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Continuum analogs of excited-state quantum phase transitions
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Following our work [Phys. Rev. Lett. 125, 020401 (2020)], we discuss a semiclassical description of one-
dimensional quantum tunneling through multibarrier potentials in terms of complex time. We start by defining a
complex-extended continuum level density of unbound systems and show its relation to a complex time shift of
the transmitted wave. While the real part of the level density and time shift describes the passage of the particle
through classically allowed coordinate regions, the imaginary part is connected with an instantonlike picture of
the tunneling through forbidden regions. We describe singularities in the real and imaginary parts of the level
density and time shift caused by stationary points of the tunneling potential, and show that they represent a
dual extension of excited-state quantum phase transitions from bound to continuum systems. Using the complex
scaling method, we numerically verify the predicted effects in several tunneling potentials.
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I. INTRODUCTION

During the past 20 years, the research of interacting
quantum systems has been enforced on both experimental
and theoretical sides in response to growing possibilities to
prepare, probe, and utilize customized laboratory quantum
systems [1]. An important direction of this research con-
cerns new manifestations of various critical phenomena [2].
While the thermal and quantum phase transitions affect static
properties of systems in equilibrated states, novel types of crit-
icality apply also to the dynamical properties associated with
nonthermal excitations. In particular, the so-called dynamical
quantum phase transitions denote nonanalyticities in the evo-
lution of an initially equilibrated state after a sudden change of
a control parameter [3]. The excited-state quantum phase tran-
sitions (ESQPTs), on the other hand, represent sharp changes
observed directly in the spectra of excited states, both in the
arrangement of energy eigenvalues (the density and slope of
energy levels in the energy x parameter plane) and in the form
of energy eigenvectors. These features encode the dynamics
of the system in the given excitation domain. Numerous ex-
amples of ESQPTs can be found, e.g., in Refs. [4-23] and a
recent review in Ref. [24].

The above-mentioned types of quantum criticality are
usually investigated in bound systems, i.e., systems whose
Hamiltonians yield localized (normalizable) eigenstates and
discrete spectra of energy levels. However, our recent work
in Ref. [25] demonstrated that close analogs of ESQPTs
exist also in unbound quantum systems with continuous
energy spectra and unnormalizable eigenstates, namely, in
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one-dimensional (1D) tunneling systems with arbitrary po-
tentials. The quantity forming a counterpart of the discrete
level density of bound systems is the so-called continuum
level density, whose complex extension encodes full informa-
tion on the tunneling (transmission) amplitudes. We showed
that the continuum level density exhibits singularities con-
nected with stationary points of the tunneling potential. The
singularities appear in both real and imaginary parts of the
complex-extended continuum level density, generalizing the
corresponding types of ESQPTs of 1D bound systems to a
dual form associated with the real and instantonlike segments
of the tunneling trajectories [25].

Potential applications of these analyses may be extensive.
Quantum tunneling processes attract no less of recent atten-
tion than the dynamics and spectroscopy of bound quantum
systems [26]. This is partly due to the fundamental importance
of such processes in the nature and technology [27,28], but
also because of rapid theoretical and experimental progress
in several related areas. Let us mention (giving only some
example references) the investigations of tunneling in driven
and open systems [29], advances of dynamical tunneling [30],
the long-standing study of tunneling times [31-35], and also
practical realizations of customized tunneling potentials by
means of suitable nanostructures [36—41].

The purpose of this paper is to elucidate and extend the
results of our initial analysis of ESQPT-like tunneling singu-
larities from Ref. [25]. We consider a 1D tunneling problem
with a single-particle Hamiltonian

n2

H = f_m +(co+ erx + e + e (1)
vy V@)

where H© stands for the free Hamiltonian (with p=—ifi~
denoting the momentum operator and m the particle mass)
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FIG. 1. Sample potentials V (x) from Eq. (1) with polynomials up to the quartic term. Parameters (co, c1, ¢2, ¢3, ¢4) are (a) (1,0,0,0,0),
() (1,0,1,0,0), (¢c) (0.5,0,2.156,0,0), (d) (1,-0.138, —1.278, —0.485, 1.473), (e) (1,—-0.072, —1.921, —0.260, 1.961), and (f)
(—=0.197, —0.718,2.192, 0); in all panels n = 1. Energies of stationary points (marked by the horizontal lines) from left to right in each
panel are (a) 1, (b) 1, (¢) 1, 0.5, 1, (d) 0.4, 0.2, 1, 0.6, 0.8, (e) 0.6, 0.2, 1, 0.4, 0.8, and (f) 1, —0.25, 0.5. All stationary points except in (b) are
quadratic, the one in (b) is quartic. These potentials serve as illustrative examples in the forthcoming analyses. All quantities are dimensionless

(see Sec. I1C).

and V (x)=V (x) for the interaction potential with adjustable
parameters c, ¢i, ¢3, ... and n. Below wesetm =1, n =1
and use potentials with polynomials up to the quartic term.
Specific forms of these potentials used in this work are de-
picted in Fig. 1. Due to its Gaussian attenuation, the potential
function V(x) is negligible outside a certain finite interval
(a, b), where a < 0 and b > 0 are two points sufficiently far
from the origin. To solve the tunneling problem, we therefore
require the standard asymptotics of wave functions, namely,

eJripx/h +0[(E)€7ipx/h

Y(x) = {'B(E)eJripx/h

for x <a,
for x> b, 2)
where p=+/2mE, and «o(E) and B(E), respectively, stand
for the reflection and transmission amplitudes, satisfying the
normalization condition |a(E)|*> + |B(E)|*> = 1. The trans-
mission amplitude is written as
BE)=e"®), 3)
where ®(E) € C is a complex phase that encodes both ob-
servable quantities associated with the 1D tunneling process,
namely, the transmission probability |8(E)|> and the real
phase shift ¢ (E) of the transmitted wave:
IBEE)? = '™ E) 1 o(E) = Re ®(E). 4)
The plan of the paper is the following. In Sec. II we
introduce a complex density of continuum states associated
with Hamiltonians of the general form H =HY 4+ V(x) with
finite-range potentials and show that it fully describes the
complex transmission amplitude in Eq. (3). In Sec. III we
explain the determination of the complex continuum level
density with the aid of the complex scaling method, showing
illustrative numerical examples with potentials from Fig. 1. In
Sec. IV we overview the connection of the continuum level
density with the semiclassical time shift of the transmitted
wave and derive its complex extension in terms of instanton-
like tunneling trajectories. In Sec. V we present a typology
of ESQPT-like singularities of the continuum level density
and time shifts connected with stationary points of the tunnel-
ing potentials. The theoretical results are again illustrated by
numerical examples based on sample potentials from Fig. 1.
Section VI gives a brief summary and conclusion.

II. COMPLEX EXTENSION OF THE CONTINUUM
LEVEL DENSITY

A. Continuum level density

The level density at energy E for discrete energy spectra of
bound quantum systems is defined as

1 €
S(E—En)= 1 _—_
Xk: ( 2 e—1>13)1+2k:71’(E—Ek)2+62
—_—

Coe (E—E})

p(E)

1 N
—— lim ImTr G(E +ie€),
T €e—~>0+

(&)

where E; (with k=1, 2,...) are discrete eigenvalues of the
Hamiltonian A and

A 1

&) = E-H
is the Green operator at complex energy £ = E +ie. Note that
here, the infinitesimal imaginary part € is added to the real
energy E to prevent the divergences of G(E) at E = E;.. Hence,
each § function in the first sum is turned into the normalized
Cauchy (Breit-Wigner) peak Cr(E —E,) with maximum Ej
located at the respective level energy E; and the full width at
half-maximum I' equal to 2e.

