
PHYSICAL REVIEW A 103, 053712 (2021)

Perfect transfer of enhanced entanglement and asymmetric steering
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We propose a hybrid cavity magnomechanical system to realize and transfer the bipartite entanglements and
Einstein-Podolsky-Rosen (EPR) steerings between magnons, photons, and phonons in the regime of stability
of the system. As a parity-time-symmetric-like structure exhibiting the natural magnetostrictive magnon-phonon
interaction, our passive-active cavity system can be explored to enhance the robust distant quantum entanglement
and generate the relatively obvious asymmetric (even directional) EPR steering that is useful for the task with
the highly asymmetric trusts of the bidirectional local measurements between two entangled states. It is of
great interest that, based on such a tunable magnomechanical system, the perfect transfer between near and
distant entanglements and steerings of different mode pairs is realized by adjusting the coupling parameters;
in particular, we propose a perfect transfer scheme of steerings. These transferring processes suggest indeed
an alternative method for quantum information storage and manipulation. In addition, the entanglements and
steerings can also be exchanged between different mode pairs by adjusting the detunings between different
modes. This work may provide a potential platform for distant and asymmetric quantum modulation.
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I. INTRODUCTION

Quantum phenomena have been widely studied in various
optomechanical systems [1–4]. Recently, however, technolo-
gies engineered from the cavity magnomechanical system
have flourished [5–11], providing a fertile arena for the real-
ization of the quantum coherence between magnons, cavity
photons, and phonons. Based on collective excitations of a
ferromagnetic spin system like yttrium iron garnet (YIG),
magnons can be freely used for realizing the strong coupling
to cavities and superconducting qubits theoretically [12–15]
and experimentally [10,16], owing to their low damping rate
and rich magnonic nonlinearities [17–20]. In particular, it is
viable to adjust the magnons’ frequency via a bias magnetic
field [11] and to control the damping rate by a grounded loop
antenna above the YIG sphere to be much weaker than that of
cavities [21], which is beneficial to the precise measurement
[22]. As a kind of magnetic material with high spin density,
YIG has a magnon mode and also hosts a magnomechanical
vibrational phonon mode by the geometric deformation of
the surface as an effective mechanical resonator. These two
modes can couple with each other via magnetostrictive inter-
action, which has almost been ignored in common dielectric
or metallic materials [11,23,24]. Benefiting from this special
feature, the interest in systems involving YIG has been raised
and various coherent phenomena similar to those in optome-
chanical systems can be studied, such as magnomechanically
induced transparency or absorption [11,25], the bistability
in cavity magnon polaritons [26], magnon-induced nonre-
ciprocity [27,28], high-order sidebands generation [23,24],
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and quantum entanglement [29–31]. Recently, hybrid systems
involving magnons have become a promising platform for im-
plementing exceptional points [32,33], exceptional magnetic
sensitivity of magnon polaritons [34], enhanced sideband
responses [23], and magnetic chaos [35–37]. However, the
cavity magnomechanics as a novel scheme requires a more
comprehensive understanding in physics.

As a vital quantum-mechanical phenomenon, entangle-
ment has been realized in many sorts of systems at the
mesoscopic level [38–40] or the microscopic level [41–43].
It is regarded as a key resource required to operate a quan-
tum computer and to communicate with security guaranteed
by physical laws [44]. The entanglement between remote
and distant objects can also serve as quantum memories
[45]. In optomechanics, entanglement has been generated be-
tween phonons and photons [46], photons [47], and phonons
[43]. With atoms, atom-cavity-mirror tripartite entanglement
emerges [48,49] and the entanglement transfer [50,51] is ob-
served. Note that, in the cavity magnomechanical system, the
magnon-photon-phonon tripartite entanglement has been pro-
posed, where the magnon-phonon entanglement can transfer
to other subsystems via coupling [29]. The magnon-magnon
entanglement has been achieved and enhanced via a flux-
driven Josephson parametric amplifier [30], the Kerr nonlinear
effect [52], and quantum correlated microwave fields [53].

In recent years, one quantum inseparability called Einstein-
Podolsky-Rosen (EPR) steering has become a hot topic
[54,55]. In nature, there are three different types of nonlo-
cal correlations: entanglement, Bell nonlocality that can be
stated without any reference to quantum theory [56], and EPR
steering as an intermediate quantum nonlocality between the
first two [57]. While describing the ability of one party to
remotely affect another’s state through local measurements,
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EPR steering is a subset of entanglement and stronger than
entanglement [58,59]. Essentially distinct from entanglement,
it can feature a unique asymmetry between two observers un-
der proper conditions [60–62], which has been experimentally
demonstrated [63]. Moreover, for experimental implemen-
tations, quantum-refereed steering, only requiring one joint
measurement, might be considerably easier to test than the
entanglement witnessing requiring two joint measurements
[64]. Thus, the observation of steering has been used for de-
tecting entanglements in some systems, such as Bose-Einstein
condensates [65] and atomic ensembles [66]. Being important
for explaining basic characteristics of quantum mechanics,
asymmetric steering can also be used to complete the task
involving highly asymmetric quantum modulation and to real-
ize many quantum information protocols with super security.
Recently, asymmetric steering has shown several significant
applications, e.g., cryptography [67], randomness generation
[68], channel discrimination [69], and teleamplification [55].
However, compared with entanglement, the generation of
asymmetric steering requires relatively strict conditions, such
as a stronger two-mode quantum correlation and asymmetric
mean quantum numbers of two modes which determine the
steering direction [59].

