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Coherent-state superpositions are of great importance for many quantum subjects, ranging from foundational
to technological, e.g., from tests of collapse models to quantum metrology. Here we explore various aspects
of these states, related to the connection between sub-Planck structures present in their Wigner function and
their sensitivity to displacements (ultimately determining their metrological potential). We review this for the
usual Heisenberg-Weyl algebra associated with a harmonic oscillator and extend it to find analogous results
for the su(2) algebra, typically associated with angular momentum. In particular, in the Heisenberg-Weyl case,
we identify phase-space structures with support smaller than the Planck action in both Schrodinger-cat-state
mixtures and superpositions, the latter known as compass states. However, as compared to coherent states,
compass states are shown to have v/N-enhanced sensitivity against displacements in all phase-space directions
(N is the average number of quanta), whereas cat states and cat mixtures show such enhanced sensitivity only for
displacements in specific directions. We then show that these same properties apply for analogous SU(2) states
provided (i) coherent states are restricted to the equator of the sphere that plays the role of phase space for this
group, (ii) we associate the role of the Planck action with the size of SU(2) coherent states in such a sphere, and

(iii) we associate the role of N with the total angular momentum.
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I. INTRODUCTION

The description and generation of quantum states present-
ing nonclassical features has been a recurrent topic since the
early days of quantum mechanics, attracting more and more
attention as our ability to control quantum coherently optical,
atomic, and solid-state systems has developed. Nonclassical
properties come in many flavors such as squeezing [1,2],
entanglement [3], Wigner negativity [4,5], P-function diver-
gence [6,7], and phase-space interference [8—10], to name a
few. The latter is the subject of our present work, specifically
through states built as coherent-state superpositions. Such
states are relevant to many areas, ranging from the founda-
tions of quantum physics to the design and implementation of
modern quantum technologies. For example, they can be used
to test collapse models aimed at explaining the quantum-to-
classical transition [11-14], but also as resources for quantum
sensors with unprecedented resolution [15-17].

Coherent-state superpositions are especially well studied
for the harmonic oscillator [9], whose position and momen-
tum operators form the so-called Heisenberg-Weyl (HW)
algebra hw(1) [18] for a single degree of freedom and act on
an infinite-dimensional Hilbert space. Quantum-mechanical
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states can be visualized on phase space, which is a sym-
plectic manifold, via the Wigner quasiprobability density
function [10,19]. As the product of the uncertainties of posi-
tion and momentum is bounded below by the Planck action 7,
for quite some time phase-space features below this scale were
believed not to play a physical role [20,21]. Indeed, this is the
case for Gaussian states [22,23] (coherent, squeezed, thermal,
etc.) and even for Schrodinger-cat states (superposition of
two distinct coherent states [24] or other Gaussian states such
as squeezed states [25]), which show fast oscillations in one
direction of phase space, but an unlimited Gaussian profile in
the orthogonal direction.

This notion was challenged by Zurek [15], who showed
that the Wigner function of chaotic systems typically devel-
ops spotty structures with features below the Planck scale,
arguing that these are crucial in determining the sensitivity
of the system to decoherence [26] and to phase-space dis-
placements [16,17] (ultimately determining its potential for
quantum metrology). As prototypical states that show such
sub-Planck features, he built the so-called compass states (one
coherent state, so to speak, at the north, south, east, and west
corners), a superposition of four distant coherent states, which
can also be understood as superpositions of two cat states. By
now, there are multiple theoretical proposals for the controlled
generation of these states [27-32], apart from actual exper-
imental implementations [33-37], and their properties and
effects in different contexts have been well explored [38-51].

©2021 American Physical Society
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The concept of coherent states can be generalized to arbi-
trary groups [52,53]. Of special interest for physics is the Lie
SU(2) group [52-56], associated with generalized rotations
and generated by the angular momentum operators, which
satisfy the so-called su(2) algebra. This group includes spin
%, whereas the Lie group SO(3) is for integer-labeled rota-
tions. The space of classical configurations corresponds in
this case to the surface of a unit sphere [57]. Superposing
two coherent states pinned at antipodal points on the sphere,
one generalizes the cat states first introduced for the hw(1)
algebra [57-61]. The cat with states pinned at the sphere’s
poles is the most studied one, since it corresponds to the pop-
ular entangled states known as Greenberger-Horne-Zeilinger
(GHZ) [62] or NOON states [63] depending on the physical
implementation, respectively, two-level atomic ensembles or
two bosonic modes [61,64]. Even though the Hilbert space
on which the su(2) algebra acts has finite dimension (2 + 1
when considering a specific irreducible representation with
fixed total angular momentum j), one can define a Wigner
function that allows visualizing quantum states as quasiprob-
ability distributions defined over the unit sphere [65-68]. The
Wigner function of a coherent state appears as a single lobe
around the location where it is pinned, with a slight negativity
and an effective support that decrease as j increases [61].
Cat states show an additional interference pattern along the
great circle halfway between the locations of their underlying
coherent states [61] (e.g., the equator for coherent states at
the poles). The use of these states for quantum metrology has
been analyzed in great depth [63,69-71].

The goal of our present work is twofold. First, for the
hw(1) algebra, we point out that the same sub-Planck struc-
tures present in compass states are present in cat mixtures
as well. Hence, it is argued that sub-Planck structures alone
cannot be responsible for the remarkable sensibility of com-
pass states against displacements in arbitrary directions of
phase space, which is enhanced by /N with respect to that
of coherent states (N is the average number of quanta in the
state). Indeed, it is shown that cat states and mixtures show
this enhanced sensitivity only for displacements along specific
phase-space directions. These results have been discussed in
previous literature [15,16,48] (but without reaching some of
the insights that we offer), so this part of the work is to be
taken mainly as a review.

