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Relative entropic uncertainty relation
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Quantum uncertainty relations are formulated in terms of relative entropy between distributions of measure-
ment outcomes and suitable reference distributions with maximum entropy. This type of entropic uncertainty
relation can be applied directly to observables with either discrete or continuous spectra. We find that a sum of
relative entropies is bounded from above in a nontrivial way, which we illustrate with some examples.
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I. INTRODUCTION

The uncertainty relation lies at the heart of quantum theory
and is also well known among laymen. It was introduced first
by Heisenberg in 1927 [1] and proven in the same year by
Kennard [2] (see also [3]). It states the simple but astonishing
fact that position x and momentum k cannot be fixed or mea-
sured with perfect precision at the same time. This idea was
generalized to arbitrary Hermitian operators A and B,

oaop > 51([A, B])I, )

where o4 denotes the standard deviation of A. Stated in this
form, it becomes evident how the noncommutative nature of
quantum mechanics is related to the uncertainty relation [4,5].
Thus another way of interpreting uncertainty relations is that
the order of subsequent measurements matters.

Although the uncertainty relation formulated in terms of
standard deviations is often handy, it is nowadays believed
that a formulation in terms of information entropies is more
adequate. One reason is that the standard deviation exhibits
counterintuitive behavior in some situations [6]. Furthermore,
entropy is a measure for the total uncertainty of a probability
distribution [7]. A detailed discussion about advantages of
uncertainty relations using entropy instead of variances can
be found in Refs. [6,8-11].

The first entropic uncertainty relation (EUR) was formu-
lated for the continuous variables position x and conjugate
momentum k. In terms of the corresponding probability den-
sities f(x) and g(k) it reads [10,12-15]

S(fHHr+S@ =1+Inm, 2)

where S(f) denotes the differential entropy of the probability
density f(x). This entropic uncertainty relation is not only
interesting because entropy is a more adequate measure of un-
certainty, but also because of the implied position-momentum
pair; hence it is stronger than Heisenberg’s inequality. More
precisely, it requires the distributions f(x) and g(k) to be of
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Gaussian form in order to saturate the bound, which can be
seen by rewriting it in terms of variances again [10,16].

Later, an entropic uncertainty relation for (nondegenerate)
observables X and Z with discrete spectra

X |x) =xlx),
Zlz) =zlz)

was found by Deutsch [17] and improved by Maassen and
Uffink [18] following a conjecture by Kraus [19]. Later, it
was further strengthened by Berta ez al. [20] (see also [21]),
resulting in

3)

1
S(p)+S(g) = lnz + S(p). “)

Therein S(p) and S(q) denote the classical Shannon entropies
[7] of the discrete distributions p(x) and ¢(z), while the von
Neumann entropy S(p) accounts for the mixedness of the
system’s state p. Moreover, c¢ is defined as the maximum
overlap between any two eigenvectors of X and Z

¢ = max [(x]z) %, (5

which quantifies what one may call the quantum incompati-
bility of the two bases {|x)}, and {|z)}..

The latter relation can also be generalized to two pos-
itive operator—valued probability measures (POVMs) {A,},
and {I'.};, which are non-negative operators that satisfy a
completeness relation. Then, the Shannon entropies of the
classical distributions p(x) = Tr{pA,} and g(z) = Tr{pl;}
are bounded from below as prescribed by the Maassen-Uffink
relation (4), if the quantum incompatibility gets replaced by
[22-25]

¢ = max /Ay Toy/Aslloo = max | VAT, (6)

where ||.||, denotes the infinity operator norm. Note that, for
projective measurements, this operator norm reduces to the
overlap again.

Until today many different types of EURs were investi-
gated, for example, in the context of Wehrl entropy [26],
to classify the uncertainty between energy and time [27-30]
or for the family of Rényi entropies [18,31]. Moreover, the
idea of uncertainty relations was also extended to bi- and
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tripartite systems with quantum memory in terms of condi-
tional entropies [20,32-35]. Also, strengthened versions of the
bound were investigated, which further reduce the quantum
incompatibility measure ¢ defined in (6) [23,24].

The two different types of observables were first unified
in a formal way by Frank and Lieb [21] (using the Golden-
Thompson inequality and the Gibbs variational principle)
based on previous work by Rumin [36], who also generalized
the relation to POVMs [37]. For the probability densities f(x)
and g(k) their EUR reads

S(f)+S(g) = In(2m) + S(p), )

while for discrete variables it reduces to the result of Maassen
and Uffink (4). Interestingly, it is tighter than (2) for suf-
ficiently mixed states and becomes tight in the infinite
temperature limit § — 0.

One of the main aims of this work is to present a simple
EUR, which directly unifies the two cases of discrete and
continuous random variables. In particular, we investigate a
formulation in terms of relative entropy instead of entropy,
which allows one to unify the two different types of observ-
ables in a straightforward manner.

