PHYSICAL REVIEW A 103, 062210 (2021)

Decoherence in quantum cavities: Environmental erasure of carpet-type structures
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The interaction with an environment provokes decoherence in quantum systems, which gradually suppresses
their capability to display interference traits. Hence carpet-type structures, which arise after the release of a
localized state inside a quantum cavity, constitute an ideal laboratory to study and analyze the robustness of the
interference process that underlies this phenomenon against the harmful effects of decoherence. Such a released
localized state may represent a radiation mode inserted into a multimode interference device or a cold-atom
system released in an optical trap, for instance. Here, without losing any generality, for simplicity, the case of a
particle with a mass m is considered and described by a localized state corresponding to the ground state of a
square box of width w, which is released inside a wider cavity (with a width L > w). The effects of decoherence
are then numerically investigated by means of a simple dynamical model that captures the essential features of
the phenomenon under Markovian conditions, leaving aside extra complications associated with a more detailed
dynamical description of the system-environment interaction. As it is shown, this model takes into account and
reproduces the fact that decoherence effects are stronger as energy levels become more separated (in energy),
which translates into a progressive collapse of the energy density matrix to its main diagonal. However, because
energy dissipation is not considered, an analogous behavior is not observed in the position representation, where
a proper spatial localization of the probability density does not take place, but rather a delocalized distribution.
This result emphasizes the fact that classicality is reached only if both decoherence and dissipation coexist;
otherwise, nonclassical traits might still persist. Actually, as it is also shown, in the position representation some
off-diagonal correlations indeed survive unless an additional spatial-type factor is included in the model. This
makes evident the rather complex nature of the decoherence phenomenon and hence the importance to have
a familiarity with how it manifests in different representations, particularly with the purpose to determine and

design reliable control mechanisms.
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I. INTRODUCTION

Decoherence is central to the description and under-
standing of quantum systems whenever they are not under
ideal isolation conditions [1]. Their interaction with other
surrounding systems leads them to gradually lose their
coherence properties and hence to exhibit behaviors that re-
semble those typical of classical systems. This effect has
been commonly referred to in the literature as the emer-
gence of the classical world [2-8]. Decoherence is ubiquitous
in a myriad of systems and applications [9], e.g., quan-
tum dots [10-12], quantum game theory [13,14], quantum
walks [15,16], quantum information [17-20], two-level sys-
tems [21-23], cavities [24-26], ion trapping [27], or the
spin-boson model [9,28]. Similarly, different models have
been proposed to study and quantify its effects on the coher-
ence of quantum systems as well as to control them [29-39].
Furthermore, a number of experiments have also been con-
duced in recent year to test such models at a fundamental
level [40—43].
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Depending on the system or, to be more precise, the nature
and strength of its interaction with a surrounding environment
(many times also on the intrinsic properties of this environ-
ment), different alternative theoretical models can be used to
model the effects of decoherence [1,9]. These models may
consist of simple sets of differential equations in terms of
energy levels, such as the Bloch equations, or more general
equations of motion, such as the Lindblad equation, valid in
any representation. However, taking such theoretical models
and their outcomes as the basis, it is still possible to build
simpler phenomenological models that capture the physical
essence of the phenomenon and, by adjusting a few param-
eters, also provide us with a clear picture of the processes
involved at different levels of detail. This is of particular
interest in the analysis of highly intricate structures generated
by interference, as it is the case of quantum carpets, which
generate inside cavities by linearly and coherently superim-
posing a number of energy eigenstates [44—47]. It is clear that,
as the number of eigenstates increases and the frequencies
involved in the superposition become higher and higher, the
system becomes more sensitive to decoherence. Hence quan-
tum carpets seem to constitute an ideal scenario to explore the
effects of decoherence [48,49].

In this work we analyze the consequences of a purely
decoherent model on the erasure of quantum carpets in terms

©2021 American Physical Society


https://orcid.org/0000-0002-6467-6283
https://orcid.org/0000-0001-8617-5976
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.062210&domain=pdf&date_stamp=2021-06-07
https://doi.org/10.1103/PhysRevA.103.062210

E. HONRUBIA AND A. S. SANZ

PHYSICAL REVIEW A 103, 062210 (2021)

of the symmetries displayed by the latter. More specifically,
here we consider the carpets developed upon the release of
an initially localized matter waved describing a particle with
mass m for simplicity, although without any loss of generality,
since the treatment can equally be applied to light carpets
inside confining cavities (resonant cavities or multimode in-
terference devices). This analysis, performed in the position
representation as well as in the energy representation, renders
an interesting picture on how decoherence acts in each case.
Eventually this serves to better understand more refined and
exact models, where such splitting is not possible due to
their intrinsic formal and conceptual nature. Under Markovian
conditions decoherence has important effects on both the po-
sition and the energy representations [50]. Thus, the model
considered here relies on these observations and consists of
a simple Markovian coherence-damping term where energy
differences between eigenstates and two-point position corre-
lations appear separately. As it is shown, this leads to a bare
addition of level populations. In the energy representation,
this translates into a gradual suppression of the off-diagonal
elements of the density matrix, only surviving the elements of
the main diagonal, i.e., the elements that physically account
for the populations. In the position representation, on the other
hand, it is observed that the probability density approaches
a nonhomogeneous delocalized density distribution along the
cavity. Furthermore, in terms of the density matrix in the
position representation, it is also noticed that the probability
accumulates not only along the main diagonal, but also along
the secondary diagonal when the initial state displays an even
symmetry with respect to the center of the cavity. In order
to remove such a nonphysical behavior, associated with the
symmetry of the system, an additional decoherence term de-
pending on two-point correlations has to be explicitly taken
into account, which explains the typical exponential decays in
terms of factors of the form (x — x’)? that appear in spatial
decoherence models [6]. Furthermore, in order to provide a
clearer picture of the decoherence dynamics, i.e., the transi-
tion from a highly organized interference-mediated structure
to a stationary (equilibrium) state due to decoherence, the
generation of the quantum carpet has also been monitored
with the aid of Bohmian trajectories, which have already been
used to explore analogous effects in the context of the two-slit
experiment [51-53].