The second and main goal of our work is the generalization
of these results to the SU(2) group. In particular, we show
that the concept of sub-Planck structures can be extended to
this case by associating the effective support of coherent states
in the sphere, which scales as %, with the SU(2) counterpart
of the Planck action. Hence, it is shown that considering
coherent-state superpositions along the equator, we can build
cat states, compass states, and cat-state mixtures that show
similar Wigner interference features as their HW counterparts
when represented in the stereographic plane. Finally, we prove
that these states have exactly the same enhanced sensitivity to
displacements found for the hw(1) algebra, with j playing the
role of N.

The organization of this paper follows the structure pre-
sented in the preceding paragraph. In Sec. II we review the
basic concepts for the hw(1) algebra, which are then general-

ized in Sec. III to the su(2) algebra. In Sec. IV we summarize
and present our conclusions.

II. SUB-PLANCK STRUCTURES IN PHASE SPACE

Let us start by introducing in this section the main con-
cepts that accompany us throughout this article, including
phase-space representations of quantum states, sub-Planck
structures, and the metrological potential of coherent-state
superpositions. We do this by means of the common ex-
ample of the harmonic oscillator or hw(1) algebra, defined
through an annihilation operator & that satisfies the canonical
commutation relation [&, a'] = 1. We work with dimension-
less versions of position % := a' + & and momentum p :=
i(a" — &), so-called quadratures, which satisfy the uncertainty
relation AxAp > 1, where

AA? = (A%) — (&)’ (1)
defines the uncertainty of any operator A [72,73].

A. Sub-Planck structures: Compass state versus
cat-state mixture

Coherent states were introduced by Schrodinger as non-
spreading wave packets of the quantum harmonic oscilla-
tor [74]. They are defined [9,19,75] as the eigenstates of
the annihilation operator a |o) = o |a), with o € C, and are
obtained from the vacuum state by acting on the displacement
operator ﬁ(a) as

la) = D(«) |0), 2)
where
D(a) := exp(ad’ — a*a). (3)

In this work we are interested in states built as superposi-
tions of coherent states

W)= Yulew), ¥ueC. )

n

The superposition of two coherent states with the same ampli-
tude and opposite phase leads to the so-called cat state [9,76],
while the superposition of four coherent states along the same
phase-space line is known as the quantum tetrachotomous
state [77]. On the other hand, superposing four coherent states
with the same amplitude and maximally spread phases, we
obtain the so-called compass states [15]. We provide specific
examples shortly.

The Wigner function provides a useful way to visualize
all these states in phase space [10,19,78,79]. For a generic
quantum state p, it can be written as the expectation value
of the displaced parity operator [80]

W, (r) := tr{pD(e) 1D ()}, (5)
where

r:=(xp) :=2Refa}, Im{a})" (6)

is the coordinate vector in phase space and IT := (—1)% is
the parity operator. Using the well-known properties

D(@)|B) = ™ o + ), (7a)
(otI,B) — e—ilm[aﬂ*}—\a—ﬁ\/2’ (7b)
Ma) = |-a), (7c)
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FIG. 1. Wigner functions of the (Heisenberg-Weyl) coherent-state superpositions considered in this work: (a) horizontal cat state, (b) com-
pass state, and (c) cat-state mixture. Red and blue regions correspond, respectively, to positive and negative values of the function, which we

normalize to its maximum W, (0). In all cases we take xo = 8.

it is easy to find for the arbitrary coherent-state superposi-
tion (4) that

W) (1) =Y Ui Wia ().

nm

®)

where the Wigner function of the operator |o,) (o, is the
complex Gaussian
)]

X exp |: — %(rn — rm)TQr + ‘l—lrIQrm:|, 9)

r,+ry,

1
Wiay) (e () = 5 exp [ _ (, -3

where

r. = 2(Re{a, }, Im{e, )T, (10)

represents the locations of the coherent states in phase space
and 2 := (fl

The product of quadrature uncertainties has a lower limit
AxAp = 1, which is sometimes denoted by the Planck action
in phase space (note that it is equal to g for position and
momentum with proper units). This led to the belief that
phase-space structures with areas below this Planck scale
either do not exist or pose no observational consequences for
physical quantum states. This was challenged by Zurek [15],
who showed that compass states not only have sub-Planck
structures, but play a crucial role in enhancing their sensitivity
to phase-space displacements, which is related to their metro-
logical power as we discuss later.

In order to discuss in more detail the origin of sub-
Planck structures, we consider next some specific classes of
coherent-state superpositions. Let us start with cat states [9],
in particular the horizontal cat state defined along the position
phase-space axis (in the following we omit normalizations of
states and Wigner functions to simplify the notation)

(1)) is known as the symplectic form.

[Vu) = |x0/2) + [=x0/2) (11)

with xo € R. Particularizing the general Wigner function (8)
to this state, we obtain

Wigy (r) = e’pz/z[V(x;xo) +2¢77 cos xop| (12)

for

V(x;x0) 1= e OT0Y2 gm0/ (13)

which we plot in Fig. 1(a). The figure presents two Gaussian
lobes centered at positions (£xg, 0), which correspond to the
Wigner functions of the underlying coherent states [+3). In
addition, around the origin of phase space, it shows oscilla-
tions in the momentum direction with period i—’or, generated
from the quantum interference between the coherent states.

