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Effective quantum dynamics induced by a driven two-level-system bath
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We derive a Born-Markov master equation describing the dissipation induced by a bath of lossy but coherently
driven two-level systems (TLSs) coupled to a bosonic system via Jaynes-Cummings interaction. We analytically
derive all the master-equation rates. We characterize these rates for the particular case of a single-mode system
coupled to identical TLSs. We study the steady state of the system and its exotic properties stemming from
the nonthermal stationary state of the driven TLS bath. These properties include dissipative amplification, bath-
induced linear instability, and both coherent and dissipative squeezing. The master equation is valid for arbitrarily
strong TLS driving and it can be generalized to include multilevel systems or other system-bath interaction terms,
among others. Our work provides a tool to study and characterize TLS-induced decoherence, a key limiting
factor in quantum technological devices based on, for instance, superconducting circuits, magnonic systems, or
quantum acoustics.
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I. INTRODUCTION

Two-level impurities are known to limit the coherence of
many systems of both fundamental and technological interest
ranging from superconducting qubits [1–5] and resonators
[6–8] to electronic transistors [9,10], ion traps [11], solid-state
quantum emitters [12,13], and acoustic [14–16] and magnonic
platforms [17–22]. This two-level-system (TLS)–induced de-
coherence becomes especially significant at low temperature
where additional bosonic baths are depleted [17]. Recent ad-
vances in the control of quantum technological platforms have
sparked a revived interest in probing and controlling these
TLS baths, whose impact can now be accurately measured
[17] and even suppressed [14,15]. An important step toward
this goal would be to bridge the gap between the current,
platform-dependent, solid-state-based theoretical descriptions
of TLS-induced dissipation, such as the standard tunnel-
ing model [1,8,23–26], and the general quantum-mechanical
formulation of dissipation widely used in quantum optics.
Specifically, the derivation of a master equation describing the
decoherence induced by TLS baths is timely.

Any description of the dissipation discussed above must
account for two unconventional aspects: first, the two-level
statistics of the bath, whose richer phenomenology in com-
parison with, e.g., bosonic baths [27] makes them the focus of
intense research [28–30], and second, and more importantly,
the possibility that the TLSs forming the bath are subject
not only to their intrinsic loss but also to coherent driving,
which drives the bath out of thermal equilibrium. As a con-
sequence, the standard assumption in open quantum systems,
namely, a bath in thermal equilibrium, does not apply. Not
only can TLS baths be subject to purposeful driving [14,15],
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but, generally, driving the system will unavoidably result in
driving of the bath, either through direct interaction with the
driving fields or indirectly through the action of the system
itself [31–33]. This spurious bath driving can be strong and
have important consequences on the system dynamics and
response, especially for nanostructures [31–33]. In this paper
we derive a Born-Markov master equation describing the open
dynamics of a bosonic system in contact with a bath of in-
dependent TLS subject to arbitrarily strong coherent driving.
We demonstrate the rich system phenomenology arising both
from the TLS statistics and from the nonthermal stationary
state of the bath, including amplification, steady-state squeez-
ing, and dynamical instabilities for typical parameters in, for
instance, microwave cavities. All these features evidence the
potential of controllable TLS bath driving as a tool to reduce
TLS-induced decoherence and to probe and understand the
complex properties of TLS baths [14].

Our paper is organized as follows. We start in Sec. II
by describing the model and outlining the derivation of the
master equation for the system. In Sec. III we focus on the
particular case of a single-mode system coupled to a bath of
identical TLSs. We characterize the behavior of the master-
equation rates and the system steady state, focusing on the
effects arising from the nonthermal state of the TLS bath. The
conclusions and outlook are provided in Sec. IV.

II. MODEL AND MASTER-EQUATION DERIVATION

In this section we describe the derivation of the master
equation for the system interacting with a driven TLS bath.
We start in Sec. II A by introducing the parameters and the
assumptions of our model. We then proceed in Sec. II B to
give a summary of the master-equation derivation under the
Born-Markov approximation.

2469-9926/2021/103(5)/053709(13) 053709-1 ©2021 American Physical Society

https://orcid.org/0000-0003-4006-3391
https://orcid.org/0000-0002-7639-0856
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.103.053709&domain=pdf&date_stamp=2021-05-24
https://doi.org/10.1103/PhysRevA.103.053709


KATJA KUSTURA et al. PHYSICAL REVIEW A 103, 053709 (2021)

FIG. 1. Scheme of the model. A set of Nb bosonic modes (here
depicted as one for simplicity) with frequencies ωn and decay rates
γn (n = 1, . . . , Nb) is coupled to a bath composed of N two-level
systems with frequencies ωBi and decay and dephasing rates κ1i and
κ2i, respectively (i = 1, . . . , N). The nth system mode is coupled to
the ith TLS at a rate Gin. Both the system and bath are coherently
driven at frequency ωd and with respective amplitudes �n and �Bi.

A. Description of the model

The system under study, schematically shown in Fig. 1,
consists of an ensemble of Nb independent bosonic modes
with frequencies ωn (n = 1, 2, . . . , Nb), each coupled to a
finite bath of N noninteracting TLSs with frequencies ωBi (i =
1, 2, . . . , N). Both the system and the TLS bath are open, i.e.,
coupled to independent external reservoirs which we model as
usual thermal baths at temperature T . Additionally, both the
system and the TLS bath are subject to coherent driving. The
dynamics of the total system are given by the Liouville–von
Neumann equation

˙̂ρtot = (LS + LB + LI )[ρ̂tot], (1)

where ρ̂tot is the total density matrix of the system and the
bath and LS , LB, and LI are the Liouvillian superoperators
[27] denoting the system, the bath, and the interaction parts,
respectively. Let us describe each term separately.

