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Quantum speed limits are rigorous estimates on how fast a state of a quantum system can depart from the
initial state in the course of quantum evolution. Most known quantum speed limits, including the celebrated
Mandelstam-Tamm and Margolus-Levitin ones, are general bounds applicable to arbitrary initial states. However,
when applied to mixed states of many-body systems, they, as a rule, dramatically overestimate the speed of
quantum evolution and fail to provide meaningful bounds in the thermodynamic limit. Here we derive a quantum
speed limit for a closed system initially prepared in a thermal state and evolving under a time-dependent
Hamiltonian. This quantum speed limit exploits the structure of the thermal state and, in particular, explicitly
depends on the temperature. In a broad class of many-body setups it proves to be drastically stronger than general
quantum speed limits.
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I. INTRODUCTION

Quantum speed limits (QSLs) are a family of fundamental
results in quantum mechanics limiting the maximal possible
speed of quantum evolution. The first QSL was derived by
Mandelstam and Tamm in 1945 [1] in a successful attempt
to put the time-energy uncertainty relation on a rigorous ba-
sis (see also [2]). Decades later, a quite different QSL was
derived by Margolus and Levitin [3]. Further developments in-
cluded generalizations to mixed states [4–10], time-dependent
Hamiltonians [4,11–13], open quantum systems [8,14,15],
etc., as reviewed, e.g., in [16–18]. The scope of QSL was
broadened to optimal control theory [19], quantum resource
theory [20], abstract quantum information theory [21], semi-
classical and classical dynamics [22,23], etc. Apart from the
foundational importance per se, quantum speed limits enjoy
a diverse range of applications, from a deep interrelation be-
tween QSLs, orthogonality catastrophe, adiabatic conditions,
and adiabatic quantum computation [24–29] to ultimate limits
for performance of quantum gates [3,30–32], quantum heat
machines [33,34], quantum transport [35], and even quantum
batteries [36,37].

Quantum speed limits can be particularly useful in
many-body systems—there the exact calculations of the time-
dependent state ρt is, in general, of prohibitive complexity,
and one may hope that QSLs would deliver valuable infor-
mation on the dynamics not accessible otherwise. It turns
out, however, that both the Mandelstam-Tamm (MT) and
Margolus-Levitin (ML) QSLs applied to many-body systems
often prove to be notoriously loose [38].

Here we derive a QSL with a drastically improved many-
body performance. It applies to a ubiquitous situation when

a system is initially prepared in a thermal state of some
Hamiltonian H0 and then evolves under a different (possibly,
time-dependent) Hamiltonian H0 + Vt . For few-body systems
such setup has been successfully studied before (see, e.g.,
Refs. [39,40] where an optimal driving protocol has been
presented for the case of a quantum parametric oscillator
initialized in a thermal state). However, as mentioned above,
in the many-body case one typically faces significant difficul-
ties. The derived QSL alleviates much of these difficulties, as
summarized in Table I.

The rest of the paper is organized as follows. We first
introduce a quantum quench with the system initialized in
a thermal state with Vt = V independent on time. Then we
discuss figures of merit appropriate to distinguish many-body
mixed states. After that we formulate our QSL for a quench,
Eq. (8). Then we contrast the performance of our QSL to that
of the MT and ML QSLs, as well as to a notable recent QSL by
Mondal, Datta, and Sazim (MDS) [9]. We argue that our QSL
has a dramatic advantage over these QSLs in broad classes of
many-body setups, and demonstrate these advantages in two
exemplary systems: a spin-boson model and a mobile impu-
rity model. Then we generalize our QSL to time-dependent
potentials [see Eq. (21)] and provide the proof thereof. Finally,
we conclude the paper by summarizing the results.

II. QUENCHING A THERMAL STATE

Let us consider a closed quantum system with the Hamil-
tonian quenched from H0 at t � 0 to H0 + V at t > 0. Before
the quench the system is in the thermal state

ρ0 = e−βH0/Z0, Z0 = tre−βH0 , (1)
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TABLE I. Merits of the thermal QSL (8) as compared to three other QSLs, Eqs. (10)–(13). Loose performance implies that the corre-
sponding bound on Dtr (ρ0, ρt ) diverges as

√
N or faster in the thermodynamic limit despite Dtr (ρ0, ρt ) itself being finite. Tight performance

implies the absence of such spurious divergence. The first two lines correspond to the trivial dynamics ρt = ρ0. The last two lines correspond
to nontrivial dynamics where the complexity of calculating ρt becomes prohibitive for large system sizes. The original form (12) of the MDS
inequality is used in the first two lines, and the modified one, (13), in the last two lines.