We can also build vertical cat states as a superposition of
two coherent states along the momentum axis, and hence just
as a 7 /2 rotation of the horizontal cat states, that is,

>|¢H)-

The corresponding Wigner function has the same form as
Eq. (12), but swapping x and p as

inata
5 (14)

|¥v) == exp <

Wiy (x, p) = Wiy, (p, x). (15)

Let us consider now the superposition of horizontal and
vertical cat states, leading to Zurek’s compass state [15]

[Vc) := [¥m) +|¥v) .

The corresponding Wigner function is represented in
Fig. 1(b), which, using Eq. (8), can be written as

VVWIC)(r) = VVCOh(r) + 2chnt(r) + Zulint(r)v

(16)

(17)
where
Wean(r) 1= ¢ 72V (x:x0) + ¢ *V(pixg)  (18)

corresponds to the Wigner functions of the four coherent
states underlying the compass state (Gaussian lobes at the
north, south, east, and west positions),

Weent(r) := €~ P2 (cos xop + 0 xox) (19)
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corresponds to their interference pattern at the center of phase
space, and

Wintr)i= 3, Glaxopn) 0)
for e
ot = ool 5= 3) (-3 ]
<eos[F(rrr=3)) 1)

contains the interference terms generated far from the phase-
space origin (catlike interference patterns located at the
northeast, northwest, southeast, and southwest positions).

Remarkably, the central chessboardlike pattern Ween(r)
contains tiles of alternating sign (denoted by different colors
in the figure) with areas proportional to x; 2, hence below the
Planck scale for xo > 1. These are the sub-Planck structures
first identified in [15], whose size is limited in all phase-space
directions. In contrast, the structures appearing in the interfer-
ence pattern of the cat state of Fig. 1(a) are limited only in the
vertical direction, but not in the horizontal direction, where
they show a Gaussian profile.

It is interesting for our purposes to consider one more
type of state, built as incoherent mixtures of the cat states
introduced above:

oy = V) (Yul + [Yv) (Yvl. (22)
The corresponding Wigner function, shown in Fig. 1(c), reads
Wf)M (r) = Wcoh(r) + 2chm(r)7 (23)

which is almost the same as that of the compass state,
just missing the Wiy (r) interference terms. Remarkably, this
means that the same chessboard pattern with sub-Planck struc-
tures appears for the cat-state mixture [48]. Now, since the
interference structures of cat states are not considered to
be sub-Planck (since they are not limited in all phase-space
directions) and an incoherent mixing of two states cannot
enhance their individual quantum properties, this raises legiti-
mate doubts about up to what point the presence of sub-Planck
structures in the Wigner function is enough to claim that any
interesting quantum properties appear.

B. Sensitivity to displacements

In order to show the differences between the three types
of states introduced in the preceding section, it is interesting
to consider their sensitivity to phase-space displacements.
In particular, given a state p and its displaced version
D(8a)pD*(8ar), where 8o € C is an arbitrary displacement,

we consider their overlap
Fp(8a) := tr{pD()pD (8e)} = [(y|DGa)Y) *, (24)

where the last equality applies when the state is pure, p =
|v) (¥|. This quantity provides a measure [81] for the distin-
guishability of the state and its displaced version. The smaller
the displacement S« needs to be in order to bring the overlap
to zero, the more sensitive the state is said to be against
displacements. This has immediate implications for quantum
metrology: Imagine that a signal that we want to measure is

linearly coupled to our harmonic oscillator, which then experi-
ences a displacement proportional to the signal’s strength; the
sensitivity of the oscillator to displacements is then translated
into a signal resolution such that quantum states with higher
sensitivity are able to resolve weaker signals [16].

Let us consider the example of coherent states. Using (7),
we easily find the overlap as

Floy(8a) = e71%F, (25)

We see that displacements above the Planck scale [6a| > 1
are required in order to make this overlap vanish. This deter-
mines the resolution of coherent states as metrological tools.
It is interesting to note that, in the case of coherent states,
the sensitivity to displacements is independent of the number
of quanta present in the state, N = (a'a) = |a|>. Hence, the
sensitivity cannot be improved by increasing N and is solely
limited by the shot noise introduced by vacuum fluctuations.

Consider next cat states, in particular the horizontal cat
state defined in Eq. (11). Decomposing the displacement in
real and imaginary parts as

_ Sty
==
the overlap (24) is easily found to be

S 5; €R, (26)

Fiy(Ba) = Le PP (1 4 cos x8,). (27)

Here and in the following we make heavy use of the proper-
ties (7). The overlap function Fjy,,(da) vanishes identically
when

_Qn+

8
P X

neZz. (28)

Note that the number of excitations in the cat state is
N~ % for xo > 1. Hence, in contrast to coherent states,
the sensitivity of cat states to displacements do = i3, in the
momentum direction scales as LN, which is well beyond the
Planck scale for macroscopic cat states with xy > 1 (this
scaling is known as the Heisenberg limit of the sensitivity).
On the other hand, for displacements o = §, in the position
direction, cat states pose no advantage with respect to coherent
states. This is illustrated in Fig. 2(a), where we plot the overlap
as a function of the displacement.