The system Liouvillian LS acts only on the system Hilbert
space and is given by the standard optical master equation [27]

LS[ρ̂] = − i

h̄
[ĤS, ρ̂] + S[ρ̂]. (2)

The first term describes the coherent dynamics of the ex-
ternally driven ensemble of bosonic modes through the
Hamiltonian

ĤS = h̄
Nb∑

n=1

{ωnŝ†
nŝn + (�nŝneiωd t + H.c.)}. (3)

Here �n ∈ C is the driving rate for mode n, ωd is the driving
frequency, and ŝn and ŝ†

n are bosonic annihilation and creation
operators, respectively, obeying the commutation relations
[ŝm, ŝn] = [ŝ†

m, ŝ†
n] = 0 and [ŝm, ŝ†

n] = δmn. The second term
in Eq. (2) describes the incoherent dynamics induced by the
thermal bath and is given by

S[ρ̂] =
Nb∑

n=1

γn
{
[1 + n̄(ωn)]Dŝn,ŝ

†
n
[ρ̂] + n̄(ωn)Dŝ†

n,ŝn
[ρ̂]

}
, (4)

where γn is the decay rate of a mode n, Dâ,b̂[ρ̂] =
âρ̂b̂ − {b̂â, ρ̂}/2 is the Lindblad superoperator, and n̄(ω) =
[exp(h̄ω/kBT ) − 1]−1 is the Bose-Einstein distribution, with
kB the Boltzmann constant.

The bath contribution LB acts only on the Hilbert space of
the TLS and is given by the standard Bloch master equation
[27]

LB[ρ̂] = − i

h̄
[ĤB, ρ̂] + B[ρ̂]. (5)

The first term describes the coherent dynamics of externally
driven TLSs through the Hamiltonian

ĤB = h̄

2

N∑
i=1

{ωBiσ̂zi + (�Biσ̂+ie
−iωd t + H.c.)}. (6)

Here �Bi ∈ C is the driving rate for emitter i and we
define σ̂±i = (σ̂xi ± iσ̂yi )/2 in terms of the spin- 1

2 Pauli op-
erators {σ̂xi, σ̂yi, σ̂zi}, which obey the commutation relations
[σ̂αi, σ̂β j] = iδi jεαβγ σ̂γ i for α, β, γ = x, y, z, with εαβγ the
Levi-Cività tensor. The second term in Eq. (5) describes the
incoherent TLS dynamics induced by the thermal bath and is
given by

B[ρ̂] =
N∑

i=1

{
κ1i[1 + n̄(ωBi )]Dσ̂−i,σ̂+i [ρ̂]

+ κ1in̄(ωBi )Dσ̂+i,σ̂−i [ρ̂] + κ2iDσ̂zi,σ̂zi [ρ̂]
}
. (7)

The terms proportional to κ1i describe decay and absorption,
whereas the term proportional to κ2i describes dephasing. It
is useful for the following discussion to define a single deco-
herence timescale including both processes, namely, the TLS
transverse decay rate, as

κt i = κ1i

2
[1 + 2n̄(ωBi )] + 2κ2i. (8)

Finally, the interaction part of the Liouvillian describes the
coupling between the system of bosonic modes and the TLS
bath. We assume a standard Jaynes-Cummings interaction,
which, as discussed below, is appropriate to discuss many
physical scenarios of interest. Specifically,

LI [ρ̂] = − i

h̄
[V̂ , ρ̂] = − i

h̄

∑
ni

[Ginσ̂+i ŝn + H.c., ρ̂], (9)

with Gin the coupling rate between the ith TLS and the nth
bosonic system mode. In Eq. (9) and hereafter, we omit for
simplicity the upper limit of the sums in i and n, namely, N
and Nb, respectively.

The choice of the above specific forms for the Liouvil-
lians is physically motivated, especially by applications in
microwave and magnonic technologies [1–8,17–22]. When
applied to these systems, the bosonic modes ŝn represent
electromagnetic degrees of freedom, and our model recov-
ers the usual cavity quantum electrodynamics description
under the rotating-wave and independent TLS approxima-
tion [34,35]. In other words, our model is appropriate
to describe these systems provided the validity conditions
for the rotating-wave approximation are fulfilled both for
the coherent driving and for the system-TLS interaction
terms, namely, |ωn − ωd | � ωn + ωd , |ωBi − ωd | � ωBi +
ωd , |ωn − ωBi| � ωn + ωBi, |Gin| � ωn + ωBi, |�n| � ωn +
ωd , and |�Bi| � ωBi + ωd . Although these conditions are usu-
ally fulfilled, the rotating-wave approximation could break
down, e.g., in strongly coupled systems [34,35]. Similarly,
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the independent TLS approximation, namely, neglecting any
direct (e.g., dipole-dipole) coupling between the TLSs, is also
well justified since the TLS densities in these systems are typi-
cally sufficiently small. Finally, in these platforms the drivings
of the system and the TLS usually have the same frequency
ωd , as they originate from the same microwave signal. For all
the above reasons, our model can be directly applied to most
microwave and magnonic platforms.

B. Born-Markov master equation

Our aim is to trace out the TLS degrees of freedom and
obtain an effective equation of motion for the bosonic system.
First, we transform the Liouville–von Neumann equation (1)
to a frame rotating at the driving frequency ωd , by applying
the unitary transformation

Û1(t ) = exp

[
iωdt

(∑
n

ŝ†
nŝn +

∑
i

σ̂zi

2

)]
. (10)

The Liouville–von Neumann equation in the rotating frame is

˙̂ρ (1)
tot = (

L(1)
S + L(1)

B + L(1)
I

)[
ρ̂

(1)
tot

]
, (11)

with ρ̂
(1)
tot (t ) = Û1(t )ρ̂tot (t )Û †

1 (t ) and time-independent Li-
ouvillian superoperators for the system, the bath, and the
interaction part given as L(1)

S , L(1)
B , and L(1)

I , respectively.
These three Liouvillians have the same form as Eqs. (2),
(5), and (9) with modified time-independent system and bath
Hamiltonians given by

Ĥ (1)
S = h̄

∑
n

{�nŝ†
nŝn + (�nŝn + H.c.)}, (12)

Ĥ (1)
B = h̄

2

∑
i

{�Biσ̂zi + (�Biσ̂+i + H.c.)}, (13)

respectively, with �n = ωn − ωd and �Bi = ωBi − ωd .
Second, we make the change of variables in the interaction

Liouvillian L(1)
I ,

ˆ̃σαi(t ) = σ̂αi − 〈σ̂αi〉(t ) (α = +,−, z), (14)

where 〈σ̂αi〉(t ) = tr[σ̂αiρ̂
(1)
tot (t )]. From Eq. (9) we obtain an

effective system driving term such that Eq. (12) acquires a
total time-dependent driving given by the rate

�′
n(t ) = �n +

∑
i

Gin〈σ̂+i〉(t ). (15)

This time-dependent term is typical for driven baths and can
be interpreted as an effective force acting on the system
[31–33].