The level density has been introduced also for unbound
systems with continuous energy spectra [42—44]. Consider
such a system with Hamiltonian H = H® 4V, including the
free term A and an interaction term V', and its Green opera-
tor (6). The continuum level density is defined as

(6)

1 R .
Sp(E) = —;élir& Im Tr[G(E +ie)— GO (E +ie)], (7)

where

1
E—-HO
is the Green operator of the free Hamiltonian. The trace in
Eq. (7) is in principle performed by integration of the expecta-
tion value of [G(E +ie) — GO (E +ie)] in a continuous basis
of stationary scattering states. A more intuitive approach is to
calculate the trace in the discrete energy basis associated with
the system confined to a sufficiently large but finite coordinate
interval of length L containing the whole spatial support of the
interaction V (or to a finite box for higher than 1D problems).

GY¢&) = (8)
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The trace in Eq. (7) is then obtained as the L — oo limit of the
corresponding finite-size expressions. This indicates that for
L — oo, separate traces of both Green operators are infinite
and only the trace of their difference yields a well-defined
density §p(E).

Because the quantity (7) can be negative (in the finite-L
approximation it is a difference of two semipositive densities
associated with the two Green operators), it prevents an inter-
pretation as a kind of continuous weight function. However, as
proven in Ref. [42], the energy dependence of § p(E') contains
complete information on the behavior of the real phase shift
of the transmitted wave. In particular, for 1D problems with
asymptotic wave functions of the form from Eqgs. (2) and (3),
the continuum level density (7) is connected with the real
phase shift ¢ (E') by the following relation:

1 d
dp(E) = ——-9(E). €))

This means that ¢(E) can be uniquely (up to an arbitrary
additional constant) determined by integration of §p(E).
The formula (9) is (in a more general form) derived in
Appendix A.

B. Complex continuum level density

In this paper, following Ref. [25], we introduce a com-plex-
extended continuum level density by the formula

Ap(E) = %Tr[éu‘:) _ GO, (10)

It coincides with the formula (7) without the Im symbol and
with the complex energy £ not restricted to E +ie. Note also
that in the definition (10) we use the imaginary factor i to
make the Im <> Re conversion, which turns out convenient
in the forthcoming considerations.

The density Ap(&) takes complex values and is defined in
the complex energy plane E=E — %F. The imaginary part of
£ is by default taken negative since some discrete, isolated
states with Im € <0 can be interpreted as resonances. This
approach will be elaborated in Sec. III. However, we will be
mostly interested in the behavior of Eq. (10) on the real axis,
ie., at £ = E—i0 = E. Here we can write

Re Ap(E) = 8p(E), an

which means that for 1D scattering problems, the real den-
sity Re Ap(E) determines, through Eq. (9), the real phase
shift Re ®(E) = ¢(E) from Eq. (3). The imaginary density
Im Ap(E) can be heuristically anticipated to do the same job
for the imaginary phase shift Im ®(E). Hence, we extend
Eq. (9) to a more general form

Ap(E) = licb(E). (12)
7w dE

This means that the real part Re Ap(E) is given by formula
(9), while for the imaginary part we get

1 d
Im Ap(E) = —=—— In|B(E)|*. 13
m Ap(E) 77 dE n|B(E)| 13)
A proof of Eq. (12) for 1D systems is given in Appendix A. An
illustrative example is presented in Fig. 2, where the formula
(12) is applied to the familiar rectangular potential barrier
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FIG. 2. The complex phase ®(E) and the complex continuum
level density Ap(E) for a rectangular potential barrier V (x), set to
V =1for|x| <5and V = 0 for |x| > 5, calculated with m = 1 and
/i = 0.6 (all quantities are dimensionless). (a) Shows the real (the
blue thin lower curve) and imaginary (the red thick upper curve) parts
of ®(E) from an analytic expression of the complex transmission
amplitude (3). Panels (b) and (c), respectively, display the real and
imaginary parts of Ap(E — i0) calculated from the defining formula
(10) (the full curve) as well as from Eq. (12) (the dashed curve).
The semiclassically smoothed densities Re Ap(E) and Im Ap(E)
(the dotted curves) are determined from Eq. (34).

with analytically calculable transmission amplitude S(E). We
see that the complex continuum level density evaluated from
the Green operators via Eq. (10) agrees perfectly with that
calculated from the transmission coefficient via Eq. (12).

Formula (12) implies that the transmission probability
|B(E)|> and the phase of the transmitted wave ¢(E) from
Eq. (4) can be obtained through the integration of func-
tions ReAp(E) and ImAp(E). So the complex continuum
level density Ap(E) contains complete information on the
transmission amplitude and, in principle, is accessible to ex-
perimental study.

C. Smoothed level density and infinite-size limit

In finite quantum systems with discrete spectra, the level
density p(E) needs to be purged of finite-size oscillatory
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structures to extract its principal behavior. The smoothed level
density p(E) can be determined in two ways. The first one
is based on evaluating the sum in the second equality of
Eq. (5) with a certain positive value of imaginary energy €, so
o(E)=ImTr G(E +ie€). For e exceeding a typical distance of
energy levels, this procedure converts the chain of § functions
into a sum of mutually overlapping Cauchy functions (alter-
natively, one can also use the Gaussian or other smoothening
functions), which yields the desired smooth dependence.

The second smoothening method is based on the semiclas-
sical approximation. In particular, for a system with f =1
degree of freedom we can write [5,9]

=5 | ap="5 a4
p 2nh dE H(qp)<E o 2]'[71’

where the integral measures the volume of the space available
for a system with classical Hamiltonian H(q, p) at energies
less than or equal to E. The derivative of the phase-space
volume function for an f = 1 system can be expressed via
a sum of periods T(E) =), 7 (E) of all primitive orbits at
energy E. In systems with any finite value of f, which does not
increase with the system’s size, the semiclassical limit coin-
cides with the infinite-size limit and both the above-mentioned
smoothening methods become equivalent [9,24].

While “classicality” in the above considerations is mea-
sured by the value of the Planck constant 7%, the size of a
many-body system is naturally defined by the number N of
elementary constituents. But how to define the size of a one-
body system? We consider an f = 1 quantum Hamiltonian
of the form (1) with an arbitrary potential V (x) and assume
that both the coordinate x and energy E are dimensionless,
measured in units of their typical scales xy and Ej, respec-
tively. Note that all quantities are expressed in relative units
across the whole paper. The Hamiltonian in these units reads
as H = —(3/0x)*/(25*) + V (x), where

s = TovmEo (15)

h

This dimensionless parameter represents a typical action in
units of 7, which at the given energy scale plays a similar
role as the number N for an interacting many-body system at
the energy scale Ey ~ N7iw, where fiw is a typical elementary
excitation energy in the one-body term of the Hamiltonian
[9,24]. Hence, s can be seen as a suitable size parameter
for one-body systems. As follows from Eq. (15), the limit
»% — 00 is equivalent to i — 0, and therefore implies the
validity of the semiclassical approximation. In this limit, the
ESQPTs emerge as singularities of the scaled level density
P(E)/» x hp(E)[5,9,24].

The smoothening procedure is applied also to the contin-
uum level density A p(&€) on the real energy axis £ = E — i0.
Even in absence of bound states (6 functions), the depen-
dencies Re Ap(E) and Im Ap(E) often contain rather sharp
resonance contributions (see Sec. III), and to extract robust
features of the scattering process, these structures need to be
smoothed out. We again use two methods. The first one is
based on the above-explained trick with a small imaginary
shift of energy, i.e., on replacing the real energy E in Eq. (10)
by £ = E + ie with a small € > 0. The second method, the
one based on the semiclassical approximation, will be de-

scribed in Sec. IV B, where we will derive an analog of
Eq. (14). The result of the semiclassical smoothening for the
square barrier is shown in Fig. 2.

We again assert that both smoothening methods become
equivalent in the > — oo limit. The smoothed complex den-
sity Ap(E) is related, via an analog of Eq. (12), to the
smoothed complex phase shift D(E) = o(E)— %ln |B(E)|?,
which involves smoothening of the energy dependencies of
both the phase and intensity of the transmitted wave.