Consider now the compass state of Eq. (16), for which we

easily obtain
_‘5a|2 ax S , 2
¢ cos [ 22 4 cos [ 222
4 2 2

—lsal® 8 5
_¢ 5 cos? (x_04+> cos’ (x_04 >, (29)

with 8+ = 8, £ §,. This overlap is shown in Fig. 2(b). The
vanishing condition is now either of the following:
2@2n+ Dm

8yt 8, = ——
Xo

Fiye) (8at)

nel. (30)

As appreciated in Fig. 2(b), this is satisfied for displacements
with [Sa| ~ x; ! and arbitrary phase. Hence, as compared to
coherent states, a compass state with N excitations (approxi-

mately equal to %‘2) for xo > 1) has a +/N-enhanced sensitivity
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FIG. 2. Overlap between the (Heisenberg-Weyl) states considered in this work and their displaced versions, as a function of the real and
imaginary parts of the displacement dax = 8, + i§, normalized to 7 /x0: (a) horizontal cat state, (b) compass state, and (c) cat-state mixture. In

all cases xp = 8.

against displacements, but now in any phase-space direction,
making it much more valuable for quantum metrology than
cat states [16].

There is a natural impulse to associate this property of
compass states with their sign-alternating sub-Planck struc-
tures. However, only by themselves, these structures are not
enough to generate such enhancement of the sensitivity to
arbitrary displacements. In order to show this, consider now
the cat-state mixture (22), which as mentioned above also
presents the same sub-Planck structures in the center of phase

space. The overlap (24) reads in this case
Fay () = L7182 4 cos x08, + cos x95). (31)

In order for this expression to vanish, the following two con-
ditions need to be satisfied simultaneously:

2, + 1
5, = M n, ez, (32a)
X
2n, + 1
5, = Zw T . (32b)
X

Hence, the cat-state mixture also has +/N-enhanced sensi-
tivity against displacements, but only for those performed in
the directions diagonal with respect to the axis system formed
by the cat states (£45° in our case). This is illustrated in
Fig. 2(c). Hence, in spite of also having sub-Planck struc-
tures in the Wigner function, cat-state mixtures do not have
the potential for metrology of compass states, for which the
extra quantum coherence of the cat-state superposition plays
a crucial role.

In summary, as compared to coherent states, for a given
number of quanta N, compass states show a +/N enhancement
of the sensitivity against displacements in arbitrary directions
in phase space. In contrast, cat states and cat-state mixtures
show this sensitivity enhancement only in specific phase-
space directions. Interestingly, this shows that even though
the same sub-Planck scales are present in the Wigner function
of cat-state mixtures and superpositions, the latter have way
more potential for quantum metrology.

III. GENERALIZATION TO THE SU(2) GROUP

Quantum mechanics associates a Hilbert space with each
physical system. In turn, one common way of characterizing
Hilbert spaces is through an operator algebra. For example,
in Sec. II we considered the hw(1) algebra, which acts on an
infinite-dimensional Hilbert space and is typically associated
with one-dimensional mechanical systems. As different sys-
tems are characterized by different algebras, from the early
days of quantum mechanics there was an interest in extending
results found for one algebra to different ones or, even better,
developing full generalizations when possible [52]. This is
of even more practical interest these days, since we are now
able to devise experimental implementations of essentially
any algebra we can think of.

In this spirit, in this section we show that the previous re-
sults found for the hw(1) algebra can be extended to another of
the most common algebras appearing in quantum-mechanical
systems: the su(2) or angular momentum algebra. This algebra
involves a vector operator J = 1, b, J3), the generator of
rotations [82-84], and is characterized by the commutation
relations

3
s ] =1 €. (33)
=1

where €, is the Levi-Civita symbol (totally antisymmetric
form). The irreducible representations of this algebra can be
labeled by an index j that can only take integer or half-integer

values and is related to the spectrum of jz, the quadratic
Casimir operator of the su(2) algebra, which commutes with
all su(2) generators. Each of these representations has di-
mension 2j + 1 and is spanned by the common eigenbasis

.....

so that

Fliow=iG+Dlw, Kljiw=unlin. G4

In the following we provide an SU(2) generalization of
the various coherent-state superpositions discussed in Sec. II,
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showing that even their properties related to sub-Planck
structures and sensitivity against displacements can be prop-
erly adapted to this case. In order to make a connection
with the preceding section, it is interesting to note that, in
quantum-optical experimental implementations, the maximal
J3 eigenvalue j is typically related to a number of excita-
tions that need to be deposited in the system. For example,
an su(2) algebra with j angular momentum can be imple-
mented with an ensemble of 2 indistinguishable two-level
systems (|j, j) corresponding to all atoms excited) or with
two bosonic modes sharing 2 j excitations (this is the so-called
Schwinger representation of angular momentum, where | j, j)
corresponds to all excitations gathered on one of the modes,
leaving the other in vacuum) [71]. We see that the /N-
sensitivity enhancement of HW coherent-state superpositions
is then replaced by a 4/ enhancement.