On the other hand, non-Hermitian parity-time (PT )
symmetry has been exploited to explore and enhance some in-
teresting quantum phenomena, and the optical PT -symmetric
system can be realized using microcavity or optomechanical
systems [70,71]. One important effect in the PT -symmetric
cavity system is the photonic localization around the PT
phase-transition point, which can induce dynamical accumu-
lations of optical energy in two-supermode-based cavities and
then be used to enhance the photon blockade [70] and generate
unidirectional phonon transport [72]. Note that the optical
PT symmetry requires an exact balance between the loss and
gain. However, a strong enough gain may break the stationary
response of the system, and the balance condition may also be
too strict for the realistic implementation, especially when tiny
disturbances are inevitable. The PT -symmetric-like system
not requiring the strict balance can still follow the predictions
of the true PT one in many cases and thus attract considerable
attention [23,73]. Identical to the PT -symmetric system, the
real and imaginary parts of the Hamiltonian eigenvalues of
the PT -like one can spontaneously coalesce or separate, i.e.,
there is a transition point between the unbroken and broken
PT -like phases. Moreover, such a system can also show the
photonic localization effect for some useful applications, such
as the enhancement of optical linear [73] and nonlinear [74]
transmissions and significant light group delay [23]. There-
fore, we try to use the PT -like system for enhancing the
quantum entanglement and satisfying the requirements of the
creation of the EPR steering.

With a four-mode magnomechanical system of the PT -
symmetric-like scheme obtained by adding an auxiliary active
cavity, we would realize robust enhanced bipartite entan-
glements and asymmetric EPR steerings between magnon,
phonon, and photon modes. We just add a cavity to the basic
magnomechanical system of a cavity coupling a YIG sphere,
which seems a little complex but is necessary for our aims.
Here we focus on the underlying physical understanding of
the creation of entanglements and steerings in the cavity

FIG. 1. (a) Schematic diagram of a passive-active double-cavity
magnomechanical system. A YIG sphere is in the passive cavity a1

coupled with the active cavity a2 directly. (b) Implementation of
the magnomechanical system with the photon-tunneling strength J
between two three-dimensional cavities.

magnomechanics and consequently find the mechanism by
which the incoherent gain process affects the entanglement
arising from the coherent nonlinear coupling. Furthermore,
such a well-designed double-cavity system can be used to
entangle and steer distant subsystems and then the perfect
transfer from the initial near entanglement and steering to
the distant ones can be realized due to the tunability of the
system. For the quantum-communication network [75], our
system, as a basic component, could be used to transfer quan-
tum information and modulation involving the entanglement
and steerability further via adding more sites to extend a
communicating chain with a relatively high efficiency. Our
work focuses on an efficient scheme for realizing the perfect
transfer of quantum steering.

II. MODEL AND METHOD

As schematically shown in Fig. 1, we consider a cavity
magnetomechanical system including two three-dimensional
microwave cavities coupled with each other via mutual optical
tunneling, of which the coupling strength J can be tuned by
the adjustment of the distance between two cavities. Cavity
a1 (a2) is passive (active) and such a PT -symmetric-like
structure may further affect the properties of this cavity mag-
netomechanical system. A YIG sphere of volume V , whose
size is smaller than the wavelength of the cavity field, is put
into cavity a1 and near the maximum of the magnetic field
of a1 along the x axis. Via the magnetostrictive effect, the
YIG is driven by a strong driving magnetic field of amplitude
(frequency) B0 (ω0) along the y axis to generate a mag-
nomechanical vibrational phonon mode, which is nonlinearly
coupled with the magnon mode [11,29]. The photon mode of
the cavity and the magnon mode of the YIG are coupled with
each other via magnetic dipole interaction induced by a uni-
form bias magnetic field of intensity H along the z axis, where
the coupling strength is tunable by adjusting the intensity of
the bias magnetic field or the position of the YIG.

The Hamiltonian of such a system under the rotating-wave
approximation can be written as (h̄ = 1)

H = ω1a†
1a1 + ω2a†

2a2 + ωmm†m + Km†mm†m

+ ωb

2
(q2 + p2) + gmbm†mq + gma(a1m† + a†

1m)

+ J (a1a†
2 + a†

1a2) + iεd (m†e−iω0t − H.c.), (1)
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where ωi (i = 1, 2), ωm, and ωb are resonant frequencies of the
cavity photon modes, the magnon mode, and the mechanical
phonon mode, respectively; ai (a†

i ), m (m†), and b (b†) are
the annihilation (creation) operators of the cavity, magnon,
and phonon modes, respectively, and satisfy the commut-
ing relation [o, o†] = 1 (o = ai, b, m); q = (b + b†)/

√
2 and

p = i(b† − b)/
√

2 are dimensionless position and momentum
quadratures of the phonon mode, respectively; and the fre-
quency ωm of the magnon mode is defined as ωm = Hγg, with
the bias magnetic field and the gyromagnetic ratio of the YIG
sphere γg/2π = 28 GHz/T [29]. The well-accepted Young’s
modulus of the YIG is about Y = 2×1011 Pa [76], the Poisson
ratio is about v = 0.29, the spin density ρ = 4.22×1027 m−3,
the spin number S = 5

2 [11], and the total number of spins
N = ρV . In the interaction terms of the Hamiltonian, gma

(gmb) is the coupling strength of the single-magnon-photon
(single-magnon-phonon) interaction. Here gma, depending on
the position of the YIG [12,13], is assumed in the strong-
coupling regime, which may promote the perfect transfer of
the entanglement and steering, as gma > κ1, κm, with κ1 (κm)
the decay rate of the photon (magnon) mode, whereas, gmb is
much weaker and related to the spin density and spin number
[11]. The Rabi frequency εd =

√
5

4 γg

√
NB0 [29] determines

the coupling strength between the driving field B0 and the
magnon. The term Km†mm†m with the Kerr nonlinear co-
efficient K describes the Kerr nonlinear effect that can be
neglected under the condition of K|〈m〉|3 � εd [26]. Specif-
ically, for this approximation, choosing a proper volume V
is important in the experimental implementation. The reason
is that K is inversely proportional to V [29], but the mag-
nomechanical coupling strength is obviously weakened with
the increasing of V in terms of the experimental results [11].
Here we choose a proper sphere of diameter D = 250 μm so
as to neglect the Kerr nonlinearity as used in the experiment
[77]. In addition, the other nonlinear effect considered here,
i.e., the natural magnetostrictive magnon-phonon interaction
within the YIG sphere, plays a key role in the generation of
the entanglement and steering, which will be discussed in the
next section.