III. CONTINUUM LEVEL DENSITY FROM THE
COMPLEX SCALING METHOD

A. Complex scaling method

The complex scaling method is an efficient way of calcu-
lating cross sections or transmission probabilities in scattering
processes involving resonances. The method was introduced
in Refs. [45,46], reviewed in Refs. [47-49], and elabo-
rated in connection with the real continuum level density in
Refs. [50,51]. It makes use of a similarity transformation with
a nonunitary operator

§§ — 61'19/28—19)?ﬁ/}57 (16)

where the angle ¥ € (0, Uyax) i a fixed parameter, with the
limiting value ¥, set for Hamiltonians of the form (1) (with
the asymptotic Gaussian shape of the potential) to 7. The
transformation maps the coordinate and momentum operators
X and pto

S,})?ISI;I — eiﬁ)/e_’ Sﬁﬁﬁv;l — _”9]3, (17)
and the original Hamiltonian H to an equivalent non-
Hermitian image

)
SyAS8; = Hy = 2 ;L 1V (%), (18)
m

0
Hl?

The complex scaling method is used to identify discrete
resonant solutions of the scattering problem with the full
Hamiltonian H. These solutions correspond to poles of the
scattering matrix at complex momenta p;, = |pi|e” ", where
k=1,2,...1s an enumerating index and y; € (0, ) denotes
a phase of p; in the C plane [52]. The resonance wave
function v (x) satisfies the outgoing (Siegert-type) boundary
conditions, i.e., it behaves for x — +oo as ~e*P*/1 The
transformed wave function, which in the asymptotic region
reads as

Sy Pr(lx|—00) = e

is square integrable if y; € (0, ¢) (in the non-Hermitian for-
malism, the scalar product is replaced by a so-called ¢ product
in which the bra function is not complex conjugate [49]).
The function Sy Y (x), despite its unusual form with persistent
oscillations in the asymptotic region, represents a normal-
izable eigenstate of the transformed Hamiltonian Hy. Its
energy & = |px|?e 2" /(2m) is complex, having the form
& = Ex — 4Ty, where E; > 0 and Ty > 0 are interpreted,
respectively, as the centroid energy and the energy width of
a resonance corresponding to the original Hamiltonian H.

icos(¥—yi)|pillx|/hi e~ sin(@ =yl pellx|/h (19)
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The resonances which under the transformation (16)
become square-integrable eigenstates of # lie in the an-
gular segment of the £ € C plane given by the constraint
%Fk /Ex € (0, tan29) following from the y; < ¥ condition.
The number of poles satisfying this condition, i.e., the number
of resonances identified by the complex scaling method with
a given angle 9, is denoted as Ny, so the enumerating index in
& runs within the range k = 1,2, ..., Ny.

On the other hand, the resonances corresponding to the
poles p; with phases y; > ¢ remain unrecognized by the
transformation (16). They appear along the £ > 0 segment
of the line in the £ € C plane defined by the condition
%F /E = tan2?¥. This segment (ray) is referred to as the ro-
tated continuum because it also carries continuous eigenstates
of 7—219, i.e,, images of nonresonant eigensolutions of the full
Hamiltonian A. Note that in the finite-L approximation, the
unrecognized resonances as well as nonresonant solutions
form discrete sets of states with energies & = E; — %Fl,
which are all located along the rotated continuum ray. To dis-
tinguish them from the identified resonances, we use for them
a special enumerating index I = Ny+1, Ny +2, .... Applying
the same procedure based on the transformation (16) to the
free Hamiltonian H®, which has no resonances at all, one
finds all eigensolutions of ’;Qf,o) located only along the rotated
continuum ray. In the finite-L approximation we denote them
as&” =EV—ir P with 1 = 1,2,....

As follows from the above explanations, outcomes of the
complex scaling method depend on the selected angle ¢ in
the similarity transformation (16). Only the resonances with
Y < ¥ are seen to “condense” below the rotated continuum
ray in the E x I' plane, while all the other states localize
along this ray. However, it turns out that the physical results
attributed to complex energies £ below the rotated continuum
ray, and particularly to real energies £ = E — i0, are entirely
independent of ¢ in the L — oo limit. The proof of this state-
ment is based on extended completeness relations in terms
of the eigenstates of Hy for any & [50,51]. If considering a
sequence of calculations with decreasing angle %, the inde-
pendence of results on ¢ requires tiny redistributions of states
on the rotated continuum ray which compensate effects of the
disappearing resonances. This remains so even for the angle
¥ = 0 assigned to the trivial transformation Sﬂ =1, when all
results are obtained from a finite-L diagonalization of the orig-
inal Hamiltonian A and the L — oo limiting procedure. We
stress, however, that the complex scaling method provides us
a valuable physical picture in which the observed effects are
properly attributed to the most important resonant solutions.
This holds also in calculations of the complex continuum level
density.

B. Evaluation of complex continuum level density

As shown in Refs. [25,50,51], the complex scaling method
is very well suited for the calculation of the real as well as
complex continuum level density. In the finite-L approxima-
tion, the trace in Eq. (10) can be evaluated separately for both
Green operators as a sum over all discrete eigenstates of the
respective non-Hermitian Hamiltonian. The value of Ap(€) at
any complex energy £ = E — %F is then given by the formula

Ap(E) = p(&) — p (&), (20)

where the two subtracted densities read as follows:

1 & W (T =Ty) +i(E — Ey)
£)=— 2
e nk; (E—Eo) + L0 =T

1 & =5 =T)+Ii(E - E)
nl:%l (E—E)*+ 3(T—T))?
o 1(p_ 1O S (0)

P& =Y AT )HAEZR ) - )

N

= (E-E”) + %(F_Fl«»)z .

The complex energies of discrete eigenstates of both Hamilto-
nians % and ’ﬁg)) are simple poles of the density (20). These
are the energies & of identified resonances [the first line in
Eq. (21)], the energies & of ’;qg on the rotated continuum
ray [the second line in Eq. (21)], and of the energies 51(0)

of 7:[1(70) on the rotated continuum ray [Eq. (22)]. From the
residue theorem we see that a contour integral of A p(€) along
aclosed loop in the complex plane £ gives twice the difference
between the number of eigenvalues of H and 7—21(,0) inside the
loop.

The complex level density Ap(€) in the £ € C plane for
the six potentials from Fig. 1 is depicted in Figs. 3 and 4.
Figure 3 shows Ap(&) calculated (with various choices of
parameters ¥ and ) for the potential from of Fig. 1(f). Note
that this system contains also a discrete part of the spectrum,
i.e., bound states with E < 0. Figure 4 shows Ap(&) for the
remaining five potentials from Figs. 1(a)—1(e). The calculation
is performed in the finite-L approximation with a truncated
basis including the lowest-M eigenstates of the infinite square-
well Hamiltonian with x € (=%, +%). All relevant parameters
are specified in the captions.

Before focusing on the physical content of these figures,
we comment on some technical aspects of the complex scaling
method. These are illustrated in Fig. 3. It compares A p(&) cal-
culated with two choices of complex scaling angle ¥ and two
values of the size parameter s. The calculations in Figs. 3(b)
and 3(c) for two angles ¢ from Eq. (16) verify the assumed
independence of Ap(€) in the relevant part of the £ € C plane
on this parameter (see Sec. III A). The size of ¥ is usually lim-
ited by computational constraints arising from the computer
precision in the diagonalization of the truncated Hamiltonian
matrix. However, as illustrated in Fig. 3, its choice in well-
converged calculations (with a sufficiently large L) does not
influence the form of Ap(€) below the rotated continuum
ray, particularly the positions of the disclosed resonances with
vx < ¥. The comparison of Ap(E) on the real energy axis
[see Fig. 3(d)], where the curves for two different ¥ are
indistinguishable, shows that the present finite-L calculations
are fully converged.