A. Preliminaries: SU(2) coherent states and the Wigner function

Let us introduce the SU(2) coherent states [52-56]. Our
starting point is the SU(2) displacement operator, which ad-
mits either of the forms

ﬁ(y) = eafffa*_hr — e)/l,efnffgefy*_hr — ei@ng]’ (35)

parametrized through y = ¢ tan6/2 for convenience, with
¢ €[0,27[ and 0 € [0, 7], in which case o = ei¢9/2, n=
In(1 + |y|?), and n = (sin¢, —cos ¢, 0). The raising and
lowering operators are

Jo=J +ih. (36)

The SU(2) displacements correspond to rotations of angle —0
around the n axis. Throughout the article, we make use of their
composition rule [52]

D(y)D(y2) = D(y3)e'”, 37)
where
V3= L,Z/z (38a)
1- YiV2

o =2arg(1 — y»). (38b)

As Eq. (37) does not depend on j, it is easily proven

by particularizing it to the j = % representation, where all

operators correspond to 2 x 2 matrices (Pauli matrices for the
components of J).

Applying the displacement operator to the reference state
|j, j), we obtain an SU(2) coherent state

J
) =DW)lj i)=Y wljiw, (39

n==j

where

2))! y
_ , 40

is easily found by using the intermediate form of the displace-
ment (35), taking into account that

Jili iy =0,
j— |],,LL> :N;L |J,M_ 1)’

(41a)
(41b)

where N, = \/(j + n)(j — u + 1). The coherent states can
be associated with the points

(sin 6 cos ¢, sin @ sin ¢, cos 0) 42)

on a unit sphere such that | j, j) corresponds to the north pole.
The overlap between two coherent states is

(L+y'r)’ ]"
I+ InPHA+ 1]
as easily proven from Egs. (37) and (39). Hence, for j > 1
the overlap between the reference state |0) = |j, j) and any
coherent state |y) is approximately Gaussian as a function
of y,

(nily2) = [ (43)

_ ! ~ il
O = Gy ¥ (44)
similarly to the HW coherent states. Note that with this
parametrization of SU(2) coherent states in terms of y, the
width of the Gaussian scales as —-. In general, the overlap
between two coherent states pinned at different points of the
unit sphere decreases with j as

[(1ly2) | = cos” ©/2, (45)
where
cos ® = cos 6 cos B, + sin O sin 6, cos(¢p; — ¢p,) (46)
for
Yo = €% tan6,/2. 47)

Indeed, we see later that the effective support of the SU(2)
coherent-state Wigner function (which can be defined as a
quasiprobability distribution on the sphere) decreases follow-
ing the corresponding scaling in ;.

In the next section we consider different coherent-state
superpositions of the type

W)= Yulva), ¥neC, (48)

which generalize the ones studied for the hw(1) algebra. Just
as in that case, the Wigner function is a very useful tool for
the characterization of these states [65—68]. In the SU(2) case,
for any state p, it can be evaluated via the Stratonovich-Weyl
correspondence as [61]

W, (y) = te{pD(y)AD' ()}, (49)
with
J
A= " Ay ljow) ol (50)
p=—j
where
2j
2l +1
A = .’ alao .a ) 51
" sz+l<1u s ) (SD

=0

with (j, u; 1, 0]j, u) the Clebsch-Gordan coefficients. As for
the Heisenberg-Weyl group, this Wigner function is real and
bounded (but not necessarily positive, not even for coherent
states in this case, although their negativity decreases with
j [61]). Hence, we can use it to visualize the state, by plotting
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it either over the surface of the unit sphere or, as we do, in the
stereographic plane (x, p), where

y i=x+ip. (52)

Note that the origin of this plane corresponds to the north pole
of the sphere, while the equator is represented as the circle of
unit radius and the south pole as a circle of infinite radius.

The Wigner function of the generic superposition (48) can
be written as

Wiy (V) = Y YW Wiy i (V)5 (53)

where, using Eqgs. (37) and (39), the Wigner function of the
operator |y,) (vm| is easily found to be

J
Wiy () = €970 7 At (7 i (7).

(54)
n=—j
with
o = 2arg(1 + y* ), (55a)
’ Ye —V
yl=2"r (55b)
Tty

This form is suited for numerical computation, but, for an-
alytical purposes, sometimes alternative derivations are more
convenient, as we show in the Appendix for the states that we
consider in the next section.

B. SU(2) cat and compass states: Sub-Planck structures

Let us now consider specific coherent-state superpositions
and show how the concept of sub-Planck structures presented
in Sec. II for the hw(1) algebra also extends to the su(2) case.
To this aim, we focus on coherent states distributed along the
equator, that is, |y,| = 1 in Eq. (48).

Superposing two antipodal SU(2) coherent states, we ob-
tain an SU(2) cat state [5S7-61]. Consider in particular the
coherent states along the horizontal axis of the stereographic
plane (as in Sec. II, we omit normalizations in states and
Wigner functions), defining the horizontal cat state

[Yu) == 1) +[=1).

We derive the Wigner function of this state in the Appendix,
obtaining

Wiy (V) = Wiy (¥) + Wi—iy(v) + 2Ia(y),

where the last term provides the interference between the
underlying coherent states

(56)

(57)

e
with
¢ = arg{y — 1} +arg{y + 1}, (59a)
§=2tnt| Y =1 , (59b)
y+1

while the first terms correspond to the Wigner functions of the
coherent states

Q) <N (20 + 1D)P(£cosd)

V2iFT = YR =DI2j+T+ D

where P;(x) is the /th Legendre polynomial [65].