The work is organized as follows. Section II deals with
the theoretical treatment of the time evolution of localized
states or signals freely released in the cavity and the subse-
quent emergence of quantum carpets. It also includes a brief
overview of the Bohmian-type methodology that will be used
to visualize and hence to better understand the evolution of
the probability distribution in terms of density streamlines
or Bohmian trajectories [54,55]. Furthermore, several cases
of symmetric and asymmetric carpets are presented and dis-
cussed with the purpose to serve later on to evaluate the
effects of decoherence. In particular, the carpets considered
arise from the time evolution of single (symmetrically and
asymmetrically) localized signals and coherent superpositions
made of two initially (and symmetrically) localized signals. In
Sec. III the decoherence model is introduced from the stan-
dard point of view and also within the Bohmian context; the
effects of this model on quantum carpets are then analyzed and

discussed in both the position representation and the energy
representations. We conclude with a summary and discussion
in Sec. IV.

II. QUANTUM CARPET DYNAMICS
A. General aspects

Quantum carpets, the highly symmetric pattern displayed
in both space and time by the probability density inside a
cavity, arise as a consequence of a rather complex interference
process involving a number of energy eigenstates (vibrational
modes) of the cavity [47]. This is the behavior, for instance,
that follows after pumping a localized state into a cavity and
then letting it freely evolve inside such a cavity. The state can
be a mode propagated along an optical fiber and then released
into a broader cavity, such as a multimode interference de-
vice [56-58], or a cold-atom system confined and guided in an
optical trap [59]. In either case, as soon as the localized wave
describing the state of the system is released inside the wider
cavity, it starts reconfiguring according to the new boundaries,
thus giving rise to the appearance of interference traits, which
depend on the shape of the initially localized state and the
size of the cavity [60]. To better understand the process and
also to be self-contained, let us start by briefly describing the
process that leads to the appearance of quantum carpets as
well as some of its most relevant properties in connection to
this work.

Thus, consider that the matter wave associated with a par-
ticle with mass m is pumped into a cavity of a certain width,
which will be assumed to be one dimensional for simplicity.
Such a matter wave is describable in terms of a localized
wave function, which will be referred to from now on as the
input signal, making use of a more operational description,
also valid in the optical scenario.! Note that this input signal
describes the particular shape of the input beam, which can
be a single vibrational mode or eigenstate transported from a
narrower cavity (waveguide) to the new one. This is the case
here considered, where the, say, collecting cavity is assumed
to be a square box centered at x = 0 and with a width L,
larger than the typical width associated with the input signal,
henceforth denoted by w.

As it is well known, in such a case, the input signal can
then easily be recast as a coherent superposition of the cor-
responding basis set of energy modes (eigenstates) {¢,(x) €
R,a=0,1,2,..., x| <L/2}as

Vo) =) Cau (). )

Each coefficient ¢, is obtained from the projection of the input
signal onto the corresponding mode, i.e.,

Ca = /(PZ(X)Wo(X)dm 2)

!By referring to the localized state entering the cavity as the input
signal, the connection to the language employed in fiber optic com-
munications becomes closer, particularly in the realm of quantum
optics with single-photon transmission, where this type of scenario
could be experimentally tested.
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If these coefficients are recast in polar form, i.e., as ¢, =
|ce|e®®«, it is clear that they contain information about how
much each mode contributes to the superposition, with the
weight of such a contribution given by |c,|*. Hence, from now
on, because they indicate the population of each mode, we
will refer to them as the populations, also in compliance with
the convention commonly used in level systems. In the same
way, the crossed terms cqc;, will be referred to as coherences,
since they carry information about the mutual correlation be-
tween different pairs of modes. Since each coefficient carries
a time-independent relative phase §,, they will contribute to
introduce relative phase differences among different modes,
thus generating constructive or destructive interference among
them. As for the modes, they are simple sinusoidal functions
with even and odd parity [61]

Yo(x) = \/gcos(kax), (3a)

Po(x) = \/% sin(kqX), (3b)

with k, = am /L, where @ = 2n — 1 for the even-parity so-
lutions (e) and o = 2n for the odd-parity solutions (o), with
n=1,2,...1in both cases. The corresponding eigenenergies
are E, = h*k2/2m = I*rn2a®/2mL>.

The spectral decomposition accounted for by Eq. (1) en-
ables a simple description of the evolution of the input signal
at any subsequent time. As it is well known, because each
mode is associated with a specific energy E,, the time evolu-
tion of Eq. (1) is analytical and has the simple functional form

Y1) =Y catpulx)e N, )

o

Due to the extra complex factors exp(—iEyt/h), as soon as t
changes, all spectral components start vibrating, thus chang-
ing their local value, which translates in the aforementioned
complex interference process, with probability distributions
varying from time to time. However, although at some times
the probability density might not keep any resemblance with
the original one, at other particular times it is possible to
observe the appearance of recurrences (a number of identical
copies of the initial probability density distributed across the
cavity) and revivals (a full reconstruction of the initial proba-
bility density).

The emergence of recurrences and revivals is better ap-
preciated by explicitly computing the probability density
associated with (4),

px.1) =" lcal’pl (x)

+ Y [CallCar|@u (¥)ar () COS(@aart = Saar ),

o' >

(&)

where

_ Ea/ —Ea wh ” 2
Wyo =~ = 2 AL (a@” —a’) (6)

and 8, = 8, — 8y, With @’ > «. Note that the splitting in (5)
makes explicit the contribution arising from populations and
coherences independently. As it can be seen, this splitting is
rather convenient, because all the dynamics is contained in the
coherences; populations remain unchanged unless dissipation
is present, which is not the case here. Our decoherence model
will focus on the second term of Eq. (5), which defines the
phase relations between the different modes through the rela-
tive phase shifts §,, . In the latter regard, since the input signal
has no transverse displacement component, we have 84, = 0
for all @ and «'. Those displacements imply the presence of
extra factors, of the kind e*** in v(x), which eventually
turn into nonvanishing relative phase shifts. However, this will
not be the case here, where input signals are assumed to be
pumped into the cavity without lateral motion.

In spite of the complex interference process described
by (5) and the shape displayed by the input signal, it is easy
to see that there is a revival of the state after some time.
More specifically, this happens whenever time is such that the
time-dependent phase factor wyf is an integer multiple of 2
for all @ and «'. If we denote by T, the first time ¢ at which
this condition is satisfied, then we find that

wh
4mlL?