Finally, we transform Eq. (11) to a second rotating frame,
by applying the unitary transformation

Û2(t ) = exp

[
it

(∑
n

�nŝ†
nŝn + Ĥ (1)

B

h̄

)]
. (16)

The Liouville–von Neumann equation in the second rotating
frame is

˙̂ρ (2)
tot = {

L(2)
S (t ) + B(2)(t ) + L(2)

I (t )
}[

ρ̂
(2)
tot

]
≡ L(2)(t )

[
ρ̂

(2)
tot

]
,

(17)

with ρ̂
(2)
tot (t ) = Û2(t )ρ̂ (1)

tot (t )Û †
2 (t ) and L(2)(t ) denoting the total

Liouvillian. Here the system Liouvillian is given by

L(2)
S (t )[ρ̂] = − i

h̄

∑
n

[
�′

n(t )ŝ(2)
n (t ) + H.c., ρ̂

] + S[ρ̂], (18)

with Ô(2)(t ) = Û2(t )ÔÛ †
2 (t ). The bath Liouvillian B(2)(t )

maintains the same form as Eq. (7), under the substitution
σ̂αi → σ̂

(2)
αi (t ). Finally, the interaction Liouvillian reads

L(2)
I (t )[ρ̂] = − i

h̄
[V̂ (2)(t ), ρ̂]

= − i

h̄

∑
ni

[
Gin ˆ̃σ (2)

+i (t )ŝ(2)
n (t ) + H.c., ρ̂

]
. (19)

The next step in the master-equation derivation is to trace
out the TLS bath in the Born-Markov approximation. Since
the standard approach assumes that the system and the bath
are closed and this is not our case, we employ a generalized
approach based on projection superoperator techniques [27].
We define a projection superoperator P that acts on the space
of density matrices for the compound system and bath as

P ρ̂(t ) = trB[ρ̂(t )] ⊗ ρ̂
(2)
B,s(t ), (20)

where trB indicates a partial trace over the bath degrees of
freedom and ρ̂

(2)
B,s(t ) denotes the stationary state of the bath

Liouvillian, namely,

B(2)(t )
[
ρ̂

(2)
B,s(t )

] = L(1)
B

[
ρ̂

(1)
B,s

] = 0, (21)

with ρ̂
(1)
B,s = Û †

2 (t )ρ̂ (2)
B,s(t )Û2(t ). Note that this stationary state

of the bath is not thermal due to the presence of driving. The
evolution of the projection P ρ̂

(2)
tot (t ) can be expressed by the

Nakajima-Zwanzig equation [27]

d

dt
P ρ̂

(2)
tot (t ) = PL(2)(t )P ρ̂

(2)
tot (t )

+ PL(2)(t )
∫ t

0
dτ G(t, τ )QL(2)(τ )P ρ̂

(2)
tot (τ ),

(22)

where Q = 1 − P , G(t, τ ) = T+ exp[
∫ t
τ

dτ ′QL(2)(τ ′)], with
T+ the time-ordering superoperator, and we assume that the
system and bath are uncorrelated at t = 0, i.e., Qρ̂

(2)
tot (0) = 0.

Equation (22) is an exact reformulation of Eq. (17) and it is
particularly convenient for two reasons. First, its form allows
us to perform the Born-Markov approximation in a simpler
fashion (shown below). Second, by taking the trace of Eq. (22)
over the bath degrees of freedom, one directly obtains a dy-
namical equation for the reduced density matrix of the system.

We now simplify Eq. (22) with the Born and Markov
approximations. First, we assume that the TLS bath is not
significantly affected by its interaction with the system, a
condition which is satisfied when the system-bath interaction
is weak, namely, |Gin| � κt i. This allows us to undertake the
Born approximation

ρ̂
(2)
tot (t ) ≈ ρ̂

(2)
B,s(t ) ⊗ ρ̂

(2)
S (t ), (23)

where the bath stationary state is given by Eq. (21) and
ρ̂

(2)
S (t ) = trB[ρ̂ (2)(t )] is the reduced density matrix of the sys-

tem. Under the Born approximation, the expectation values
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of the Pauli operators, defined below Eq. (14), and hence
the effective driving rate (15), become time independent.
Moreover, under this approximation PL(2)

I (t )P = 0, allowing
us to largely simplify the Nakajima-Zwanzig equation [27].
Second, we assume that the two-time correlation functions
of the bath operators appearing in the interaction Liouvillian
(19) decay on a much faster timescale than any characteristic
timescale of the system Liouvillian L(2)

S (t ).1 This assumption
is valid provided that κt i � γn, |�′

n| and it allows us to under-
take the Markov approximation, namely, to substitute

ρ̂
(2)
tot (τ ) = ρ̂

(2)
B,s(τ ) ⊗ ρ̂

(2)
S (τ ) ≈ ρ̂

(2)
B,s(τ ) ⊗ ρ̂

(2)
S (t ) (24)

in the integrand of Eq. (22) and take the upper integration limit
to infinity [27].

Within the Born-Markov approximation we obtain the
master equation for the system dynamics,

d

dt
ρ̂

(2)
S (t ) = L(2)

S (t )
[
ρ̂

(2)
S (t )

] −
∫ ∞

0
dτ trB[

V̂ (2)(t ), G̃(t, τ )
[
V̂ (2)(t − τ ), ρ̂ (2)

B,s(t − τ ) ⊗ ρ̂
(2)
S (t )

]]
,

(25)

where G̃(t, τ ) = T+ exp[
∫ t

t−τ
dτ ′B(2)(τ ′)]. Equation (25) is a

generalization of the standard Born-Markov master equation.
Note that for a closed (B = 0) and undriven [ρ̂ (2)

B,s(t ) time-
independent] TLS bath, Eq. (25) reduces to the usual form
more commonly used in simpler open quantum systems [27].
The second term in Eq. (25) captures the TLS-induced dissi-
pation and is completely determined by two-time correlation
functions of Pauli operators [36],

trB
[

ˆ̃σ (2)
±i (t )G̃(t, τ )

