
PHYSICAL REVIEW A 103, 062202 (2021)

Quantum-walk-based search algorithms with multiple marked vertices
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The quantum walk is a powerful tool to develop quantum algorithms, which usually are based on searching for
a vertex in a graph with multiple marked vertices, with Ambainis’s quantum algorithm for solving the element
distinctness problem being the most shining example. In this work, we address the problem of calculating
analytical expressions of the time complexity of finding a marked vertex using quantum-walk-based search
algorithms with multiple marked vertices on arbitrary graphs, extending previous analytical methods based on
Szegedy’s quantum walk, which can be applied only to bipartite graphs. Two examples based on the coined
quantum walk on two-dimensional lattices and hypercubes show the details of our method.
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I. INTRODUCTION

The discrete-time quantum walk is the quantum counter-
part of the classical random walk. In the classical case, the
state of a random walker is a probability distribution, and its
dynamics is described by a stochastic matrix (acting upon the
state), which is obtained from the adjacency matrix of the
graph. The adjacency matrix ensures that the random walk
obeys locality constraints, which means that if the walker is on
a vertex v at time t , the walker will hop to some vertex in the
neighborhood of v at time t + 1 [1]. In the quantum case, the
state of a quantum walker is a L2 norm-1 vector in a Hilbert
space, and its dynamics is described by unitary matrices, as
demanded by the laws of quantum mechanics, but not only
that, the unitary matrices must be local. The locality is defined
by some discrete structure, which characterizes a neighbor-
hood for each allowed location for the quantum walker on that
discrete structure [2]. Most papers in literature employ graphs
and the allowed locations are vertices, edges, arcs, or faces,
depending on the quantum walk model [3]. The model is a
recipe that provides local unitary operators, and the product
of those operators is the evolution operator of the model. The
quantum walk is not only an important tool to build quantum
algorithms that outperform their classical counterparts [4],
but also a versatile toy model useful to simulate and analyze
complex physical systems [5,6].

In 2002, Benioff [7] came up with the idea of quantum
robots searching a two-dimensional lattice for a specific site,
which inspired many researchers to use quantum walks for
searching algorithms. In the same year, Shenvi et al. de-
scribed a coined quantum-walk-based search algorithm on
hypercubes with a quadratic improvement over a classical
random-walk-based algorithm. Ambainis et al. described a
similar search algorithm on two-dimensional lattices [8],
which was improved by Tulsi in 2008 by adding a qubit to the
model [9]. Tulsi’s modification proved useful for other graphs
[10].

The first quantum-walk-based search algorithm (on a spe-
cific bipartite graph) with multiple marked vertices was
designed by Ambainis [11] in 2003, and, in this case, the
searching has a practical application for solving the element
distinctness problem. The algorithm time complexity is calcu-
lated via a reduction method, which converts the marked set
into only one marked vertex in a reduced graph. Ambainis’s
quantum walk was extended to arbitrary symmetric bipartite
graphs with multiple marked vertices by Szegedy [12], who
was able to obtain a quadratic improvement for the detection
problem, which aims to determine whether there is at least
one marked vertex in the graph. The searching problem, which
aims to determine the location of at least one marked vertex
in the graph, cannot be solved with a quadratic speedup on
arbitrary graphs, but can be solved with a quadratic speedup
on bipartite graphs by using a combination of Szegedy’s
quantum walk, the phase-estimation algorithm, and interpo-
lated quantum walks [13,14]. In technical terms, Szegedy
showed that the quantum hitting time of a quantum walk on a
bipartite graph is

√
h, where h is the hitting time of a classical

Markov chain on the underlying graph. In Szegedy’s model,
the underlying graph can be any graph, but the graph on which
the quantum walk takes place must be bipartite.

The coined model [15] is a recipe to define quantum walks
on graphs by extending the position space with an internal
coin space. The dimension of the coin-position Hilbert space
is strictly larger than the number of vertices. This coin exten-
sion can be understood via graph theory as a modification of
the graph itself by inserting for each vertex a clique whose size
is equal to the degree of the vertex [16], so that the number of
vertices of the extended clique-inserted graph [17] is equal to
the dimension of the original coin-position Hilbert space. By
inserting cliques, the extended graph is nonbipartite if there is
at least one degree-3 vertex in the original graph, for instance,
the n-dimensional hypercube with n > 2. This means that the
results about finding at least one marked vertex on bipartite
graphs help little for the coined model.
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Many papers have addressed the searching problem with
multiple marked vertices using the coined model [18–21],
and most of them show negative results by displaying “ex-
ceptional configurations” of marked vertices that hinder the
coined quantum-walk-based searching algorithms. Reference
[19] shows how to eliminate exceptional configuration by
using Tulsi’s modification on regular graphs [9]. It is not
known whether those unwelcome configurations are really
exceptional or in fact common in the standard coined model.
To answer this kind of question we need analytical methods to
address this problem. In this work, we describe an analytical
framework for determining the time complexity of discrete-
time quantum-walk-based searching algorithms on arbitrary
graphs with multiple marked vertices, which can be applied
not only to the coined model but also to any discrete-time
quantum walk. The standard dynamics of searching algo-
rithms is based on a modification of the underlying evolution
operator U of the quantum walk by multiplying U by a unitary
operator R, usually called oracle, that knows the locations of
the marked vertices, so that the new evolution operator U ′
is U · R. Our framework uses two eigenvectors of U ′ whose
eigenvalues are closest to 1 but different from 1, extend-
ing a similar method that was successfully used to analyze
quantum-walk-based search algorithms on many graphs with
only one marked vertex [2,8,22].