In Fig. 3 we also compare the forms of Ap(€) obtained
with two values of the size parameter s from Eq. (15). In
Figs. 3(a) and 3(b) we see that an increase of the system’s
size leads to an increase of the number of resonances and
rotated-continuum states. This is so because with increasing s
both effective non-Hermitian Hamiltonians 7:119 and ’;Qg)) head
towards their classical limits with continuous spectra. Since
the higher-s¢ result is closer to the smooth classical limit, less
additional smoothening is needed to extract the main energy
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mhRe Ap(E) mhlm Ap(E)

O - w ) i Wit

E E

FIG. 3. The complex continuum level density Ap(€) (real and
imaginary parts in the left and right columns, respectively) for the
potential from panel (f) of Fig. 1 calculated by the complex scaling
method with different parameters. Panels (a) and (b) compare densi-
ties for different size parameters s, (b) and (c) those with different
angles ¥. Here (57, ) is (a) (20,0.2), (b) (50,0.2), and (c) (50,0.1).
The color code is the same as in Fig. 4. Panel (d) depicts densities
with all the above parameter choices on the real energy axis. The
curves with different ¢ are indistinguishable, those with >z = 20 and
50 are drawn by the full and dashed lines, respectively. We observe
independence of Ap(€) below the rotated continuum ray on the
selected angle ¥ and an increase of the density of resonances and
rotated-continuum states with ». Note the real bound states with
E < 0 due to the deep potential minimum in Fig. 1(f). The densities
in (d) can be compared to those in Fig. 6(f). All calculations are
performed in a truncated basis of M = 10* square-well eigenstates
with L = 150.

dependence of Ap(E) on the real energy axis. We stress that
the normalized density 7w/ Ap(E) depicted in Fig. 3(d) does
not show an overall increase with s, but only sharpening of
the ESQPT structures discussed in Sec. V. Let us note that

the case of increasing s, which affects all eigenstates of the
effective Hamiltonians, must be distinguished from the case of
increasing L, which affects only the rotated-continuum states.

Now, let us focus on some general features of the contin-
uum level densities in Figs. 3 and 4. First we point out that
the dependencies Re Ap(£) and Im Ap(E) inthe £ € C plane
have a pictorial electrostatic interpretation. It follows from
the observation that the contribution of each discrete state to
Egs. (21) and (22) has a form of a potential v(r) o (d - r)/r?
of the electric field generated by a dipole with moment d in
two-dimensional space, with r standing for the coordinate vec-
tor that originates at the dipole position. Indeed, considering
the eigenenergy &, (either a resonance, or a state belong-
ing to the rotated continuum), we can associate the real and
imaginary distances Re(€—¢&,) and Im(€—¢&,) of a selected
energy £ from &, with the coordinate components r; and r,
of the dipole analogy. The contribution of the nth state to
Re Ap(€) is proportional to —r,/ (rr?) and the contribution
to Im Ap(&) is proportional to r;/(rr?). This means that the
real and imaginary parts of the continuum level density in the
whole complex energy plane can be imagined as two distinct
electric fields generated by a set of dipoles located at individ-
ual eigensolutions &,. While the field Re Ap(E) corresponds
to dipole moments oriented antiparallel with the imaginary en-
ergy axis, the field Im Ap (&) results from moments oriented
parallel with the real energy axis.

Our main interest is focused on Ap(E) on the real energy
axis & = E — i0. The real part of the level density is com-
posed of sums of Cauchy peaks [see Eq. (5)] corresponding to
individual eigensolutions of 7, and 7:[19 ),

le o0
Re Ap(E) =) Cr(E~E) + ) Cr/(E—E)
k=1 =Ny +1
oo
- Cro(E-E"). (23)
=1

Both Re p(E) and Re pP(E) terms in this formula remind
the standard density of the form )" §(E — E,), where n enu-
merates all eigenstates of the corresponding complex-scaled
Hamiltonian, but each § function is naturally smoothed with
the aid of the actual width of the respective eigenstate. The
form of Im A p(E) also follows Eq. (23), but with the Cauchy
peaks Cr (E —Ey) replaced by bipolar functions Br(E —Ey) =
2(E—Ey)Cr(E—Ep)/T.

It can be anticipated that for real energies £ much larger
than the maximal value of the potential V (x), the eigenso-
Iutions &; of the full Hamiltonian 7:[,19 almost coincide with
the eigensolutions 5[(0) of the free Hamiltonian 7:11(90). There-
fore, their contributions to Eq. (20) approximately cancel out.
Moreover, even within the remaining low-energy terms, if &
is sufficiently large, the contributions to p(£) coming from
the states at the rotated continuum ray [the second line of
Eq. (21)] have a tendency to approximately cancel out with
the contributions to p@(£) on the rotated continuum ray
[Eq. (22)]. The essential part of Ap(E) therefore comes from
a finite number of resonant states located not too far from
the real energy axis. Wave functions of these states exhibit
increased localization in the interaction region, their contribu-
tions thus survive the subtraction of the full and free Green
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(a)

(b)

(e)

whRe Ap(E)

g ThImAp(E)

FIG. 4. The complex continuum level density Ap(&) obtained by the complex scaling method for potentials from the respective panels
(a)—(e) of Fig. 1. The real and imaginary parts of Ap are in the upper and lower rows, respectively. Note the chains of resonant states and
their modifications at energies associated with the minima and maxima of the respective potentials. The parameters are as follows: » = 33.3,

¥ =0.3,L =150, and M = 10*.

operators in Eq. (10). We stress that identification of the most
important physical contributions is the main benefit of the
complex scaling method.

However, if the angle ¥ is small, some of the relevant
resonances (those with %F /E > tan 299) remain hidden. Then,
the rotated continuum states play an important role and their
contributions cannot mutually cancel. The same conclusion
holds also in a near vicinity of the point E = 0, where the
rotated continuum eigenstates of both the full and free Hamil-
tonians are close to the real energy axis and their contributions
combine in a nontrivial way. This is why the E ~ 0 region is
the most difficult one with respect to the convergence of the
finite-L results to the correct limiting density Ap(E).

IV. COMPLEX EXTENSION OF THE TUNNELING
TIME SHIFT

A. Eisenbud-Wigner time shift

Time relations in quantum scattering processes, and par-
ticularly time delays of the transmitted particle in quantum
tunneling, got into the focus of theoretical interest already
in early days of quantum mechanics [53,54] and remain an
important research topic up to the present days. Theoretical
analyses of this problem covering the time span of many
decades can be found in Refs. [55-62] and the references
therein. The question which creates most fascination as well
as controversy concerns the possibility of superluminal or
even instantaneous occurrence of the transmitted particle on
the exit from the tunneling potential. At present, this question
becomes a hot subject of experimental study by means of the
attosecond metrology (see, e.g., Refs. [31-35]).

In this work, we will employ the simplest definition of
the tunneling time delay, the so-called Eisenbud-Wigner time

[55,56]. It is determined from the energy variation of the phase
shift ¢(E) of the transmission amplitude (3), namely, by the
formula

d
St(E) = }iﬁ(p(E) =nhép(E), (24)

where we used Eq. (9) to make an immediate link of &z(E)
to the real continuum level density § o(E). In case of a single
resonance of centroid energy Ej and width I'y, the time shift
at E = Ey is 8t(Ey) = 2h/T'y, which is twice the average
resonance lifetime, while far from the resonance center we
have 6t(E) =~ 0.