Classically, the relative entropy (often also called
Kullback-Leibler divergence) between two discrete distribu-
tions p(x) and p(x) is defined as [25,38-40]

S(pllp) =Y p(x)In[p(x)/p(x)] ®)

and can be seen as a measure of their distinguishability. It
cannot be considered as an actual distance measure since it
does not obey a triangle inequality and is not symmetric. In
fact it is a divergence in the mathematical sense.

Relative entropy plays a crucial role in the context of
EURs. Some modern proofs of EURs for discrete vari-
ables [e.g., for the Maassen-Uffink relation (4)] rely on the
monotonicity property of the quantum version of the rela-
tive entropy under completely positive trace-preserving maps'
[25,34,41]. Furthermore, EURs can also be stated as in-
formation exclusion principles in the presence of classical
or quantum memory [24,42,43]. In this sense, uncertainty
between noncommuting observables is characterized by the
impossibility of having a memory system that is strongly cor-
related to the measurements of both observables. Since mutual
information can be expressed through relative entropy, such
formulations can be regarded as EURs in terms of relative
entropy in the presence of memory.

Moreover, the concept of relative entropy was used in
Refs. [44,45] to formulate measurement EURs which deal
with joint approximate measurements of incompatible observ-
ables (cf. Ref. [46] for an overview; see also [9]). In this
field of research, EURs are used to characterize the quality
of the aforementioned approximation or to constrain the dis-
turbance of an observable after measuring another one (see,
e.g., Ref. [47]), rather than to quantify the fundamental in-
compatibility of noncommuting observables, which is known
as preparation uncertainty instead. In this work we only deal
with the latter type of uncertainty.

I'This property is also often called data-processing inequality.

In contrast to these considerations, our aim is to reformu-
late existing EURs in terms of relative entropies. The main
result of this work is the relative entropic uncertainty relation
(REUR) (54), which provides a bound for a sum of two rela-
tive entropies from above. Besides adding another perspective
on EURs, the REUR is capable of describing the two cases
of discrete and continuous variables simultaneously in one
and the same inequality. This is achieved by picking suitable
model distributions of maximum entropy pmax and gmax. In
the case of discrete variables, convenient choices would be
the uniform or a generalized Boltzmann distribution. For con-
tinuous variables, the most suitable choice is the Gaussian
distribution, which also allows for a strengthened reformu-
lation of Eq. (1) highlighting the looseness of the latter for
non-Gaussian distributions. In this sense, the REUR (54) has
to be understood as a reformulation of the Frank and Lieb
EUR [21] in terms of relative entropies allowing for a more
direct unification of the two cases of variables. While this
formulation allows for a somewhat different physical interpre-
tation, mathematically, it is equivalent to the relation proven
in Ref. [21].

The paper is organized as follows. We begin with introduc-
ing the relative entropy in more detail in Sec. II. Then, we
discuss the discrete case explicitly and show how to obtain
an EUR in terms of relative entropy starting from Boltzmann
distributions as optimal models in Sec. III. Afterwards, the
continuous case is discussed in Sec. IV, where convenient
model distributions turn out to be Gaussians. In Sec. V, we
consider the general case and unify the relations obtained
before. Furthermore, we make some remarks concerning the
interpretation of the resulting EUR in terms of relative en-
tropies. Also, we discuss a further nontrivial example, where
we explicitly show that both sides of the REUR behave well
when taking the continuum limit. Finally, we summarize our
results and give an outlook in Sec. VI.

Notation. In this paper we adopt natural units, with 7 = 1.
Operator hats are dropped completely. Instead, we use capital
letters for operators X and small letters for their eigenvalues x
and eigenvectors |x). As a consequence, random variables are
denoted by small letters, too. Furthermore, we use the symbol
S for all kinds of entropies and take the underlying probability
distribution p(x), probability density f(x), or density matrix p
as argument. In this sense it depends on the argument whether
S is a Shannon entropy S(p) = — Y, p(x)In p(x), a differen-
tial entropy S(f) = — fdx f(x)In f(x), or a von Neumann
entropy S(p) = —Tr{p In p}. It should be clear from the con-
text what is meant in each case.

II. RELATIVE ENTROPY

To get an intuitive understanding of relative entropy con-
sider a random experiment where discrete events are correctly
described by a distribution p(x). If we mistakenly take the
events to be distributed according to a model distribution p(x),
the relative entropy S(pl||p) as defined in Eq. (8) quantifies
the uncertainty deficit about p(x) due to the wrong model
p(x), more precisely the difference between the cross entropy
S(p, p) = —)_, p(x)In p(x), which is the expectation value
of the apparent information content, and the real information
content S(p) = — ) . p(x)In p(x) [48].
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Consequently, relative entropy is a non-negative quantity
being zero if and only if the two distributions agree. More-
over, to have a finite value, it needs the support condition
supp[p(x)] < supp[p(x)] to hold; otherwise, its value is set to
—+00. The latter corresponds to the case where the model p(x)
predicts zero probability for events, which can in fact happen.
In this case one can rule out the model p(x) with certainty as
soon as such an event occurs which causes the “distinguisha-
bility” S(p||p) to be infinitely large. Thus a suitable model
p(x) should at least cover all possible outcomes; otherwise,
it could be ruled out for particular events [40]. Exchanging
here p(x) and p(x) gives an intuitive understanding for the
asymmetry of S(p||p) under an exchange of its arguments.