We provide two examples of our method. We calculate an-
alytically the time complexity of quantum-walk-based search
algorithms on two-dimensional lattices and hypercubes with
two marked vertices each, using the coined model with the
Grover coin. We show that the asymptotic optimal running
time and the success probability depend on the relative dis-
tance of the marked vertices for the two-dimensional lattice.
The speed of the algorithm is slower when the marked ver-
tices are neighbors. For the n-dimensional hypercube, the
asymptotic optimal running time is π

√
2n/4 and the success

probability is 1/2, regardless of the locations of the marked
vertices. The calculations can be extended to more marked
vertices, and numerical experiments show that the quantum-
walk-based search algorithm on the hypercube is similar to
Grover’s algorithm [23] in the sense that the optimal running
time tm for m marked vertices is tm = t1/

√
m with success

probability 1/2 (no dependence on m).
The structure of the paper is as follows. Section II de-

scribes the method to determine the time complexity of
quantum-walk-based search algorithms on arbitrary graphs
with multiple marked vertices, and gives all the details when
there are two marked vertices. Section III applies the method
to two-dimensional lattices with two marked vertices. Sec-
tion IV applies the method to hypercubes with two marked
vertices. Section V shows how numerical methods can be
improved. Section VI presents our conclusions.

II. TIME COMPLEXITY OF SEARCH ALGORITHMS
WITH MULTIPLE MARKED VERTICES

Consider a graph �, where V (�) is the set of vertices
and |V (�)| = N . LetHN be the N-dimensional Hilbert space
associated with the graph; that is, the computational basis of
HN is {|v〉 : v ∈ V (�)}. Although the dimension of Hilbert
space is equal to the number of vertices, the results of this

section can be applied to the coined model, as we show in
concrete examples.

Let M be the set of marked vertices. Then, the unitary
operator that marks a vertex v is

R = I − 2
∑
v∈M

|v〉〈v|. (1)

The evolution operator U ′ of a quantum-walk-based search
algorithm is

U ′ = UR. (2)

The walker starts at an initial state |ψ (0)〉 and evolves driven
by U ′; that is, the walker’s state after t steps is |ψ (t )〉 =
(U ′)t |ψ (0)〉.

The probability of finding a marked vertex m ∈ M after t
steps is

p(t ) =
∑
m∈M

|〈m|(U ′)t |ψ (0)〉|2. (3)

The goal now is to determine the optimal number of steps topt,
which is the one that maximizes p(t ). The running time is topt

and the success probability is p(topt).
Let |λ〉 and |λ′〉 be the eigenvectors of U ′ that have the

eigenvalues as close as possible to 1, but different from 1.
The eigenspace spanned by the other eigenvectors will be
disregarded, which causes some supposedly small error. Then

p(t ) =
∑
m∈M

|eiλt 〈m|λ〉〈λ|ψ (0)〉

+ eiλ′t 〈m|λ′〉〈λ′|ψ (0)〉 + εm|2, (4)

where εm = 〈m|Ut
tiny|ψ (0)〉 and Utiny acts nontrivially only on

the subspace orthogonal to the plane spanned by {|λ〉, |λ′〉}.
Our approach can be applied when |εm| is much smaller than
the absolute value of the remaining terms in the asymptotic
limit (large N). We disregard εm for now and show applica-
tions for which limN→∞ |εm| = 0.

Let us start by calculating λ and λ′. Suppose that {|ψk〉} is
an orthonormal eigenbasis of U and exp(iφk ) the correspond-
ing eigenvalues. Then,

〈m|λ〉 =
∑

k

〈m|ψk〉〈ψk|λ〉, (5)

where m ∈ M. Using 〈ψk|U ′|λ〉 = 〈ψk|UR|λ〉 and supposing
that λ 	= φk , ∀k, we obtain

〈ψk

∣∣λ〉 = (
1 + ibλ

k

)∑
m∈M

〈ψk|m〉〈m|λ〉, (6)

where

bλ
k = sin(λ − φk )

1 − cos(λ − φk )
. (7)