Woa Trey = 27T< )(“/2 - az)Trev- @)

Because o> — o2 is a positive integer, the condition to observe
the first revival requires that

4mL?
rev — T[h .
This condition is of general validity regardless of the ini-
tial state vy(x) and its spectral decomposition. Accordingly,
whenever ¢ = vT;.,, withv = 1, 2, .. ., the probability density
undergoes a full revival, which implies that the signal v (x, t)
looks the same as (x) in amplitude, but is affected by a
global phase factor 2 v. Nonetheless, it is worth noting that,
when the 277 v constraint is relaxed to 7w (2v — 1), the mirror-
symmetric (with respect to x = 0) replica of the initial state
(discussed below) is observed, which cannot be considered
as a proper recurrence. Furthermore, if the input signal has
a definite even or odd symmetry (i.e., it consists of a super-
position of only even or odd eigenfunctions, respectively),
revivals actually take place in shorter times, which does not
invalidate the above condition. Note that in both cases the
factor ’> — o in Eq. (7) is proportional to 4. Indeed, because
now all spectral components require the parity of the signal
to be in phase, the constraint to 2w v can be relaxed to simply
mv. Hence, the observation of revivals occurs at an eighth of
the general revival time Ti.,. We define this new timescale as
2
= Trey _ mL” , ©)
8 2 h
which will be used from now on as the reference time.

The presence of revivals of the initial state as well as
recurrences at fractional times gives rise to a pattern with
space and time symmetries referred to as a quantum car-
pet [47]. Typically the concept of quantum carpet is associated
with the probability density, although similar symmetries can
also be found in the amplitude and phase of the signal, or
the quantum flux, which becomes more apparent when it is

(®)
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analyzed in terms of the associated streamlines or Bohmian
trajectories [60]. In order to determine the effects of deco-
herence on the flow of probability inside the cavity, here we
proceed similarly, i.e., considering the supplementary aid of a
Bohmian-type description. In brief, this formulation readily
arises after recasting the signal in polar form [55], which
provides us with a nonlinear transformation from a complex
field to two real-valued ones, namely, the probability density
o and the phase S,

Yx, 1) = p'2(x, )5, (10)

It is well known [61] that, by virtue of the continuity equation
for the probability density, it is possible to establish a relation
between the latter and its flux through an underlying velocity
field. In one dimension, this reads

h
J(x, 1) = %[W(x, DY (x, 1) — Y (x, 1)0x Y™ (x, 1)]
=v(x, 1)px, 1), (1)

where the shorthand notation 9, = d/dx is used for conve-
nience. Following this relation, now we have an unambiguous
mechanism to monitor at a local level, i.e., at each point,
how the probability density contracts and expands by inter-
ference as it flows across it back and forth inside the cavity.

J

More specifically, these variations take place in compliance
with the underlying local variations of the velocity field
v(x, t), which depend in turn on the local variations undergone
by the phase field:

J, 1) 8.8, 1)
olx,t)  m

vix,t) = (12)
Of course, if there is a local velocity field, it is straightfor-
ward that, given any position, a trajectory can be obtained by
integrating this coordinate-dependent and time-varying field
in time, i.e., by integrating the equation of motion

%= 1)
— i[w*(x,f)axl/f(x,f)—W(x,t)axlff*(xJ)] (13)
Y, DY (x, 1) '

These trajectories are the so-called Bohmian trajectories in
the literature [62] and correspond to streamlines along which
probability flows. Here they will provide us with a better idea
of how the gradual suppressing effects led by decoherence
are going to affect the degradation of quantum carpets, since
Eq. (13) contains relevant information about the coherences.
This is readily seen by substituting Eq. (4) into (13), which
gives the analytical functional form

2mi

m

which is very convenient both at a numerical level and also
in order to determine the effective action of decoherence (dis-
cussed below in Sec. III).

Note that the same procedure can also be straightforwardly
applied to light carpets inside optical fibers, resonant cavi-
ties, or multimode couplers [63]. In such a case, the modes
correspond to electromagnetic modes in compliance with the
solutions to the Helmholtz equation for a cavity and the flux
is determined by the Poynting vector (the flux of electro-
magnetic energy). Actually, if the Helmholtz equation is in
paraxial form, its solutions will be formally equivalent (iso-
morphic) to those of the Schrodinger equation, except for the
replacement of time by the longitudinal coordinate [64].

B. Symmetric and asymmetric carpets

If the lowest (fundamental) mode transported by an optical
fiber is pumped into a wider cavity, a multimode interference
device [57], the light distribution inside the new space will
exhibit carpet-type traits [47], since such a mode can now
be described as a coherent superposition of proper modes of
the cavity. To recreate this kind of behavior in a quantum
context, here we consider single half-cosine amplitudes and
a coherent superposition of them as initial Ansdtze. The cavity
is simulated by means of a one-dimensional infinite well with
awidth L = 50 (arbitrary units), centered around x = 0, while
the width of the half-cosine input amplitude is w = 10. The
general expression for spectral decomposition of the input
signal which will be considered is of the type

Yol) = Y oot + Y el ), (15)

even o odd o

_ E{ Za’>a |ca||ca’|[§0a/(x)ax(pa(x) - (pa(x)ax(pa’(x)] Sin(a)aa/t
Za |C(x|2(p£(x) + Za’>o¢ |callCa |00 (X)Par (X) COS(Waat — Suar)

_aaa’)}, (14)

(

where ¢ and ¢ are as specified by (3).
In the case of a single half-cosine centered at x = xp, the
initial amplitude is given by

2 T(x—x)) _ w
Jolr) = \/;cos[ —0)], for |x .x0| <Y, (16)
0, otherwise.
When recast in the form (16), the coefficients ¢, read
4 ki ko w
o = ﬁ(k%%k;) cos(kyxp) cos (T) ko # ko, an
VE cos(koxo), ko = ko,
with @ = 2n — 1, and
4 k . ky
¢ = 1 (%) sinGkaxo) cos (52). ke # ko, "
\/%Sin(koxo), koz = kOv

with @ = 2n. In both cases, k, = am /L and ko = 7 /w (notice
that the condition k, = ko simply means that w is an integer,
even or odd, fraction of L). The quantum carpets generated
by initial amplitudes centered at xo = 0 and 20 are displayed
in Figs. 1(a) and 1(c), respectively. As it can be noticed, the
loss of symmetry in the second case results in the revival
time being reached att = T, = 87 instead of atr = t, which
is the case in the symmetric configuration. Nonetheless, in
both cases it is possible to observe the presence of fractional
recurrences, which is used in multimode interference devices
(when dealing with light) to produce a number of identical
copies of the same input state.