To understand the semiclassical meaning of the time delay
(24), we need to avoid sharp resonant changes of the phase
shift ¢(E) by using its smoothed form @(E). A semiclassical
estimate of the smoothed phase can be deduced from the
Wentzel-Kramers-Brillouin (WKB) approximation, in which
the transmitted wave at x = b (end of the interaction region)
is given by

E(E)eipb/h — 6,ipa/h ei[f:dx~/2m[E—V(x)]+¢7]/h’ (25)

with ¢ denoting a constant that includes phase shifts at the
classical turning points between allowed and forbidden re-
gions [63]. The formula (25) determines the smoothed phase
@(E) whose insertion into Eq. (24) yields a smoothed time

shift
ST(E) = f dx [— "
x € la, b] 102V (x) 2[E-V(x)]

)

" (b—a)
— == b—-a).
2|E]
—_— ——
70 g)

(26)
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The integral in this expression is taken across all classically
allowed (for given E) regions of the coordinate space between
the points a and b demarcating the interaction domain (for
multibarrier potentials these allowed regions can include sev-
eral coordinate intervals). This integral represents the time
f(+)(E ) that a classical particle spends in the allowed re-
gions during the passage from a to b. The subtracted term
f(o)(E) is the time of travel of a free particle across the full
(a, b) interval. So we see that, indeed, the Eisenbud-Wigner
definition of the time shift includes no time delays result-
ing from the tunneling of the particle through the forbidden
regions.

B. Complex time shift

Considering the full complex phase ®(E) from Eq. (3), we
introduce a complex time shift given by an analog of formula
(24), namely,

d
AN(E) = h-®(E) = wh Ap(E). Q7)

From Egs. (11) and (13) we obtain

Re At(E) = §1(E), (28)
Im Az(E __nd In |B(E)|? 29
mAt(E) = Ed—EnIﬁ()l. (29)

Using Eq. (25), we write the smoothed forms of both real and
imaginary time shifts in the pair of equations

Re AI(E) = §1(E) = T (E) — TO(E), (30)
- m
Im Af(E) = /Zi[g‘/(@ dx | m, a3n

;(*)(E)

where the first equation is just the formula (26), with the
integral involving all classically allowed spatial regions of
the tunneling potential, while the second equation contains
an integral across all classically forbidden regions. The latter

integral expresses the classical time f<_)(E) which a particle
with energy —F would spend in these regions if the potential
is inverted to —V(x) so that the forbidden regions become
allowed. We stress that the imaginary time shift (31), although
it looks mysterious, is measurable via the transmission proba-
bility following Eq. (29).

The expression in Eq. (31) is related to complex-time solu-
tions of the classical equations of motions inside the potential
barriers, known from the instanton approach to the tunneling
problem [64]. The standard instanton solution makes use of
the Wick rotation t+ — —it of the time variable to derive the
well-known WKB result on the tunneling probability [65].
With this transformation, the motion of the particle in the
forbidden region becomes equivalent to the motion with en-
ergy —F in an inverted potential —V (x). Related complex
time approaches are used in the framework of the path-integral
description of tunneling processes (see, e.g., Refs. [65-76]).

Let us note that the extension of classical dynamics to
the complex time represents an interesting, but not yet fully
explored, theoretical problem. Once the time is considered

Re Im
4 1 /---/"-
T o1 .
4 ‘\_\\
2 .~
—/"
X 0- e —
] ‘_/
24 -
14 ’
] I\\ f‘
] ! 1
P | N ;) ;)\
0 T T '!"'I,"\' 'II"'
0 5 10 0 5 10
S S

FIG. 5. Example of a complex tunneling trajectory through the
three-barrier potential in Fig. 1(e) at energy E = 0.5. The segments
corresponding to the allowed and forbidden regions are plotted by
full and dashed lines, respectively. The dependence of complex time
T, coordinate X, and momentum P on the real running param-
eter s are shown in the upper, middle, and lower rows; the real
and imaginary parts appear in the left and right columns. Time
runs along the real or imaginary axis in the allowed or forbidden
regions, respectively, the coordinate remains real, and the momen-
tum alternates between real and imaginary values. This particular
type of solutions of the complex Hamilton equations are derived in
Appendix B.

complex, so must be the coordinate X € C and momentum
P e C following from the complexified Hamilton equations.
We assume that the complex time 7 runs along a prescribed
curve T'(s) € C, where the parametrizing variable s € R takes
a role of a “proper time” of the moving particle. The s-
dependent trajectory in the complex phase space of X and P
depends on the arbitrarily chosen curve 7 (s). In this sense,
the complex-time dynamics is a generous broadening of the
real-time dynamics.

The results of this work highlight one specific class of very
simple solutions of the complex Hamilton equations, which
was discussed in connection with the multibarrier tunneling
in Refs. [72,73]. The time 7T (s) for an f = 1 tunneling sys-
tem is considered to run homogeneously with variable s, but
its direction in the complex plane changes with respect to
whether the particle is moving in the classically allowed or
forbidden coordinate region. In particular, %T(s) =1 in the
allowed region and %T(s) = —i in the forbidden region. As
a result, the complex time 7 (s) with increasing s accumulates
in its real and imaginary part, respectively, the total traversal
times of all allowed and all forbidden regions. These times
are calculated with the aid of potentials V (x) and —V (x). The
evolution of coordinate remains real, X (s) = x(s), but the mo-
mentum P(s) switches between real and imaginary values in
the allowed and forbidden regions, respectively. An example
of such a trajectory for the potential from Fig. 1(e) is shown
in Fig. 5, and the theoretical derivation is described in Ap-
pendix B. If s=0 corresponds to the initial position x(0) < a
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and momentum P(0)=Re P(0)=+/2mE >0 (i.e., the particle
before entering the interaction region), the values of Re 7 (s)
and Im 7' (s) for s > O such that x(s) > b (the particle after
escaping the interaction region) correspond precisely to the
values ?(+)(E ) and f(_)(E ) in formulas (26) and (31).

We stress that Egs. (30) and (31) hold only for positive
(physical) energies E > 0. Nevertheless, they can be formally
extended also to £ < 0, where we can write

Re AH(E) = 1 (E), (32)

Im AFE) = 7 () — 1 OE). (33)

In this case, the “free propagation” belongs entirely to the
forbidden region and its time f(o)(E ) contributes to Im A7 (E).
So does a great part of the x € (a, b) motion in the po-
tential, which generates the forbidden-region time f(_)(E ).
The remaining allowed-region time i (E) contributing to
Re A7(E) corresponds to the motion above possible negative
minima of V (x) [cf. Fig. 1(f)].

Summarizing the above considerations, we write the final
expression for the smoothed complex continuum level density
inboth E > 0 and E < 0 domains as follows:

ATE)  T(E)-0E) TV (E)

Ap(E) = wh wh
Re AB(E)
=(=) -(0)
t (E)—O(—E)t"(E
+i &) n(h ) (). (34)
Im AB(E)

Here the times f(+)(E ), f(_)(E ), and f(o)(E ) are calculated
from the expressions in Eqgs. (26) and (31), and ©® is a step
function (= 0 or 1 for negative or semipositive arguments, re-
spectively). The formula (34) provides a simple semiclassical
estimate of both the real and imaginary parts of the smoothed
continuum level density. We stress its apparent similarity to
the relation (14) between the smoothed level density of an
f = 1 bound system and the period 7 (E) of classical orbits at
energy E. The denominators in these formulas differ by factor
2 because the time shifts in Eq. (34) include only a half of
the return trajectory. A unique aspect of the present situation
is the duality following from the existence of the allowed and
forbidden regions of the classical motions, which contribute
to the real and imaginary parts of the continuum level density.
This will turn important in the description of singularities of
Ap(E) connected with stationary points of V (x), as discussed
in Sec. V.

A comparison of the smoothed complex continuum level
density calculated for finite-size tunneling systems with the
semiclassical estimate based on the formula (34) is presented
in Fig. 6. Figures 6(a)-6(f) depict results for the six tunneling
potentials from the respective panels of Fig. 1. The semi-
classical estimate corresponds to »c — oo, while the quantum
calculation was performed with the size parameter >z = 200.
Comparing in each panel of Fig. 6 the curve w/iRe Ap(E)
with Re A7(E), and the curve 7/ilm Ap(E) with Im A7(E),
we confirm a satisfactory overall agreement of the observed
finite-size behavior with the corresponding infinite-size limit.