Replacing Eq. (6) into Eq. (5), we learn that the |M|
vector with entries 〈m|λ〉 is a zero eigenvector of the |M|-
dimensional Hermitian matrix �λ, where

�λ
mm′ =

∑
k

bλ
k 〈m|ψk〉〈ψk|m′〉. (8)

Then,

det(�λ) = 0. (9)
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We use this equation to find λ and the analog equation
det(�λ′

) = 0 to find λ′. Terms 〈m|λ〉 and 〈m|λ′〉 are cal-
culated up to their norms using the fact that they are zero
eigenvectors of �λ and �λ′

, respectively. The norms of these
zero eigenvectors are calculated using Eq. (6) and the con-
straint

∑
k |〈ψk|λ〉|2 = 1. The last missing terms, 〈λ|ψ (0)〉

and 〈λ′|ψ (0)〉, can be calculated using Eq. (6) by assuming
that |ψ (0)〉 is a uniform superposition of the (+1) eigenvec-
tors of U that have nonzero overlap with the target states.

There are cases so that λ = −λ′ and 〈m|λ〉〈λ|ψ (0)〉 =
−〈m|λ′〉〈λ′|ψ (0)〉 for all m, and Eq. (4) simplifies in the
asymptotic limit to

p(t ) = psucc sin2 λt, (10)

where

psucc = 4
∑
m∈M

|〈m|λ〉|2|〈λ|ψ (0)〉|2. (11)

In those cases, we know that the optimal running time is
topt = π/(2λ) and the success probability is psucc. The time
complexity is determined by the asymptotic behavior of trun =
topt/

√
psucc as a function of the number of vertices because,

in the quantum case after using the amplitude amplification
method [24], trun is the total running time with success proba-
bility O(1).

The results described above can be used not only for an-
alytical calculations but also to speed up numerical methods.
We can use Eq. (9) to find λ numerically for a specific configu-
ration of marked vertices, and then, by plotting topt = π/(2λ)
as a function of N , we can estimate the complexity of the
running time. On the other hand, Eq. (11) can be used to
generate a plot of the success probability as a function of
N . The combination of those plots are used to determine the
time complexity of the search algorithm. An example of this
numerical approach is shown in Sec. V.

Case |M| = 2

Suppose that M = {m0, m1}. Equation (9) implies that∑
kk′

bλ
kbλ

k′ckk′ = 0, (12)

where

ckk′ = ψk (m0)ψk′ (m1)[ψ∗
k (m0)ψ∗

k′ (m1) − ψ∗
k (m1)ψ∗

k′ (m0)].

(13)

Suppose that λ � φmin when N  1, where φmin is the
smallest positive value of φk . We will check the validity of
those assumptions in specific applications. Let us split the sum
(12) into four parts∑

kk′
=

∑
φk = 0
φk′ = 0

+
∑

φk = 0
φk′ 	= 0

+
∑

φk 	= 0
φk′ = 0

+
∑

φk 	= 0
φk′ 	= 0

, (14)

corresponding to the sum of terms such that φk = 0 or φk 	= 0.
Using

sin λ

1 − cos λ
= 2

λ
+ O(λ) (15)

and, if φk 	= 0,

sin(λ − φk )

1 − cos(λ − φk )
= aksin φk + akλ + O(λ2), (16)

where

ak = 1

cos φk − 1
, (17)

we obtain

A

λ2
+ B

λ
+ C + Dλ + Eλ2 = O(λ3), (18)

where

A = 4
∑

φk = 0
φk′ = 0

ckk′ , (19)

B = 2
∑

φk = 0
φk′ 	= 0

ak′ckk′ sin φk′ + 2
∑

φk 	= 0
φk′ = 0

akckk′ sin φk, (20)

C = 2
∑

φk = 0
φk′ 	= 0

ak′ckk′ + 2
∑

φk 	= 0
φk′ = 0

akckk′

+
∑

φk 	= 0
φk′ 	= 0

ak ak′ckk′ sin φk sin φk′ , (21)

D =
∑

φk 	= 0
φk′ 	= 0

akak′ckk′ (sin φk + sin φk′ ), (22)

E =
∑

φk 	= 0
φk′ 	= 0

akak′ckk′ . (23)

Using that 〈m|λ〉 is a zero eigenvector of �λ and re-scaling
|λ〉 by a global phase, we obtain

〈m0|λ〉 = α�λ
m0m1

, (24)

〈m1|λ〉 = −α�λ
m0m0

, (25)

where α is a positive constant, which can be calculated using
1 = ∑

k |〈ψk|λ〉|2 and Eq. (6):

1

α2
= (

1 + �′
m1m1

)(
�λ

m0m0

)2 − 2�λ
m0m0

Re
{
�′

m0m1
�λ

m0m1

}
+ (

1 + �′
m0m0

)∣∣�λ
m0m1

∣∣2
, (26)

where Re is the real part operator,

�λ
mm′ =

∑
k

bλ
k ψk (m)ψ∗

k (m′), (27)

and

�′
mm′ =

∑
k

(
bλ

k

)2
ψk (m)ψ∗

k (m′). (28)