In order to elucidate how the probability density evolves
inside the cavity, i.e., how the interference maxima that
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FIG. 1. Quantum carpets generated by half-cosine-type ampli-
tudes: (a), (c), and (e) probability density and (b), (d), and (f) velocity
field. In all cases, L = 50, w = 10, m = 1, and i = 1 (all quantities
are given in arbitrary units). Time is measured in units of 7, as
defined in Eq. (9). Shown are the single half-cosine input amplitudes
centered at (a) and (b) xp = 0 and (c) and (d) xo = 20 and (e) and
(f) coherent superposition of two of them centered at xo = £20. In
the color scale for the density plots, blue is used to denote the lowest
values (zero values for the probability density and maximum negative
values for the velocity field) and red the highest values (maximum
positive values for the velocity field). To better specify the flow inside
the cavity, a number of Bohmian trajectories (white solid lines) have
been included in each panel.

generate the recurrences arise, a number of Bohmian trajec-
tories have been considered, evenly distributing their initial
positions along the extension of the input signal. It can be
seen how the initial diffraction launches the trajectories in a
relatively fast manner towards the boundaries of the cavity,
thus covering the whole available space inside it. Although the
appearance of recurrences and revivals is independent of the
input signal, the initial boost strongly depends on it, as shown
elsewhere [60]. The same behavior can be observed in both
symmetric and asymmetric cases, though with the difference
that in the latter case trajectories on one side of the input signal
have to travel a larger distance than those started on the other
side. Nonetheless, because of this asymmetry, the trajectories
on the right side of ¥y gradually start being launched towards
the left side of the cavity, until att = T, /2 they all gather and

produce a full revival of the input signal at x = —xo = —20.
This intricate motion can be better understood by analyzing
the carpets associated with the velocity field, in Figs. 1(b)
and 1(d), respectively, for each case. As it can be noticed,
the local velocity values reach very sudden changes (red and
blue regions), which act on the trajectories in the same way as
bumpers and other targets in a pinball machine.

So far, the presence of a single input signal only affects
the interference process that follows the diffraction of such a
signal. Another case of interest is that of two coherent input
signals, analogous to a two-slit experiment carried out inside
the box. In this regard, we consider the above asymmetric
input and construct a superposition with its mirror image, i.e.,
we now consider an input signal of the type

1 +
- cos [W] for |x x| < ¥,

0, otherwise,

Yo(x) = { 19)

with xo = 20. Because of its even symmetry with respect to
x = 0, all odd-symmetric terms in (16) vanish (c{, = 0),

4\/wz( Jo ) cos(kaxo) cos (552, ky # ko,
CZ — L k() kz% o 2 o (20)
ﬁ cos(koxo), k, = ko,

with @ = 2n — 1. The corresponding carpets for the probabil-
ity density and the velocity field are displayed in Figs. 1(e)
and 1(f), respectively. As it can readily be noticed, the pres-
ence of the second signal reduces the revival time for the
probability density to t, which does not depend on the par-
ticular choice of xy but on the equal weight assigned to both
signals. Again, the pinball-type structure displayed by the
velocity field becomes apparent, with the addition of a sort of
channeling pattern, which is a trait of an incipient Young-type
interference substructure [65], typical of two wave-packet su-
perpositions [55,66].

III. DECOHERENCE-INDUCED DYNAMICS

A. Effective modeling of decoherence

Decoherence arises from the interaction of a quantum sys-
tem with a surrounding environment and manifests in the
gradual loss of coherence, i.e., in its ability to display inter-
ference [6,7]. Formally, the different coupling of each system
proper state with environmental states eventually leads to the
suppression of their interference due to the orthogonality of
the latter states [67]. This is readily understood by inspecting
its manifestation in the corresponding density matrix ele-
ments. Taking into account the states here, these elements are
going to be of the form

p(x, x'st) = Y (&, )Y (x, 1)
= CaCla(X)pw ()
oo
xe "EEIID o (x, X5 1), (21)
where Dy, (x,x’;t) accounts for the coherence loss term,
which is going to act on the off-diagonal elements of the

density matrix. Following models considered in the literature
to describe two-state decoherence [67,68] as well as more
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detailed numerical models [50,69,70], clearly this term should
annihilate any correlation between two different energy states
« and o’ as well as between two different spatial points (x, x”).
Furthermore, this coherence damping should show an expo-
nentially decreasing behavior with time. Accordingly, we have
considered a simple model for this dissipating term

D (x, X3 1) = e Puart ==V, (22)
where

,Baa’ = Y Woa! (23)

accounts for the gradual suppression of the coherences be-
tween different modes, with y a coefficient used for control
(to speed up or to slow down the decoherence rate, constant
for all combinations of modes). Note that since wy, is positive
[according to the definition (6)], By is also positive, thus

J

ensuring a gradual damping with time. On the other hand, the
factor

_ 2 h

=== (24)

is the usual localization rate [2,68], which determines the
how fast two points of the signal, at x and x’, lose mutual
coherence with time. The particular choice here produces an
overall decay going like 1/L for small distances |x — x’| (the
energy term is the dominant one) and like L for large ones (the
spatial term becomes the leading one, as required to annihilate
the prevalence of coherence along the secondary diagonal).

By inspecting (21), we notice that the spatial part seems
to play a minor role when we look at the probability den-
sity, since this quantity only takes into account the diagonal
elements

pOt) =Y [calPP(0) + Y [CallCar|9a (¥)Pu (X) COS(@aart — Saar e Po'", (25)
o

o'>a

which do not include nonlocal correlations but mutual coherence between energy proper states, responsible for the appearance of
the carpets. Following the prescription provided in [51], the corresponding Bohmian-type trajectories are given by the expression

m

which does not include any term depending on the spatial
correlations, because the evaluation is locally performed in
contrast to two-slit scenarios, where the coherence loss be-
tween spatially distinct states has to gradually vanish [51].
In spite of the apparently complex functional form displayed
by Eq. (26), the asymptotic behavior of the trajectories can
easily be inferred in the cases of strong and weak decoher-
ence. Thus, for a strong decoherence (in terms of y), while
the leading term in the denominator of Eq. (26) is essen-
tially dominated by the time-independent population term, a
rather weak time-dependent contribution still persists in the
numerator (in terms of the oscillatory functions, apart from
the decaying factors). This contribution is enough to make the
trajectories approach their stationary state condition relatively
fast. This stationarity condition corresponds to the popula-
tion distribution (discussed below). On the other hand, for a
weak decoherence, the rich structure displayed by trajectories
(see Fig. 1) will get smoother until they completely stop and
remain steady. In either case, the trajectories will tend to
distribute according to the bare sum of partial distributions,
the long-time limit of (25), i.e.,

Poo(X) =Y lcal?02 (x). (27)

Accordingly, because there is no energy dissipation, there
will not be spatial localization either, which means that the
trajectories will not remain within the region covered by the
input state. On the contrary, they will distribute according (27)
and satisfying the so-called noncrossing rule, i.e., trajectories
cannot cross one another, because nonlocal spatial informa-
tion still remains [52,53].