In Fig. 3(a) we plot this Wigner function in the stereo-
graphic plane (x, p), as explained in the preceding section.
We can clearly see two lobes centered at positions (£1, 0),
which correspond to the coherent states. Increasing j has the
effect of reducing the extension (effective support) of these
lobes. In addition, the interference between these coherent
states generates an oscillating pattern in the vertical direction,
similarly to what happens for the horizontal HW cat states.
The zeros of this interference pattern Iy () occur when

Wiy (y) = (60)

2j = 2n —|2— 19F/4
Along the p axis (x = 0), this means that the first zeros are
located at p = +tan /8 ~ £ /8] for j > 1. On the other
hand, in the horizontal direction for any fixed p, the inter-
ference pattern simply decays as a Gaussian Iyy(x)/Ig(0) =
e~ for Jj > 1, hence with a width proportional to Lj This
is precisely the same scaling that we found for the width of the
overlap between coherent states. Hence, similarly to the HW
case, we see that the support of the structures appearing in the
interference pattern of horizontal SU(2) cat states is limited
only in the p direction.

We can also define cat states along the vertical axis of the
stereographic plane as

[Yv) = i) + [=1),

whose Wigner function is like the one of the horizontal cat
state, but rotated by 77 /2 in the stereographic plane, that is,

Wiy (V) =W (¥) + Wiy (y) + 2Iv(y) = Wiy (p + ix).
(63)

, nel. ©61)

(62)

Note that, similarly to Eq. (57) for |yry), we write the Wigner
function of |iry) as the sum of the Wigner function of its un-
derlying coherent states W+ (y) = Wj+1)(p + ix) plus their
interference Iv(y) = Iy(p + ix).

Given these cat states, we then define the SU(2) compass
states as we already did for the HW case: the balanced super-
position defined by

[Ve) := [¥m) +|¥v) .

The corresponding Wigner function, which we show in
Fig. 3(b), is equal to the sum of the individual Wigner
functions of each cat state plus the terms coming from the in-
terference between these (the northwest, northeast, southeast,
and southwest structures shown in the figure). We discuss the
analytic form of this Wigner function in the Appendix. For
our purposes here, it is interesting to note that for j > 1 the
interference pattern close to the origin of the stereographic
plane (say, |y| < 1) is the sum of the interference patterns of
the cat states, that is,

chnt(y) = IH(V) + IV()/),

(64)

(65)
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FIG. 3. Stereographic projection of the SU(2) Wigner functions of the coherent-state superpositions considered in this work: (a) horizontal
cat state, (b) compass state, and (c) cat-state mixture. In all cases j = 30. Red and blue regions correspond, respectively, to positive and
negative values of the function, which we normalize to its maximum value. The concentric gray dashed circles represent great circles in the
sphere with polar angles {nm /8},-; 2. s such that n = 4 corresponds to the equator.

leading to the chessboardlike pattern shown in Fig. 3(b). This
pattern is reminiscent of the one found for the hw(1) alge-
bra and shows that structures limited in all directions of the
stereographic plane appear in this SU(2) compass state. This
alternating-sign tiles have an extension proportional to 5 in

any direction, which is a factor % smaller than the extension
found for coherent states. This generalizes the concept of
sub-Planck structures to SU(2): structures with a support of
area % smaller than the support of coherent states.

From the previous discussion, it is clear that a mixture of
cat states also present the same chessboard pattern. Indeed,
considering the mixture

om = [Ym) (Yl + [¥v) (vl , (66)

the corresponding Wigner function of the above cat-state mix-
ture can be simply written as

Wou (V) = Wiy () + Wiy (¥), (67)
which is shown in Fig. 3(c), where the chessboard can be
appreciated. In fact, just like in the case of the hw(1) algebra,
only the inter-cat-state interference regions are missing with
respect to the Wigner function of the compass state.

In summary, we have shown that the same phase-space
features found for HW cat and compass states, as well as
cat-state mixtures, are found for their SU(2) counterparts in
the stereographic plane, provided we restrict the underlying
coherent states to the equator. Interestingly, the role of x( in
the HW case (distance of the coherent states from the origin)
is played by 4/ in the SU(2) case. Let us remark that, around
the equator, the SU(2) group is contracted in the j — oo
limit to the two-dimensional Euclidean group E(2) group [85],
which makes the results that we are exposing in this section
nontrivial. In contrast, around the poles SU(2) is contracted to
the HW group (Holstein-Primakoff approximation) [56,85], in
which case all the results of the preceding section are trivially

generalized, since lim_, oo % simply becomes an annihilation
operator.

C. Distinguishability under SU(2) displacements

Let us now show that the SU(2) coherent-state superpo-
sitions discussed above also behave similarly to their HW
counterparts regarding their sensitivity against displacements.
For this, again we compute the overlap between the states
and their §y-displaced versions, as given by Eq. (24). This
overlap is easily evaluated for coherent-state superpositions
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FIG. 4. Overlap between the SU(2) states considered in this work and their displaced versions, as a function of the real and imaginary
parts of the displacement §y = 8, + i§, normalized to 7 /4j: (a) horizontal cat state, (b) compass state, and (c) cat-state mixture. In all cases

j=10.

by making use of the property

I—y'ri+rys+ny:)
2(1+y DU+ D A+1y2 %)

which is proven by using the composition rule (37) and the
coherent-state overlap (43).

In the case of a single coherent state, we have already
established in Sec. II that, for j > 1, this overlap has an ap-
proximately Gaussian form e~/%¥". Hence, in the SU(2) case,
the sensitivity of coherent states to displacements scales as
%ﬁ. We then have to compare the sensitivity of coherent-state
superpositions against this scaling.