Note that, because we have already calculated λ, we can now
calculate explicitly �λ

mm′ and �′
mm′ if we know the spectral

decomposition of U .
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III. SEARCHING TWO-DIMENSIONAL LATTICES WITH
TWO MARKED VERTICES

As an application, we calculate the time complexity of a
quantum-walk-based search algorithm on a

√
N × √

N square
lattice assuming that the lattice has cyclic boundary conditions
with exactly two marked vertices. The evolution operator of a
coined quantum walk with no marked vertex is

U = S(G ⊗ I ), (29)

where G is the Grover coin and S is the flip-flop shift operator
given by

S|i, j〉|x, y〉 = |1 − i, 1 − j〉∣∣x + (−1)i, y + (−1) j
〉
, (30)

where i and j are bits and the arithmetic in the second register
is performed modulo

√
N . To search the lattice, the modified

evolution operator is U ′ = UR′, where

R′ = I − 2|0′〉〈0′| − 2|1′〉〈1′| (31)

and

|0′〉 = |dc〉|0, 0〉, (32)

|1′〉 = |dc〉|x0, y0〉, (33)

where one marked vertex is chosen at m0 = (0, 0) without
loss of generality and the second marked vertex is chosen
at position m1 = (x0, y0) so that m0 	= m1. Vector |dc〉 is the
normalized uniform superposition of the computational basis
of the coined space. Note that here the Hilbert space is larger
because it has been augmented by the coin space, and then
all formulas of the previous section must be extended by
substituting |dc〉|m〉 for |m〉. The initial state |ψ (0)〉 is the
uniform superposition of all states of the computational basis,
that is,

|ψ (0)〉 = |dc〉|dp〉, (34)

where |dp〉 is the normalized uniform superposition of com-
putational basis of the position space. State |ψ (0)〉 can be
generated in O(

√
N ) steps.

The eigenvectors of U that have nonzero overlap with the
marked vertices are |ψ (0)〉 with eigenvalue 1 and |ν±θ

k�
〉|k̃, �̃〉

for (k, �) 	= (0, 0) with eigenvalues e±iθkl , where [2,25]

∣∣k̃, �̃
〉 = 1√

N

√
N−1∑

x,y=0

ωxk+y�|x, y〉 (35)

and

∣∣ν±θ
k�

〉 = ±i

2
√

2 sin θk�

⎡
⎢⎢⎣

e∓iθk� − ωk

e∓iθk� − ω−k

e∓iθk� − ω�

e∓iθk� − ω−�

⎤
⎥⎥⎦, (36)

and

cos θk� = 1

2

(
cos

2πk√
N

+ cos
2π�√

N

)
, (37)

where ω = exp(2π i/
√

N ).
Using this list of eigenvectors and 〈dc|ν±θ

k�
〉 = 1/

√
2,

Eq. (13) [with the modification ψ (m) → (〈dc|〈m|)|ψ〉 and

k → j, k, �, where j represents the coin value] reduces to

ck�;k′�′ = 1

εk�εk′�′N2
(1 − ω(k′−k)x0+(�′−�)y0 ),

where εk� = 1 if k = � = 0 and εk� = 2 otherwise. Index j
runs from zero to 3 in the coin space, and can be readily
simplified. Then, we obtain A = B = D = 0 and

C = − 4

N2

√
N−1∑

k, � = 0
(k, �) 	= (0, 0)

1 − cos 2π (kx0+�y0 )√
N

1 − cos θk�

, (38)

E = 1

N2

√
N−1∑

k, � = 0
(k, �) 	= (0, 0)

√
N−1∑

k′, �′ = 0
(k′, �′ ) 	= (0, 0)

1 − cos 2π (k′−k)x0+2π (�′−�)y0√
N

(1 − cos θk�)(1 − cos θk′�′ )
.

(39)

Note that the imaginary part of E is zero because of symmetry
properties. The expression for λ reduces to

λ =
√−C

E
. (40)

In order to proceed with the calculations, we introduce the
constant c ∈ R such that

√
N−1∑

k, � = 0
(k, �) 	= (0, 0)

1

1 − cos θk�

= cN ln N + O(N ), (41)

where c is bounded by 2/π2 � c � 1. Numerical calcula-
tions show that c ≈ 0.32. The asymptotic behavior of λ

using two representative pairs of marked elements, namely
[(0, 0), (1, 0)] and [(0, 0), (

√
N/2,

√
N/2)], is obtained in

Appendix A and is given by

λ =
{ √

2√
c
√

N ln N
, (x0, y0) = (1, 0),

2√
c
√

N ln N
, (x0, y0) = (

√
N/2,

√
N/2).

(42)

Note that λ � θk� when N  1 because θk� = O(1/
√

N ).

