2)
cos

(
π

4
− ξ

)

+ (
e−a(x1−h1 )2

e−a(x2+h2 )2 + e−a(x1+h1 )2

e−a(x2−h2 )2)
sin

(
π

4
− ξ

)]

=
√

2a

π
Be−a(h2

1+h2
2+x2

1+x2
2 )

[
cosh(2ah1x1 + 2ah2x2) cos

(
π

4
− ξ

)
+ cosh(2ah1x1 − 2ah2x2) sin

(
π

4
− ξ

)]
, (1)

where a = 1
4σ 2 is a parameter that controls the precision of an individual Gaussian state (in statistics, the precision 1

σ 2 is the
reciprocal of the variance σ 2), ±h1,±h2 are the centers of the individual Gaussians,

B2 = ea(h2
1+h2

2 )

cosh
[
a
(
h2

1 + h2
2

)] + cosh
[
a
(
h2

1 − h2
2

)]
cos(2ξ )

, (2)

and ξ is a parameter that controls the entanglement such that for ξ = 0 + n π
2 , n ∈ Z, the state is separable, for ξ = π

4 + nπ

the state is maximally correlated, and for ξ = 3π
4 + nπ the state is maximally anticorrelated. Note that if the state at the second

double slit has a different Gaussian precision parameter b, we can always define new variables x2 = x̄2
√ a

b and h2 = h̄2
√ a

b ,
which transform the state into the form (1). In other words, increasing the individual Gaussian precision of the wave function or
rescaling the slits has the same effect.

To gain an alternative geometric insight into the structure of Eq. (1), we can use trigonometric angle addition identities for
π
4 − ξ to rewrite the state as a superposition of two separable terms, one with four Gaussian peaks that have the same sign and
one with four Gaussian peaks that have an opposite sign across the diagonal:

ψ (x1, x2) = 2

√
a

π
Be−a(h2

1+h2
2+x2

1+x2
2 )[cosh(2ah1x1) cosh(2ah2x2) cos ξ + sinh(2ah1x1) sinh(2ah2x2) sin ξ ]. (3)

Equation (3) is not a redundant decomposition of Eq. (1), but a complementary one. Even though the x1, x2 basis is used in both
cases, Eq. (1) is a decomposition into a superposition of maximally entangled states, whereas Eq. (3) is a decomposition into
a superposition of separable states. It will become clear in the subsequent mathematical derivations that the complementarity
relation between one-particle and two-particle visibility originates exactly from the π

4 phase shift appearing in the separable
versus the maximally entangled decomposition.

Fourier transform of Eq. (1) gives the partially entangled wave function in wavenumber basis as a superposition of maximally
correlated and anticorrelated terms:

ψ (k1, k2) = 1√
8aπ

Be− k2
1 +k2

2
4a

[
(e−ıh1k1 e−ıh2k2 + eıh1k1 eıh2k2 ) cos

(
π

4
− ξ

)
+ (e−ıh1k1 eıh2k2 + eıh1k1 e−ıh2k2 ) sin

(
π

4
− ξ

)]

= 1√
2aπ

Be− k2
1 +k2

2
4a

[
cos (h1k1 + h2k2) cos

(
π

4
− ξ

)
+ cos (h1k1 − h2k2) sin

(
π

4
− ξ

)]
. (4)

The structure of Eq. (4) could be further elucidated by using trigonometric angle addition identities to rewrite the state as a
superposition of two separable states, one that is a product of fringes and one that is a product of antifringes:

ψ (k1, k2) = 1

4
√

aπ
Be− k2

1 +k2
2

4a
[(

e−ıh1k1 + eıh1k1
)(

e−ıh2k2 + eıh2k2
)

cos ξ + (
e−ıh1k1 − eıh1k1

)(
e−ıh2k2 − eıh2k2

)
sin ξ

]

= 1√
aπ

Be− k2
1 +k2

2
4a [cos (h1k1) cos (h2k2) cos ξ − sin (h1k1) sin (h2k2) sin ξ ]. (5)

It can be seen that for ξ = 0 + n π
2 the state is separa-

ble, whereas for ξ = π
4 + n π

2 the state is maximally
entangled. The cosine terms correspond to fringes, i.e.,
(e−ıh1k1 + eıh1k1 ) = 2 cos(h1k1) and (e−ıh2k2 + eıh2k2 ) =
2 cos(h2k2), whereas the sine terms correspond to
antifringes, i.e., (e−ıh1k1 − eıh1k1 ) = −2ı sin(h1k1) and
(e−ıh2k2 − eıh2k2 ) = −2ı sin(h2k2).

A number of quantum complementarity relations con-
strain one-particle visibility and two-particle visibility for
discrete variables [16,17,26–28]. The previously used indirect

method for assessment of two-particle visibility, however,
is somewhat involved because it requires a “correction” of
|ψ (k1, k2)|2 by addition and subtraction of two other terms
[16–18] (for details on the original method proposed by
Jaeger, Horne, Shimony, and Vaidman, see Appendix A).
Here, our goal is to develop a direct method to quantify two-
particle visibility using only |ψ (k1, k2)|2. We will also require
that the complementarity is exact in the limit of infinite Gaus-
sian precision a → ∞ for every ξ and all measured quantum
observables (single-particle and two-particle observables) are
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FIG. 1. Paired double-slit experiment with entangled quanta. A
source S emits pairs of entangled quanta, each of which passes
through a double slit. At the double slits, the pair of entangled quanta
1 and 2 are in the composite quantum state (1) parametrized by
the entanglement parameter ξ . Two particle detectors D1 and D2

feed forward their inputs to a coincidence detector for the recording
of joint probability distributions. If both D1 and D2 are operated
far away from the slits, they record Fraunhofer diffraction patterns
which reveal the joint particle wavenumber distribution P(k1, k2) =
|ψ (k1, k2)|2. Alternatively, if either one of the two detectors or both
of them are operated at the plane of the slits, they are able to record
different, mutually incompatible joint probability distributions such
as P(x1, k2) = |ψ (x1, k2)|2, P(k1, x2) = |ψ (k1, x2)|2, or P(x1, x2) =
|ψ (x1, x2)|2. The coincidence detector ensures that the analyzed
quanta are of the form (1); i.e., those single quanta that pass through
the slits but whose entangled partner hits the opposite slit walls
are excluded from the analysis. The k distributions of quanta with
wavelength λ are assumed to be extracted, e.g., by scaled position
measurements 2πx/λL (see Sec. 11.3.3 of [25]) that are at distance
L sufficiently far away from the double slit so that the Fraunhofer
diffraction pattern is obtained. An alternative practical way to extract
the k distributions is to record the position distribution from the focal
plane of a lens that is focused onto the double slits [23,24]. For our
present purposes, we take for granted that the experimental realiza-
tion of the Fourier transform of the position wave function is exact
and the k distributions can be measured with negligible experimental
errors. The main research question that we address concerns what we
do next after we have recorded P(k1, k2).