{
ˆ̃σ (2)
± j (t − τ )ρ̂ (2)

B,s(t − τ )
}] ∝ δi j, (26)

where δi j follows from the independent TLS assumption.
Expanding Eq. (25), the final Born-Markov master equa-

tion can be written, in the frame rotating at frequency ωd , as

˙̂ρ (1)
S = −i

[
Ĥ ′

S, ρ̂
(1)
S

] + S
[
ρ̂

(1)
S

] + STLS
[
ρ̂

(1)
S

]
. (27)

The term Ĥ ′
S is given by

Ĥ ′
S = h̄

∑
n

{�nŝ†
nŝn + (�′

nŝn + H.c.)}

+ h̄
∑
mn

{δmnŝ†
mŝn + (gmnŝmŝn + H.c.)} (28)

and it includes the original system Hamiltonian plus
additional coherent dynamics induced by the TLS bath.
These dynamics include, first, a modified system driving rate
given by Eq. (15) in the Born approximation, namely,

�′
n = �n +

∑
i

Gin〈σ̂+i〉ss, (29)

1It is at this point where the change of variables in Eq. (14) becomes
crucial. Indeed, if the bath operators appearing in the interaction
Liouvillian had a nonzero expectation value, some of their two-time
correlation functions would not decay, preventing us from perform-
ing the Markov approximation.

where 〈σ̂αi〉ss = trB[σ̂αiρ̂
(1)
B,s]; second, a frequency shift of

each system mode and interactions of the beam-splitter type
between different system modes (δmn); and third, interactions
of the two-mode squeezing type (gmn), given by the rates

δmn = − i

2
(�mn

+− + �mn
−+) + i

2
(�nm

+− + �nm
−+)∗, (30)

gmn = − i

2
[�mn

++ − (�nm
−−)∗]. (31)

The above rates are expressed in terms of the TLS one-sided
power spectral densities

�mn
αβ =

∑
i

G(α)
in G(β )

im

∫ ∞

0
dτ 〈 ˆ̃σαi(τ ) ˆ̃σβi(0)〉sse

βi�mτ , (32)

where α, β = ±, G(+)
in = Gin, G(−)

in = G∗
in, and

〈 ˆ̃σαi(τ ) ˆ̃σβi(0)〉ss = trB
[

ˆ̃σ±ie
L(1)

B τ
{

ˆ̃σ± j ρ̂
(1)
B,s

}]
(33)

are the two-time correlation functions in the bath steady state.
As ρ̂

(1)
B,s is time independent, the correlators (33) do not depend

explicitly on time t . The last term in Eq. (27) describes the
dissipative dynamics induced by the TLS bath and it takes the
most general form possible for quadratic Lindblad dissipators,

STLS[ρ̂S] =
∑
mn

{
(�mnDŝm,ŝn + H.c.)

+ γ mn
+ Dŝ†

m,ŝn
[ρ̂S] + γ mn

− Dŝm,ŝ†
n
[ρ̂S]

}
. (34)

The rates in this equation are given by

γ mn
± = �mn

±∓ + (�nm
±∓)∗ (35)

and

�mn = �mn
++ + (�nm

−−)∗. (36)

The power spectral densities (32), and hence all the rates
in the master equation, can be calculated analytically as a
function of the parameters N , �Bi, ωBi, ωd , κ1i, κ2i, ωn, and T .
Using the optical Bloch equations and the quantum regression
theorem [36], we compute the integral∫ ∞

0
dτ 〈 ˆ̃σ i(τ ) ˆ̃σ±i(0)〉ss e±i�mτ = −(Ai ± i�m13)−1〈 ˆ̃σ i ˆ̃σ±i〉ss,

(37)

where ˆ̃σ i = ( ˆ̃σ+i, ˆ̃σ−i, ˆ̃σzi )T , 〈 ˆ̃σ i ˆ̃σ±i〉ss = tr[ ˆ̃σ i ˆ̃σ±iρ̂
(1)
B,s], 1d is

the d-dimensional identity matrix, and Ai is a coefficient ma-
trix given by

Ai =
⎛
⎝i�Bi − κt i 0 −i�∗

Bi/2
0 −i�Bi − κt i i�Bi/2

−i�Bi i�∗
Bi −κ1i[1 + 2n̄(ωBi )]

⎞
⎠. (38)

Introducing Eq. (37) in Eq. (32) and using the commutation
relations of the Pauli operators, we obtain analytical expres-
sions for the rates �mn

αβ in terms of the spectral properties of
the matrix Ai and of the stationary-state expectation values of
the Pauli operators,

〈σ̂+,i〉ss = −1

1 + 2n̄(ωBi ) + si

�∗
Bi

2(�Bi + iκt i)
, (39)

〈σ̂z,i〉ss = −1

1 + 2n̄(ωBi ) + si
, (40)
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given in terms of the saturation parameter

si = κt i

κ1i

|�Bi|2
κ2

t i + �2
Bi

. (41)

The master equation (27) is the main result of this work.
We conclude this section with several remarks. First,

note that, due to the Born-Markov approximation, the mas-
ter equation models an environment of lossy TLSs (κt i �
|Gin|, γn, |�′

n|) and it is thus adequate to model baths of near-
resonance solid-state impurities which typically have large
linewidths [1,9,15,18,20,22]. However, although our initial
model is formally identical to the usual cavity quantum elec-
trodynamics, the derived master equation is not appropriate
to describe typical quantum optics cavity QED setups where
the TLSs (atoms, quantum dots, etc.) are characterized by a
very narrow linewidth κt i. Second, note that within the Born-
Markov approximation it is consistent to consider the TLSs
to be in their stationary state, defined by Eq. (21), already at
the time t = 0, i.e., right after the driving is turned on. Indeed,
since the timescale at which the TLSs evolve to their station-
ary state (given by κ−1

t i ) is much shorter than the timescale
of the system dynamics (given by γn

−1 and |�′
n|−1), this re-

laxation can be considered instantaneous. Third, note that the
most unconventional effective dynamics in the master equa-
tion originates exclusively from the driving of the TLS bath. In
the absence of this driving, i.e., at �Bi = 0, one has �′

n = �n

and �mn = gmn = 0 and the master equation recovers the usual
form obtained for simpler baths (e.g., undriven bosonic baths),
containing only absorption, decay, and particle-conserving in-
teractions. Finally, note that by following the above steps our
derivation can be directly extended to include the following
additional features: (i) rotating terms (proportional to σ̂−i ŝn

and/or σ̂ziŝn) in the interaction Liouvillian (9); (ii) different
driving frequencies ωd,S and ωd,B for the system and the bath;
(iii) arbitrarily strong system driving2 �n and/or an arbitrary
system dissipator S , as long as their associated timescales
are consistent with the Markov approximation; and (iv) a
bath composed of multilevel systems with dissipators B of an
arbitrary form, as long as the timescales of these dissipators
are consistent with the Born and Markov approximations.