Let us start with cat states. Defining 6y := §, + i§,, with
(6x,8,) € R?2, using Eq. (68), for the horizontal cat state (56)
we easily obtain

J
nID)lyr) = [ } ,  (68)

[ + (1 +82)’ cos(2jtan15,)]’

(14 18y )%
We show this overlap in Fig. 4(a). Aslong as j > 1 and y <

1, Eq. (69) shows that §, plays no relevant role in the overlap,
which vanishes for displacements

2 1
8, = tan [M], nez.
4j

Flyy@y) = (69)

(70)

For large j, minimum displacement that turns the cat state
into an orthogonal state scales as [§y| ~ % and must occur in
the vertical direction of the stereographic plane. Therefore, in
this direction, as compared to coherent states, cat states show
a /j-enhanced sensitivity to displacements. In contrast, for
horizontal displacements they show no enhancement of the
sensitivity compared to coherent states.

Let us now consider the compass state, for which the over-
lap (68) leads to

> [8? +(1+ 65)’ cos (2j tan"'5,)]
Flyo(8y) = ==

X1 1 oy P b

We show this overlap in Fig. 4(b). Similarly to the HW com-
pass state, now the /j-enhanced sensitivity to displacements
is independent of the displacement direction.

Finally, we calculate the overlap for the SU(2) cat-state
mixture (66). The key point here is to note that, for j > 1
and |8y | < 1, the contribution of the cross terms between the
cat states to the overlap, e.g., (Vg D@Sy) [yy), is negligible.
Then, for small displacements, the overlap is the sum of over-
laps of the individual cat states, that is,

Fpy(8y) = Fy,)(8y) + Fyy)(8y) for|§y| <1,

where Fjy.y(8y) = Fjy, (8, + i8,). The corresponding over-
lap is shown in Fig. 4(c) and shows the same properties as its
HW counterpart: The /j-enhanced sensitivity is only present
for displacements in the §,, = 46, directions.

These results show that, as promised, all the features we
found for HW coherent-state superpositions are exported to
SU(2) coherent-state superpositions, as long as the states are
restricted to the equator, where the SU(2) group contracts
to the Euclidean group in two dimensions E(2) [85], as al-
ready mentioned above. In particular, we have shown that
SU(2) compass states have a +/j-enhanced sensitivity against
displacements as compared to coherent states. This occurs
for displacements in arbitrary directions in the stereographic
plane, while cat states and mixtures show such an enhanced
sensitivity only in special directions.

Note that one of the main motivations for the study of
SU(2) compass states is their potential application to quan-
tum metrology, in particular as sensors of rotations. When
the rotation axis is known, cat states along that axis are
known to provide the desired quantum advantage over coher-
ent states [63,69-71]. In contrast, when the axis of rotation
is completely unknown, it has been found that the optimal
quantum rotosensor states are complicated in general [86-90],
but well approximated for small angles by anticoherent states,
whose so-called Majorana constellation is uniformly spread
over the unit sphere [91]. This has been checked so far up to
Jj =35, but it is believed to be true for arbitrary j based on
physical arguments [88,90]. Our compass states can be very

(72)
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useful for intermediate situations in which the rotation axis
is bound to a given plane but is otherwise unknown. This is
because the SU(2) displacements defined in Eq. (35) effect
rotations around any axis defined on the equator of the unit
sphere so that by orienting the sphere appropriately, compass
states will provide +/j-enhanced sensitivity to the rotations we
want to measure as compared to coherent states.

IV. CONCLUSION AND OUTLOOK

In this work we have generalized to the SU(2) group some
features of coherent-state superpositions commonly studied
for the HW group associated with the harmonic oscillator.
Specifically, by restricting the SU(2) coherent states to the
equator of the sphere that plays the role of phase space,
we have shown that four-state superpositions have a Wigner
function with properties similar to that of the HW compass
states: A chessboardlike pattern appears around the origin
of the stereographic plane, which contains structures with
support that scales as % with respect to the effective support
of coherent states. This generalizes the sub-Planck structures
found in HW compass states, with the role of the number
of quanta N being played by the total angular momentum j.
Further, SU(2) cat states can also be defined as superpositions
of two coherent states, which show an interference pattern
with structures limited only in one direction, just as their
HW counterparts. Moreover, SU(2) cat-state mixtures present
the same sub-Planck structures as compass states. However,
we have shown that compass states and cat-state mixtures
are very different regarding their sensitivity to SU(2) dis-
placements: As compared to coherent states, compass states
have a /j-enhanced sensitivity against displacements in any
direction, while cat states and cat-state mixtures show such
enhancement only in specific directions. Again, this is exactly
the same behavior found for the HW case, with j playing the
role of N.

For j — oo there is a well-known connection between the
HW group and the restriction of SU(2) to the neighborhood
of a pole (Holstein-Primakoff approximation) [56]. In con-
trast, for states around the equator, SU(2) contracts to the
two-dimensional Euclidean group E(2) [85], which makes our
generalizations nontrivial. Looking ahead, it is interesting to
extend the notion of sub-Planck structures and the correspond-
ing sensitivity to displacements to arbitrary groups, especially
those relevant to modern experimental quantum-optical plat-
forms such as SU(1,1) [52,92] and higher-dimensional Lie
groups including SU(3) [93].