treated on equal footing. In the exposition that follows, we
will demonstrate that indeed such a direct method exists and
it is based on marginalization over rotated axes of |ψ (k1, k2)|2
[to be explicitly defined in Eq. (6) below and elaborated upon
in Appendix B]. In outline, two marginalizations will give
probability distributions for single-particle observables from
which is determined the single-particle visibility, and two
other rotated marginalizations will give probability distribu-
tions for two-particle observables from which is determined
the two-particle visibility. Importantly, all measured quantum
observables are compatible, i.e., simultaneously measurable
in the same experimental setting, as they commute with each
other. This is noteworthy since quantum complementarity has
been usually considered for incompatible observables, such
as position and momentum of a single particle, which do not
commute with each other and cannot be measured simultane-
ously in the same experimental setting.

III. SPECIAL QUANTUM COMPLEMENTARITY
RELATION FOR SYMMETRIC SETUPS

For symmetric setups h1 = h2 = h, the joint probability
distribution P(k1, k2) = |ψ (k1, k2)|2 exhibits different geo-
metric features for different values of the entanglement
parameter ξ . For ξ = 0 the state of the two particles is sep-
arable into a product of fringes, whereas for ξ = π

2 the state
is separable into a product of antifringes. The characteris-
tic geometric feature of separable states is that they exhibit
grooves and unit visibility in two perpendicular directions
aligned with the k1 and k2 axes. In contrast, the maximally
entangled states exhibit grooves and unit visibility at only one
of the two diagonal axes k± = 1√

2
(k1 ± k2). For ξ = π

4 , the
maximally correlated state exhibits fringes only along the k+
axis, whereas for ξ = 3π

4 the maximally anticorrelated state
exhibits fringes only along the k− axis. Thus, the domain of
the entanglement parameter ξ extends in the interval [0, π )
before the period repeats.

Motivated by the characteristic geometry of maximally
entangled states, next we quantify the two-particle visibil-
ity using the marginal distributions for k+ and k−. The
marginal distributions for the standard k1, k2 basis or the
diagonal k+, k− basis have the physical meaning of perform-
ing measurements and extracting statistics without accounting
for the particular value obtained for the second vari-
able of the basis set, namely, P(k1) = ∫ ∞

−∞ |ψ (k1, k2)|2dk2,
P(k2) = ∫ ∞

−∞ |ψ (k1, k2)|2dk1, P(k+) = ∫ ∞
−∞ |ψ (k+, k−)|2dk−

and P(k−) = ∫ ∞
−∞ |ψ (k+, k−)|2dk+. Formally, each rotated

marginal distribution could be written as [29,30]

P(ks,ϕ ) =
∫ ∞

−∞

∫ ∞

−∞
|ψ (k1, k2)|2

× δ(ks,ϕ − k1 cos ϕ − k2 sin ϕ)dk1dk2 (6)

as follows: P(k1) ≡ P(ks,ϕ=0), P(k2) ≡ P(ks,ϕ= π
2

), P(k+) ≡
P(ks,ϕ= π

4
), and P(k−) ≡ P(ks,ϕ=− π

4
). It is worth emphasizing

that we treat ϕ as being fixed to a specific value thereby
having only a single remaining free variable. For example,
the ks axis rotated at ϕ = π

4 inside k1, k2 space coincides with
the k+ axis, hence we write k+ ≡ ks,ϕ= π

4
. In other words, the

subscript ϕ = π
4 is intended as a reminder of the geometric

interpretation of the k+ axis as the particular axis that is
rotated at this specified angle. This apparently cumbersome
notation will prove to be useful in Sec. IV where we generalize
the complementarity relation for asymmetric setups with two-
particle observables that differ from k±.

The visibility of an interference pattern in one-dimensional
probability distribution P(k) is usually defined as the ratio of
the difference and sum of two smooth nonoscillatory functions
env+(k) and env−(k) referred to as upper and lower envelopes,
respectively, which enclose tightly the oscillations of P(k)
from top and bottom:

V (k) = env+(k) − env−(k)

env+(k) + env−(k)
. (7)

Since probabilities are non-negative, both envelopes are also
non-negative and the visibility V is bounded in the closed
interval [0,1]. Typically, the visibility V (k) computed from
P(k) is not an explicit function of k due to cancellation of
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the functional dependence on k in the numerator and denom-
inator of the fraction (Appendix C). Computing the visibility
of interference patterns in multidimensional probability dis-
tributions, however, is not straightforward because slicing or
marginalization along different rotated axes return, in general,
different values of V as we see next.

After explicit integration of Eq. (6) for different values of
ϕ, we obtain the following probability distributions:

P(k1) = B2e− k2
1

2a

2
√

2aπ

{
e−2ah2

2 [cos(2h1k1) + cos(2ξ )]

+ 1 + cos(2h1k1) cos(2ξ )
}

(8)

with envelopes env−(k1) obtained by setting h1k1 → π
2 , and

env+(k1) obtained by setting h1k1 → π . Noteworthy, to obtain
the correct envelopes all indicated substitutions should be
performed only within the trigonometric functions leaving the
leading amplitude intact. For details on envelope fitting based
on some possible empirical data, see Appendix C.