It should be noted that the roles of the true and the model
distribution can depend on the context. For our purposes it
suffices to consider the second argument of relative entropy
as the model.

Interestingly, relative entropy has some crucial advantages
over entropy. Most importantly it turns out to be well defined
for discrete and continuous random variables. Simply tak-
ing the continuum limit p(x) — f(x)dx and p(x) — f (x)dx
yields [40]

SUIf) = /de(X) In[f(x)/f ()] €))

In contrast, Shannon’s entropy does not yield the differential
entropy when taking this continuum limit [49]. As a con-
sequence, differential entropy can become negative, while
Shannon’s entropy is a non-negative quantity.

Moreover, relative entropy is invariant under a diffeomor-
phism x — x’(x) on the underlying statistical manifold. This
is also not the case for the differential entropy, which can be
seen easily by considering scaling transformations. Thus it
seems to be more appropriate to work with relative entropy
instead of entropy, if one wants to describe discrete as well as
continuous random variables.

III. DISCRETE VARIABLES

We now consider first the case of discrete variables ex-
plicitly. We will show that suitable models are Boltzmann
distributions, which directly leads us to a reformulation of the
Maassen-Uffink inequality (4) in terms of relative entropies.
Throughout the following section we assume the dimension
of the Hilbert space to be finite d = dim H < oo.

A. Quantum-classical states and classical distributions

We consider a quantum system in some arbitrary quantum
state, which is specified by a non-negative, trace-class op-
erator p with normalization Tr{p} = 1. We are interested in
measuring two observables represented by Hermitian trace-
class operators X and Z. Since we explicitly want to describe
the discrete case, we assume that the spectra of both operators
are bounded and discrete, such that the set of equations (3)
holds. Therefore, {|x)}, and {|z)}, are orthonormal bases with
normalizable elements.

The results of a measurement of X are then distributed
according to

px) = (x[plx), (10)

i.e., p(x) is the probability to obtain the value x when mea-
suring X in its eigenbasis. The described procedure is the
projective measurement (PVM), which is a special case of a
POVM. In most generality, the probability distribution (10)
can be constructed from the expectation value

p(x) =Tr{A:p}, Y

which reduces to Eq. (10) if the POVM elements are chosen
to be A, = |x) (x|, i.e., rank-1 projectors projecting the state
p onto the xth eigenvalue of X.

In this setup, entropic uncertainty relations state that the
sum of two classical entropies of the corresponding measured
distributions p(x) and ¢g(z) are bounded from below in a non-
trivial way.

Furthermore, one can define a quantum-classical state px
representing the state of the quantum system after measuring
the operator X without recording the result. More precisely,
the projective measurement is mathematically represented by
applying a measurement map &’ to the general density matrix
o as follows:

p— px =X(p)= ZP(X) |x) (xl . 12)

Therein p(x) is defined as in (10), such that pyx can indeed be
interpreted as the classical state obtained after measuring the
full quantum state p in the eigenbasis {|x)}, without record-
ing the result. Consequently, the von Neumann entropy of a
measured density operator px is the Shannon entropy of the
classical probability distribution p(x)

S(px) == px)In p(x) = S(p). 13)

Since projective measurements are unital quantum channels,
we have the following relation to the full quantum entropy
[50]:

S(p) < S(p). (14)

During a measurement without recording the result, the von
Neumann entropy can increase but not decrease.

B. Boltzmann distributions as optimal models

To use relative entropy in a formulation of an EUR, we
mainly need to specify the reference distributions p(x) and
g(z). Depending on the availability of side information about
the actual distributions p(x) and g(z), these distributions can
be picked, such that they maximize an entropy. Let us make
this idea more explicit by considering some examples in the
following.

1. No prior information

In the absence of any constraints, the optimal model, i.e.,
the model with maximum Shannon entropy, is given by a
uniform distribution

PX) = pmax(x) = 1/d. 15)
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Then, the relative entropy between p(x) and ppax(x) reduces
to a simple difference of entropies

S(pllpmax) = —S(p) + Ind
= —S5(p) + S(Pmax), (16)

such that we can rewrite the Maassen-Uffink EUR (4) as

1
S(Pllpmax) + S(@llgmax) < _lnz —S(p)+21Ind. (17)

The sum of the divergencies of p(x) from pn.x(x) and g(x)
from gmax(x) is bounded from above. This bound becomes
tighter the smaller the maximum overlap ¢ in Eq. (§) is and
the larger the von Neumann entropy S(p) is.