III. TLS-INDUCED DYNAMICS: AMPLIFICATION,
SQUEEZING, AND SYSTEM INSTABILITIES

In this section we focus on understanding the effective
system dynamics induced by the driven TLS bath. In Sec. III A
we introduce the particular case of a single bosonic mode
coupled to a bath of N identical TLSs. In Sec. III B we
characterize the rates appearing in the master equation for
this particular case. In Sec. III C we characterize the steady
state of the system and the exotic properties arising from the
nonthermal bath.

2This can be done by transforming to a different frame, this time
with respect to a Hamiltonian including the system driving. A more
complicated but still analytical master equation can be derived in this
case.

TABLE I. Summary of the parameters in the particular case of a
single bosonic mode coupled to a bath of N identical TLSs.

Parameter Definition

ωd driving frequency
ω0 system frequency
�0 system detuning
�0 external driving rate of the system
γ0 intrinsic decay rate of the system
ωB TLS frequency
�B TLS detuning
�B external driving rate of the TLS
κ1 TLS decay rate
κ2 TLS dephasing rate
κt TLS transverse decay rate
s TLS saturation parameter
G system-TLS coupling rate
�′

0 TLS-induced effective driving rate of the system
γ± TLS-induced system absorption or emission rate
γ TLS-induced decay rate
g, � TLS-induced system squeezing rates
δ TLS-induced system frequency shift

A. Particular case: Single mode coupled to a bath
of identical TLSs

To illustrate the rich phenomenology induced by the
driven TLS bath, hereafter we focus on the particular case
of a single bosonic mode, coupled to a bath of N iden-
tical TLSs. The bosonic mode is described by creation
and annihilation operators ŝ† and ŝ, respectively. Its free
dynamics, given by LS in Eq. (2), is characterized by a
frequency ω0, a driving rate �0, and an intrinsic decay
rate γ0. Since the TLSs are identical, all the rates become
TLS independent, i.e., {ωBi, κ1i, κ2i,�Bi, Gin,�Bi, κt i, si} →
{ωB, κ1, κ2,�B, G,�B, κt , s}. Similarly, since this particular
case consists of a single mode, for simplicity we denote
its TLS-induced master-equation rates {δnn, gnn, γ

nn
± , �nn} →

{δ, g, γ±, �}. Without loss of generality, we assume �B ∈
R. All the parameters appearing in this particular case are
summarized in Table I. The master equation in this case has
the same form as Eq. (27), with a simplified Hamiltonian

Ĥ ′
S = �′ŝ†ŝ + (�′

0ŝ + H.c.) + (gŝ2 + H.c.) (42)

and a dissipator

STLS[ρ̂S] = γ+Dŝ†,ŝ[ρ̂S] + γ−Dŝ,ŝ† [ρ̂S] + (�Dŝ,ŝ[ρ̂S] + H.c.).
(43)

Here �′ = �0 + δ, with the system detuning �0 = ω0 − ωd

and �′
0 = �0 + NG〈σ̂+i〉.

From the master equation (27) one can obtain a dynamical
equation for the expectation value of any system operator
Ŝ, namely, d〈Ŝ〉/dt = tr[Ŝ ˙̂ρ (1)

S ]. Since the master equation is
quadratic, the expectation values of the first- and second-order
momenta v = [〈ŝ†ŝ〉, 〈ŝ〉, 〈ŝ†〉, 〈ŝ2〉, 〈(ŝ†)2〉]T obey a closed
linear system of differential equations of the form v̇ = ASv +
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FIG. 2. (a) Dependence of the effective driving rate �′
0 on the de-

tuning between the TLSs and their driving �B for different values of
the TLS driving rate �B. In the red and green curves, vertical dashed
lines indicate the optimum detuning �B,opt = ±√|�B|2/2 − κ2

t (see
the text). (b) Dependence of the effective driving rate �′

0 on TLS
driving rate �B at fixed detunings �B. The dashed lines mark the
values of the driving rate at which s = 1.

aS , with

AS =

⎛
⎜⎜⎜⎜⎜⎜⎝

−(γ0 + γ ) i�′
0 −i�′∗

0 2ig −2ig∗

0 �̃∗ −2ig∗ 0 0

0 2ig �̃ 0 0

−4ig∗ −2i�′∗
0 0 2�̃∗ 0

4ig 0 2i�′
0 0 2�̃

⎞
⎟⎟⎟⎟⎟⎟⎠
(44)

and

aS = (γ+,−i�′∗
0 , i�′

0,−2ig∗ − �∗, 2ig − �)T
. (45)

In the above equations we define �̃ = i�′ − (γ0 + γ )/2,
where the important parameter γ = γ− − γ+ is the TLS-
induced decay rate of the system. In the following we analyze
the rates and the effective dynamics induced by the TLS in
this particular scenario.

B. Master-equation rates: Mollow sidebands and amplification

We divide this section into three blocks corresponding to
the effective system driving rate �′

0, the rates associated with
particle-non-conserving terms � and g, and the decay rate and
frequency shift γ and δ, respectively.

TABLE II. Default values chosen for the parameters in all the
figures throughout the text. All the rates are expressed in terms of the
TLS frequency ωB.