In the rotating frame with respect to the driving field fre-
quency ω0, the quantum Langevin equations for the operators
in the system with the relevant dissipations and noises can be
obtained as

ȧ1 = − (i�1 + κ1)a1 − igmam − iJa2 +
√

2κ1a1,in,

ȧ2 = − (i�2 + κ2t )a2 − iJa1 +
√

2κ2a2,in +
√

2ga(g)
2,in,

ṁ = − (i�m + κm)m − igmaa1 − igmbmq + εd +
√

2κmmin,

q̇ = ωb p,

ṗ = −ωbq − γb p − gmbm†m + ξ, (2)

with �i = ωi − ω0 (i = 1, 2) and �′
m = ωm − ω0 the rele-

vant detunings. Here κ2t = κ2 − g is the effective damping
rate of cavity a2, where g is the real gain into cavity
a2. Via defining η ≡ κ2t/κ1, a2 is an active (passive) cav-
ity with η < 0 (η > 0). In addition, ai,in, min, and ξ are
the noise operators associated with the photon, magnon,
and phonon modes, respectively, with zero mean values
and are characterized by nonzero time-domain correlation

functions [78] as 〈kin(t )k†
in(t ′)〉 = [Nk (ωk ) + 1]δ(t − t ′) and

〈k†
in(t )kin(t ′)〉 = Nk (ωk )δ(t − t ′) with k = a1, a2, m; the noise

operators associated with the gain in cavity a2 are [79]
〈a(g)

2,in(t )a(g)†
2,in (t ′)〉 = Na2 (ωa2 )δ(t − t ′) and 〈a(g)†

2,in (t )a(g)
2,in(t ′)〉 =

[Na2 (ωa2 + 1)]δ(t − t ′); under a large mechanical quality fac-
tor Qm = ωb/γ � 1 [80], the Langevin force operator ξ is
simplified as a δ-correlated function with the Markovian
approximation, i.e., 〈ξ (t )ξ (t ′) + ξ (t ′)ξ (t )〉/2 	 γb(2Nbωb +
1)δ(t − t ′). Here Nk (ωk ) = [exp( h̄ωk

kBT ) − 1]−1 and Nb(ωb) =
[exp( h̄ωb

kBT ) − 1]−1 are the mean thermal excitation numbers in
the environmental temperature T , where kB is the Boltzmann
constant. The bipartite steady-state entanglement between
modes M1,2 can be quantified by the logarithmic negativity
EM1M2 arising from the covariance matrix (CM) which is
obtained by solving Eq. (A6), and the EPR steering can be
quantified by ζ M1→M2 or ζ M2→M1 with Eq. (A7). Calculation
methods of these quantities are detailed in the Appendix.

Note that, before quantifying the entanglement in the
steady state, the analysis of the stable parameter regimes of
the system ought to be done. Stability refers to the existence
of an asymptotic steady state of the system, i.e., the system
can be retained at a steady state for a long evolution time.
Then, in the parameter regime of the stability, the station-
ary response of the system can be observed. When unstable,
the system can evolve toward another state and may even
show the oscillation behavior between different states. For
steady-state entanglements and steerings, in our system, the
steady-state covariance matrix V in Eq. (A5) is required to
be asymptotically stable. To find the stable regime, based
on the Routh-Hurwitz criterion [81], we need to clarify the
real part sign of the eigenvalues of the Jacobian matrix A as
shown in Eq. (A3). Only if the real parts of all eigenvalues are
negative will the system be stable [81,82]. Finally, with such
parameters of a stable region, the steady-state entanglement
can be generated.

III. RESULTS AND DISCUSSION

In our scheme, it is worth noting that, via the addition of the
auxiliary cavity a2, the distant bipartite photon-magnon entan-
glement Ea2m can be generated and then be modulated to be
more salient than the near one Ea1m. The experimentally reach-
able parameters [11,29] in our system are ωb/2π = 10 MHz,
ω1/2π = ω2/2π = 10 GHz, κ1/2π = 1 MHz, κm/2π = 0.56
MHz, γb/2π = 102 Hz, gma/2π = 3.2 MHz, gmb/2π = 0.2
MHz, and the driving magnetic field B0 = 3.9×10−5 T corre-
sponding to the driving power P = 8.9 mW with the relation

P = B2
0π (D/2)2c

2μ0
.

Here the magnon mode m is driven to near resonance on
the blue (anti-Stokes) sideband ω0 + ωb; then the cavities a1

and a2 are both near resonance on the red (Stokes) sideband
ω0 − ωb. The nonlinear magnomechanical coupling between
magnon and phonon modes plays a key role in the generation
of the entanglement and steering. With the fluctuation opera-
tors as in Eq. (A2), the magnon-phonon interaction term of the
Hamiltonian, i.e., the sixth term in Eq. (1), can be rewritten
and decomposed into two terms as Gmb(δm†δb + δmδb†) +
Gmb(δmδb + δm†δb†), with the effective magnomechanical
coupling coefficient Gmb = i

√
2gmb〈m〉 as in Eq. (A4). The
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FIG. 2. Logarithmic negativity of the entanglement (a) Ea2m ver-
sus �1 and η with �m = 0.9ωb, (b) Ea2m versus �m and η with
�1 = −0.91ωb, (c) Ea2m versus T and η with �1 = −0.91ωb and
�m = 0.89ωb, and (d) Ea1m and Ea2m versus T with �1 = −0.91ωb,
�m = 0.89ωb, and η = −0.5. The environmental temperature T =
15 mK in (a) and (b). Here �1 = �2, J = 2κ1, and η ≡ κ2t

κ1
is the

dimensionless ratio of the loss and gain of two cavities.

first beam-splitter interaction term can be used to cool
phonons and to generate a state swap between the magnon and
phonon modes; the second two-mode-squeezing interaction
term describes a magnomechanical analog to the nonlinear
optical down-conversion process and then create the initial
entanglement from coherent input states, i.e., phonons and
magnons in pairs [1,40]. Then the initial magnon-phonon en-
tanglement can transfer to other subsystems via coupling, i.e.,
magnon-photon, photon-phonon, and photon-photon entan-
glements. Compared with such a magnomechanical system,
the generation in a linear-coupling cavity and magnon system
may need the injection of external two-mode squeezed fields
for generating entanglements [53] or other conditions.