_ E{ Za/>a [callCar | [@ar (X)0x e (X) — Qo (X) 0@ ()] SIN(Weert — 8aa’)eiﬂ”’“,t }
Za |Ca|2¢§(x) + Za’>a |Ca||ca’|(pa(x)§0a/(x) Cos(wowz’t

- (Sao/ )e_ﬂ““,t (26)

[
B. Decoherence in the position representation

Taking into account the above-described effective model,
let us know analyze the pattern erasure undergone by the
quantum carpets discussed in Sec. IIB in the presence of
decoherence. To this end, for convenience but without any loss
of generality, from now on we consider y = 2/5m. With this
value for the friction it is ensured that, at ¢+ = 7, all energy-
dependent decoherence factors amount to (@ —a?) /10, thus
giving rise to the smoothing of the carpets in all cases in about
four times t; of course, some terms will decay faster than
others depending on the difference («? —a?) /10. Results for
the three cases displayed in Fig. 1 are shown in the corre-
sponding panels of Fig. 2. As can be seen, the long-time limit
in all cases consists of a series of steady trajectories, unevenly
but symmetrically distributed with respect to the center of
the cavity, although one might intuitively expect a relative
localization around a certain position, in particular, the center
of the input distribution. This is in compliance, though, with
the delocalization also exhibited by the probability density.
Note that in Fig. 2(a), although a prominent central maximum
becomes apparent as time proceeds, we also observe that the
probability distribution partly spreads out towards the borders
of the cavity. This behavior finds a clear explanation when we
look at the velocity field, shown in Fig. 2(b), which gradually
loses its pinball-like structure and now presents an alternating
distribution of positive and negative regions. As a conse-
quence of this structure, the trajectories are smoothly driven
until they completely stop instead of undergoing sudden and
fast motions. To some extent, this situation is reminiscent of
the calm waters that come after the rapids in a river, which
occurs when turbulence sources disappear. In our context, this
happens because the influence of the frequencies involved in
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FIG. 2. Same as in Fig. 1 but with the presence of decoherence,
with y = 2/5m. To better show the coherence loss effects, in all
cases a total propagation up to four times the recurrence period of
the symmetric case (4t) has been chosen. All quantities are given in
arbitrary units.

the interference process, which originates in nodal regions
(vortices) and hence strong local variations in the velocity
field, is suppressed. The same trend is observed in Fig. 2(c).
Although the configuration is asymmetric, it can also be seen
that the trajectories smoothly move towards the symmetric
position (with respect to x = 0) and then, some of them,
backward again, distributing nearly homogeneously across the
cavity. This is in compliance with the behavior shown by the
velocity field in Fig. 2(d). Finally, the case of the superposi-
tion, shown in Fig. 2(e), looks pretty similar to that shown in
Fig. 2(a) for the symmetric single half-cosine, although there
are two additional accumulation regions at x ~ £20, apart
from the central one.

To better understand the behavior exhibited by both the
probability density and the trajectories in Fig. 2, let us now
analyze the time evolution of the probability density, separat-
ing for our purpose the contributions coming from populations
and coherences. Accordingly, some snapshots of the three
quantities are displayed in Fig. 3 for r =0, t, 37, and 57
(from left to right) for the three cases here considered (from
top to bottom). As it can be noticed, at + = 0 the proba-
bility density (black solid line) corresponds to either single
localized peaks or two peaks, depending on whether we

have a single half-cosine input signal or a superposition of
two of them, respectively. Now, if we inspect more closely
these distributions, separating the contributions coming from
their populations (blue dashed line) and their coherences
(red dotted line), some interesting features readily emerge.
First of all, note that, as expected, the populations’ contri-
bution is stationary, which is due to the fact that this is a
dissipation-free model, where thermalization effects that reor-
ganize populations in each cavity mode are disregarded. As it
was mentioned above, it is a purely decoherence model, which
only influences the state-state correlations. Accordingly, al-
though the initial probability density is peaked at some
particular place or places, the contribution associated with the
populations exhibits a certain degree of delocalization across
the cavity. This is going to the asymptotic distribution once
coherence is totally suppressed [see Figs. 3(d), 3(h), and 3(1)].
Depending on whether a symmetric or an asymmetric input
signal is considered, we observe the presence or absence of a
maximum atx = 0, respectively. This maximum plays the role
of a certain effective barrier in the symmetric configurations:
Trajectories started on either side will never be able to cross
to the other side [60,71]. To some extent, the dynamics on
either side of the central maximum is going to be ruled by
this maximum and the borders of the cavity, in a fashion
similar to an effective two-wave superposition [although with
a more complex interference process in between, as shown in
Figs. 1(a), 1(b), 1(e), and 1(f)]. The same is not observed in the
asymmetric case, because the absence of the central maximum
allows the trajectories to move from one side of the cavity to
the other and vice versa, since now these dynamics are ruled
by the two marginal maxima, i.e., the one corresponding to
the input signal and its mirror image. All these dynamics, on
the other hand, are directly mediated by the changes in time
undergone by the coherence terms (red dotted line), i.e., the
complex interference processes generated by the correlations
established among all modes. When the decoherence damping
factor starts acting on them, they gradually disappear, which
removes the oscillatory behaviors displayed with time and lets
the so-far “screened” population contribution emerge, as it
can be seen in Figs. 3(c), 3(g), and 3(k) and Figs. 3(d), 3(h),
and 3(1) for all cases. Accordingly, once the oscillatory (time-
dependent) term has been canceled out, the trajectories are
also going to stop their wandering motion inside the cavity,
remaining stationary, as seen in Fig. 2.