P(k2) = B2e− k2
2

2a

2
√

2aπ

{
e−2ah2

1 [cos(2h2k2) + cos(2ξ )]

+ 1 + cos(2h2k2) cos(2ξ )
}

(9)

with envelopes env−(k2) obtained by setting h2k2 → π
2 , and

env+(k2) obtained by setting h2k2 → π ;

P(k±) = B2e− k2±
2a

4
√

2aπ

{
2 + 2

[
e−ah2

1 cos(
√

2h1k±) + e−ah2
2 cos(

√
2h2k±)

]
cos(2ξ )

+ e−a(h1+h2 )2
cos[

√
2(h1 − h2)k±][1 ∓ sin(2ξ )] + e−a(h1−h2 )2

cos[
√

2(h1 + h2)k±][1 ± sin(2ξ )]
}

(10)

with envelopes env−(k±) obtained by setting
√

2h1k± → π
2 and

√
2h2k± → π

2 , and env+(k±) obtained by setting
√

2h1k± → 2π

and
√

2h2k± → 2π .
It is worth pointing out that for h1 � 1 and h2 � 1, the envelopes are poor approximations as a → 1; however, they are

excellent approximations in the regime a � 1, and become perfect in the limit a → ∞.
After introduction of the absolute value, because the upper and lower envelopes may switch their roles for different values of

ξ , we compute the four unconditional visibilities

V (k1) =
∣∣∣∣ e−2ah2

2 + cos (2ξ )

1 + e−2ah2
2 cos (2ξ )

∣∣∣∣, (11)

V (k2) =
∣∣∣∣ e−2ah2

1 + cos (2ξ )

1 + e−2ah2
1 cos (2ξ )

∣∣∣∣, (12)

V (k±) =
∣∣∣∣∣

(
e−ah2

1 + e−ah2
2
)

cos (2ξ ) + e−a(h1−h2 )2
[1 ± sin (2ξ )]

2 + (
e−ah2

1 + e−ah2
2
)

cos (2ξ ) + e−a(h1+h2 )2 [1 ∓ sin (2ξ )]

∣∣∣∣∣. (13)

For the symmetric setup h1 = h2, we can define the single-
particle visibility as

V = max [V (k1),V (k2)] (14)

and the two-particle visibility as

W = |V (k+) − V (k−)|. (15)

The apparently different definitions for single-particle and
two-particle visibilities highlight the geometric origin of the
two measures: in the two-dimensional surface provided by
P(k1, k2), the separable states contain grooves in two perpen-
dicular directions that cross each other, whereas maximally
entangled states contain parallel grooves in only one direc-
tion. Thus, the choice of rotated marginalizations to generate
an algebraic expression for the observable geometric char-
acteristics of maximally entangled states becomes intuitively
understandable; namely, marginalization in the direction
along the parallel grooves will produce a one-dimensional dis-
tribution with visible fringes, whereas marginalization along
the direction perpendicular to the grooves will produce a
one-dimensional distribution with no fringes. The negative
sign in the two-particle visibility also has a geometric origin,
namely, depending on the nature of quantum interference the

parallel grooves for maximally entangled states are exhibited
in only one of two distinct directions, which alternate as ξ

changes in multiples of π
2 . In contrast, the positive sign in the

one-particle visibility indicates that the crossing grooves for
separable states always occur in the same two directions given
by the k1 axis and k2 axis.

For symmetric setups with highly entangled Gaussian
states in the limit of infinite Gaussian precision a → ∞,
we obtain the exact results lima→∞ V (a) = | cos(2ξ )| and
lima→∞ W (a) = | sin(2ξ )|. Therefore, the single-particle visi-
bility and the two-particle visibility obey the complementarity
relation

lim
a→∞(V 2 + W 2) = cos2 (2ξ ) + sin2 (2ξ ) = 1. (16)

A naive attempt to directly generalize Eq. (16) to asymmetric
setups immediately fails because k± are not the correct two-
particle observables for extracting the two-particle visibility.
We will address this problem next.
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FIG. 2. Joint probability distribution P(k1, k2) = |ψ (k1, k2)|2 observed in Fraunhofer diffraction for asymmetric double slits h1 = 1, h2 =
2 with a = 30 for different values of the entanglement parameter ξ . White lines indicate the generalized two-particle observables s± defined
in Eq. (18). The wavenumbers are measured in arbitrary units (arb. units).

IV. GENERAL QUANTUM COMPLEMENTARITY
RELATION FOR ASYMMETRIC SETUPS

For the asymmetric case h1 	= h2, the quantity W no longer
provides a measure of two-particle visibility for two rea-
sons: (1) for the maximally entangled Gaussian states the
rotated marginal distributions that exhibit perfect interference
fringes are no longer located at an angle of π

4 to one of the
k1, k2 axes, and (2) the two relevant rotated marginal distri-
butions are no longer perpendicular to each other (Fig. 2).
Taking into account the extra rotation introduced by h1 	= h2,
we can now consider two rotated marginal distributions at
angles

±ϕ = ± arctan

(
h2

h1

)
(17)

with their associated visibilities V (s±) ≡ V (ks±,±ϕ ). Thus, the
general two-particle visibility is evaluated from the following
generalized two-particle observables:

s± = h1√
h2

1 + h2
2

k1 ± h2√
h2

1 + h2
2

k2. (18)

The relevant two-particle observables are easy to guess from
Eq. (4), where the geometric parameters of the paired double-
slit setup are explicitly displayed. However, these two-particle
observables could be determined from P(k1, k2) alone with
the use of multiple rotated marginal distributions and testing
for which particular rotated axes ±ϕ the subsequent comple-
mentarity relations hold [see Eq. (22) below]. After explicit
integration of Eq. (6) for the two axes located at ±ϕ, we obtain
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the following probability distributions:

P(s±) = B2e− s2±
2a

4
√

2aπ

⎧⎨
⎩2 + cos

⎛
⎝2s±

(
h2

1 + h2
2

)
√

h2
1 + h2

2

⎞
⎠[1 ± sin (2ξ )]