In Figs. 2(a) and 2(b) we plot the distant entanglement Ea2m

in the parameter regime of the stable system. With the decreas-
ing of η, the entanglement Ea2m gradually increases, especially
when η ≡ κ2t/κ1 < 0 (introducing gain to a2). This means the
entanglement arising from the coherent nonlinear coupling
can be enhanced by the incoherent gain process in the PT -
symmetric-like structure. The reason is that the increasing
number of photons in the active cavity a2 corresponding to
the increasing gain may induce the enhancement of the entan-
glement Ea2m even if this entanglement is distant. Specifically,
the gain introduced increases the mean number of photons
|〈a2〉|2 in the active cavity a2 and then the energy can transfer
from a2 to the passive cavity a1 and the magnon m via the
coupling. The dependence of the mean number of magnons
|〈m〉|2 on the gain can be observed analytically in Eq. (A1).
According to Eq. (A1), |〈m〉| becomes large gradually with
the increasing gain, i.e., the decreasing κ2t . Then the effec-
tive magnomechanical coupling strength |Gmb| = √

2gmb|〈m〉|
also becomes large in the parameter range. This implies that,
in the effective nonlinear magnetostrictive coupling between
magnons and phonons, the incoherent gain can strengthen the

FIG. 3. Quantum steering (a) ζ a2→m and (b) ζ m→a2 versus �1 and
�m with η = −0.5. The other parameters are the same as those in
Fig. 2.

two-mode-squeezing interaction so that the initial entangle-
ments can be enhanced obviously, which can be transferred
to other subsystems. These can also be shown in relevant
equations, i.e., Eqs. (A4)–(A6). The magnon-phonon entan-
glement Emb arises from relevant entries of the real covariance
matrix V including |Gmb|. However, to maintain the system
stability, the gain cannot be too large to satisfy the ideal
gain-loss balance; thus such a system is in the regime of the
PT -symmetric-like scheme. Meanwhile, when the gain goes
up, the near entanglement Ea1m can also increase because the
photons also transfer from a2 to a1 via tunneling. Moreover,
the maximum of Ea2m can reach about 0.45 and thus is more
than twice as large as that of Ea1m. Thus, the PT -symmetric-
like scheme of such a system can raise the possibility to
obtain more magnon-photon pairs and it may enhance both
the distant and near entanglements.

Figure 2(c) shows the robustness of the distant entan-
glement Ea2m against the environment temperature T . As η

decreases, Ea2m becomes more obvious, especially when η <

0. Meanwhile, note that the critical temperature, below which
the entanglement Ea2m appears (Ea2m > 0), increases gradu-
ally; when η = −0.5, the entanglement can be observed until
T 	 0.25 K. The PT -symmetric-like passive-active cavity
system exhibits a performance superior to the passive-passive
one (η > 0), of which the critical temperature is about 0.1 K.
In addition, the robustness of the near entanglement can also
be strengthened in such a system (not shown here). However,
note that the critical temperature of the distant entanglement
Ea2m is much higher than that of the near entanglement Ea1m in
Fig. 2(d) with η = −0.5. At a proper temperature, the distant
entanglement with a suppressed near entanglement would be
an advantage. As for the low-temperature environment, we
can use a dilution fridge to accommodate the system [31].
However, in such a PT -symmetric-like system, the gain intro-
duced also enhances the robustness against the temperature,
i.e., entanglement of a relatively large degree can be observed
in a wider temperature range. Thus, this PT -symmetric-like
scheme reduces the need for a harsh temperature to generate
entanglement, which may be conducive to the actual experi-
ment.

In such a system, there may be asymmetric two-way
(even directional) EPR steering between two modes of the
subsystem due to the different decay and gain in the PT -
symmetric-like scheme and the different coupling sidebands
in the anti-Stokes and Stokes processes. As shown in Fig. 3,
we obtain the directional distant steering a2 → m from photon
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FIG. 4. Logarithmic negativity of the entanglements Ea1b, Ea2b,
Ea1m, and Ea2m versus (a) photon-photon coupling strength J ,
(b) magnon-photon coupling strength gma, and (c) effective magnon-
phonon coupling strength Gmb with �1 = −0.91ωb, �m = 0.89ωb,
and η = −0.5. The other parameters are the same as those in Fig. 2.

mode a2 to magnon mode m, described by ζ a2→m �= 0 and
ζ m→a2 = 0, i.e., a2 can steer m when the steerability disap-
pears in the opposite direction, whereas in the passive-passive
system the steerability is tiny (not shown here). Generally, the
addition of the losses or thermal noises can lead to one-way
steering [60,83]. However, in our model, the gain can produce
the obvious steering, which implies the feasibility for adjust-
ing (steering) the state of the YIG sphere by the auxiliary
cavity a2. In addition, such a directional steering is obtained
when the magnon and photon modes are driven on different
sidebands for the appearance of the obvious distant entangle-
ment. Generally speaking, the creation of asymmetric steering
requires a sufficiently strong two-mode quantum correlation
and the asymmetric mean numbers of two modes, both of
which can be satisfied in our PT -symmetric-like system. The
reason is that as the gain in the auxiliary cavity a2 strength-
ens the two-mode correlation via the two-mode-squeezing
interaction, such a non-Hermitian PT -symmetric-like system
composed of an asymmetric spatial distribution of the loss
and gain can show an obvious difference between the mean
quantum numbers of the two modes, which is caused by the
photonic localization effect [72].