In the extreme case of a mutually unbiased basis (MUB)
one has In(l1/c) =Ind and for a maximally mixed state
S(p) = Ind. In this case the right-hand side of Eq. (17) van-
ishes and neither p(x) nor g(x) can be distinguished from a
uniform distribution with maximum entropy any more. This
shows how the uncertainty relation has indeed an information
theoretic significance in this formulation.

2. Given expectation values

Another convenient choice of constraints is a set of fixed
expectation values. This is in particular interesting if we con-
sider thermal states or in general if we have some additional
macroscopic information about a set of observables, which are
distributed according to p(x). For example, we can consider
the expectation value of the true distribution p(x)

My = ZP(X)X (18)

and require that the reference distribution p(x) has the same
mean value fi, = u,. Then, the optimal model in the sense
that S(p) is maximal under the constraint i, = ) p(x)x =
Wy 1s given by

. 1 _
PX) = pmax(x) = —-e "7, (19)
Zy
where y, is a Lagrange multiplier and Z, is a constant for
proper normalization. If there exists a set of observables Y;,
which commute with X, then we can include their expecta-
tion values, too. For example, if one of these operators is
the Hamiltonian H, one can consider a thermal state as the
optimal model. In particular, the condition of equal energy ex-
pectation values for the distributions p(x) and p(x) = pmax(x)
uniquely determines the inverse temperature 8 of the thermal
model.

For a Boltzmann-type distribution pp,x(x) with equal ex-
pectation value we find for the relative entropy

S(Pllpmax) = =S(p) + InZ; + yopiy

(20)
= —S8(p) + S(Pmax),

i.e., it again reduces to a difference of entropies. If we
consider two observables X and Z and choose Boltzmann-
type distributions as optimal models, a reformulation of the

Maassen-Uffink EUR (4) reads
S(pll pmax) + S(qllgmax)

1
< _ln; = S(p) +In(Z: Z;) + yelbx + Vilkz, (21)

where we used indices for all quantities related to the two
different observables X and Z. These quantities are uniquely
determined by the true distributions p(x) and g(z) and thus
can be computed once the latter have been determined exper-
imentally.

The latter considerations can be extended to the case where
the mean values of the true distribution p(x) and the model
p(x) are given, but do not agree wu, # fi,. In this case, the
relative entropy acquires an additional term, which is propor-
tional to the difference of the two,

S(Plpmax) = —=S(P) + S(Pmax) + Ve (px — fx). (22)
Nevertheless, the REUR (21) remains the same.

3. Given set of moments

We can generalize the latter considerations to the case
where an arbitrary set of moments is constrained. More pre-

cisely, we may consider N functions m;(x), ..., my(x), for
which the expectation values
(mj) =Y plcym;(x) (23)
X

are known. Thus the optimal model distribution p(x) =
Pmax (x) needs to fulfill the set of constraints

aj(p, p) = Y _ [p(x) — p(x)lm;(x) =0, (24)

for j € {1, ..., N}. Assuming the existence of such an optimal
model j(x)?, the maximum entropy principle dictates its form
to be [49,51]

N
POX) = Prax (x) = exp (Z y mJ-(x)), (25)

j=0

where A; for j > 0 are Lagrangian multipliers ensuring the
N constraints «;(p, p) = 0 and A¢ is needed for proper nor-
malization of the resulting optimal model distribution p(x).
Interestingly, the form of the solution (25) does not change if
the constraints are given in the form of inequalities o (p, p) >
0, but one has now additional constraints A; > 0 for all j
{1, ..., N} for the optimization problem [52,53].

C. Formulation solely in terms of relative entropies

Another interesting point is to rewrite (21) entirely in terms
of relative entropies. To that end we need to replace the quan-
tum entropy S(p) and the Shannon entropies of some optimal
models by the quantum relative entropy, which is defined as
[48,54]

S(pllp) = —Tr{p (Inp —In p)}. (26)
2Note that, in the case of continuous variables, solutions to this

optimization problem often do not exist, especially when considering
higher-order moments.
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It can be considered as the quantum analog of (8) exhibiting
the same properties on the level of density matrices o and p.
As for the classical relative entropies, we consider models
of maximum entropy. In particular, we construct the measured
state px max corresponding to the optimal classical distribution

Pxmax = Y Pmax(X) %) (x], (27)

which can be done analogously for pzmax. Then, a quantum
relative entropy of the actual state p with respect to such a
model can be written as

S(pllpx,max) = =S(p) + S(Pmax)- (28)

Furthermore, we can use that the uniform distribution

1
Pmax = E 1 (29)
allows one to rewrite the quantum entropy in a simple way

S(p) = =S(pllpmax) +Ind. (30)

Then, a formulation of (21) solely in terms of relative en-
tropies reads

S(pllpmax) + S(gllgmax)
< ln(Cd) - S(p”pmax) + S(p”pX,max) + S(p”pZ,max)-
(31

Note that for the maximum overlap as defined in Eq. (5) we
have ¢ > 1/d so that In(cd) > 0, with equality corresponding
to mutually unbiased bases.