Parameter Value

temperature T = 0
system-TLS coupling rate G = 10−8ωB

number of the TLS N = 105

TLS decay rate κ1 = 10−4ωB

TLS dephasing rate κ2 = 0
system decay rate γ0 = 10−7ωB

1. Effective driving rate �′
0

We first consider the effective driving rate �′
0. For sim-

plicity, we assume the system is not independently driven,
i.e., �0 = 0, so that �′

0 = NG〈σ̂+i〉. This rate originates from
the expectation value of the TLS operators. Its effect on the
system is analogous to the coherent electromagnetic scattering
of a driven TLS, namely, to the coherent part of the resonance
fluorescence spectrum [34,35]. In the context of resonance
fluorescence, the coherent scattering results from the emission
of light by the classical component of the TLS dipole moment.
Indeed, the square modulus of the effective driving rate reads

|�′
0|2 = (N |G|)2 κ1

4κt

s

(1 + s)2
, (46)

where s is the saturation parameter (41) characterizing the
regimes of strong (s � 1) and weak (s � 1) TLS driving.
Equation (46) has an identical dependence on the saturation
parameter as the coherently scattered power in resonance flu-
orescence [34,35].

The effective driving rate �′
0 is shown in Fig. 2(a) as a

function of detuning between the TLSs and their driving �B

and for different values of the TLS driving rate �B. The re-
maining parameters, chosen as in Table II, are consistent with
our approximations and with typical values in microwave and
magnonics platforms. At weak driving �B � κt (blue curve)
the saturation parameter is always low s � 1 [see Eq. (41)]
and the effective driving rate has a single peak at �B = 0, as
|�′

0| ∼ √
s. As the driving rate reaches values comparable to

the TLS linewidth �B ∼ κt , the saturation parameter can be-
come s � 1. In this regime the effective driving rate acquires a
double-peaked structure as shown by the red and green curves
in Fig. 2(a). This is a characteristic indication of the energy
levels of the TLS becoming dressed by the strong driving,
with eigenenergies ±h̄

√
�2

B + |�B|2/2.3 As a consequence of
this shift in the TLS bare energies, the driving is not resonant
anymore at �B = 0 and the conditions for maximum scat-
tering shift to detunings �2

B,opt = |�B|2/2 − κ2
t �= 0, marked

by vertical dashed lines in Fig. 2(a). The above argument is
confirmed by Fig. 2(b), where we show the effective driving
rate at fixed detuning �B as a function of driving rate �B.
At weak driving it grows linearly, whereas at strong driving
it linearly decays, |�′

0| ∝ 1/
√

s ∝ 1/�B, as the fixed driving

3This can be readily checked by diagonalizing the TLS Hamilto-
nian (6) in the frame rotating at the driving frequency.
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frequency becomes increasingly off-resonance with respect to
the energy gap between the dressed TLS states. The maximum
of �′

0 is attained at s = 1 [see Eq. (46)], marked by vertical
dashed lines in Fig. 2(b). As the detuning �B increases, the
condition s = 1 is attained at larger driving rates �B, and thus
the curves in Fig. 2(b) shift forward horizontally.

2. Squeezing rates � and g

All the remaining rates in Eqs. (42) and (43), namely,
γ , δ, �, and g, originate from the fluctuations of the TLS
bath, i.e., from the Fourier transform of the two-time corre-
lation functions 〈 ˆ̃σαi(t + τ ) ˆ̃σβi(t )〉 with α, β = ±, evaluated
at the system frequency �0 [see Eq. (32)]. These rates and
their associated effective dynamics thus show some properties
similar to the incoherent scattering spectrum of resonance
fluorescence, as we will see below. Here we focus on the two
rates � and g which arise from correlators 〈 ˆ̃σαi(t + τ ) ˆ̃σαi(t )〉.
They represent a contribution to the system effective dynamics
exclusively induced by the driving of the bath, as they vanish
at �B = 0. Both � and g appear in excitation-nonconserving
terms in the master equation and can induce squeezing and
instabilities on the system, as we will see below. As evidenced
by Eqs. (44) and (45), the dissipator associated with � only
affects the steady state of the system while leaving any dy-
namical rate unchanged.

In the following we focus on the case of resonantly driven
TLSs, namely, ωB = ωd (�B = 0). The rates � and g are
displayed in Figs. 3(a) and 4(a), respectively, as a function of
the system detuning �0 for three values of the driving rate �B

and the parameters in Table II. In this regime, the analytical
expressions can be derived,

(
g
�

)
= NG2

2κ1

−s

(1 + s)2 f (s,�0/κ1)

×
(

i(i�0/κ1 − 1)(1 + s)
s2 + 2s + 4(i�0/κ1 − 1)2

)
, (47)

with f (s, d ) = [s + 2(id − 1)(id − 1
2 )](id − 1

2 ). At low satu-
ration s � 1 [blue curves in Figs. 3(a) and 4(a)] the rates have
a Lorentzian profile, as �, g ∼ s. At high saturation s � 1
(green curves) two additional side peaks emerge. This is a
manifestation of the large dressing of the TLS energy levels
by the strong coherent driving, analogous to the AC Stark
shift in quantum optics that produces the Mollow triplet [37].
In general, the Mollow triplet appears when the energy gap
between the dressed states of the TLS becomes larger than
their linewidth. For the parameters of Figs. 3(a) and 4(a), this
condition reads |�B| > κt/2 and the side emission peaks arise
at frequencies

√
|�B|2 − (κt/2)2, indicated by the vertical

dashed lines.
The dependence of the rates � and g on the TLS driving

rate �B is shown in Figs. 3(b) and 4(b), respectively, for
two values of the system detuning �0. While the coherent
rate g vanishes in the strong driving limit, where g ∼ s−1, the
dissipative rate � saturates to a value given by

lim
s→∞ � = NG2

2(κt − i�0)
. (48)

FIG. 3. (a) Dependence of the rate � on the system detuning �0

for �B = 0, different TLS driving rates �B, and the parameters in
Table II. The dashed lines denote the frequencies of the Mollow
sidebands (see the text). (b) Dependence of the rate � on TLS driving
rate �B for different system detunings �0 and the same parameters
as in (a). The horizontal dashed lines denote the strong-driving limit
(48).