+ e
− 8ah2

1h2
2

h2
1+h2

2 cos

⎛
⎝2s±

(
h2

1 − h2
2

)
√

h2
1 + h2

2

⎞
⎠[1 ∓ sin (2ξ )]

+ 2e
− 2ah2

1h2
2

h2
1+h2

2

⎡
⎣cos

⎛
⎝ 2s±h2

1√
h2

1 + h2
2

⎞
⎠

+ cos

⎛
⎝ 2s±h2

2√
h2

1 + h2
2

⎞
⎠

⎤
⎦ cos (2ξ )

⎫⎬
⎭. (19)

The lower envelope env−(s±) is obtained by setting
s±h2

1√
h2

1+h2
2

→ π
4 and s±h2

2√
h2

1+h2
2

→ π
4 , whereas the upper envelope

env+(s±) is obtained by setting s±h2
1√

h2
1+h2

2

→ π and s±h2
2√

h2
1+h2

2

→
π . The corresponding visibilities are

V (s±) =

∣∣∣∣∣∣∣
1 + 2e

− 2ah2
1h2

2
h2

1+h2
2 cos (2ξ ) ± sin (2ξ )

2 + 2e
− 2ah2

1h2
2

h2
1+h2

2 cos (2ξ ) + e
− 8ah2

1h2
2

h2
1+h2

2 [1 ∓ sin (2ξ )]

∣∣∣∣∣∣∣
.

(20)

Thus, the two-particle visibility becomes

D = |V (s+) − V (s−)|. (21)

Consequently, for all bipartite double-slit setups (including
asymmetric ones) with highly entangled Gaussians in the
limit a → ∞, we obtain the exact results lima→∞ V (a) =
| cos(2ξ )| and lima→∞ D(a) = | sin(2ξ )|. The single-particle
visibility and the two-particle visibility obey the complemen-
tarity relation

lim
a→∞(V 2 + D2) = cos2(2ξ ) + sin2(2ξ ) = 1. (22)

For symmetric setups h1 = h2, we encounter the special case
when D = W .

Because the quantum complementarity relation (22) is
asymptotically tight, for real-world quantum applications with
finite a it would be helpful to have a measure for the deviation
from unity,

ε = 1 − V 2 − D2. (23)

With imposed conditions h1 � 1, h2 � 1, and a � 2, the de-
viation ε is bounded by

|ε| < 2e
− 2ah2

1h2
2

h2
1+h2

2 . (24)

The observed oscillation around unity might be related to
the aforementioned approximate nature of the computed en-
velopes, which become exact only in the limit of infinite
Gaussian precision a → ∞.

V. QUANTUM COMPLEMENTARITY FOR
INCOMPATIBLE OBSERVABLES

Previous research has demonstrated that probes located at
the arms of a Mach-Zehnder interferometer are able to reduce
the appearance of interference fringes at the interferometer
exit depending on the ability of the probes to distinguish
the two interferometer arms [19–21,31,32]. In the context of
the partially entangled bipartite Gaussian state (1), the distin-
guishability could be computed from the Pearson correlation
between the two position observables,


(x1, x2) = Cov(x1, x2)√
Var(x1)Var(x2)

, (25)

where Cov(x1, x2) = 〈x1x2〉 − 〈x1〉〈x2〉, Var(x1) =
Cov(x1, x1), Var(x2) = Cov(x2, x2), and

〈x1x2〉 =
∫ +∞

−∞

∫ +∞

−∞
x1x2|ψ (x1, x2)|2 dx1dx2, (26)

〈x1〉 =
∫ +∞

−∞

∫ +∞

−∞
x1|ψ (x1, x2)|2 dx1dx2, (27)

〈x2〉 =
∫ +∞

−∞

∫ +∞

−∞
x2|ψ (x1, x2)|2 dx1dx2. (28)

Explicit integration of |ψ (x1, x2)|2 gives

Cov(x1, x2) = B2

2
h1h2 sin(2ξ ), (29)

Var(x1) = B2

8a
e−2a(h2

1+h2
2 )
{
1 + e2ah2

2 cos(2ξ )

+e2ah2
1
[
e2ah2

2 + cos(2ξ )
](

1 + 4ah2
1

)}
, (30)

Var(x2) = B2

8a
e−2a(h2

1+h2
2 )
{
1 + e2ah2

1 cos(2ξ )

+e2ah2
2
[
e2ah2

1 + cos(2ξ )
](

1 + 4ah2
2

)}
. (31)

For ξ = π
4 + n π

2 , the correlation or anticorrelation becomes
perfect in the limit of infinite Gaussian precision a → ∞,
namely, lima→∞ |
(x1, x2)| = 1. For any finite value of a,
however, there will be a drop in the correlation due to the
fact that the positions within the aperture of the slits are
not correlated, i.e., that the individual Gaussian regions in
Fig. 3 have a nonzero extent. Because we are only interested
in quantum interference across the two slits, but not in the
quantum interference within each slit aperture, it is possible to
normalize the correlation using the value for ξ = π

4 and use it
as a measure of distinguishability of the two slits as follows:

R =
∣∣∣∣ 
(x1, x2, ξ )



(
x1, x2, ξ = π

4

)
∣∣∣∣. (32)

Now, in order to see how the entanglement between the two
systems affects the quantum interference of, say, the first
system, we can measure the bipartite state in a mixed basis:

ψ (k1, x2) =
√

2

π
Be− k2

1
4a e−a(h2

2+x2
2 )[cos(h1k1) cosh(2ah2x2)

× cos ξ − ı sin(h1k1) sinh(2ah2x2) sin ξ ].
(33)
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FIG. 3. Joint probability distribution P(x1, x2) = |ψ (x1, x2)|2 observed at the plane of the slits for symmetric double slits h1 = h2 = 1 with
a = 30 for different values of the entanglement parameter ξ . The positions are measured in arbitrary units (arb. units).