So far we have focused on the probability density, trying
to understand its dynamics in terms of the underlying velocity
field and the corresponding Bohmian trajectories. Let us now
consider the more general view provided by the corresponding
density matrix, first assuming a vanishing localization rate,
i.e., A = 0, but keeping finite the value of y (as before, y =
2/5m). When proceeding this way for a single input signal, we
find that, as time proceeds, a rather structured pattern arises
independently of the value of xy, as shown in Fig. 4. Each
column shows a snapshot of the real part of the density matrix
for the single half-cosine initial Ansatz, namely, t = 0, t/2,
7, and 207, from left to right, and four different positions
of the signal center, namely, xo = 0, 6, 12.5, and 18, from
top to bottom. Intuitively, one would expect that, with time,
the density distributes along the diagonal, as it corresponds
to the real part of the density operator, which what we are
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FIG. 3. Snapshots of constant-time profiles for the three input states here considered (see Sec. II B): (a)—(d) center-symmetric half-cosine
(x0 = 0), (e)—(h) asymmetric half-cosine (x, = 20), and (i)—(1) superposition of two half-cosines (with x, = 20) for (a), (e), and (i) t = 0; (b),
(f),and (j) t = 7; (¢), (g), and (k) = 37; and (d), (h), and (1) # = 57. In each panel, the probability density is displayed with a black solid line,
while the distributions related to the populations and the coherences are denoted by the blue dashed line and red dotted line, respectively. In all
cases L =50, w = 10, m = 1 = hi, and N = 50. All quantities are given in arbitrary units.

showing here. However, what we observe is a very symmetric
structure, which looks the same asymptotically along the main
diagonal and also on both sides with respect to the secondary
diagonal [Figs. 4(d), 4(h), 4(1), and 4(p)]. This is because
spatial correlations have not been properly removed, but only
those in the energy domain. The same behavior is also ob-
served in the case of the initial superposition, as it is shown
in Fig. 5 for xo = 6, 12.5, and 18, from top to bottom, and the
same four times, where a rather fourfold symmetric pattern
emerges. Interestingly, the case for input signals localized
at the center of each half of the cavity (xo = 12.5) actually
becomes asymptotically equal to the pattern of a single input
signal at the center of the cavity x = 0. This coincidence arises
from the time symmetry displayed by these two patters, with
the latter having a recurrence at 7 /2 with the same form of the
superposition.

To some extent, one might consider that the above results
for A = 0 are counterintuitive. In principle, one would expect
a gradual suppression of all terms outside the main diagonal
of the real part of the density matrix [50,69,70,72]. How-
ever, although certainly the rich interference structure outside
this diagonal disappears, certain traits related to the x — x’
exchange symmetry still persist. This is the key aspect that
makes necessary in the model here the presence of a space-
dependent damping factor, i.e., a spatial localization rate A.
This term can be determined analytically [68] by solving
the von Neumann equation for a free particle acted upon by
a scattering-type environment. Here we have combined this
localization rate with the one that is expected from the cancel-

lation of the interference between different energy modes of
the cavity. The behavior of the real part of the density matrix
when this term is added can be seen in Figs. 6 and 7, which
are the respective counterparts of Figs. 4 and 5 for nonva-
nishing A, with its value given by (24). As it can be seen,
now the model produces the suppression of both energy and
space correlations, thus providing a full phenomenological
description to the loss of coherence inside the cavity. In the
particular case we are dealing with here, though, two-point
space correlations do not directly affect the trajectories (quan-
tum flux), but only the oscillations coming from interference
between different energy modes. This is consistent with the
fact that the localization rate does not appear at all in the
equation of motion (26). Now, although this view seems more
apparent in the case of the single input signals, in the case
of the superposition it seems that such a term should play a
role, as it is observed in two-slit-type studies where it has
also been considered [51,53]. If this is not the case, it is
precisely because of the spectral decomposition of the input
signal that the equation of motion of the trajectories is based
on, which neglects the fact of two spatially separate signals
and reconsiders the initial Ansatz as a whole, unlike the two-
slit scenario, where no energy decomposition is considered
and therefore the equation of motion is fully based on what
happens in the position space.

C. Decoherence in the energy representation

To further analyze the implications of the model, now we
are going to analyze its consequences in the energy domain.
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FIG. 4. Real part of the density matrix for a single half-cosine initial input with A = 0; (a)—(d) xo = 0, (e)—(h) xo = 6, (1)—(1) xo = 12.5,
and (m)—(p) xo = 18; and (a), (e), (i), and (m) t = 0; (b), (f), (j), and (n) t = 7/2; (c), (g), (k), and (0) t = 7; and (d), (h), (1), and (p) t = 207.
As before, in all cases L = 50, w = 10,m = 1 = h, and y = 2/57. All quantities are given in arbitrary units.

To this end, we consider the purity [1], which here acquires
the explicit functional form

x(t) = Tr(p*)

=) leal* +2 ) lealPlew PPt
o

o'>a

(28)

with its long-time limit
4
Xoo = Z lcal™
a

This quantity provides us with a reliable measurement of the
degree of mixedness undergone by an initially pure quantum
system and therefore of the effects induced by decoherence. In
principle, the density in (28) refers to the reduced density, i.e.,

(29)

after tracing over the environmental degrees of freedom. Since
the latter is included here in a phenomenological manner, the
density makes direct reference to the density describing the
carpet. Nonetheless, notice that the environmental effects ap-
pear explicitly in the form of the exponential damping factors.

The time dependence of the purity for an interval equiv-
alent to ten times 7 is displayed in Fig. 8(a) for half-cosine
input signals centered at different values of xo # 0. As it can
be noticed, all these cases reach the same asymptotic value
of nearly xo < 0.2, below the reference value for xy = 0,
Xoo 2 0.2. However, the falloff slightly differs for each case,
which is related to the fact that the decay factor depends
on the frequencies (energy differences) involved as well as
the number of modes and their weight contributing to the
corresponding signal. A similar trend is also observed in the
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FIG. 5. Real part of the density matrix for a coherent superposition of two half-cosine initial inputs with A = 0; (a)—~(d) xo = 6, (e)—(h)
xo = 12.5, and (i)-(1) xo = 18; and (a), (e), and (i) t = 0; (b), (f), and (j) r = t/2; (¢), (g), and (k) r = t; and (d), (h), and (1) r = 207. As
before, in all cases L = 50, w = 10, m = 1 = h, and y = 2/5n. All quantities are given in arbitrary units.

two-signal superpositions, shown in Fig. 8(b), with the initial
state consisting of the half-cosines centered at the same xp
values and the mirror image (with respect to x = 0). In this
case, though, the limiting value is xoo < 0.4, nearly twice
the value for the single signals, except in the case xo = 12.5
(red dotted line), which is the same as for the reference case
because of the time-symmetry reasons explained above.