The perfect transfer between entanglements of various
modes (distant and near entanglements) is very important for
quantum information processing and transmission [29,50,51].
Figure 4 shows the magnon-photon entanglements Ea2m and
Ea1m and the magnon-phonon entanglements Ea2b and Ea1b in
the subsystems with varying cavity-cavity coupling strength
J , magnon-cavity coupling strength gma, and magnon-phonon
coupling strength Gmb. The photon-photon entanglement Ea1a2

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.05

0.1

0.15
1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02
(a)

(b)

FIG. 5. Quantum steerings between photons a1 and a2, magnon
m, and phonon b versus J with (a) �1 = −0.91ωb, �m = 0.89ωb,
and �1 = �2 and (b) �1 = 0.06ωb, �m = 0.375ωb, and �1 = −�2.
Here η = −0.5 and the other parameters are the same as those in
Fig. 2.

constantly disappears with the parameters used (not shown
here). In Fig. 4(a) it is clear that the near photon-phonon en-
tanglement Ea1b peaks at J = 1.6κ1; then, with the increasing
of J , while Ea1b decreases, the distant magnon-photon entan-
glement Ea2m appears, increases, exceeds Ea1b at J = 1.7κ1,
and peaks at J = 1.9κ1. That process can be regarded as the
transfer between Ea2m and Ea1b, i.e., between distant and near
entanglements of different modes. When both Ea1b and Ea2m

decrease, both the near entanglement Ea1m and the distant
one Ea2b appear at J = 1.97κ1; then, when J becomes big
enough, there are still Ea2b and Ea1m when both Ea1b and Ea2m

nearly disappear. That process implies the perfect entangle-
ment transfer, i.e., one entanglement tends to die while the
other one appears, by adjusting coupling strength. Except J ,
the coupling gma can also adjust the entanglement. As shown
in Fig. 4(b), four entanglements all appear from gma = 0,
but Ea1b, Ea2b, and Ea1m die at gma = 3.6κ1 and only distant
entanglement Ea2m exists in the range gma/κ1 ∈ [3.6, 4.2].
When analyzing the effect of the effective magnon-phonon
coupling Gmb in Fig. 4(c), we can also realize the transfer
between different entanglements. This means that the station-
ary entanglement can be transferred from the subsystems at
an obvious degree due to the transfer of photons, phonons,
and magnons among subsystems. Note in particular that when
Gmb = 0 there exists no entanglement due to the vanishing
of the two-mode-squeezing interaction. In those processes of
controllable entanglements, with the gain in cavity a2, it can
be maintained that photon a2 and magnon m can show the
biggest entanglement among all subsystems in the presence
of abundant photons.

Moreover, it is worth noting that the perfect transfer of
the asymmetric quantum EPR steering can also be realized in
such a tunable hybrid system. In Fig. 5 we plot the steerings
as functions of the cavity-cavity coupling strength J . With
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FIG. 6. Logarithmic negativity of the entanglements (a) Ea1m, (b)
Ea2m, and (c) Ea1a2 versus �1 and �m. Also shown are Ea1m, Ea2m, and
Ea1a2 versus �1 with (d) �m = 0.87ωb and (e) �m = 0.06ωb. Here
η = −0.5 and the other parameters are the same as those in Fig. 2.

η = −0.5, the maximum of the steering ζ a2→m appears in the
vicinity of J = 1.8κ1, corresponding to the entanglement Ea2m

as shown in Fig. 2(a); however, the steering of the opposite di-
rection ζ m→a2 = 0. With increasing J , the directional steering
a2 → m dies and the asymmetric two-way steering between
a2 and b appears from J = 2.5κ1. When J/κ1 ∈ [2.5, 3.2], the
asymmetric two-way steering between a2 and b is observed
with the suppressed steering between a2 and m, which means
the perfect transfer of steerings. That process implies that we
realize the transfer of directional steering between the photon-
magnon pair and the photon-phonon pair. Figure 5(b) shows
the transfer from directional steering a2 → b to directional
steering a1 → b, i.e., the perfect transfer between distant and
near directional steerings.

To further understand the modulation of the near and dis-
tant entanglements and steerings, we plot the entanglements
and steerings as functions of detunings. In Figs. 6(a) and
6(c) we plot the entanglements against the detunings �1

and �m with η = −0.5 in the stable region of the system.
The two photon-magnon entanglements Ea1m and Ea2m are
obvious in the vicinity of �1 	 −ωb and �m 	 ωb, while
photon-photon entanglement Ea1a2 just appears in the vicinity
of �1 = �2 	 0. It is interesting that, in certain regions, the
stationary near entanglements Ea1a2 and Ea1m vanish (emerge),
while the distant entanglement Ea2m emerges (vanishes). That
can provide the platform for the perfect exchange between the
near and distant entanglements of enhancement by adjusting
the relevant detunings. To show the entanglement exchange
between the three subsystems, we plot Ea1a2 , Ea1m, and Ea2m

against �1 with �m = 0.87ωb and 0.06ωb in Figs. 6(d) and
6(e), respectively. In Fig. 6(d) the three entanglements are
different; in particular, only the distant entanglement Ea2m

exists with the suppressed near entanglements Ea1a2 and Ea1m

in the range �1/κ1 ∈ [−0.907,−0.943]. However, Fig. 6(e)
shows only the nonzero near entanglement Ea1m. That implies
the perfect exchange from the distant entanglement Ea2m to the
near one Ea1m just by adjusting �m from 0.87ωb to 0.06ωb.

0.8 0.9 1 1.1 1.2 1.3
0

0.02

0.04

0.8 0.85 0.9 0.95 1 1.05 1.1
0

0.04

0.08

(a)

(b)

FIG. 7. Quantum steerings ζ a2→m, ζ m→a2 , ζ a1→a2 , and ζ a2→a1

versus �m with (a) �1 = −0.96ωb and (b) �1 = −0.13ωb. The other
parameters are the same as those in Fig. 2.