Case (x0, y0 ) = (1, 0)

Using Eqs. (15), (16), (27), and lower order terms in the
asymptotic expansion of λ, we obtain

�λ
m0m0

= −�λ
m0m1

= − 1√
2c

√
N ln N

+ O

(
1√

N ln
3
2 N

)
.

(43)

Using Eq. (28), we obtain

�′
m0m0

= �′
m0m1

= �′
m1m1

= 4c ln N + O(1). (44)

Replacing those results in Eq. (26), we have

α =
√

N

2
√

2
(45)

and

〈0′|λ〉 = 〈1′|λ〉 = 1

4
√

c
√

ln N
. (46)
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Taking the complex conjugate of Eq. (6) and replacing the
above results, we obtain

〈λ|ψ (0)〉 = − i√
2

+ O

(
1√

N ln N

)
. (47)

The equation above can be used to show that the terms εm in
Eq. (4) tend to zero when N → ∞. Using Eqs. (10) and (11),
we have asymptotically

p(t ) = 1

4c ln N
sin2

( √
2 t√

c
√

N ln N

)
. (48)

Taking the running time as the optimal t , we get

topt = π
√

c
√

N ln N

2
√

2
(49)

and

psucc = 1

4c ln N
. (50)

Case (x0, y0 ) = (
√

N/2,
√

N/2)

In this subsection, we assume that
√

N is even. Using
Eqs. (15), (16), and (27), in the asymptotic limit we obtain

�λ
m0m0

= −�λ
m0m0

= √
c

√
ln N√
N

+ O

(
1√

N ln N

)
. (51)

Using Eq. (28), we obtain

�′
m0m0

= �′
m1m1

= 3c ln N + O

(
1

ln N

)
, (52)

�′
m0m1

= c ln N + O(1). (53)

Replacing those results in Eq. (26), we have

α =
√

N

2c
√

2 ln N
(54)

and

〈0′|λ〉 = 〈1′|λ〉 = 1

2
√

2c
√

ln N
. (55)

Taking the complex conjugate of Eq. (6) and replacing the
above results, we obtain

〈λ|ψ (0)〉 = − i√
2

+ O

(
1√

N ln N

)
. (56)

Using Eqs. (10) and (11), we have asymptotically

p(t ) = 1

2c ln N
sin2

(
2 t√

c
√

N ln N

)
. (57)

Taking the running time as the optimal t , we get

topt = π
√

c
√

N ln N

4
(58)

and

psucc = 1

2c ln N
. (59)

IV. SEARCHING HYPERCUBES
WITH TWO MARKED VERTICES

As a second application, we calculate the time complexity
of a quantum-walk-based search algorithm on a hypercube
with exactly two marked vertices. A hypercube has N = 2n

vertices whose labels are binary vectors �v. The decimal rep-
resentation of �v is in the range 0 � �v < N . The evolution
operator of a coined quantum walk with no marked vertex is

U = S(G ⊗ IN ), (60)

where G ∈ Hn is the Grover coin and S ∈ Hn ⊗HN is the
flip-flop shift operator given by

S|a〉|�v〉 = |a〉|�v ⊕ �ea〉, (61)

where 1 � a � n and �ea is the binary n-tuple with all entries
zero except the ath entry, whose value is 1. To search the
n-dimensional hypercube, the modified evolution operator is
U ′ = UR′, where

R′ = I − 2|0′〉〈0′| − 2|1′〉〈1′| (62)

and

|0′〉 = |dc〉
∣∣�0〉

, (63)

|1′〉 = |dc〉|�v0〉, (64)

where one marked vertex is chosen at (0, . . . , 0) without loss
of generality and the second marked vertex is chosen at an
arbitrary position �v0 so that �v0 	= (0, . . . , 0). Vector |dc〉 is
the normalized uniform superposition of the computational
basis of the coined space. Note that the Hilbert space has been
augmented by the coin space, whose basis is {|1〉, . . . , |n〉}.
The initial state |ψ (0)〉 is the uniform superposition of all
states of the computational basis, that is,

|ψ (0)〉 = |dc〉 ⊗ |dp〉 = 1√
n

n∑
a=1

|a〉 ⊗ 1√
N

N−1∑
�v=0

|�v〉. (65)

State |ψ (0)〉 can be generated in O(
√

N ) steps using local
operators.

The results of Sec. II can be readily employed as soon as
we calculate A to E given by Eqs. (19) to (23). The relevant
eigenvectors of U are |ψ (0)〉, |dc〉|β(1,...,1)〉, and |α�k

±〉|β�k〉 (see

[2,26]), where |α�k
−〉 = |α�k

+〉∗,

∣∣α�k
+
〉 = eiθ

√
2

n∑
a=1

(
ka√

k
− i

1 − ka√
n − k

)
|a〉, (66)

for 0 < k < n, where k is the Hamming weight of �k, ka is the
ath entry of �k, and cos θ = √

k/n; and

|β�k〉 ≡ 1√
N

2n−1∑
�v=0

(−1)�k·�v|�v〉, (67)

where �k · �v = ∑
j
�k j �v j mod 2. The corresponding eigenval-

ues are 1, −1, and e±iωk . A (nonorthogonal) eigenbasis of U
has been summarized in Table I, but we use only the eigen-
vectors that have a nonzero overlap with the marked elements.