-0.5 0 0.5 1 1.5
E

FIG. 6. The finite-size smoothed continuum level density
AD(E) = Ap(E+ie) and its infinite-size limit A7(E)/mh for the
potentials from the respective panels (a)-(f) of Fig. 1. The real
and imaginary parts are shown by thin blue and thick red lines,
respectively. Parameters of the finite-size calculations are s = 200,
€ =001, 9 =0, L =150, M = 10*. We observe finite-size pre-
cursors of the ESQPT-like singularities fully developed in the
infinite-size dependencies. Note that in all panels we show a part
of the E < 0 domain, which is meaningful in (f) where we observe
the presence of bound states.

The curves are not compatible only in a vicinity of E = 0.
Even in this most difficult region (see end of Sec. III B) our re-
sults are well converged, however, the discrepancies between
the finite-size curves and the semiclassical curves (which at
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E = 0 show divergencies of both signs) appear as an artifact
of the smoothening procedure.

V. ESQPT-LIKE TUNNELING SINGULARITIES

Since the relation (34) between the continuum level density
and time shift in unbound tunneling systems fully parallels
relation (14) between the level density and period in bound
systems, it must encode singularities of continuous spectra
similar to the ESQPT singularities of discrete spectra. These
continuum analogs of ESQPTSs are most commonly caused by
stationary points of the potential V (x), which generate diver-
gencies or other nonanalyticities of the real and imaginary
time shifts. Here we introduce a general typology of these
nonanalyticities for stationary points that allow a local Taylor
expansion of V (x). Effects resulting from nonanalytic minima
of maxima of the potential (such as the v or A shaped ones)
can be derived as well, but we do not discuss them here.

Let V&) (x) denote the normal and inverted potentials
+V(x), where the sign 4+ or — applies in the allowed or
forbidden regions, respectively, and xj is a stationary point
of V@& (x) such that the lowest power of the expansion in
8x = x — xp is an integer n > 2. So

VE () & By 4 ¢ (6x)" + O[(6x)" 1], (35)

where Ej is the stationary point energy and c is an arbitrary
constant. The note “loc” above the equality sign emphasizes
its only local validity near xo. If n = 2, 4, 6, . . ., the stationary
point is a minimum for ¢ > 0 or a maximum for ¢ < 0, and if
n=73,5,7,...,the stationary point is a saddle.

The times f(i)(E ) for energies close to the stationary point
energy Ey can be split into a regular component fﬁ:;) (E), which
depends on the dynamics away from the stationary point and
is a smooth function of energy, and an irregular component

(i)(E ), which depends on the motion close to the station-
ary point and has a nonanalyticity at £ = E,. We are now
interested only in the irregular component as it determines
the type of singularity of the continuum level density. It is
given by the time accumulated in a certain coordinate interval
x € (xo—¥, xo+£) around the stationary point (with £ > 0
denoting an arbitrary small distance) and can be determined

from the integral
@[E V(i)(x)]

(i) Xo-HZ

e =0 /

o E— V<i)(x
O(l—oq")

(22 £(lcl/ISED!
o« |8E|TVT "/ d .
- : VT

Here, E = E—E, and 0 = sgn(c6E). The energy factor in
front of the integral in the second line of Eq. (36) captures
the leading-order diverging term of t (E ) at the stationary
point energy if the integral has a regular Taylor expansion in
(8E)'/?", This condition is not satisfied for n = 2 with ¢ < 0,
but in this case the problem can be solved by other means.
A more detailed analysis of singularities caused by stationary
points can be found in Refs. [9,15].

The effects of various stationary points of the normal or
inverted tunneling potential V&) (x) on the semiclassical time
shift can be summarized as follows: A local maximum of any

(36)

even power n gives rise to two possible types of singularity,

—(£) 1n|E —E()|_1
i (E) {lE _ E0|—(n—2)/2n

for n=2,

for n=4,6,... . 37)

We note that the proportionality constant can be different
on the both §E < 0 and §E > 0 sides of the singularity. In
the limiting case of n — 0o, which characterizes the square
potential barrier from Fig. 2, the contribution in the second
line of Eq. (37) is nonzero only for §E > 0, so we obtain
(i)(E) xX O — EO)/«/E Ey. Similarly, a local minimum
of any powern = 2,4, 6, ... leads to

B (E) o |E = Eo| " " ©(E—Ep).  (38)

Note that for a quadratic potential minimum with n = 2 this
formula predicts just an upward jump of the time shift at
E = Ey, while for the square well with n — oo it leads to the
square-root divergence of the time shift on the E > Ej side,
as in the case of the square barrier. Finally, a saddle point of
powern =3,5,7...yields

(i)
Fire

(E) I |E E | (n— 2)/211 (39)

As follows from Eq. (34), any singularity in the tunneling
time generates the same kind of singularity in the smoothed
continuum level density Ap(E). All possible types of sin-
gularities resulting from stationary points of the form (35)
are summarized in Table I. We emphasize the duality of sin-
gularities in the real and imaginary parts of Ap(E) due to
the E — —F and V(x) - —V(x) inversion connected with
the instantonlike semiclassical solutions. So, for instance, a
quadratic maximum in the tunneling potential V (x) gener-
ates a logarithmic divergence of the real density Re Ap(E)
and a downward step discontinuity of the imaginary density
Im Ap(E). These effects are reversed in case of a quadratic
minimum, which generates an upward step discontinuity of
the real density and a logarithmic divergence of the imaginary
density.

The singularities listed in Table I represent continuum
analogs of the ESQPT singularities in f = 1 bound systems.
The original ESQPTs are caused by stationary points of
bound classical dynamics and affect the smoothed (semiclas-
sical) level density describing discrete energy spectra [4—7,9—
20,24]. They emerge as nonanalyticities of a normalized exact
level density in the system’s infinite-size limit. The present
continuum form of the ESQPT affects both real and imaginary
parts of the smoothed continuum level density, i.e., the exact
real and imaginary densities in the s — oo limit. It therefore
represents a direct analog and a dual extension of the original
ESQPT concept.

The ESQPT-like singularities of the complex continuum
level density for the potentials from Fig. 1 can be seen
in Fig. 6. The true singularities (jumps and logarithmic or
power-law divergences) are present only in the semiclassi-
cal (s — 00) curves AI(E), while the quantum (finite-c)
calculations of Ap(E) demonstrate only some precursors of
the predicted nonanalytic behavior. In accord with the above
explanations, the stationary points of V(x) produce differ-
ent types of singularities in the components Re Ap(E) and
Im Ap(E). In Figs. 6(a) and 6(b), respectively, we find singu-
larities associated with a quadratic (n = 2) and quartic (n = 4)

062207-10



CONTINUUM ANALOGS OF EXCITED-STATE QUANTUM ...

PHYSICAL REVIEW A 103, 062207 (2021)

TABLE I. Irregular components (up to multiplicative factors) of the real and imaginary parts of the s — oo continuum level density near
energy Ey corresponding to various types of stationary points of the tunneling potential from Eq. (35).

Type of stationary point of V (x) Re Ap;,(E) x Im Ap;,(E) x

n = 2 minimum OE — Ey) In|Ey — E|™!

n = 2 maximum In|E — Eo|™! O(Ey —E)
n=4,6,... minimum |E — Eo|~2/"Q(E — Ey) |Ey — E|~(=2/
n=4,6,... maximum |E — Ey|~2/2 |Ey — E|"2/2Q(E, — E)
n=3,5,7... saddle point |E — Ey|~ =2/ |Ey — E|~(=2/2n

Square well or barrier

|E — Eo|~'/?O(E — Ey)

|Ey — E|7'?O(Ey) — E)

maxima (or minima) of V*)(x) [or V(=) (x)] at energy Ey = 1.
Figures 6(c)-6(f) contain more singularities associated with
quadratic maxima and minima of the respective potentials
V& (x). In particular, Figs. 6(c) and 6(f) show two singular-
ities at Eyp = 0.5 and 1, while Figs. 6(d) and 6(e) have five
singularities at energies Ey = 0.2, 0.4, 0.6, 0.8, and 1. The
observed behavior is in all cases fully consistent with the
results listed Table 1.