The corresponding marginal distribution computed from
|ψ (k1, x2)|2 for the first system is

P(k1) =
∫ ∞

−∞
|ψ (k1, x2)|2dx2

= B2e− k2
1

2a

2
√

2aπ

{
e−2ah2

2 [cos(2h1k1)

+ cos(2ξ )] + 1 + cos(2h1k1) cos(2ξ )
}
. (34)

Consistent with the no-communication theorem [33–36], the
latter distribution (34) is equal to Eq. (8) obtained from
marginalization of |ψ (k1, k2)|2 and has the same visibil-
ity V = V (k1) given by Eq. (11). Interference fringes in
|ψ (k1, x2)|2 are perfectly visible when the bipartite state is
separable, ξ = 0 + n π

2 , and are completely absent when the
state is maximally entangled, ξ = π

4 + n π
2 (Fig. 4). Combin-

ing R2 and V 2 also gives a perfect quantum complementarity

relation in the limit of infinite Gaussian precision,

lim
a→∞(R2 + V 2) = sin2(2ξ ) + cos2(2ξ ) = 1. (35)

The convergence to unity with respect to the Gaussian pre-
cision parameter a of the relation V 2 + R2 for incompatible
(noncommuting) observables is faster compared with the
relation V 2 + D2 for commuting observables (Fig. 5). The
drawback of the relation for incompatible observables is that
V and R cannot be determined with a single setting of the
measurement apparatus, but need two alternative settings for
incompatible experimental measurements.

At this point, one might be interested in the possible use of
correlation of outcomes in the wavenumber basis,


(k1, k2) = Cov(k1, k2)√
Var(k1)Var(k2)

, (36)
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FIG. 4. Joint probability distribution P(k1, x2 ) = |ψ (k1, x2)|2 observed in Fraunhofer diffraction for the first slit and at the plane of the
second slit for asymmetric double slits h1 = h2 = 1 with a = 30 for different values of the entanglement parameter ξ .

for the construction of an alternative complementarity relation
for commuting observables. Indeed from the covariance and
individual variances

Cov(k1, k2) = −2a2B2e−2a(h2
1+h2

2 )h1h2 sin(2ξ ), (37)

Var(k1) = 1
2 aB2e−2ah2

2
{
e2ah2

2 + cos(2ξ )

+e−2ah2
1
[
1 + e2ah2

2 cos(2ξ )
](

1 − 4ah2
1

)}
, (38)

Var(k2) = 1

2
aB2e−2ah2

1
{
e2ah2

1 + cos(2ξ )

+e−2ah2
2
[
1 + e2ah2

1 cos(2ξ )
](

1 − 4ah2
2

)}
, (39)

one can create a normalized correlation measure

S =
∣∣∣∣ 
(k1, k2, ξ )



(
k1, k2, ξ = π

4

)
∣∣∣∣ (40)

for which

lim
a→∞(S2 + V 2) = sin2 (2ξ ) + cos2 (2ξ ) = 1. (41)

Despite the superficial similarity with the other relations de-
rived so far, there is a serious downside to formula (41) which
undermines its practical utility. Whereas the correlation in po-
sition basis |
(x1, x2, ξ )| becomes unity in the limit of infinite
Gaussian precision, lima→∞ |
(x1, x2, ξ )| = 1, the correlation
in wavenumber basis |
(k1, k2, ξ )| vanishes in the limit of
infinite Gaussian precision, lima→∞ |
(k1, k2, ξ )| = 0. This
means that if one replaces R with |
(x1, x2, ξ )| in the com-
plementarity relation, it will still converge to unity,

lim
a→∞[
2(x1, x2, ξ ) + V 2] = sin2 (2ξ ) + cos2 (2ξ ) = 1, (42)

but if one replaces S with |
(k1, k2, ξ )|, the limit is changed:

lim
a→∞[
2(k1, k2, ξ ) + V 2] = cos2 (2ξ ). (43)
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FIG. 5. Comparison of V 2 + D2 (solid line) and V 2 + R2 (dashed line) for different values of the Gaussian precision parameter a in
symmetric paired double-slit experiment with h1 = h2 = 1. The convergence to unity of the relation V 2 + R2 for incompatible (noncommuting)
observables is faster compared with the relation V 2 + D2 for commuting observables.

In other words, any attempts to use Eq. (41) will face the
practical problem that sensitivity of measuring devices will
be exceeded even for modest values of a. For example, in a
symmetric setup with h1 = h2 = 1 and a = 10, the correlation
is negligible: 
(k1, k2, ξ = π

4 ) ≈ 3 × 10−32. This tiny value
needs to be measurable first before one is able to normalize the
measured value according to Eq. (40). In essence, the comple-
mentarity relation (41) is not practical from an experimental
viewpoint.

VI. DISCUSSION

In this work, we have derived a complementarity relation
(22) between one-particle visibility and two-particle visibility
for bipartite partially entangled Gaussian states. This comple-
mentarity relation, obtained for continuous-variable systems,
is reminiscent of a relation obtained for binary-outcome ob-
servables in interferometric setups [16,17]. There are several
aspects, however, that differentiate our proposal (22) from
earlier works [18,37–39].

First, we have brought to the forefront the fact that
the complementarity relation between one-particle visibility
and two-particle visibility is one involving only compatible
(commuting) observables. This is particularly clear in our
derivations because we work only with a single quantum
probability distribution P(k1, k2) without “correcting it.”

Second, we have explicitly identified the pair of two-
particle quantum observables whose visibilities are combined
in order to produce the two-particle visibility (21). Previous
research in two-particle visibility based on so-called corrected
distribution [16–18] did not treat the two-particle visibility
with the same mathematical procedure as single-particle vis-
ibility, because the former was determined by conditional

slicing through two-dimensional distribution, whereas the
latter was determined from unconditional (marginal) one-
dimensional distribution. Here, we employed only marginal
distributions for both single-particle and two-particle ob-
servables, which restored the symmetry of the mathematical
procedures and put the resulting visibilities on equal footing.