Note that Eq. (48) is valid for any finite TLS detuning �B.
Both the saturation of � and the appearance of a Mollow
triplet are identifying characteristics of incoherent resonance
fluorescence spectra [34,35]. We can thus understand the rates
g and � as stemming from the TLS incoherently pumping
energy from the driving into the system or vice versa. Note
that, since in our case the system does not show a contin-
uous energy spectrum but a single resonance at frequency
ω0 (in the rotating frame, �0), it resembles more closely the
more involved situation of TLS resonance fluorescence inside
an optical cavity [38–47]. Specifically, the system acts as a
“frequency filter,” probing the incoherent scattering spectrum
within a narrow frequency window [38]. This is evidenced by
Figs. 3(b) and 4(b) where for �0 = 0 (purple curves) only the
energy scattered at the TLS natural frequency (i.e., only the
central peak of the Mollow triplet) contributes to the rates,
which thus monotonically depend on �B. Conversely, when
the system is detuned �0 �= 0 (orange curves), the rates |g|
and |�| reach a maximum at the value �B at which the Mollow
side peak and the system become resonant [compare with
Figs. 3(a) and 4(a)].

3. Decay rate γ and frequency shift δ

We finally focus on the decay rate γ and the frequency
shift δ. Since these result from the TLS correlators 〈 ˆ̃σ±i(t +
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FIG. 4. (a) Dependence of the rate g on the system detuning �0

for �B = 0, different TLS driving rates �B, and the parameters in
Table II. The dashed lines denote the frequencies of the Mollow
sidebands (see the text). (b) Dependence of the rate g on TLS driving
rate �B for different system detunings �0 and the same parameters
as in (a).

τ ) ˆ̃σ∓i(t )〉, they do not vanish in the low TLS driving limit,
where

lim
s→0

(
γ

δ

)
= N |G|2

κ2
t + (ω0 − ωB)2

× tanh

[
h̄ωB

2kBT

](
2κt

ω0 − ωB

)
. (49)

The above expression for γ , which is also valid for �B �=
0, coincides with the predictions of the standard tunneling
model for a bath of undriven TLSs [23]. In the opposite limit
of strongly driven TLSs the decay rate and the frequency
shift vanish, lims→∞ γ = lims→∞ δ = 0, as the TLSs become
saturated and thus induce neither absorption nor decay. The
suppression of γ for a saturated TLS bath has been demon-
strated in acoustic and magnonic setups [15,18,48]. Both rates
γ and δ capture two different physical phenomena affecting
the system. On the one hand, similarly to the rates g and �

analyzed in the preceding section, the rates γ and δ represent
a part of the incoherent scattering of the TLS driving into the
system, as they originate from the fluctuations of the TLS op-
erators. On the other hand, they describe the contact, mediated
by the TLS, between the system and the thermal reservoir

FIG. 5. (a) Dependence of the decay rate γ on the system de-
tuning �0 for �B = 0, different TLS driving rates �B, and the
parameters in Table II. The dashed lines denote the frequencies of
the Mollow sidebands (see the text). The inset shows a close-up of
the green curve at small system detunings |�0| � κt . (b) Dependence
of the decay rate γ on the TLS driving rate �B for different system
detunings �0 and the same parameters as in (a). The horizontal
dashed lines indicate the no-driving limit (49), whereas the dotted
lines indicate the high-driving limits (50).

inducing the TLS dissipation, as evidenced by the nonzero
value of Eq. (49). Because of the competition between these
two processes, the rates γ and δ display a particularly rich
phenomenology.

Let us focus on the decay rate γ . This rate is shown in
Fig. 5(a) as a function of the system detuning �0 for three
values of the driving rate �B and the parameters in Table II.
At weak driving s � 1 (blue curve) it displays the usual
Lorentzian profile given by Eq. (49), whereas at higher driving
(red and green curves) different regimes appear depending on
the detuning �0. In the strongly driven case s � 1 the rate γ

can, remarkably, become negative, indicating that, instead of
damping, the TLS bath induces amplification of the system
dynamics.4 As evidenced by Fig. 5(a) and the inset, amplifi-
cation occurs at system-TLS detunings fulfilling κt � |�0| �

4Note that for γ < 0 the system can still be damped if its additional
damping mechanisms dominate, i.e., if γ0 + γ > 0.
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�B. This behavior is captured analytically through the limits

lim
s→∞ γ = N |G|2κ1

×
⎧⎨
⎩

�−2
0 for �0 � �B � κt

−�−2
B for �B � �0 � κt

2κ1κt�
−4
B coth

[ h̄ωB
2kBT

]
for �B � κt � �0,

(50)

denoted by the dotted lines in Fig. 5(b), where we show the
dependence of γ on the TLS driving rate �B (solid curves).
The behavior of γ and especially the amplification γ < 0
is a consequence of the nonthermal state of the TLS bath
[45]. Indeed, the TLS bath is simultaneously coupled to a
thermal reservoir at temperature T , which tends to drive it
into a thermal state and to an external driving which, in
the limit s � 1, tends to drive it into a fully unpolarized
state ρ̂B = 12N/2, effectively acting as an infinite-temperature
thermal reservoir. For some parameter combinations and in
the regime of strong driving �B � κt , this results in contin-
uous pumping of energy into the system. The behavior of
the resulting amplification, captured by Fig. 5, is consistent
with the well-known amplification of resonance fluorescence
for TLSs inside an electromagnetic cavity [38,44–46,49]. In
the platforms we aim at describing in this work, namely,
baths of solid-state TLS impurities affecting, e.g., microwave,
acoustic, or magnonic resonators, our model predicts a similar
amplification.