We stress that the continuum ESQPT-like singularities lead
to observable consequences in the form of the transmission
amplitude. In particular, as follows from Eq. (12), the singu-
larities from Table I appear in the infinite-size limit of the first
derivative %CD(E ) of the tunneling phase. An example of the
2 — 00 ESQPT-induced structures in Re ®(E) and Im ®(E)
for the potential from Fig. 1(d) is presented in Fig. 7. We
know that the level densities Re Ap(E) and Im Ap(E) for the
given potential manifest logarithmic divergences and jumps
at energies Ep = 0.2, 0.4, 0.6, 0.8, and 1 [see Fig. 6(d)], so at
the same energies the respective phases Re ®(E)and Im ®(E)
show little steplike structures (with locally vertical tangents)
and breaks.

Let us note that the anomalies connected with local
maxima of the tunneling potential were identified and semi-
classically analyzed in the context of chemical physics already

FIG. 7. Real (the blue thin lower curve) and imaginary (the red
thick upper curve) parts of the smoothed phase ®(E) obtained via
Egs. (12) and (34) for a » — oo system with the potential from
Fig. 1(d). The real part is determined up to an additional constant
which is set so that Re ®(0) = 0. Energies of the stationary points
(marked by the vertical lines) locate non-analyticities of ®(E).

in Refs. [77,78]. Here we extend these results to general
stationary points of arbitrary tunneling potentials and connect
them to the more elaborated description of ESQPTs in bound
systems.

VI. CONCLUSIONS

This followup paper of our previous publication [25]
provides a more detailed account of the complex-extended
continuum level density in one-dimensional tunneling prob-
lems and its semiclassical interpretation. The larger space
allows us to present a more complete and transparent analysis,
including explicit derivation of the key surmises of Ref. [25].
We verify our theoretical conclusions by more numerical ex-
amples, employing additional sample potentials.

The main result of our analysis is the evidence that
the semiclassical formulation of the tunneling problem
with complex-extended time yields correct estimates of the
smoothed continuum level density and the smoothed transmis-
sion amplitude. These estimates become exact in the »r — oo
limit. Let us stress that according to a common opinion, any
semiclassical formulation of quantum tunneling is regarded as
an oxymoron. Here we deepen the understanding (proposed
and elaborated in the previous literature on the instanton so-
lutions and generalized path integrals) that both opposites can
be married through the concept of complex time. In particular,
the simple type of complex-time tunneling trajectories exem-
plified in Fig. 5 and analyzed in Appendix B turn out to be
the key for describing the observed behavior of the smoothed
transmission amplitudes.

An immediate consequence of our analysis is the general-
ization of the ESQPT singularities to systems with continuous
energy spectra associated with scattering phenomena. As in
bound systems with discrete spectra, the singularities of the
continuum level density follow from the existence of classical
stationary points of the potential V (x). Dual ESQPT struc-
tures in the real and imaginary parts of the continuum level
density, which are based on potentials V (x) and —V (x) and
on the existence of classically allowed and forbidden spatial
regions, represent an interesting enrichment of the ESQPT
phenomenology. Let us note that the generalized ESQPT
structures in the continuum level density associated with local
minima, maxima, or saddles of the potential indicate abrupt
qualitative changes of the tunneling trajectories for the particle
energy crossing the critical value Ey = V(xp). This results
in nonanalytic evolutions of the tunneling observables in the
»x — o0 limit. In this sense the ESQPT structures indeed
constitute a specific kind of dynamical critical effect.
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From the theoretical point of view, an apparent open
question concerns the extension of the present f =1 re-
sults to systems with f > 1. The ESQPTs in closed systems
with more than one degree of freedom appear as discon-
tinuities or divergencies in a higher, typically the (f—1)th
derivative of the level density [15], and the same is antic-
ipated for the continuum systems. Such generalization can
be elaborated explicitly for separable systems, either of the
spherically symmetric or Cartesian type, i.e., systems with
potentials V(x) = V(jx|) or V(x) = Z'{:l Vi(x;), respectively.
This might be a starting point of a more general future analysis
including nonseparable continuum systems.

The ESQPT nonanalyticities in continuum systems can
be experimentally detected in feasible tunneling experiments.
Verification of such effects in both the real and imaginary
phases of the transmission amplitude will require to use an
interference setup, in which both the intensity and phase of
the wave transmitted through a given potential can be com-
pared with those of a freely propagated wave. We conclude by
noting that the present day nanotechnology makes it possible
to synthesize diverse resonant tunneling potentials (see, e.g.,
Refs. [36—41]), so that experimental tests and perhaps even
some applications of the above-explained concepts may be a
matter of the near future.
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APPENDIX A: CONTINUUM LEVEL DENSITY AND THE
TRANSMISSION AMPLITUDE

Here we derive the relation (12) between the complex
continuum level density and the complex phase of the trans-
mission amplitude. The level density is defined by Eq. (10),
where the trace can be performed in any complete basis set.
We use the §-normalized position eigenstates {|x)},cr, SO
Ap(E) on the real energy axis reads as

; +00
Ap(E):i/ (G(E;x, x)—GO(E;x, x))dx. (Al

o0

The Green functions G(E;x,x)=(x|G(E+i0,)x') and
GOE;x, x' )= (x|GO(E+i0,))|x) (here the retarded Green
functions) are analyzed in standard textbooks [79,80]. Impor-
tantly, G(E; x, x’) is expressible in terms of the two degenerate
eigenstates Y+ (x) of H corresponding to the same contin-
uum energy level E = p*/(2m) > 0:

m Ye_(x) 1/fE+(X).

GE;x,x)=—I A2
(E;x,x) i B(E) (A2)
These states exhibit the following asymptotic behavior:
Y+ (x = +00) = B (E)e P, (A3)
VEs(x —> —00) = PN fa ()™, (Ad)
VE-(x > +00) = e Lo (E)e R (AS)
VE-(x — —00) = B_(E)e "/, (A6)

While the boundary conditions (A3) and (A4) coincide with
Eq. (2) and describe the particle of energy E approaching
the interaction region from the left-hand side, the conditions
(AS) and (A6) describe an analogous setup with the particle
approaching from the right-hand side. The transmission am-
plitudes satisfy the relations S (E)=p_(E)=B(E) following
from the time-reversal symmetry, but the reflection amplitudes
oy (E) and o_ (E) may differ by a phase factor. For the Green
function of the free Hamiltonian H© we get

O (7. __.m
GYV(E;x,x)=—i—. (A7)
lip

A straightforward combination of (A1), (A2), and (A7) yields
an intermediate result

_om O T (O)YEs ()
SAGRETI M eyl R

which will be further simplified by using the boundary condi-
tions (A3)—(A6).
The first step consists in evaluating an integral

+L
I(E,E') = Ve — () Ve (x)dx,
L

(A9)

where L > 0 is a fixed parameter and E, E’ > 0 are two ener-
gies corresponding to momenta p, p’. We have

h_zazl/jE-‘r(x)

—3 — +VO)Ve+ () = EYei(x),  (AlO)
m 0x
W 0%y _
—5 Ve-(x) . x) + Ve _(x) = E'vg_(x). (All)
m ox

If we multiply Eq. (A10) by v _(x), subtract Eq. (Al1)
multiplied by ¥ (x), and apply /' dx, we obtain

2m , ,
?(E —EDIL(E,E)

+L 82 . 82
- / [mm% —wp_u)%}dx.