Quantum Speed Limits

Mandelstam-Tamm Margolus-Levitin Mondal-Datta-Sazim Thermal

Infinite temperature Loose Loose Exact Exact
Trivial perturbation Loose Loose Exact Exact
Local perturbation Loose Loose Tight Tight
Finitely disturbing nonlocal perturbation Loose Loose Loose Tight

β being the inverse temperature. After the quench the state of
the system ρt starts to evolve according to the von Neumann
equation

i∂tρt = [H0 + V, ρt ]. (2)

We will refer to V as perturbation.1

Our goal is to assess how far ρt can depart from ρ0. The dif-
ference between two arbitrary mixed quantum states, ρ1 and
ρ2, can be quantified by various distinguishability measures,
two popular ones being the trace distance

Dtr (ρ1, ρ2) ≡ (1/2)tr|ρ2 − ρ1| (3)

and the Bures angle

L(ρ1, ρ2) ≡ arccos tr
√√

ρ1ρ2
√

ρ1. (4)

We will mostly employ the trace distance, which is known to
have a well-defined operational meaning [41–44] and can be
used for quantum state discrimination in the many-body case
[45]. In addition, we will provide a QSL in terms of the Bures
angle. To prove our QSL we will need a yet different distance,
the quantum Hellinger distance [46] given by

D(ρ1, ρ2) ≡ 1 − tr(
√

ρ1
√

ρ2). (5)

In fact, the three distances introduced above are all mutually
related by rather strong two-sided inequalities [42,46,47] and
therefore can be used essentially interchangeably. The two
particular inequalities we will use read [42]

Dtr (ρ1, ρ2) �
√

D(ρ1, ρ2)[2 − D(ρ1, ρ2)]

�
√

2D(ρ1, ρ2) (6)

and [47]

L(ρ1, ρ2) � arcsin
√

D(ρ1, ρ2)[2 − D(ρ1, ρ2)]

� arcsin
√

2D(ρ1, ρ2). (7)

As a side remark, we note that the (more easily com-
putable) Hilbert-Schmidt distance is unsuitable for fairly
discriminating many-body states [45] and thus will not be
used.

1Note that we do not imply that V is small or treated perturbatively.

III. QSL FOR THERMAL STATES

The central result of the present paper is the quantum speed
limit for thermal states (T-QSL). It reads as follows:

T-QSL: Dtr (ρ0, ρt ) �
√

βt 4

√
−2 〈[H0,V ]2〉β. (8)

Here and in what follows thermal averaging is understood
with respect to ρ0, i.e., 〈A〉β ≡ tr(ρ0A) for an arbitrary op-
erator A.

Essentially the same result can be cast in terms of the Bures
angle:

L(ρ0, ρt ) � arcsin
(√

βt 4

√
−2 〈[H0,V ]2〉β

)
. (9)

Finally, the bound in terms of the Hellinger distance is given
in Eq. (30).

The QSLs (8) and (9) follow from more general QSLs (21)
and (22), respectively, that are reported and proven in what
follows. However, before we turn to the proof, we elucidate
the significance and merits of the T-QSL (8).

IV. COMPARISON WITH GENERAL QSLS

We would like to discuss the merits of the T-QSL (8) in
comparison with three general (i.e., applicable to arbitrary, not
necessarily thermal initial states) QSLs. The first two are the
MT [1,2,4] and ML [3,5,48] QSLs which read

MT QSL:Dtr (ρ0, ρt ) � �Et,

�E ≡
√

〈(H0 + V )2〉β − 〈H0 + V 〉2
β, (10)

ML QSL:Dtr (ρ0, ρt ) �
√

2Et, E ≡ 〈H0 + V 〉β − Egs. (11)

Here �E is the quantum uncertainty of the Hamiltonian H0 +
V in the thermal state (1), Egs is the ground state energy of this
Hamiltonian, and E is the average energy relative to Egs.

Both the MT and ML QSLs are saturated by a particular
pure state [49]. However, this state is very special: it is a coher-
ent, equally weighted superposition of two lowest eigenstates
of the Hamiltonian.