The adjustment of detunings also can modulate the asym-
metric EPR steerings. Figure 7 provides the steerings as
a function of detuning �m in subsystems; the steering be-
tween a1 and m is too tiny to be shown here. As shown in
Fig. 7(a), with �1 = −0.96ωb, there is a distant directional
steering a2 → m without the steering between two photon
modes a1 and a2 in the range �m/ωb ∈ [0.8, 1.3]. As shown
in Fig. 7(b), by tuning �1 to −0.13ωb, the steering between
a2 and m disappears, but the asymmetric two-way steerabil-
ity between a1 and a2 appears. That means we can realize
the exchange between the distant directional steering in the
a2 − m subsystem and the near asymmetric two-way (even
directional) steering in the a1 − a2 subsystem just by adjust-
ing the detuning. Thus, this tunable scheme with the transfer
or exchange of entanglements and steerings might be used
to engineer the wanted entanglement and steering between
optional modes in the steady state by adjusting the relevant
parameters.

As mentioned above, the introduction of an auxiliary cavity
is critical for generating the distant entanglement and steering
and transferring them. Based on the entanglement and steer-
ing transfer (exchange) behaviors, as a basic component, this
system can be extended to a cavity lattice or chain involving
magnons and phonons via coupling more auxiliary cavities. In
such a chain, a more distant entanglement or steering between
the YIG sphere on one side and a further cavity may appear.
That is, the entanglement or steering can transfer through this
communicating chain to a greater distance, which is beneficial
to the distant transfer of quantum information and remote
quantum modulation in the quantum networking [75] with a
relatively high efficiency. In addition, Ref. [84] also realized
the EPR entanglement and steering in a mechanical-magnonic
cavity system. To a certain extent, it can demonstrate the
reliability of our scheme for the entanglement and steering.
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Finally, as for detecting the generated entanglement in
the experiment, we introduce one feasible way to measure
the steady-state entanglement via some observable quantities,
such as the cavity output modes. According to Eq. (A6),
the entanglement could be deduced based on the CM V , ev-
ery entry of which can be measured from the cavity output
mode spectrum. The entries of the CM of bosonic modes
are real and can be precisely extracted via the measure-
ment of the orthogonal quadratures of light mode, which
has been realized in the experiment [85]. Generally, the ar-
bitrary quadratures of light mode can be obtained by the
homodyne detection of the cavity output using a local os-
cillator with an appropriate phase. In our system, there are
three types of modes: the cavity photon, magnon, and me-
chanical phonon. The photonic quadratures could be read out
directly by homodyning the cavity output. The quadratures
of magnon can be measured by homodyning an additional
cavity coupled to the magnon and driven by a weak microwave
probe field. For the magnon mode, an additional cavity of
operator c1 and frequency ωc1 is used to couple the magnon
that has been driven by the magnetic field ω0 and then the
magnon quadratures can be measured by homodyning the
cavity c1 probed by a weak microwave field. The dynamics is
given as

ċ1 = −[
i
(
ωc1 − ω0

) + κc1

]
c1 − igmcm + √

2κc1 c1in, (3)

where κc1 , gmc, and c1in are the relevant decay rate, coupling
strength, and input noise, respectively. Using the input-output
relation c1out = √

2κc1 c1 − c1in [86], we get

c1out = −(
i
√

2gmc/
√

κc1

)
m + c1in. (4)

Then the beam-splitter interaction causes a state swap be-
tween the magnon and cavity modes, which can map the
magnon quadratures into the cavity output c1out. Thus, we can
get the magnon quadratures via measuring c1out. The process
of measuring the mechanical quadratures is similar to the
magnon case, via coupling the YIG sphere with an additional
cavity c2 of frequency ωc2 . A red-detuned field of frequency
ωd , i.e., ωc2 − ωd = ωb, drives the cavity to induce the beam-
splitter interaction but suppress the other interaction. Then
the consequent state swap maps the mechanical quadratures
into the cavity output. The relevant analytical expressions
are

ċ2 = −(
iωb + κc2

)
c2 − igbcc2(b† + b) + √

2κc2 c2in, (5)

where κc2 , gbc, and c2in are the relevant decay rate, coupling
strength, and input noise, respectively. Using the input-output
relation, we have

c2out = −(
i
√

2gbc|c2|/√κc2

)
b + c2in. (6)

When c2 is driven by a much weaker intracavity field, its
backaction on the mechanical mode can be neglected. Thus,
with Eq. (6), c2out can show the mechanical dynamics. Then,
via measuring the correlations between the above cavity out-
puts, one can extract all entries of the CM to yield the
logarithmic negativity as a measurement of the entanglement
[40,46]. In addition, there is another type of entanglement,
called output entanglement, describing the optomechanical

entanglement between the experimentally detectable output
fields of the cavity and the vibrator in optomechanical systems
[75,87,88]. Such a straightforwardly detectable entangle-
ment in the magnomechanics is worth discussing in future
work.

IV. CONCLUSION

In the stable parameter regime of a passive-active double-
cavity magnomechanical system, we have analyzed and
modulated the stationary continuous-variable entanglement
and asymmetric EPR steering between the two photon modes
of cavities: the magnon mode and the mechanical phonon
mode of a YIG sphere. In such a well-designed system, the
magnon is directly coupled with only the passive cavity that
is also coupled with an active cavity via the tunneling ef-
fect for the distant entanglement and steering. Results show
that the natural magnetostrictive magnon-phonon interaction
within the YIG sphere, i.e., the two-mode-squeezing interac-
tion, leads to the initial magnon-phonon entanglement based
on the magnomechanics. Then, in the PT -symmetric-like
scheme, the incoherent gain of the auxiliary active cavity
can strengthen the effective nonlinear magnomechanical cou-
pling so as to obviously enhance entanglements and improve
their robustness against the environment temperature. Special
features of the PT -symmetric-like structure can satisfy the
requirements of the creation of the relatively obvious asym-
metric two-way (even directional) distant steering. In such a
tunable system, with the adjustment of the coupling strengths,
we can realize the perfect transfer between near and distant
entanglements (directional steerings) of different-type modes;
both of the entanglements and steerings can also be exchanged
between different subsystems by adjusting detunings. Thus,
the entanglements and steerings can be dynamically switched
between different two-mode pairs. Our work presents a feasi-
ble method for generating the enhanced distant entanglement
and EPR steering involving magnons and realizing their trans-
fer or exchange, which may be used in quantum networks
and information processing. Furthermore, it can be found that,
with such a system, the process involving the entanglement
and steering generation, transfer, and storage can be designed;
in that process, the mechanical oscillator with a low decay
relative to the magnon and cavity can show the storage of
information. Those results may pave the way to study entan-
glements and steerings on the macroscopic scale and more
intriguing quantum phenomena based on magnomechanics,
providing an ideal playground for feasible multiple quantum
modulations.
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APPENDIX: STEADY-STATE ENTANGLEMENT
AND STEERING