Third, we have shown that in the limit of infinite Gaus-
sian precision, the bipartite quantum entanglement leads to
manifested position correlation, lima→∞ |
(x1, x2)| = 1, but
vanishing wavenumber correlation, lima→∞ |
(k1, k2)| = 0.
From the former fact, one could easily construct noncom-
muting quantum complementarity relations for position and
wavenumber of a single target particle. In particular, the
stronger the position x1 of the target particle is entangled with
some observable (in this case the position x2) of the second
probe particle, the weaker the interference fringes visible in
the wavenumber distribution P(k1) will be. What is interest-
ing, however, is that the strength of the quantum entanglement
between the two particles can be extracted from the distribu-
tion P(k1, k2) despite the fact that the correlation |
(k1, k2)| is
vanishing. Our formula (21) extracts the strength of quantum
entanglement from the overall geometry of P(k1, k2) through
suitably chosen pairs of rotated marginal distributions and
computation of the resulting visibilities.

The presented results are limited to pure bipartite states.
Consideration of mixed states is one possible way for gener-
alizing the reported complementarity relation, which will be
invariably converted into an equality. An alternative way is
to consider purification of the mixed bipartite state using a
third quantum system with appropriate dimensionality of the
Hilbert space. In this latter approach, the exact complemen-
tarity relation to unity will be preserved; however, one will
need to construct a generalized notion of n-particle visibility
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in which can be specified n = 3. We leave such investigations
for future work.

While the discussion in this work was presented in terms
of a paired double-slit setup, it applies just as well to a
continuous-variable description of quantum fields, and could
be easily produced in a quantum optical setup. In that setup,
the role of the particles’ position and momentum can be
assumed by the field quadrature amplitudes, and the par-
tially entangled state may be implemented by a two-mode
squeezed vacuum state. The pair of double slits is iso-
morphic to a pair of Mach-Zehnder interferometers (as in
the famous Franson experiment [40–42]), where the dis-
tance between the slits is equivalent to the delay between
the two-interferometer arms, and the interference pattern
measured on the screen can be replaced by a homodyne
measurement.

In summary, the presented results provide a geometric
characterization of bipartite quantum entanglement using a
basis in which the single-particle observables exhibit van-
ishing correlation. In such case, the information about the
entanglement strength is stored in two-particle observables.
The existence of a complementarity relation in the wavenum-
ber basis between one-particle observables and two-particle
observables justifies their characterization as complementary
observables even though they are compatible; i.e., k̂1 and k̂2

commute with each other and with any linear combination
ak̂1 + bk̂2, where a, b ∈ R. Direct comparison of relations
(22) for compatible observables and (35) for incompatible
observables shows that because the single-particle visibility V
is present in both of them, the two-particle visibility D com-
puted from the two-particle wavenumbers is able to provide
indirect information about the position correlation R of the
two particles, and vice versa. In other words, measurement
of D reveals with certainty the value of R (within a con-
trollable error that vanishes in the limit of infinite Gaussian
precision) that would have been obtained from measurement
of the two-particle positions. Thus, the present operational
approach towards extraction of two-particle visibility from ap-
propriate two-particle observables may be also useful for the
development of new protocols for quantum communication
with continuous variables.
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APPENDIX A: INDIRECT METHOD BASED ON
“CORRECTED” DISTRIBUTION

The previously used indirect method for computation of
the two-particle visibility relies on somewhat involved addi-
tion and subtraction of distributions. To eliminate fringes in
the ξ = 0 case, the distribution P(k1, ξ )P(k2, ξ ) is subtracted
from |ψ (k1, k2)|2. To further correct occurrence of negative
values, the distribution P(k1, ξ = π

4 )P(k2, ξ = π
4 ) is added,

resulting in the following “corrected” distribution:

P̄(k1, k2) = |ψ (k1, k2)|2 − P(k1, ξ )P(k2, ξ )

+ P

(
k1, ξ = π

4

)
P

(
k2, ξ = π

4

)
. (A1)

For both symmetric or asymmetric setups, the separable cases
ξ = 0 + n π

2 contain no interference fringes, whereas for the
maximally entangled cases ξ = π

4 + n π
2 perfect interference

fringes are exhibited along one of the axes s± at angles ±ϕ =
± arctan( h2

h1
) (Fig. 6). The main motivation for introducing

Eq. (A1) is that the two-particle visibility could be computed
using a slice of the corrected distribution through the origin,
i.e., by conditionally setting the corresponding perpendicular
variables to zero, s⊥

+ = 0 or s⊥
− = 0. Since this method modi-

fies the original distribution |ψ (k1, k2)|2, it outputs results that
differ from those obtained with the direct method based only
on |ψ (k1, k2)|2.

Explicit calculation based on Eqs. (5), (8), and (9) of
the slices through the origin of P̄(k1, k2) gives the following
conditional distributions (for economy of notation, we leave
implicit the condition s⊥

± = 0):

P̄(s±) = 1

aπ
e− s2±

2a

⎧⎨
⎩B2

⎡
⎣cos

⎛
⎝ s±h2

1√
h2

1 + h2
2

⎞
⎠ cos

⎛
⎝ s±h2

2√
h2

1 + h2
2

⎞
⎠ cos ξ ∓ sin

⎛
⎝ s±h2

1√
h2

1 + h2
2

⎞
⎠ sin

⎛
⎝ s±h2

2√
h2

1 + h2
2

⎞
⎠ sin ξ

⎤
⎦

2

− 1

8
B4

⎡
⎣1 + e−2ah2

2 cos (2ξ ) + [
cos (2ξ ) + e−2ah2

2
]

cos

⎛
⎝ 2s±h2

1√
h2

1 + h2
2

⎞
⎠

⎤
⎦

×
⎡
⎣1 + e−2ah2

1 cos (2ξ ) + [
cos (2ξ ) + e−2ah2

1
]

cos

⎛
⎝ 2s±h2

2√
h2

1 + h2
2

⎞
⎠

⎤
⎦

+ 1

8
B4

⎡
⎣1 + e−2ah2

2 cos

⎛
⎝ 2s±h2

1√
h2

1 + h2
2

⎞
⎠

⎤
⎦

⎡
⎣1 + e−2ah2

1 cos

⎛
⎝ 2s±h2

2√
h2

1 + h2
2

⎞
⎠

⎤
⎦

⎫⎬
⎭, (A2)
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FIG. 6. P̄(k1, k2) for asymmetric double slits h1 = 1, h2 = 2 with a = 30 for different values of the entanglement parameter ξ .