In order to determine whether the xo = 0 case is an excep-
tion, we proceed to revise the asymptotic value (29) for the
whole range between xy = 0 and 20, which is the maximum
value without truncating the shape of the input signal (note
that the cavity extends to x = L/2 = 25 and the half-width
of the input signal is w = 5). We proceed the same way with
the corresponding superpositions, although this time the lim-
itation is extended also from below (the minimum xg is 5) in
order to avoid the overlapping of the two signals. The results
are shown in Fig. 9, where black squares denote the values
considered for the single half-cosines, while the red circles
represent those for the superpositions. As can be clearly seen,
in both case there is a range where more or less all asymptotic
values remain the same. Important deviations correspond to
the extreme values of xy, where the long-time purity value
undergoes an increase for lower values of xy and decreases
for the larger ones. On the other hand, a remarkable feature
is the dip observed in the case of the superpositions, which

explains the coincidence between the black solid line and the
red dotted line of Fig. 8(b): Because the single half-cosine
centered at xo = 0 and the two half-cosine superpositions
for xo = L/4 = 12.5 are equivalent from the point of view
of time symmetry, their purities must coincide, even in the
long-time limit. This is precisely what we observe here if we
compare the lowest value of the dip with the initial value for
the single half-cosine (i.e., the one for xo = 0). It is thus clear
that, in spite of the simplicity of the model, it can provide
us with useful information about the role of symmetries in
decoherence processes and hence a deeper understanding of
the carpet-suppression dynamics.

Some additional information can still be extracted if we an-
alyze the timescales involved in the decay of the purity. To that
end, it is interesting to consider the decay timescales related
to (o, &) pairs of modes, given by 1/84, . These decay times
are independent of the particular input signal selected, since
they do not include the contribution of the particular weight
assigned to each pair. Figure 10(a) illustrates the distribution
of decay times by means of a colormap, where the transition
from red to blue denotes shorter and shorter decay times, as
expected for pairs of modes with bigger and bigger energy
differences. Note that in the particular case of the diagonal
(dark red color) the decay time becomes infinite because
o’ = a, this being the main reason why the real part of the
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FIG. 6. Same as in Fig. 4 but with A as given by Eq. (24).

density matrix collapses asymptotically towards this diagonal
in the energy representation. This map thus provides us with
a general picture of decay times that does not depend on the
particular choice of the input signal, as mentioned above.

It is clear that the choice of a given input signal is going
to have some consequence on the decay of the carpet, be-
cause not only does the timescale 1/, rule its decoherence
dynamics, but also the particular weight |cy||cy/| iS going to
play a role depending on whether or not it is important in the
superposition (with respect to other crossed terms or even the
populations weights |c,|?). To analyze these consequences,
now we focus on the shape displayed by the purity and fit
it with a three-time exponentially decaying function

3
Xint) = xo+ Y _ xie 7O, (30)

i=1

The three characteristic times involved here are related to each
part of the purity, namely, the initial falloff #;, the intermediate
turn #,, and slowly decaying tail #3. Furthermore, all exponen-
tials include a reference onset time #y, the same for all, and
the expression also considers a baseline y, which gives the
asymptotic value ... The trend exhibited by the three times
in the case of one single signal is displayed in Fig. 10(b) in
terms of xy. As it can be noticed, while #; and #, are nearly
constant in the whole interval, 3 undergoes a remarkable
increase as we move towards xy ~ 8-9 and then it decreases
again. This is because of the larger number of modes involved
in the superposition, with nearly similar weights, which are
thus able to support the coherence for longer times. In the
case of two input signals, shown in Fig. 10(c), the trend is less
clear, although times are much shorter. Yet it can be noticed
that except for a particular value of xy around 8, where we
observe an important decrease in the three times, although
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FIG. 7. Same as in Fig. 5 but with A as given by Eq. (24).

especially in 73, in all other cases the trend is relatively smooth.
If in the single signal case the maximum for #; was associated
with a rather complex contribution of modes, the dip here
can be justified because the addition of a mirror-symmetric
signal removes many of those contributions, thus generating
a rather simple superposition, much simpler than for other
neighboring values of xy.

In order to find an explanation for the different timescales
ruling each decay range of the purity, let us consider the
energy correlation matrix for several single and double input
signals (i.e., in terms of x(), which corresponds to the density
matrix at# = 0, with elements py4 (0) = cqc,. These correla-
tions matrices are displayed in Fig. 11 for single input signals
[Figs. 11(a)-11(d)] and double input signals [Figs. 11(e)—
11(h)] for different values of xy. The populations |c, |* of each
contributing mode are also shown in the inset of each panel.
Consider first a single input signal depending on the spatial
symmetry displayed by the single input signal as xy increases,
although in a particular manner. Up to nearly xo = 8, the
pattern is analogous to the one shown in the inset of Fig. 11(a),
with a prominent presence of odd modes and residual in the
case of the even ones (or even zero for xy = 0), but increasing
with xo. Accordingly, the correlations between neighboring
modes increases with xy, which also leads to an increase of
the long-term time #3, as seen in Fig. 10(a). Then, between
Xxo = 8 and 9, approximately, we observe paired modes with a

lack or residual presence of correlation between each pair, as
can be seen in the inset of Fig. 11(b). Because the members of
each pair contribute approximately the same, the correlation
between them is going to be rather strong, which leads to
a maximum in the long-term time. Finally, as xy increases
beyond xy = 9, more contributions start appearing, increasing
the amount of first, second, third, etc., member correlations,
which eventually translates into a fall in #3. A similar behavior
is also observed in the case of two input signals, although
this time, because of symmetry considerations, there are two
positions of particular interest, one for xo = L/6 ~ 8.3, where
there are no contributions for n = 2, 3, and 4, thus implying
a strong decay in the correlation matrix, as seen in Fig. 11(f).
The same happens for xo = 15, although this time it is the
contribution from the n = 4, 5, and 6 modes that vanishes,
which has an effect on the 7, and 1, times, as seen in Fig. 10(b).