When it comes to thermal states, both �E and
√

E scale
as

√
N in the thermodynamic limit (N being the number of

particles which grows with the particle density kept constant).
Therefore, as noted in Ref. [38], the MT and ML QSLs
misleadingly suggest that a state can always evolve into an
(almost) orthogonal one in no time. We will see that, in fact,
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this
√

N divergence is spurious for a broad class of perturba-
tions, and MT and ML QSLs dramatically overestimate the
speed of quantum evolution at a finite temperature.

The third QSL we have picked for comparison is the MDS
QSL. In its original form it reads

D(ρ0, ρt ) � 2
[
sin

(
t
√

−tr[
√

ρ0,V ]2/2
)]2

, (12)

valid for times such that the argument of sin does not
exceed π/4 [9]. However, the quantity tr [

√
ρ0,V ]2, known

as Wigner-Yanase skew information (with respect to the
observable V ) [50], is hardly computable in the many-body
case. To obtain a practical bound, we employ the inequality
−tr [

√
ρ0,V ]2 � 2〈V 2〉β . We also choose to get rid of the

sine by using the inequality (sin x)2 � x2 valid for any x.
This way we obtain D(ρ0, ρt ) � t2〈V 2〉β . Finally, we present
this bound in terms of the trace distance with the help of the
inequality (6):

MDS QSL: Dtr (ρ0, ρt ) � t
√

2〈V 2〉β. (13)

In what follows we will refer to this modified MDS bound
simply as the MDS QSL.

At this point it is worth noting that all QSLs considered
in the present paper [except the bound (12)] can be regarded
as inequalities relating nonequilibrium dynamics (left-hand
side) to an equilibrium expectation value of some physi-
cal observable or a function thereof (right-hand side). This
type of QSLs is particularly useful in the many-body set-
ting since the equilibrium expectation values are more easily
accessible both theoretically and experimentally than the far-
from-equilibrium dynamics. Different types of QSLs (see,
e.g., [10]) are not discussed here.

Now we are in a position to compare the general MT, ML,
and MDS QSLs to the T-QSL. First we will consider limiting
cases of infinite temperature and trivial perturbation, and then
turn to nontrivial perturbations and specific examples.

Infinite temperature. Consider a system at the infinite tem-
perature, β = 0 (here we assume that the Hilbert space is
finite dimensional). Trivially ρt = ρ0 ∼ 1 and Dtr (ρ0, ρt ) = 0
in this case. This result is readily reproduced by T-QSL (8) as
well as MDS QSL in its original form (12). However, both
MT (10) and ML (11) QSLs provide loose O(

√
N ) bounds.

Trivial perturbation. The perturbation is called trivial if
[H0,V ] = 0. For a trivial perturbation the dynamics is also
trivial, ρt = ρ0, and the performance of QSLs is absolutely
analogous to the infinite temperature case.

Local perturbation. We refer to V as a local perturbation
whenever 〈V 2〉β is finite in the thermodynamic limit. If the
perturbation is local, the MDS bound (13) is finite in the
thermodynamic limit.

Finitely disturbing perturbation. We refer to V as a finitely
disturbing perturbation whenever 〈[H0,V ]2〉β is finite in the
thermodynamic limit. The T-QSL (8) is finite in the thermo-
dynamic limit whenever the perturbation is finitely disturbing.

For most physical Hamiltonians H0 (in particular, for
lattice Hamiltonians with short-range interactions) a local
perturbation is also a finitely disturbing one. The opposite,
however, is not necessarily true, as will be shown in an ex-
ample below. Therefore a T-QSL is expected to outperform

the MDS QSL whenever the perturbation is finitely disturbing
but not local.

V. SPIN-BOSON MODEL

As an explicit but still quite general example, we consider
a spin-boson model

H0 = �σ z + 1√
N

σ x
∑

k

gk (a†
k + ak ) +

∑
k

ωka†
kak . (14)

Here σ x,z are Pauli matrices of a two-level system that is
coupled to N bosonic modes (oscillators) ak . With the appro-
priate choices of the energies �,ωk and coupling constants
gk , this Hamiltonian describes a multitude of many-body sys-
tems [51]. Note that a prefactor 1/

√
N in the interaction term

has been explicitly singled out, so that coupling constants gk

remain independent on the system size [51].
We will consider two types of perturbations in the spin-

boson model. The first one is local and affects the spin degree
of freedom with V = εσ x. Both �E and

√
E are dominated

by the last term in the Hamiltonian (14) and diverge as√
N , the same divergence plaguing the MT and ML QSLs,

in accordance with the general considerations (the same is
true for another perturbation considered below). The MDS
bound (13) reads Dtr (ρ0, ρt ) �

√
2εt . The T-QSL produces

a somewhat different bound, Dtr (ρ0, ρt ) �
√

2
√

2ε�βt . Both
the MDS QSL and T-QSL avoid a spurious divergence in the
thermodynamic limit.