L
(A12)

Turning the energies into momenta and integrating in the
second line per partes, we get

(p+p)p—-p)

hz IL(E7 E/)
9 . 9 x=+L
- [wm(x)w - wE/(x)M] .
X ox L

(A13)

For large L, the right-hand side of this expression can be
evaluated by inserting Egs. (A3)—(A6):

(A13) = l.p—;p (ﬁ(E’)e—i(p—p’)L/h _ ’B(E)ei(p—p’)L/h)
—iP = a (E)B(E ) +a— (ENB(E) P,

)
(Al4)

Approaching the limits £/ — E and L — oo, we see that
the expression in the second line oscillates very quickly with
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varying energy and becomes insignificant after averaging over
an arbitrarily small energy interval. Hence, near these limits
we can write

(P—P/)IL(E’ E/):iﬁ(E/)e—i(p—p’)L/ﬁ_IB(E)ei(p—p’)L/h.
(A15)
Finally, expressing S(E’) through its Taylor expansion,
dﬂ( )
B(E') = B(E) + — —(E'=E) + Ol(E'=E)’], (Al16)
we get an outcome for the integral (A9),
fi sin =2k
h@E»ﬂﬁ@—;—%—
ABE) R(p+D) i/ /
— L o(p—7p),
E  om ¢ +O0(p—p)
(A17)
which for E = E’ yields
hp dB(E
IL(E,E):2Lﬁ(E)—i—p # (A18)
m

In the second quick step, we substitute the last formula
(A18) to Eq. (A8) and obtain

/+°° |:WE(X)¢E+(X) _ 1]dx _ lim <1L(E,E)_2L)
—o0 Lo\ B(E)

B(E)

p dﬁ(E) i dflSEE)
— = Al9
B = AP =0 ey (19

Inserting formula (3) for B(E) into the last expression, we
arrive at the desired relation (12) between Ap(E) and ®(E).
Let us stress that this relation, as proven above, holds exactly,
without any approximations and particularly regardless to the
value of the size parameter .

APPENDIX B: COMPLEX EXTENSION OF CLASSICAL
DYNAMICS IN 1D

Here we sketch some features of the complex-time 1D dy-
namics and show that it allows for trivial tunneling trajectories
exemplified in Fig. 5. Following Refs. [72,73], we consider a
classical system with f = 1 in a complex phase space with
coordinate X = Xg + iX; and momentum P = Py + iP;. We
use a shorthand notation ReA = Ag and ImA = A for the real
and imaginary parts of a general quantity A. The complex
Hamiltonian reads as

2

P
H(X,P) = —+V(X)

P;—pP? . (PrPy
= FVR(X) —H(——H/I(X)). (B1)
2m m
—_————
Hi(X,P)

Hr(X,P)

The time 7T is also taken complex, but we assume that
it varies along a certain predetermined continuous path
T (s) = Tr(s) + iTi(s) in the complex plane, with s € R de-
noting a variable that continuously maps points along the
path to real numbers. We introduce the dot notation with the

: o A dA _ dA
following meaning A = <= = 95T

The complex Hamilton equations can be cast as

. 0 0
X,P)=(—,—— X, P, B2
(X, P) <8P 8X>H( s), (B2)
where we introduce a new Hamiltonian
H(X, P, s)=HX,P)T(s). (B3)

This Hamiltonian in general depends explicitly on the
time-parametrizing variable s and therefore yields H # 0.
However, in this paper we study paths 7'(s) such that 7 (s) is
piecewise constant within some finite segments, so H is con-
served along these segments. Equations (B2) can be rewritten
with the aid of the Cauchy-Riemann conditions for derivatives
of a general differentiable function F'(Z) € C with respect to
variable Z € C, namely,
dF _0FR _ OR dF R _ 0Rg

IR_Z Im = . (B4
4z Tozw oz T4z T oz oz

Using the pair of relations with Fr, we obtain

. d d
Xr, Pr) = (F X )”HR(X P, s), (BS)
- d d
X1, —P) = (8(_1)1) _8_XI>HR(X Ps),  (B6)

where we identify two pairs of canonically conjugate real vari-
ables (Xg, Pr) and (Xj, —P;) and associate the Hamiltonian
with the real part Hr of Eq. (B3). Thus, the complexified 1D
system can be treated as a system with f = 2. Using the pair
of relations from Eq. (B4) with Fj, we obtain an alternative
(equivalent) set of dynamical equations written in terms of the
imaginary part H; of the Hamiltonian (B3), namely,

. 0 ad
Xr, PR) = <8P X )HI(X P,s), B7)
- 0 a

As we see, the dynamics in the extended phase space
of variables (Xg, Xi, Pr, —P1) depends on the selected path
T (s) in the complex plane of the time variable. This path
is not determined dynamically, but must be chosen a priori.
Here, in accord with Refs. [72,73], we choose a path for
which the coordinate X (s) remains real during the whole
motion if it starts from real initial conditions, so we can
write X (s) = Xr(s) = x(s). We initiate the particle at s =0
with real coordinate x(0) < a (on the left from the interaction
domain) and real momentum P(0) = Pr(0) > 0 (pointing to-
wards the interaction domain). For tunneling trajectories, the
continuous path 7'(s) looks like a descending staircase in the
complex plane, the breaks being associated with transitions
between the allowed and forbidden regions. In particular, de-
noting V = V(x(s)), we prescribe

(. Ty = (1,00  forE>V &E=V,V <0},
RAV=10,-1) forE<V &E=V,V>0).

So, while the particle is in the allowed region, the time
behaves as usual, running forward along the real axis, and
we have (Hgr, Hi) = (Hr, H). When the particle enters
the forbidden regions, the time path breaks and continues
running down along the negative imaginary axis, yielding

(B9)
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(Hgr, H1) = (H;, —HR), which lasts until the return to the
allowed region on the other side of the barrier.

Trajectories in the phase space (Xg, X1, Pr, —F;) for the
time path T (s) from Eq. (B9) can be calculated from Egs. (B5)
and (B6) with the Hamiltonian Hgr equal to Hr or H; for
time running along the real or imaginary axis, respectively.
Alternatively, we can use Egs. (B7) and (B8) with #; equal
to Hy or —Hg. The forms of Hamiltonians Hg and H; follow
from Eq. (B1). We point out that everywhere along the real
coordinate axis Xg : x the potent1al V(x) is real, so from
Eq. (B4) we obtain -+ aX = H; = HR = 0forX = x 4+ i0. The
use of either equation pair (BY), (B6) or (B7), (B8) on the real
coordinate axis then leads to

PR 0V - P
(e PO=( = =2 ). G =(=.0)  B10)
m’  Ox m
along the (TR, Tl)z (1, 0) segments, and
.. P .o PR 0V
(e, PO =(-.0), (XI,PI)=<——R,—) (B1D)
m m  0x

along the (T, T))=(0, —1) segments.

From Egs. (B10) and (B11) we first check that for a par-
ticle initiated with (Xi, ;) = (0,0) in the allowed region,
the coordinate indeed remains real along the whole path, so

X1 = 0. In the allowed region we have also P = 0 and the
only active variables in Eq. (B10) are Xg and Pr. So, we obtain
the standard real solution of the particle motion at energy E.
However, as the particle reaches the classical turning point
x7 with Pr — 0, [we assume a generic turning point with
%V(x)LCT > (], the motion does not turn back but continues
to the forbidden region under the rule of Eq. (B11). While the
real momentum is kept on its turning-point value Pr = 0, the
active variables become Xg and P. The dynamical equations
for these variables are the same as those for (Xg, Pr) in the
allowed region, but with an inverted potential —V (x). The
piecewise-conserved energies (Hgr, Hi), which were equal
to (E,0) in the allowed region, take values (0, —E) in the
forbidden region. When the particle reaches the exit point
x; from the forbidden region [a turning point of the inverted
potential, generically satisfying < 7V (0)y, < 0], the situation
is repeated in a reversed order, the rule being returned to
the dynamical equations (B10). For multibarrier potentials the
same scenario is repeated until the particle escapes from the
interaction region.

We conclude by noting that although the above-described
type of tunneling trajectories (cf. Fig. 5) represents only one
possibility out of an infinite set of various complex solutions,
it seems (based on the results presented in the main text)
to be really essential for the semiclassical description of the
tunneling processes.
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