062202-5



BEZERRA, LUGÃO, AND PORTUGAL PHYSICAL REVIEW A 103, 062202 (2021)

TABLE I. Eigenvalues exp(±iωk ) and eigenvectors |α�k
a〉 ⊗ |β�k〉 of U , where k is the Hamming weight of �k, cos ωk = 1 − 2k/n, q(x) =

min{a | ka = x}, and |α�k
+〉 is given by Eq. (66).

Hamming wgt. Index a Eigenval. |α�k
a〉 Multiplicity

k = 0 a = 1 1
∑n

b=1 |b〉/√n 1

a ∈ [2, n] −1 (|1〉 − |a〉)/
√

2 n − 1

1 � k � n − 1 a = q(0) eiωk |α�k
+〉 1

a = q(1) e−iωk |α�k
+〉∗ 1

{a | ka = 1} \ {q(1)} 1 [|q(1)〉 − |a〉]/√2 k − 1

{a | ka = 0} \ {q(0)} −1 [|q(0)〉 − |a〉]/√2 n − k − 1

k = n a = 1 −1
∑n

b=1 |b〉/√n 1

a ∈ [2, n] 1 (|1〉 − |a〉)/
√

2 n − 1

Using

〈
dc

∣∣α�k
+
〉 = 〈

dc

∣∣α�k
−
〉 = 1√

2
(68)

for 0 < k < n, we obtain A = B = D = 0,

C = − 4n

N2

N−1∑
�k = 1

�k · �v0 odd

1

k
, (69)

E = n2

2N2

N−1∑
�k, �k′ = 1

(�k ⊕ �k′ ) · �v0 odd

1

kk′ . (70)

The asymptotic behavior of variables C and E is obtained in
Appendix B, and is given by

C = − 4

N
+ O

(
1

n

)
, (71)

E = 1 + O

(
1

n

)
, (72)

for any location of the second marked vertex �v0.
Using Eq. (18) in the asymptotic limit, we obtain

λ = 2√
N

. (73)

Note that λ � ωk when N  1 because ωk = O(1/
√

n). Us-
ing Eqs. (15), (16), and (27), in the asymptotic limit we obtain

�λ
m0m0

= �λ
m1m1

= −�λ
m0m1

= − 1√
N

+ O

(
1

n

)
. (74)

Using Eq. (28), we obtain

�′
m0m0

= �′
m1m1

= �′
m0m1

+ 1 = 2 + O

(
1

n

)
. (75)

Replacing those results in Eq. (26), we obtain α = √
N/8

and 〈0′|λ〉 = 〈1′|λ〉 = 1/
√

8 asymptotically. Using Eq. (6), we
obtain

〈ψ (0)|λ〉 = i√
2

+ O

(
1

n

)
. (76)

The equation above can be used to show that the terms εm in
Eq. (4) tend to zero when N → ∞. Using Eqs. (10) and (11),
we have asymptotically

p(t ) = 1

2
sin2

(
2t√
N

)
. (77)

Taking the running time as the optimal t , that is,

topt = π
√

N

4
, (78)

we obtain asymptotically

psucc = 1
2 . (79)

V. NUMERICAL METHODS

In this section we show how to enhance numerical meth-
ods that estimate the time complexity of quantum-walk-based
search algorithms with multiple marked vertices using a repre-
sentative example. We consider a Grover walk on hypercubes,
as described in Sec. IV, but now we take an arbitrary number
of marked vertices, and run Python simulations on an ordinary
laptop. By using Eq. (9), we determine λ numerically for
an increasing number of marked vertices. Figure 1 shows
topt = π/(2λ) as a function of n for |M| equal to 3, 9, and

FIG. 1. Plot of the optimal number of steps topt as a function
of the hypercube dimension n for an increasing number of marked
vertices |M|, whose locations are chosen at random.
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FIG. 2. Plot of (0.5 − psucc ) as a function of the hypercube di-
mension n for the same number of marked vertices of Fig. 1, where
psucc is the success probability. The axes are in log-log scale and the
points are the tips of the triangles.

21. The plot shows that topt scales as
√

N and, by rescaling N
into N/|M|, all lines merge into the dashed line π

√
N/(2

√
2).

This shows that the optimal number of steps right before
measurement is the one given by Eq. (80) below. These results
do not depend on the locations of the marked vertices.