Another perturbation we consider shifts the energies of
oscillators:

V =
∑

k

δωa†
kak . (15)

This perturbation is finitely disturbing, but not local. The
MDS bound (13) now diverges as N , namely, Dtr (ρ0, ρt ) �√

2δωtnβN , where nβ ≡ ∑
k〈a†

kak〉β/N is the average number
of excitations per mode, with 〈a†

kak〉β = 1/(eβωk − 1) being
the Bose-Einstein distribution (here and in what follows the
subleading in N terms are omitted from the bounds). However,
this divergence is spurious: the T-QSL provides a finite bound

Dtr (ρ0, ρt ) �
√

δωg̃βt 4
√

2(1 + 2̃nβ ), (16)

where g̃2 ≡ ∑
k g2

k/N and ñβ ≡ ∑
k g2

k〈a†
kak〉β/

∑
k g2

k are fi-
nite in the thermodynamic limit. Thus, the T-QSL is the only
reasonable bound in this case.

VI. MOBILE IMPURITY MODEL

As a second example, we consider a model describing a
single mobile impurity particle with mass m immersed in a
fluid. The Hamiltonian reads

H0 = Hf + P2/(2m) + Himp-f , (17)

where Hf is the Hamiltonian of the fluid, P is the momentum
of the impurity, and Himp-f describes the interaction between
the impurity and the fluid. For ease of notation, we consider
a one-dimensional case. The fluid and the impurity are in a
box with the size L, the number of the particles of the fluid
is N , and the particle density n = N/L is kept constant in the
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thermodynamic limit N, L → ∞. The perturbation reads

V = FX, (18)

where X ∈ [0, L] is the coordinate of the impurity. This per-
turbation describes a force F applied to the impurity at time
t = 0. This or similar setups are actively studied theoretically
[52–61] and experimentally [62–64].

Again, the MT and ML bounds produce a spurious
√

N di-
vergence. An even worse divergence plagues the MDS bound
(13) which reads Dtr (ρ0, ρt ) �

√
2/3NFt/n. In contrast, the

T-QSL (8) is finite in the thermodynamic limit:

Dtr (ρ0, ρt ) �
√

βt

√
(F/m)

√
2〈P2〉β. (19)

Here the thermal average 〈P2〉β depends on the explicit form
of Hf and Himp-f and in each particular case can be calculated
approximately or, for an integrable H0, exactly (see, e.g.,
[65,66]).2

VII. T-QSL FOR A GENERAL DRIVING

Finally, let us state and prove a quantum speed limit for
a Hamiltonian with an arbitrary time dependence. Namely,
we consider a state ρt initialized in the thermal state (1) and
evolving according to the von Neumann equation

i∂tρt = [H0 + Vt , ρt ], (20)

where Vt is an arbitrary time-dependent perturbation. Then the
thermal QSL reads

Dtr (ρ0, ρt ) �
√

β

∫ t

0
dt ′

√
−2 〈[H0,Vt ′]2〉β. (21)

Essentially the same result cast in terms of the Bures angle
reads

L(ρ0, ρt ) � arcsin

√
β

∫ t

0
dt ′

√
−2〈[H0,Vt ′]2〉β. (22)

In the particular case of time-independent Vt = V the in-
equalities (21) and (22) entail the inequalities (8) and (9),
respectively.