where we have applied an alternative method by [18] to take
the added and subtracted terms with the same coefficient
B4(ξ ) instead of using B4(ξ = π

4 ) for the added term. As
a consequence of the addition and subtraction of different
probability distributions, the resulting complicated quantum
interference patterns can no longer be described with only
two envelopes. Instead, detailed mathematical analysis shows
that there is a complicated interplay between three distinct en-
velopes obtained with the following substitutions: env−(s±) is

obtained by setting s±h2
1√

h2
1+h2

2

→ π
4 and s±h2

2√
h2

1+h2
2

→ π
4 ; env+(s±)

is obtained by setting s±h2
1√

h2
1+h2

2

→ π
4 and s±h2

2√
h2

1+h2
2

→ −π
4 ; and

env0(s±) is obtained by setting s±h2
1√

h2
1+h2

2

→ π
2 and s±h2

2√
h2

1+h2
2

→
π
2 .

To compute the visibilities V (s±), one needs to consider
two cases: if h1 	= h2, the visibilities V (s±) are computed
from the pair of envelopes env+(s±) and env−(s±), whereas
if h1 = h2, the visibilities V (s±) are computed from the pair

of envelopes env0(s±) and env−(s±). Then, the two-particle
visibility of the “corrected” distribution becomes

F = max [V (s+),V (s−)]. (A3)

In the limit of infinite Gaussian precision a → ∞, perfect
complementarity is achieved only in the case when h1 	= h2:

lim
a→∞(V 2 + F 2) = cos2(2ξ ) + sin2(2ξ ) = 1. (A4)

In the case when h1 = h2, one arrives only at an inequality as
shown in Fig. 7,

V 2 + F 2 � 1. (A5)

One drawback of determining the two-particle visibility
from the “corrected” distribution is the appearance of three
envelopes due to complicated interference patterns. It should
be noted that env−(s+) acts as a lower envelope when ξ ∈
(0, π

2 ) and as an upper envelope when ξ ∈ ( π
2 , π ). Conversely,

env−(s−) acts as an upper envelope when ξ ∈ (0, π
2 ) and as

a lower envelope when ξ ∈ ( π
2 , π ). Analogously, env+(s+)
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FIG. 7. Comparison of V 2 + D2 (solid line) and V 2 + F 2 (dashed line) for different values of the Gaussian precision parameter a in the
symmetric paired double-slit experiment with h1 = h2 = 1. The convergence to unity of V 2 + D2 is exponential with respect to the Gaussian
precision parameter a such that the deviation |ε| is bounded by Eq. (24). In contrast, V 2 + F 2 does not converge to unity.

acts as an upper envelope when ξ ∈ (0, π
2 ) and as a lower

envelope when ξ ∈ ( π
2 , π ). Conversely, env+(s−) acts as a

lower envelope when ξ ∈ (0, π
2 ) and as an upper envelope

when ξ ∈ ( π
2 , π ). The envelope env0(s±) lies always between

env+(s±) and env−(s±), except at the extreme values ξ =
0 + n π

2 when all three envelopes coincide with each other.
When h1 	= h2, the slice distributions P̄(s±) are bounded by
the envelopes env+(s±) and env−(s±). Letting h2 approach
h1 (or vice versa) creates an interference effect so that the
central part of P̄(s±) around s± = 0 becomes bounded be-
tween env0(s±) and env−(s±), while leaving the outer tails
of P̄(s±) still located between env+(s±) and env−(s±). At
the end of the transition h2 → h1, when the exact equal-
ity h1 = h2 is reached, all of P̄(s±) is bounded between
env0(s±) and env−(s±). Because in real-world setups h1 and
h2 can never be perfectly equal, measuring F will always
be confounded to some degree by the described transi-
tioning from env+(s±) to env0(s±). In contrast, measuring
D is straightforward because the interference in the orig-
inal “uncorrected” P(s±) is simple and involves only two
envelopes.

Another drawback to measuring F from the conditional
distributions P(s±) is the tiny probability of postselecting
s⊥
± = 0. This means that a large number of unsuccessful post-

selections need to be discarded from analysis. In contrast,
measuring D from unconditional distributions P(s±) discards
no experimental data and extracts the two-particle visibility
with a smaller overall number of measured entangled pairs.

APPENDIX B: SLICE DISTRIBUTIONS AND MARGINAL
DISTRIBUTIONS

Throughout this work, we have analyzed the geometric
properties of two-dimensional probability distributions such
as P(k1, k2), which depend on two independent variables, k1

and k2. The two main operations of interest for producing
one-dimensional distributions from a given two-dimensional
probability distribution are slicing or marginalization. A syn-
opsis of the main differences between slice distributions and
marginal distributions is as follows:

The slice distribution is a one-dimensional conditional dis-
tribution in which the second variable is fixed to a specific
value. Hence, the slice distribution is not normalized to 1. Be-
cause the use of integration is not required at all, consideration
of the Jacobian is not needed after the change of basis. The use
of the Dirac δ function for substitutions only complicates the
math presentation.

The marginal distribution is a one-dimensional uncondi-
tional distribution in which the second variable is not fixed
and can be any value. Hence, the marginal distribution is nor-
malized to 1. Because integration is required over the second
variable, consideration of the Jacobian is needed after the
change of basis. The use of the Dirac δ function simplifies
the math presentation.

The meaning of the above summaries is unpacked in the
following explicit definitions.