The next step is the analysis of the success probability psucc

given by Eq. (11). Figure 2 shows (0.5 − psucc) as a function
of n for the same values of |M| of Fig. 1, and 0.65/n1.056 as a
function of n, which is a straight line in log-log scale obtained
by curve fitting. We have eliminated values corresponding
to n < 30 because the high order terms of the asymptotic
expansion of psucc play a relevant role for those values and
cannot be fitted into a straight line. These numerical results
show that the asymptotic success probability is 1/2. These
results do not depend on the locations of the marked vertices.

Without using Eq. (9), the only way to simulate the time
evolution of the quantum walk requires the implementation of
the coin and shift operators, which uses exponential resources
as a function of n, and cannot be performed in the range
of Fig. 1 even in the largest supercomputers. Our numerical
results support the following conjecture.

Conjecture. The asymptotic optimal running time for the
Grover-walk-based search algorithm on the hypercube with
|M| marked vertices is

topt = π

2
√

2

√
N

|M| (80)

and the asymptotic success probability is 1/2.

VI. CONCLUSIONS

We have developed an analytical method to calculate the
time complexity of quantum-walk-based search algorithms
with multiple marked vertices. The method relies on two
eigenvectors of the evolution operator associated with the
eigenvalues that are closest to 1 but different from 1. The num-
ber of steps is given by π/(2λ) in the simplest case when the
evolution operator has real entries, where ±λ are the phases
of the eigenvalues exp(±iλ). Usually, the success probability
decreases as a function of the number of vertices, with the

hypercube and the complete graph being notable exceptions.
This method employs some hypotheses in order to proceed
with the analytical calculations that must be checked on spe-
cific applications, and if the hypotheses are not confirmed, it
means that the method cannot be used. In fact, our method
may fail if the time complexity depends on all eigenvectors of
the evolution operator. The method can also be used to speed
up numerical analysis of search algorithms when the graph
structure is too complex for an analytical approach.

We have applied our method to the Grover walk on the two-
dimensional lattice and hypercube both with N vertices, and
we have shown that the optimal running time is O(

√
N ln N )

with success probability O(1/ ln N ) for the two-dimensional
lattice and O(

√
N ) with success probability O(1) for the

hypercube when they have two marked vertices. Since we
have obtained the exact asymptotic limits for the running time
and the success probability, we can draw further conclusions.
When we compare our results with the corresponding ones
for the two-dimensional lattice with one marked vertex, the
behavior of the algorithm depends on the distance of the
marked vertices. If we take them as far apart as possible,
the success probability for the two-marked case is the same
as the one-marked case but the running time is shorter by a
factor of

√
2. If we take the marked vertices as close as pos-

sible, the running time for the two-marked case is the same as
the one-marked case but the success probability is smaller by
a factor of 2. Note that the presence of an extra marked vertex
in the first case makes the searching easier and in the latter
case makes it worse, different from what is usually expected.

When we compare our results with the corresponding ones
for the hypercube with one marked vertex, the success prob-
ability is the same but the optimal number of steps for the
two-marked case is smaller by a factor of

√
2 for arbitrary

locations of the marked vertices. Our numerical calculations
show that those results can be extended for more marked
vertices regardless of their locations.

It would be interesting to apply our method to other
quantum-walk models, such as the staggered model [27], and
to analyze whether it can help to find exceptional configura-
tions.

ACKNOWLEDGMENTS

This study was financed in part by CAPES, FAPERJ
Grant No. CNE E-26/202.872/2018, and CNPq Grants No.
407635/2018-1 and No. 140897/2020-8.

APPENDIX A: ASYMPTOTIC EXPRESSIONS FOR THE
TWO-DIMENSIONAL LATTICE

In this Appendix we obtain simpler expressions for C and
E , and asymptotic expressions for λ. Let us define the sums
S1 and S2 as

S1 =
√

N−1∑
k, � = 0

(k, �) 	= (0, 0)

1

1 − cos θk�

, (A1)

S2 =
√

N−1∑
k, � = 0

(k, �) 	= (0, 0)

sin2 π (kx0+�y0 )√
N

sin2 πk√
N

+ sin2 π�√
N

. (A2)
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S1 has the following bounds [2,8]:

2

π2
N ln N � S1 � N ln N (A3)

up to O(N ) terms.
Using Eq. (38) and the identity cos 2a = 1 − 2 sin2 a, we

obtain

C = −8S2

N2
. (A4)

Using Eq. (39) and the antisymmetry of the sine function, the
expression for E can be simplified to

E = 4S2

N2
(S1 − S2). (A5)

Using Eq. (40), we obtain

λ =
√

2√
S1 − S2

. (A6)

Let us proceed with two kinds of pairs of marked points.