Proof. The proof of Eqs. (21) and (22) goes as follows. We
will first bound the Hellinger distance

Dt ≡ D(ρ0, ρt ) (23)

defined in Eq. (5). Note that
√

ρt also satisfies the von Neu-
mann equation, i∂t

√
ρt = [H0 + Vt ,

√
ρt ]. Therefore

∂t Dt = i tr([
√

ρ0,Vt ]
√

ρt ). (24)

We rewrite this equality in the eigenbasis of H0:

∂t Dt = iβ

2
√

Z0

∑
n, k

f β
EnEk

〈n|Vt |k〉(En − Ek )〈k|√ρt |n〉. (25)

Here |n〉, |k〉 are eigenstates of H0, En and Ek are correspond-
ing eigenenergies, and we have defined the function of three

2Let us emphasize here that in the latter case H0 + V is still nonin-
tegrable and the calculation of ρt is unfeasible.

variables

f β

EE ′ = e−(β/2)E − e−(β/2)E ′

β(E − E ′)/2
. (26)

Notice that 〈n|Vt ′ |k〉(En − Ek ) = 〈n|[H0,Vt ′ ]|k〉. Taking this
into account and applying the Cauchy-Bunyakovsky-Schwarz
inequality to Eq. (25) we obtain

|∂t Dt | � β

2

(∑
n,k

Z−1
0

(
f β
EnEk

)2
∣∣∣〈n|[H0,Vt ]|k〉

∣∣∣2
)1/2

×
(∑

n, k

∣∣∣〈k|√ρt ′ |n〉
∣∣∣2

)1/2

. (27)

The term in the second set of brackets reduces to trρt ′ = 1.
The term within the first set of brackets can be estimated by
using the inequality [67](

f β

EE ′
)2 � e−βE + e−βE ′ (28)

valid for any real E , E ′, and β. After some basic algebra we
obtain

|∂t Dt | � β

2

√
−2〈[H0,Vt ′ ]2〉β. (29)

Finally, using the fact that |Dt − D0| �
∫ t

0 |∂t ′Dt ′ |dt ′, we
obtain the QSL for the Hellinger distance:

Dt �
β

2

∫ t

0
dt ′

√
−2〈[H0,Vt ′ ]2〉β. (30)

Combining this bound with (the looser versions of) inequali-
ties (6) and (7) concludes the proof. �

Note that in the course of the proof we have also obtained
the bound (29) on the time derivative of the Hellinger distance.

As is clear from the proof, the bounds (21) and (22)
can be improved: one can, first, use the tighter versions of
inequalities (6) and (7), and, second, exploit the fact that
f β
EnEn

(observe identical subscripts) can be substituted by
zero. These straightforward but somewhat bulky improve-
ments make the bound more tight quantitatively but, as far
as we can see, do not bring new qualitative insights.

One can also attempt to optimize the obtained QSLs by
applying a time-dependent gauge transformation to the Hamil-
tonian [16,68–70] prior to using the inequalities (21) and (22).
We leave this interesting research direction for future work.

We note that the definitions of trivial, local and finitely dis-
turbing perturbations extend to the time-dependent Vt without
alterations, as well as the conclusions regarding the corre-
sponding performance of QSLs.

VIII. SUMMARY

To summarize, we have proven a quantum speed limit
(21) for a system prepared in a thermal state of an ini-
tial Hamiltonian H0 and evolving under a different, possibly
time-dependent Hamiltonian H0 + Vt . By narrowing the set of
initial states to thermal states only, we have enhanced the per-
formance of this quantum speed limit (referred to as T-QSL)
as compared to QSLs valid universally. We have compared
the T-QSL to three other QSLs, including the paradigmatic
Mandelstam-Tamm and Margolus-Levitin ones, with the re-
sults summarized in Table I. The superiority of the T-QSL
is most spectacularly manifested for a class of nonlocal but
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locally disturbing perturbations Vt : To the best of our knowl-
edge, in this class the T-QSL is the only QSL providing a
reasonable bound that avoids a spurious divergence in the
thermodynamic limit. We have demonstrated this advantage
explicitly for two exemplary systems—a spin-boson and a
mobile impurity model.

As a final remark, we stress that the T-QSL is capable
of meaningfully bounding the distance between many-body
mixed states ρt and ρ0. This should be distinguished from the
open system setup where one is interested in a reduced state
of a few-level system (e.g., a qubit) coupled to a thermal bath
(see, e.g., [8,15,71,72]). Since the trace distance is contractive
with respect to taking partial trace, the T-QSL implies a bound
on the distance between the reduced states, but not vice versa.

For example, in the spin-boson model the right-hand side of
the inequality (16) bounds also Dtr (ρs

0, ρ
s
t ), where ρs

t is the
reduced density matrix of the spin.

Note added. Recently, a quantum speed limit for projec-
tions on linear subspaces has been reported [73]. This result
can be applied to microcanonical thermal states, which nicely
complements our results on the canonical thermal states.
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