By virtue of the driving field B0 and the magnon-photon
beam-splitter interaction, we have large cavity and magnon
mode amplitudes |〈ai〉, 〈m〉| � 1. Therefore, we can replace
the operators with their mean values plus small fluctuations in
Eq. (2), i.e., ℵ(t ) = 〈ℵ〉 + δℵ(t ), in which ℵ ≡ (ai, m, q, p).
Then the steady-state values of the operators are obtained as

〈m〉 = εd (J2 + f1 f2)

J2 fm + f1 f2 fm + g2
ma f2

,

〈a1〉 = − igma f1 f2〈m〉
(J2 + f1 f2) f1

,

〈a2〉 = − iJ〈a1〉
f2

,

〈p〉 = 0,

〈q〉 = −gmb

ωb
|〈m〉|2,

(A1)

in which f1 = i�1 + κ1, f2 = i�2 + κ2t , fm = i�m + κm, and
�m = �′

m + gmb〈q〉 represents the effective detuning of the
magnon mode. Note that we aim at the dynamic of the quan-
tum fluctuations of the system. By introducing the orthogonal
components as

δIi = (δai + δa†
i )/

√
2, δϕi = i(δa†

i − δai )/
√

2,

δx = (δm + δm†)/
√

2, δy = i(δm† − δm)/
√

2,

δq = (δb + δb†)/
√

2, δp = i(δb† − δb)/
√

2,

(A2)

we define the vector of quadratures as W (t ) =
[δI1(t ), δϕ1(t ), δI2(t ), δϕ2(t ), δx(t ), δy(t ), δq(t ), δp(t )]T

and the noise vectors as μ(t ) = [
√

2κ1I in
1 (t ),

√
2κ1ϕ

in
1 (t ),√

2κ2t I in
2 (t ),

√
2κ2tϕ

in
2 (t ),

√
2κmxin(t ),

√
2κmyin(t ), 0, ξ (t )]T .

We obtain the quadratures in the compact form

Ẇ (t ) = AW (t ) + μ(t ), (A3)

corresponding to

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κ1 �1 0 J 0 gma 0 0
−�1 −κ1 −J 0 −gma 0 0 0

0 J −κ2t �2 0 0 0 0
−J 0 −�2 −κ2t 0 0 0 0
0 gma 0 0 −κm �m −Gmb 0

−gma 0 0 0 �m −κm 0 0
0 0 0 0 0 0 0 ωb

0 0 0 0 0 Gmb −ωb −γb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

where Gmb = i
√

2gmb〈m〉 is the effective magnomechanical
coupling between the magnon and phonon modes. Generally,
the CM of n bosonic modes is a real and symmetric matrix in
2n dimensions [89–91]. In our system, there are four modes
(two photon modes, a magnon mode, and a phonon mode),
which can be written as eight quadrature operators as shown in
Eq. (A2), satisfying the specific commutation relation. Thus,
as a continuous-variable four-mode Gaussian state, the sys-
tem can be completely characterized by an 8×8 CM V . The
steady-state V can be straightforwardly obtained by solving
the Lyapunov equation [46]

AV + VAT = −D. (A5)

For steady-state entanglements and steerings, the steady-
state CM V is required to be asymptotically stable, and thus
the eigenvalues of the Jacobian matrix A in Eq. (A4) need
to be solved first. With a set of parameters, the system is
stable only if the real parts of all eigenvalues are negative [82];
then we use the CM V from Eq. (A5) to yield the quantities
to quantify the steady-state entanglement within the stable
parameter regime. Otherwise, the system is unstable and then
the relevant parameters are not used.

We define V as Vi j = 〈vi(t )v j (t ′) + v j (t ′)vi(t )〉/2
(i, j = 1, 2, . . . , 8) and D = diag[κ1(2Na1+1), κ1(2Na1 + 1),
κ2t (2Na2 + 1), κ2t (2Na2 + 1), κm(2Nm + 1), κm(2Nm + 1), 0,

γb(2Nb + 1)], in which the diffusion matrix D is defined by

δ(t − t ′)Di, j = 1
2 〈ni(t )n†

j (t
′) + n†

j (t )ni(t ′)〉. Equation (A5)
can be straightforwardly solved; however, it is too
complicated to give the exact expression. Thus, under
local operations, classical communications, and an upper
bound for the distillable entanglement [92], we consider the
logarithmic negativity EM1M2 to quantify the entanglement
between mode M1 and mode M2 as [93]

EM1M2 ≡ max[0,−ln2ṽ−]. (A6)

Here ṽ− = min[eig(i�PV4P)], where � = ⊕2
j=1iσy with the

Pauli matrix σy, V4 is the 4×4 CM of the underresearched
modes M1 and M2 by removing the unwanted rows and
columns of other modes in V , and P = diag(1,−1, 1, 1) is
the matrix that performs partial transposition on the CM [94].

For the discussion of the EPR steering, the proposed mea-
surements of the Gaussian steerability in different directions
between mode M1 and mode M2 are [61,91]

V4 =
(

A B
BT C

)
,

ζ M1→M2 = max{0, S(2A) − S(2V4)}, (A7)

ζ M2→M1 = max{0, S(2C) − S(2V4)},

with S(ρ) = 1
2 ln det(ρ).
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Aspelmeyer, S. Hong, and S. Gröblacher, Nature (London) 556,
473 (2018).