IV. CONTINUOUS VARIABLES

Now we turn to continuous variables, and specifically con-
sider position X and momentum K in one spatial dimension.
We assume the corresponding probability density functions
f(x) and g(k) to be supported everywhere on the real line,
if not stated differently.

Most importantly, the dimension of the Hilbert space is not
finite any more and the optimal models of maximum entropy
are described by probability density functions.

A. Position, momentum, and probability densities

In contrast to discrete variables, we cannot assign a mean-
ingful quantum-classical state px after a measurement of X
to our quantum system of interest. Mathematically, this is due
to the fact that the eigenstates of X are not orthonormal (the
same holds for K). Instead, their overlaps are given by Dirac
deltas

(xlx"y =8(x —x'), (k|k') =8k — k), (32)

such that the formal extension of the projective measurement
(12) leads to an operator

p—px =X(p)= [de(X) |x) (xl (33)

which is not trace class and thus cannot represent any quantum
state. Nevertheless, one can still compute the density of the
quantum state p in the eigenbasis of the observable X, such
that the probability distribution density f(x) = (x|p|x) [cf.

Eq. (10)] remains well defined. Then, the probability for ob-
taining an outcome between x and x + dx is given by f(x)dx.
For the following discussion it is important to look at the
scalar product of position and momentum eigenstates
1 ixk
(x[k) me ; (34)
which reflects the fact that the spectra of the two operators X
and K are related by a Fourier transform. Since the latter is
true for all positions x and momenta &, the maximum overlap
c is given by
¢ = max |(x[k)|* = L (35)
a x,k - 2
and the two bases {|x)}, and {|k)}; can be considered as
mutually unbiased bases in a continuous sense.

Let us note here that every experimental measurement of
a position X or a momentum K can only be carried out with
finite accuracies §x and §k leading formally to discrete proba-
bility distributions and measurement outcomes in the form of
histograms.

More precisely, actual measurement outcomes can be con-
sidered as being sampled from the underlying probability
density f(x), such that one ends up with a discrete probability
pi to register for example a particle in the ith interval of size
dx given by [6,9]

(i+1)8x

Pi=/ dx f(x). (36)
idx

Consequently, one can associate a Shannon entropy to this

distribution,

S(p)=—>_pilnpi, 37)

which is a measure for the uncertainty about the measured
distribution. In the limit of infinitely small bin sizes éx — 0,
the measured Shannon entropy S(p) diverges to +o0o as a
consequence of allowing for an infinite and thus unphysical
precision. Therefore, the true differential entropy of the un-
derlying probability density S(f) can only be recovered in the
limit 6x — O after subtracting this infinite additive constant
[6,9]

§(f) = Jlim [S(p) + Indx], (38)

which shows again that the differential entropy S(f) is not
the continuum limit of the Shannon entropy S(p) and that
it does not inherit all of the Shannon entropies’ properties.
Nevertheless, it is possible to estimate the differential entropy
S(f) from the measured probability distribution p; [55].

Some of these problems might be avoided or relaxed by
working with relative entropies instead of entropies. More-
over, it is of course interesting by itself to formulate EURs in
terms of differential relative entropies, as we will do in the
following.

B. Gaussian distributions as optimal models

In principle, one can consider the same constraints as be-
fore to obtain optimal models. For given expectation values
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one would end up with distributions of Boltzmann type. Fur-
thermore, if we put the quantum system into a box of finite
length L, e.g., x € [-L/2, L/2], we can choose the uniform
distribution as optimal model, for the case that we do not
have any constraints to implement. In the general case of an
unbounded interval x € (—o0, 00) this is not possible.3

Of special interest for the continuous case is a Gaussian

distribution
(x —p)?
—_), 39
exp ( o (39)

f(x) = fnax(x) =

2mwo?

which represents the optimal model, in the sense of a maxi-
mum differential entropy S(f), for known variance

o7 = / dx f (0 — pe)? (40)

and mean
Uy = /dxf(x)x. 1
Computing the entropy of the Gaussian distribution (39) gives

S(fmax) = 3 In (2ea), (42)

such that the reformulation of the Frank-Lieb EUR (7) in
terms of relative entropies reads

S(fll fmax) + S(gllgmax) < —=S(p) + 1 +In(ox0k).  (43)

Again the right-hand side is fully determined by the true
distributions f(x) and g(k).