Definition 1: Slice of two-dimensional probability distri-
bution. The slice of two-dimensional probability distribution
P(k1, k2) is a one-dimensional probability distribution that is
a function of only one independent variable, e.g., k1 when
the second variable is fixed to a specific value, e.g., k2 = 0.
Exactly because the second variable is fixed to a specific
value, the slice of a two-dimensional distribution is referred to
as a conditional distribution. In other words, the two concepts
slice and conditional distribution are equivalent and can be
used interchangeably. Furthermore, integration with respect
to the first variable, e.g., k1, does not give unit probability,
but rather gives the probability density for occurrence of the
fixed outcome for the second variable, e.g.,

∫ ∞
−∞ P(k1, k2 =

0)dk1 = P(k2 = 0).
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Definition 2: Rotated slice. To cut a rotated slice parallel to
an arbitrary ku axis through the two-dimensional distribution
P(k1, k2), one needs to change basis from k1, k2 to ku, kv and
then fix the value of the orthogonal kv variable (i.e., the second
variable). The change of basis is given by the transformation

(
ku

kv

)
=

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)(
k1

k2

)
. (B1)

The inverse transformation is(
k1

k2

)
=

(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)(
ku

kv

)
. (B2)

In other words, simple substitution in P(k1, k2) of the follow-
ing identities,

k1 = ku cos ϕ − kv sin ϕ, k2 = ku sin ϕ + kv cos ϕ, (B3)

followed by fixing numerically the value of kv , e.g., kv = 0,
will produce a conditional distribution of ku that is a rotated
slice of the two-dimensional distribution P(k1, k2). It should
be noted that no integration is required at all, only substitution
based on mathematical equality.

Definition 3: Dirac delta function. One of the mathematical
properties of the Dirac δ function is that it allows use of inte-
gration as a fancy way to perform substitutions. In particular,
if one has a function f (k1, k2) in which one wants to fix the
k1 value to a specific constant, e.g., k1 = 0 thereby obtaining
f (0, k2), it is possible to use a single integral as follows:

∫ ∞

−∞
f (k1, k2)δ(k1 − 0)dk1 = f (0, k2). (B4)

However, one can also use the Dirac δ function to simply
rename the variable k1 into another letter, e.g., k1 → ks, with
exactly the same integral formula

∫ ∞

−∞
f (k1, k2)δ(k1 − ks)dk1 = f (ks, k2). (B5)

Therefore, it is in general incorrect to think of the integral
of the Dirac δ function as fixing the value of k1, but rather as
replacing k1 with something else, either variable (“renaming”)
or constant (“fixing”).

Definition 4: Marginal distribution. The marginal distri-
bution P(k1) obtained from the two-dimensional distribution
P(k1, k2) is the unconditional distribution obtained by integra-
tion over the second variable k2 as follows:

P(k1) =
∫ ∞

−∞
P(k1, k2)dk2. (B6)

This is not a slice of P(k1, k2) but a normalized probability
distribution for k1 such that the second variable k2 is not fixed
and can take any value. In other words, integration of P(k1)
over k1 returns the probability that k2 will take any value at
all, which is 1 (because k2 must have some value).

Definition 5: Rotated marginal distribution. The rotated
marginal distribution is obtained from the two-dimensional
distribution P(k1, k2) by integration along an arbitrary rotated
axis kv [29,30]. The resulting distribution from the marginal-
ization is a function of the orthogonal variable ku, which is

renamed to ks using integration of the Dirac δ function,

P(ks) =
∫ ∞

−∞

∫ ∞

−∞
P(k1, k2)δ(ks− k1 cos ϕ − k2 sin ϕ)dk1dk2.

(B7)
It is worth emphasizing that we treat ϕ as being fixed to a
specific value. Furthermore, we use rotated Cartesian coor-
dinates instead of polar coordinates. The change of variables
from k1, k2 to rotated ku, kv in the double integral using trans-
formation (B3) requires consideration of the Jacobian

J =
∣∣∣∣cos ϕ − sin ϕ

sin ϕ cos ϕ

∣∣∣∣ = cos2 ϕ + sin2 ϕ = 1, (B8)

which relates the differentials

dk1dk2 = Jdkudkv. (B9)

Changing the variables in explicit algebraic steps gives

P(ks) =
∫ ∞

−∞

∫ ∞

−∞
P(k1, k2)δ(ks − k1 cos ϕ − k2 sin ϕ)dk1dk2

(B10)

=
∫ ∞

−∞

∫ ∞

−∞
P(ku, kv )δ(ks − ku)Jdkudkv (B11)

=
∫ ∞

−∞
P(ks, kv )dkv. (B12)

From the last integral (B12) it can be seen that the rotated
marginal distribution is not a slice distribution because kv is
not fixed to a specific value, but rather kv is integrated over.
Performing the first integral (B11) used the Dirac δ function
to rename one of the variables ku into ks. This first integration
does not produce a slice because ks is not a constant. The
second integration over kv is the essential one that performs
the marginalization. Note that if ks is assumed to be a con-
stant, e.g., ks = 0, then the result from the marginalization
will not be a distribution, but the value at a single point,
e.g., P(ks = 0) of the marginal distribution. One can say that
formula (B12) is a somewhat simpler way to define the rotated
marginal distribution; namely, one has to specify a rotated
axis ku = ks and then integrate over the orthogonal axis kv .
This, however, requires additional specification in the text of
the rotation matrix by providing the angle ϕ separately from
the integral formula. The fancy definition (B7) involving the
Dirac δ function has the advantage that it already contains the
rotation angle ϕ displayed inside the math expression [29,30].

APPENDIX C: FITTING OF ENVELOPES FROM
EMPIRICAL DATA

The probability distribution P(k1) given by Eq. (8) has the
following upper and lower envelopes:

env+(k1) = e− k2
1

2a
B2

2
√

2aπ

(
1 + e−2ah2

2
)
[1 + cos (2ξ )]

= e− k2
1

2a A+, (C1)

env−(k1) = e− k2
1

2a
B2

2
√

2aπ

(
1 − e−2ah2

2
)
[1 − cos (2ξ )]

= e− k2
1

2a A−. (C2)
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Because we are interested in the limit a → ∞ we assume that
a is known in advance and fixed at the maximal value that is
feasible under the current quantum technology. Since the two
amplitudes A+ and A− are constants independent of k1, and we

know that both envelopes are Gaussians of the form e− k2
1

2a , it is
straightforward to find the best (least-squares) linear fit for A+
using only the data points corresponding to local maxima, or

A− using only the data points corresponding to local minima.
The visibility will then be

V (k1) = A+ − A−
A+ + A−

. (C3)

Fitting based on empirical data for the other visibilities is
analogous.
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