[46] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi,
A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer,
Phys. Rev. Lett. 98, 030405 (2007).

[47] X.-Z. Yuan, Phys. Rev. A 88, 052317 (2013).
[48] C. Genes, D. Vitali, and P. Tombesi, Phys. Rev. A 77, 050307(R)

(2008).
[49] J. Zhang, T. Zhang, A. Xuereb, D. Vitali, and J. Li, Ann. Phys.

(Berlin) 527, 147 (2015).
[50] M. Paternostro, W. Son, and M. S. Kim, Phys. Rev. Lett. 92,

197901 (2004).
[51] Q. Zhang, X. Zhang, and L. Liu, Phys. Rev. A 96, 042320

(2017).
[52] Z. Zhang, M. O. Scully, and G. S. Agarwal, Phys. Rev. Research

1, 023021 (2019).
[53] M. Yu, S.-Y. Zhu, and J. Li, J. Phys. B: At. Mol. Opt. Phys. 53,

065402 (2020).
[54] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[55] Q. He, L. Rosales-Zárate, G. Adesso, and M. D. Reid,

Phys. Rev. Lett. 115, 180502 (2015).
[56] S. P. Walborn, A. Salles, R. M. Gomes, F. Toscano, and P. H.

Souto Ribeiro, Phys. Rev. Lett. 106, 130402 (2011).
[57] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Phys. Rev. Lett.

98, 140402 (2007).
[58] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M.

Demianowicz, A. Acín, and N. Brunner, Phys. Rev. A 92,
032107 (2015).

[59] B.-Y. Zhou, G.-Q. Yang, and G.-X. Li, Phys. Rev. A 99, 062101
(2019).

053712-9

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1195596
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nphoton.2012.220
https://doi.org/10.1103/PhysRevLett.110.266602
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevB.91.214430
https://doi.org/10.1103/PhysRevLett.114.227201
https://doi.org/10.1126/science.aaa3693
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1126/sciadv.1603150
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1016/j.physrep.2011.06.003
https://doi.org/10.1038/nphys3347
https://doi.org/10.1103/PhysRevB.93.144420
https://doi.org/10.1103/PhysRevLett.125.147202
https://doi.org/10.1364/OE.412996
https://doi.org/10.1103/PhysRevA.99.043803
https://doi.org/10.1109/ACCESS.2019.2929912
https://doi.org/10.1364/OE.26.020248
https://doi.org/10.1103/PhysRevLett.120.057202
https://doi.org/10.1103/PhysRevLett.123.127202
https://doi.org/10.1103/PhysRevApplied.12.034001
https://doi.org/10.1103/PhysRevLett.121.203601
https://doi.org/10.1063/5.0015195
https://doi.org/10.1103/PhysRevLett.124.213604
https://doi.org/10.1038/s41467-017-01634-w
https://doi.org/10.1103/PhysRevB.99.054404
https://doi.org/10.1103/PhysRevB.99.214415
https://doi.org/10.1109/JPHOT.2019.2911963
https://doi.org/10.1088/1612-202X/ab09e5
https://doi.org/10.1038/35096524
https://doi.org/10.1126/science.1084528
https://doi.org/10.1126/science.1244563
https://doi.org/10.1038/nature08006
https://doi.org/10.1126/science.1211914
https://doi.org/10.1103/PhysRevA.95.043819
https://doi.org/10.1103/PhysRevX.2.031016
https://doi.org/10.1038/s41586-018-0036-z
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevA.88.052317
https://doi.org/10.1103/PhysRevA.77.050307
https://doi.org/10.1002/andp.201400107
https://doi.org/10.1103/PhysRevLett.92.197901
https://doi.org/10.1103/PhysRevA.96.042320
https://doi.org/10.1103/PhysRevResearch.1.023021
https://doi.org/10.1088/1361-6455/ab68b5
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.115.180502
https://doi.org/10.1103/PhysRevLett.106.130402
https://doi.org/10.1103/PhysRevLett.98.140402
https://doi.org/10.1103/PhysRevA.92.032107
https://doi.org/10.1103/PhysRevA.99.062101


CHEN, DU, ZHANG, AND WU PHYSICAL REVIEW A 103, 053712 (2021)

[60] V. Händchen, T. Eberle, S. Steinlechner, A. Samblowski, T.
Franz, R. F. Werner, and R. Schnabel, Nat. Photon. 6, 596
(2012).

[61] S. Zheng, F. Sun, Y. Lai, Q. Gong, and Q. He, Phys. Rev. A 99,
022335 (2019).

[62] S.-S. Zheng, F.-X. Sun, H.-Y. Yuan, Z. Ficek, Q.-H. Gong, and
Q.-Y. He, Sci. China Phys. Mech. Astron. 64, 210311 (2021).

[63] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde,
Nat. Phys. 6, 845 (2010).

[64] E. G. Cavalcanti, M. J. W. Hall, and H. M. Wiseman, Phys. Rev.
A 87, 032306 (2013).

[65] Q. Y. He, M. D. Reid, T. G. Vaughan, C. Gross, M. Oberthaler,
and P. D. Drummond, Phys. Rev. Lett. 106, 120405 (2011).

[66] Q. He and M. Reid, New J. Phys. 15, 063027 (2013).
[67] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and

H. M. Wiseman, Phys. Rev. A 85, 010301(R) (2012).
[68] Y. Z. Law, L. P. Thinh, J.-D. Bancal, and V. Scarani, J. Phys. A:

Math. Theor. 47, 424028 (2014).
[69] M. Piani and J. Watrous, Phys. Rev. Lett. 114, 060404 (2015).
[70] J. Li, R. Yu, and Y. Wu, Phys. Rev. A 92, 053837 (2015).
[71] S. Chakraborty and A. K. Sarma, Phys. Rev. A 100, 063846

(2019).
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