Similarly, we can reformulate the EUR by Biatynicki-
Birula and Mycielski (2),

S(fl fmax) + S(gllgmax) < In2 +1n(ox0).  (44)

This relation is particularly interesting if we express it in terms
of variances again

0y O = %eS(f”fmax)+S(g”gmux)‘ (45)
Compared to Robertson’s formulation (1), the latter uncer-
tainty relation provides a stronger bound for non-Gaussian
distributions, where non-Gaussianity is measured in terms of
relative entropies. Hence it becomes visible in which cases
the EUR (2) is stronger than the uncertainty relation (1).
The latter relation was already discussed in [16] (see also
[10]), where the relative entropy with respect to optimal Gaus-
sians S(f || fmax) Was interpreted as the neg-entropy J(f) =
S(fmax) — S(f) accounting for non-Gaussianity.*

Finally, let us briefly comment on a possible rewriting of
(43) entirely in terms of relative entropies as done in (31)
for discrete variables. The strategy used in the discrete case
breaks down for continuous variables due to the nonexistence
of a measured state in Eq. (33). We did not find a way to
circumvent this problem but will argue in Sec. V that one
arrives at a satisfactory formulation nevertheless.

3Note that in the case of x € [—L/2, L/2] we still can have (dis-
crete) k € (—o00, 00), such that the uniform model may not be chosen
for both distributions at once.

4See also [56] for a discussion concerning non-Gaussianity of
quantum states measured in terms of quantum relative entropy.

V. UNCERTAINTY RELATION BASED ON
RELATIVE ENTROPY

In the last section we generalize the two cases of discrete
and continuous variables and provide a REUR which covers
both cases. Therefore, in the following discussion we will
write p(x) and g(z) for every type of distribution and their
precise meanings have to be deduced from the context. Fur-
thermore, we discuss the resulting REUR in more detail.

A. Model distributions of maximum entropy

In the two previous sections we were mainly concerned
with finding suitable model distributions p(x) and g(x), which
turned out to be the key step for reformulating statements with
entropy in terms of relative entropy (cf. also Refs. [57] and
[58D).

For our purposes the most useful models p(x) and G(x)
were the ones which allowed one to write a relative entropy
as a simple difference of entropies. Since in general relative
entropy can be written as

S(plp) = —S(p)+S(p. ). (46)
i.e., as the difference between a cross entropy’
S(p, ) == _ p(x)In p(x) (47)

and an entropy S(p), we are interested in finding models p(x)
for which the cross entropy S(p, p) reduces to the entropy of
the model S(p) under certain additional constraints, i.e.,

S(p, p) = S(p) (48)

for a set of constraints

aj(p, p) =0, (49)

where j e {l,...,N} and N is typically a small natural
number. Examples for convenient constraints included equal
standard deviation o, = 6, or equal expectation values of
macroscopic quantities (O), = (O).

The condition (48) can be inserted into the relative entropy,

which simply gives

S(pllp) = =S(p) + S(p). (50)

Then, the non-negativity of the relative entropy is equivalent
to

S(p) < S(P). (51)

Since the latter inequality has to hold for all true distributions
p(x), the condition (48) requires that the model is optimal
P(x) = pmax(x), in the sense that it maximizes the classical
entropy under the given constraints.

Additionally, we can consider the case where the condition
(48) is released below in the sense that we allow for terms
linear in the constraints. This still leads to the distribution
of maximum entropy, but it is less optimal in the sense that
some of its properties do not coincide with those of the true

SFor continuous distributions the sum has to be replaced by an
integral [ dx.
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distributions, for example, they could have different mean
values py # fiy.

Another advantage of optimal model distributions is
that they often fulfill the support condition supp[p(x)] <
Supp[pmax(x)] for all x, such that the relative entropy
S(pllpmax) Will be finite. As a consequence, a sum of relative
entropies is bounded from above in a trivial way,

S(PllPmax) + S(gllgmax) < S(Pmax) + S(gmax) (52)

which can be seen from combining (46) with (48) and using
that

S(p) +S(g) =0 (33)

also holds for the continuous case. Formulating an entropic
uncertainty relation in terms of relative entropies is then
equivalent to finding a smaller bound than (52).

B. Uncertainty relation and discussion

Denoting the model distributions with maximum entropy
and equal constraints by pmax () and gmax (z) allows us to state
the relative entropic uncertainty relation (REUR) for the two
true distributions p(x) and g(z) in its most general form

S(pllPmax) + S(qllgmax)
1 (54)
<—In E = 8(p) + S(Pmax) + S(Gmax)»

where ¢ is again the maximum overlap between any two
eigenstates in (5) for projective measurements, or the general-
ization in Eq. (6) for POVMs.

One has to be careful with the interpretation of this in-
equality because the usual logic is in some sense reversed.
Therefore, a few comments are in order.

(a) Sum of relative entropies is bounded from above. The
nontrivial bound on a sum of relative entropies comes from
above and not from below. In addition, a sum of relative
entropies is bounded from below by zero due to the non-
negativity of all summands. Furthermore, it is bounded from
above as shown in Eq. (52). The upper bound tells that the
ability to distinguish the measurement outcome distributions
p(x) and g(x) from models with minimal information is
bounded. The discriminating power on the right-hand side of
(54) gets smaller when the overlap between basis functions in
Eq. (5) gets smaller, or when the von Neumann entropy gets
larger.