Case (x0, y0 ) = (1, 0)

If (x0, y0) = (1, 0), then

S2 =
√

N−1∑
k, � = 0

(k, �) 	= (0, 0)

sin2 πk√
N

sin2 πk√
N

+ sin2 π�√
N

. (A7)

Note that if we interchange k and � inside the sum, we obtain
the same result, which can be used to obtain

S2 = N − 1

2
. (A8)

Using Eq. (41), we obtain

λ =
√

2√
cN ln N + O(N )

. (A9)

Case (x0, y0 ) = (
√

N/2,
√

N/2)

In this case, we assume that
√

N is even. Replacing
(x0, y0) = (

√
N/2,

√
N/2) into (S1 − S2), we obtain

S1 − S2 = 1

2

√
N−1∑

k, � = 0
(k, �) 	= (0, 0)

1 + (−1)k+l

sin2 πk√
N

+ sin2 π�√
N

. (A10)

Using 4k2/π2 � sin2 k � k2, for −π/2 � k � π/2 and (k +
�)2/2 � k2 + �2 � (k + �)2, we obtain S1 − S2 = cNS3 +
O(N ), where [28]

S3 =
√

N/2∑
k, � = 0

(k, �) 	= (0, 0)

1 + (−1)k+l

(k + �)2 = ln N

2
+ O(1). (A11)

Using Eq. (41), we obtain

λ = 2√
cN ln N + O(N )

. (A12)

APPENDIX B: ASYMPTOTIC EXPRESSIONS
FOR THE HYPERCUBE

In this Appendix we obtain asymptotic expressions for C
and E given by Eqs. (69) and (70), respectively. Let us define
Sodd and Seven as

Sodd = n

N

N−1∑
�k = 1

�k · �v0 odd

1

|�k| ,

Seven = n

N

N−1∑
�k = 1

�k · �v0 even

1

|�k| ,

where |�k| is the Hamming weight of �k and N = 2n. Using
Eq. (69), we have that

C = −4 Sodd

N
.

Using Eq. (70) and that (�k ⊕ �k′) · �v0 is odd in two cases—(1)
�k · �v0 is even and �k′ · �v0 is odd and (2) �k · �v0 is odd and �k′ · �v0

is even—we obtain

E = Sodd Seven.

Now we use the following lemmas to show that asymptotically
Sodd = Seven = 1 for any �v0 	= (0, . . . , 0).

Lemma 1. Let n be a positive integer. Then

n

2n

n∑
k=1

1

k

(
n

k

)
= 2

∞∑
k=0

ak

nk
− n

2n

(
Hn + 2

n

)
,

where ak is the kth ordered Bell number (Fubini numbers [29],
where a0 = a1 = 1, a2 = 3, . . .), and Hn is the nth harmonic
number.

Lemma 2. Let n be a positive integer, �v be an n-bit vector,
and v be the Hamming weight of �v. Then

2n−1∑
�k=1

(−1)�k·�v

|�k| =
(

n

v

)−1 n−v∑
k=1

1

k

(
n

v + k

)
− [ψ (v + 1) + γ ],

where |�k| is the Hamming weight of �k, ψ is the digamma
function, γ is Euler’s constant, and the left-hand sum runs
over all n-bit vectors different from the null vector.

Using

N−1∑
�k=1

1

|�k| =
n∑

k=1

1

k

(
n

k

)
,

we obtain

Seven + Sodd = n

N

n∑
k=1

1

k

(
n

k

)
,

Seven − Sodd = n

N

N−1∑
�k=1

(−1)�k·�v0

|�k| .

Using Lemma 1, we conclude that

Seven + Sodd = 2 + O

(
1

n

)
.
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To find the asymptotic expression of Seven − Sodd, we split the
analysis in the following cases.

Case 1: v fixed

If the Hamming weight v of �v0 is fixed, that is, v does not
depend on n, we use the inequality

n−v∑
k=1

1

k

(
n

v + k

)
�

n−v∑
k=1

(
n

v + k

)
= 2n −

v∑
k=1

(
n

k

)
− 1

and Lemma 2 to show that

Seven − Sodd = O

(
1

n

)
,

if v > 1. We obtain the same result for the case v = 1 by using
the inequality

n−1∑
k=1

1

k

(
n

k + 1

)
� 3

n + 1

n−1∑
k=1

(
n + 1

k + 2

)

= 3

n + 1

(
2 2n − n(n + 1)

2
− 2

)
.

Case 2: v depends on n

Here we assume that v depends on n and limn→∞ v = ∞,

where v = |�v0|. Using the inequality

(
n

v + k

)
�

(
n

v

)(
n − v

k

)
,

we have

(
n

v

)−1 n−v∑
k=1

1

k

(
n

v + k

)
�

n−v∑
k=1

1

k

(
n − v

k

)
.

Using the inequality above, Lemma 1 (substituting n − v for
n), and Lemma 2, we obtain

Seven − Sodd = O

(
1

n

)
,

when 1 � v < n. We obtain the same result for the case v = n
by using Lemma 2 alone.
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