IV. CONCLUSION

Although decoherence is commonly regarded as the mech-
anism by means of which quantum systems lose their
quantumness, thus giving rise to the emergence of a classical
world, the quantum world is never abandoned. Decoherence is
possible because quantum systems interact with other quan-
tum systems and, as a consequence of such an interaction,
when those other surrounding (quantum) systems, known as
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FIG. 8. Purity over a time 107 for (a) single input signals and
(b) their symmetric double signal counterparts. The centers of these
inputs are xo = 6 (blue dashed line), xo = 12.5 (red dotted line),
and xp = 18 (green dash-dotted line) and decrease by one to their
corresponding double waves. To set a reference to compare with, the
result for the input signal centered at xo = O is denoted by a black
solid line in both panels. In all case, the parameters considered are
h=1,m=1,L=50, w=10, and y = 2/57. All quantities are
given in arbitrary units.

the environment, are neglected, the behavior of the system
of interest exhibits classical-type features. This has given rise
in the literature to a series of different phenomenological or
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teristic times #; (black squares), #, (red circles), and #; (blue triangles)
for single input states as a function of the latter center x,. (c) Same as
in (b) but for double input signal. For easier visualization, colored
dotted lines joining the data have been added. In all cases, the
parameters are m = 1, i =1, L =50, w = 10, and y = 2/5x. All
quantities are given in arbitrary units.

effective decoherence models that try to reproduce the effects
of the environment over the system of interest without ex-
plicitly specifying the particular dynamics displayed by each
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FIG. 11. Energy correlation matrix for (a)—(d) single and (e)—(h)
double input signals. For a single input signal (a) xo = 0, (b) xp =
8.3, (c) xp = 16.5, and (d) xo = 20. For a double input signal (e)
xo =5, (f) xo = 8.3, (g) xo = 15, and (h) xy = 20. The color scale
ranges from red denoting higher values (greater than or equal to 0.3)
to blue for lower ones (less than or equal to —0.3). The panel of each
inset indicates the population associated with each particular input
state. In all cases, m =1, i=1, L =50, w =10, and y =2/5x.
All quantities are given in arbitrary units.

environmental system. This is what we generally call the
theory of open quantum systems [1], which is in reality a
compendium of effective theories with common grounds that
allow us to go from one to another.

Such theories or models essentially arise from the observa-
tion of the behavior displayed by a quantum system when it
is acted upon by an environment. An immediate effect is the
gradual loss of interference features (loss of fringe visibility),

which will be faster or slower depending on the strength of
the system-environment interaction. In this regard, quantum
carpets become ideal systems to probe and to evidence the
effects of decoherence [48,49], since the intricate carpet-type
patterns exhibited inside a box (a waveguide, regardless of
whether the wave is made of light, electrons, or neutrons)
are going to be very sensitive to an external action. In this
work we have explored these effects by considering a simple
but insightful coherence damping model based on how more
complicated models act on superpositions of energy states and
also on continuous-variable states. This model describes the
action of entangling the system generating the carpets here
with another analogous system, which, when it is traced over,
gives rise to the exponential decay here observed.

What is interesting here is the fact that, because dissipation
(thermalization) effects are not included, a full loss of coher-
ence does not correspond to spatial localization, as one might
expect a priori. Rather, it is seen that the annihilation of the
coherence terms in the energy density matrix gives rise to a
sort of spreading of energy all along the cavity considered,
with some concentration around the center of the input signal
and its mirror-symmetric position with respect to x = 0, or
around the center in the case of two symmetrically distributed
input signals (initial coherent superpositions of two localized
states). This seemingly unusual long-time limit is actually a
product of the bare sum of the densities associated with each
contributing eigenmode. From this point of view, the oscil-
latory pattern-type behavior is only a manifestation of how
the coherence terms modulate such a bare backbone. When
this effect is visualized in terms of Bohmian trajectories, a
transition from a highly oscillatory motion to a rather smooth
behavior is observed, with a long-time limit being described
by motionless trajectories. This is a nice manifestation of
the important connection between Bohmian mechanics and
an underlying locally varying phase field: As soon as the
phase field does not change anymore, all Bohmian motion
disappears. This situation resembles the widely known sta-
tionarity associated with nondegenerate eigenvalues, which
has been debated for a long time in the literature [62]. It is
worth mentioning that at present these behaviors, fully based
on Markovian considerations, are being investigated also in
terms of a more robust two-party entanglement model. It is
expected that the model will render in a natural fashion the
damping factor in positions, but also a counterpart in the
energy representation, thus offering an alternative perspective
on the coherence transference between parties and its role in
decoherence processes.

Another interesting feature that has been observed is that
not only the coherence among different energy eigenstates
must disappear in order to faithfully reproduce the effects
of decoherence. If instead of the probability density we look
at the real part of the density matrix (the imaginary part is
valid as well), we notice that important structures out of the
main diagonal still persist. The reason is that the removal of
these contributions requires an additional element related to
the loss of point-to-point space correlations, which cannot be
readily seen in more refined models. When we introduce a
damping term in this direction, all contributions out of the
main diagonal gradually disappear. Note that this is a feature
that cannot be observed by simply inspecting the probability
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density, because although interferential traits are seen to dis-
appear with time, the same is not seen at all in the density
matrix in space, since all those correlations disappear when
we setx = x'.

Furthermore, in order to determine in a more quantitative
manner the effectiveness of decoherence in terms of the initial
input state considered, analysis of the purity and the density
matrix in the energy representation has also been carried out.
In this regard it is worth mentioning that, when the input states
have an even parity, the loss of coherence takes place more
rapidly than in the case of asymmetric states due to the many
more cavity modes that such states can be projected on. To
quantify the effect, we analyzed the timescales involved in
each case, finding that there are three decay timescales ruling
the behavior of the purity in the short, medium, and long
terms, respectively.

Finally, it is worth emphasizing that the analysis pre-
sented here, which includes different supplementary tools
(densities in space and momentum, density matrices, and
Bohmian trajectories), can be equally applied to confinement
of matter waves and to light pulses pumped into resonant cav-
ities or multimode interference devices, where the generation
of twin pulses is based on the phenomenon of recurrences.
In these cases, taking advantage of the isomorphism between
the Schrodinger equation and the paraxial Helmholtz equa-
tion [63], the full analysis presented here for a matter wave
could be profitably switched to the analysis of confined light.
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