Being able to distinguish a distribution well from a model
means to have a high amount of information additional to the
prior information encoded in the model. Since all uncertainty
relations are statements about never having all information
about two noncommuting observables, this translates to an
upper bound for a sum of relative entropies with respect to
models representing maximal missing information.

(b) Smaller bound from smaller overlap and mixedness.
The bound is smaller if the two observables have a smaller
quantum incompatibility measured in terms of c. It is also
smaller if the state of the system becomes more mixed due
to the term —S(p) < 0. Thus quantum incompatibility or
mixedness is encoded in having a small bound. Note that
the right-hand side of (54) becomes largest, and the bound
correspondingly weakest, when ¢ — 1 and S(p) — 0. This

corresponds to the classical situation and absence of statistical
fluctuations in the state p. Nevertheless, the discriminating
power on the left-hand side of (54) is then still bounded,
namely by the sum of maximum entropies [cf. Eq. (52)].

(c¢) Maassen-Uffink and Frank-Lieb relations follow as spe-
cial cases. As we have seen in Secs. III and IV, the REUR
(54) reduces to the Maassen-Uffink relation (4) for discrete
and to the Frank-Lieb relation (7) for continuous variables, re-
spectively. Therefore, the tightness of the REUR (54) depends
on the type of variables under consideration. For discrete
variables, it is tight for mutually unbiased bases and states
that are diagonal in either one of the two bases. In contrast, for
continuous variables it becomes tight in the infinite tempera-
ture limit. Furthermore, as the REUR (54) is mathematically
equivalent to the measure-theoretic formulation by Frank and
Lieb put forward in [21], it could be proven in complete
analogy using the Golden-Thompson inequality and Gibbs
variational principle.

(d) Discrete and continuous spectra are unified. The main
advantage of the REUR (54) is that the left-hand side is well
defined in both cases, i.e., for operators with discrete as well
as continuous spectrum, which is one of the nice features of
relative entropy. On the right-hand side we still have a sum of
entropies, but for optimal models pmax(x) and gmax(z) We can
always express these in terms of quantities appearing in the
constraints o;. Thus the relation is indeed free of ambiguities.

(e) Bound contains additional knowledge. In most cases,
the bound of an uncertainty relation depends on some measure
of quantum incompatibility (either a commutator or an over-
lap) and the state p. Interestingly, the bound in the REUR (54)
does also depend on the additional knowledge encoded in the
optimal models pmax (x) and gmax(2), i.€., on the constraints.
Therefore, any available information about the distributions
can be implemented directly in the presented uncertainty
relation. This feature may be of particular interest for experi-
mental applications where different kinds of constraints may
be accessed.

(f) Change of normalization. Specifically for continuous
variables it is instructive to study scaling transformations of
the form |x) — |x’) = «|x). For |a|> # 1 they change the
normalization of the basis {|x)},. One needs to complement
this change of basis with a change of integration measure
dx — dx' = || 2dx such that the probability

(xlplx)dx — (x| plx")dx" = (x|p|x)dx (55)

remains unchanged. The differential entropy changes then
according to S(Pmax) = S(Pmax) — In(je|?). For the maxi-
mum overlap as defined in (5) one has ¢ — ¢’ = |a|*c such
that —In(1/c¢) - —In(1/c¢’) = —In(1/c) + In(Ja|?). Taken
together, the right-hand side of (54) is invariant under such
a “change of normalization” transformation. When |z) corre-
sponds to a continuous variable there is a similar invariance.

C. Example of angle and angular momentum

We close our analysis by considering a nontrivial example,
namely angular momentum states and corresponding discrete
or continuous angles. We will demonstrate here how the
bound of the REUR (54) behaves if we start with operators
with discrete spectra and take the continuum and infinite vol-
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ume limits. Note that the limits have to be understood in a
formal way and that the left-hand side of (54) is always well
defined as explained around (9).

We start from a finite set of 2J 4 1 spin or angular mo-
mentum eigenstates |m) with L,|m) = m|m) and where m €
{—J,...,J} is an integer. As usual, J can be integer or half-
integer. Following Ref. [59] we introduce now the angle states

9) (56)

J
1 )
_ —im
= E e m).
v2I+1 —, b
In particular, one has with this definition |¢) = |¢ + 27) and

e g) = |p + @), (57)

as it should be. Because there is a continuum of angle states,
they are overcomplete and have the overlap

_ sin [(J + %)(90 - ¢)]
YO = 2 Dsin[Lg —9)]

In this regard the angle states are similar to coherent states.
Note also the completeness relation

(58)