Having established these connections between the HW
and SU(2) groups, there are many other routes that one can
pursue. For example, in this work we have considered only
superpositions of coherent states with the same amplitude.
Interestingly, in the case of the HW group, superpositions of
states with different amplitudes have been shown to play a
role as eigenstates of the displaced-parity operator B(a) =
D(a)I1, which in turn is related to a nontrivial symmetry
of the forced Harmonic oscillator [94]. Generaljzing to the
SU(2) case the parity operator as [T = (—1)/=5, it is easy
to show that the coherent-state superpositions |0) &+ |y) are
eigenstates of the SU(2) displaced-parity operator B(y) =
D(y)I, similarly to the HW case. It will then be interesting

to extend to the SU(2) group all the results known in this
context for the HW group, in particular exploring whether the
latter operator is also related to a nontrivial symmetry of some
SU(2) Hamiltonian. Moreover, generalized displaced-parity
operators with very interesting properties have been defined
for the HW group [95], whose SU(2) counterparts can also be
investigated in future works.

Another clear future endeavor would concern how to gen-
erate the SU(2) compass states introduced in our work. There
is already a vast literature discussing plausible schemes for the
implementation of SU(2) cat states, particularly NOON and
GHZ states, as mentioned in the Introduction (see [96—100]
for actual recent experimental implementations in different
platforms). Perhaps some of these methods can be adapted
for the generation of a superposition of the four coherent
states required for compass states, which otherwise will re-
quire developing completely new proposals. As a concrete
promising candidate, let us mention weak-field homodyne
detection [101], which so far has been used to engineer HW
cat states of arbitrary amplitude [102], but can be generalized
for the robust preparation of compass states and should be
exportable to some of the SU(2) platforms in which homodyne
detection is available.
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APPENDIX: WIGNER FUNCTION OF SU(2) STATES

Let us here provide more detailed derivations of the various
SU(2) Wigner functions that we have introduced in the main
text. Instead of directly using the general form of Eq. (5§4), in
some cases simpler expressions are found using the compo-
sition property of displacement operators, which we rewrite
here as

D)D) = e P D(y3), (A1)
with
Y1+ V
p= L2 (A2a)
—V1iYs
o =2arg(l —y1yy), (A2b)

and their action on the kernel A [65,67],

47 o R
SN V@ o) (A3)

Dy)AD'(y) = | —
2] + 1 1=0 m=—1

where y = ¢/? tan 6 /2 and we have defined the spherical har-
monics Y;,,(0, ¢) and the irreducible tensor operators

. A+1 o
= Do G lomlj,uy1jon) (ol (Ad)

Hop'==]
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where we recall that (j, u;l, m|j, u') are Clebsch-Gordan
coefficients. In the following, we use these expressions to
simplify the derivations of some Wigner functions.

Let us start with the Wigner function of the coherent state
|1), which is expressed as

Wi (y) = (1ID(y)ADT()I1).

Using the composition rule (A1), we can rewrite this expres-
sion as

Wiy (v) = (j, JID(=DD(y)AD (»)D(1)|}, j)
= (j, jIID@)AD ()}, j)
_ y=Di

with y = S tan 6/2. Inserting (A3) in this expression

and taking into account that

(A5)

(A6)
(AT)

o 2)PQ2j+1)
- 2l +1 —
Yio(0, ¢) =/ Pi(cos ), (A8b)
4

we obtain the expression (60).
The Wigner function of the coherent state |—1), which
reads

Wi_y(y) = (=11 D(y)AD'(y) |-1),

is found in a similar fashion, but first we need to manipulate a
bit the expression. In particular, we use the identity

(A9)

I, FJj) = ligl D) |j, £j) (A10)
X—> 00
to write
[—1) ZXEIPmD(_l)D(x) lj, =) =D j,—j), (All)

where in the last step we have used the composition rule (A1l).
Inserting this expression in (A9), we obtain

Wi_iy(y) = (j, —jID@)AD ()1 j, —j) . (A12)

Finally, using the expression (A3) for the displaced kernel and
taking into account Eqgs. (A8) together with

(A13a)
(A13b)

(s =3 Lomlj, =) = 8uo(=1)' (j, 1, 01j, j) ,
(=1)'P(x) = Pi(—x),
we obtain the expression (60) for W_1,(y).

Let us now consider the Wigner function of the horizontal
cat state |yg) = |1) + |—1), which is expanded as

Wiy (V) = Wiy (¥) + Wi_iy () + 2Re{W_jy1(¥)}. (Al4)

Using various results from the previous lines, the last term is
written as

Wy (y) = <1|D()/)ADT(V)|—1)
(j, JID(—=DD()YAD (y)D(D)|j, —j)

= e 2 (j, JID@AD ()], —j),  (AlS)
with ¢ = —2arg{y + 1} coming from the composition rule

for the displacements. Inserting now the expression (A3) for
the displaced kernel, taking into account that

241
= jilomlj, ) = 81.2j8mai(— DY [T,
(o =Jslomlj, j) = 81.2j8m2;(—1) E

(=D" [Q@I+D! 4y
Yu(0,9) = —mmy[ = ——¢"sin' 0, (Al6b)

and considering only the real part of W_jy(;(y), we obtain
precisely the Iy(y) term of Eq. (58).

The same approach is easily applied to the vertical cat state
|[Yry) = |i) + |—i). On the other hand, for the Wigner function
of the compass state |Yc) = |¥u) + |¥v) we also need to
evaluate cross terms between vertical and horizontal coherent
states of the type

(A16a)

(il D(y)AD () |1).

These cross terms can be obtained by using Eq. (54). However,
numerical inspection of this expression shows that for j > 1
these terms do not contribute for small |y |, as mentioned in
the main text.
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