2J + 1
2

2 J
/0 g 1Yol =3 Imyml =1.  (59)

m=—J

One can therefore understand a measurement of the continu-
ous angle ¢ as a POVM.
It is also possible to restrict to a discrete set of angle states
|6;) with
9. — 4 2 j
=0 + a1
These discrete angle states are actually orthonormal, (0;]6;) =
3. In the continuum limit J — oo the corresponding angles
become dense but the states need then to be normalized as
continuum states. It is also possible to introduce position
variables on the circle x = 2w R¢, conjugate momenta k =
L,/(2m R), and to consider an “infinite volume” limit R — .
Now let us discuss our relative entropic uncertainty rela-
tions in this context. First, for a measurement of the angular
momentum L, with outcome m one can use in the case of finite
J any of the reference distributions discussed in Sec. III. For
example, if no information is available the uniform distribu-
tion would be a sensible reference, and if (m) and (m?) are
known, a sensible reference distribution would be of the form

j=0,1,...,2J. (60)

Gmax(m) = exp(Ao + Aym + )&2m2)7 (61)

with Lagrangian multipliers A;. The corresponding entropy
appearing on the right-hand side of Eq. (54) is simply
S(Gmax) = —Ao — A1 {m) — Ay(m?). The Gaussian reference
distribution (61) remains (for A, < 0) also normalizable in the
continuum limit / — oo and it corresponds to a continuous
Gaussian distribution of momenta k = m/(27 R) in the infinite
volume limit R — oo when the corresponding variances are
held fixed.

For a measurement of the angle the situation is more
involved. First, for finite J one can consider the projective
measurement in the basis |0;) corresponding to the angles
(60). This is then a discrete observable which can be treated

similar to L, above. Note that the overlap as defined in Eq. (5)
is minimal, ¢ = max,, ; |(m|9_,‘)|2 =1/2J +1).

A measurement of the continuous angle states |¢) is in-
stead a POVM. Because the range of possible values is finite,
the uniform distribution ppax(¢) = 1/(27w) with S(pmax) =
In(27) is an admissible reference distribution with maximum
entropy when no additional information is given. Another
interesting reference distribution is the von Mises distribution
[60]

o cos@—1)

pmax(¢) = T()(K)’

(62)
where I;(k) is the modified Bessel function of the first kind
and of order i. It corresponds to a maximum entropy distribu-
tion for ¢ under the condition that the first circular moment

Meiu
Iy(k)

is known. The magnitude and complex phase of the latter
fix the parameters ¥ > 0 and 0 < p < 27. The differential
entropy is in this case given by

() = (63)

I (k)
Ip(k)’

and the quantum incompatibility ¢ as defined in Eq. (6) eval-
uates to ¢ = 1/(2m). We have dropped here a multiplicative
term d¢ which would appear from a direct application of
Eq. (59) in Eq. (6) but cancels with a similar term that arises
in the transition from a Shannon entropy to the differential
entropy in Eq. (64). This fixes all state independent terms on
the right-hand side of the REUR (54).

Let us note that, for large «, the von Mises distribution
becomes strongly localized around ¢ = p and approaches a
Gaussian shape. In this sense one can recover the Gaussian
models discussed in Sec. IVB in the infinite volume limit
R — oo for fixed variance of position x.

We also note that, up to the different normalization of
states, the two possibilities to look at angle measurements
(discrete as PVM and continuous as POVM) become equiv-
alent in the continuum limit J — oo.

S(Pmax) = In[27ly(k)] — &

(64)

VI. CONCLUSION AND OUTLOOK

In summary, we have investigated a formulation of an
entropic uncertainty relation in terms of relative entropies. In
particular, we found that a sum of relative entropies of the two
true distributions with respect to model distributions of max-
imum entropy are bounded from above in a nontrivial way.
More precisely, there is a bound depending on the entropies
of the optimal models, which gets reduced by quantum incom-
patibility in terms of the maximum overlap ¢ and mixedness
in terms of the von Neumann entropy S(p) of the quantum
state p. The main advantage of the presented formulation
was that it allowed one to cover the cases of observables
with discrete and continuous spectra within one and the same
entropic uncertainty relation. This was due to the fact that
relative entropy, in contrast to Shannon entropy, behaves well
when considering the continuum limit.
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We have illustrated the benefits of this formulation on
the specific example of finite and infinite spaces of angular
momentum states and the conjugate angle variables. All state-
independent quantities appearing in the uncertainty relation
can then be easily evaluated and behave also favorable under
the continuum as well as infinite volume limits.

For the future it might be interesting to generalize the
presented approach to situations with quantum memory.

Another interesting point for future work concerns the
application of the (relative) entropic uncertainty relation to
quantum systems where entropies exhibit (unphysical) infini-
ties while relative entropies remain finite. What we have in

mind here are specifically applications to quantum field theory
in terms of (functional) relative entropies. Such a formulation
would allow one to quantify entropic uncertainty, e.g., for a
scalar quantum field and its conjugate momentum field.
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