We can heuristically understand the qualitative behavior
of γ through the simpler model of a system with frequency
�0 coupled to a single lossy TLS via Jaynes-Cummings in-
teraction ∼g0(ŝσ̂+ + H.c.), described by an arbitrary coupling
rate g0. At resonant (�B = 0) and strong (s � 1) driving the
TLS is fully dressed, i.e., it is described by the dressed eigen-
states |±〉 = (|e〉 ± |g〉)/

√
2, where |g〉 (|e〉) denotes the TLS

ground (excited) state. The energies of the dressed eigenstates
are ±�B/2. We can now write the system-TLS interac-
tion in terms of the dressed transition matrices σ̂ ′

αβ = |α〉〈β|
(α, β = ±) and retain only the slowly oscillating terms under
a rotating-wave approximation. The validity of the rotating-
wave approximation and the form of the resulting interaction
Hamiltonian depend on �0. Specifically, for κt � |�0| ∼
�B and assuming |�0 − �B|, g0 � |�0| + �B, the Hamilto-
nian reads ∼(ŝσ̂ ′

+− + H.c.), while for |�0| � κt � �B and
assuming g0 � �B it reads ∼(ŝ + ŝ†)(σ̂ ′

++ − σ̂ ′
−−). Let us

examine in these cases the system emission and absorption
rates γ− and γ+, respectively, and the total decay rate γ =
γ− − γ+. We further simplify our toy model by assuming
that only energy-conserving first-order processes contribute
to these rates. First, in the case κt � |�0|, system emission
and absorption involve a single transition between the two
TLS dressed states plus, if �0 �= �B, an additional energy
exchange between the TLS and its own thermal reservoir
in order to conserve energy. By examination of the respec-
tive processes one can infer that γ− → γ+ if �0 = �B and
γα ∝ n̄(|�B − |�0||) + δα,sgn[�B−|�0|] if �0 �= �B, with δα,β

the Kronecker delta. This simple model thus qualitatively
captures the positive (negative) values of γ for positive (neg-
ative) values of �B − |�0| [see Fig. 5(a)]. In the second case,
namely, the regime |�0| � κt , the interaction contains only
the matrices σ̂ ′

αα , and hence absorption and emission pro-

FIG. 6. (a) Dependence of the frequency shift δ on the system
detuning �0 for �B = 0, different TLS driving rates �B, and the
parameters in Table II. The dashed lines denote the frequencies of
the Mollow sidebands (see the text). (b) Dependence of the frequency
shift δ on the TLS driving rate �B for a system detuning �0 = 10κt

and the same parameters as in (a).

cesses involve no transition between the dressed TLS states.
The system thus effectively exchanges energy directly with
the thermal reservoir of the TLS, which, being in thermal
equilibrium, necessarily results in γ > 0. Our heuristic argu-
ment thus also captures the behavior of γ at small �0 [inset
of Fig. 5(a)].

For completeness we display in Fig. 6(a) the frequency
shift δ as a function of the system detuning �0 for the same
parameters as in Fig. 5. In the weak driving regime (blue
curve) the frequency shift displays the form given by Eq. (50).
This is the usual profile obtained when computing the elec-
tromagnetic response function of two-level systems, e.g., in
atomic optics [34]. At stronger driving rates, peaks emerge at
the Mollow sideband frequencies, confirming the incoherent
scattering contribution. The dependence of the frequency shift
δ on the TLS driving rate �B is shown in Fig. 6(b) for the
same parameters as in Fig. 5. For �0 = 0 the frequency shift
is exactly zero.

C. Steady-state properties: Squeezing and
dynamical instabilities

In this section we focus on the impact of the TLS bath
on the system, specifically on its steady state. We con-
sider a relevant particular case, namely, an undriven system
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FIG. 7. (a) Master-equation rates as a function of the TLS driving
rate �B for the resonant case ω0 = ωB = ωd . The frequency shift
in this case is δ = 0. (b) Steady-state value of the system operators
(solid and dotted curves) as a function of the TLS driving rate �B.
The dashed curves show the approximate solution given by Eq. (51).
(c) First-order coherence function g(1)(τ ) [Eq. (52)] for three differ-
ent TLS driving rates �B. In all panels we take the parameter values
of Table II.

(�0 = 0) in resonance both with the TLSs and with their
driving, i.e., ω0 = ωB = ωd . The master-equation rates in this
case are shown in Fig. 7(a) for the parameters of Table II.
For these parameters the bath does not induce amplification,
as γ + γ0 > 0 ∀ s. Among the three terms resulting from TLS
correlators, namely, γ , g, and �, the decay rate γ dominates
at low saturation s � 1, whereas the rate � dominates at high
saturation s � 1. Any exotic effect ascribed to the nonthermal
state of the TLS will thus appear in the regime of uncon-
ventional dissipation s � 1. The squeezing rate g is typically
much smaller than the dissipation rates γ and �. Regardless
of the predominant dissipation, as shown by Fig. 7(a), the
effective dynamics is dominated by the coherent driving rate
�′

0. The strong impact of this effective driving has been ex-
perimentally observed in high-Q microwave cavities [48].

Since the master equation (27) is quadratic, the
steady state is Gaussian [50]. It is completely de-
termined by the first- and second-order momenta
vss = (〈ŝ†ŝ〉, 〈ŝ〉, 〈ŝ†〉, 〈ŝ2〉, 〈(ŝ†)2〉)T

ss = −A−1
S aS , where the

matrix AS and the vector aS are given by Eqs. (44) and (45),
respectively. In Fig. 7(b) we show the steady-state values
|〈ŝ〉ss| (solid red curve), 〈ŝ†ŝ〉ss (solid blue curve), and |〈ŝ2〉ss|

(dotted yellow curve) for the same parameters as in Fig. 7(a).
The thin dashed red and blue curves in the figure correspond
to the limit g → 0, where the steady state is analytically
approximated by

〈ŝ†ŝ〉ss ≈ γ+
γ

+ 4|�′
0|2

γ 2
, 〈ŝ†〉ss ≈ 2i�′

0

γ
. (51)

As shown by Fig. 7(b) the expressions (51) are very similar
to the exact solution except in the vicinity of s = 1. Thus,
neglecting the small rate g is a good approximation to obtain
the values of |〈ŝ〉ss| and 〈ŝ†ŝ〉ss. Since the effective coherent
driving, given by the rate �′

0, is the dominant effect in the
master equation, the steady state of the system is close to a
coherent state, i.e., 〈ŝ†ŝ〉ss ≈ |〈ŝ〉ss|2 ≈ |〈ŝ2〉ss|, as indicated by
Fig. 7(b). This is confirmed by Fig. 7(c), where we display the
first-order coherence of the steady state, defined as [34,36]

g(1)(τ ) = 〈ŝ†(0)ŝ(τ )〉ss

〈ŝ†ŝ〉ss
, (52)

for different values of the TLS driving rates corresponding
to s � 1 (blue curve), s ∼ 1 (red curve), and s � 1 (green
curve). Although due to the dissipative dynamics the first-
order coherence deviates from 1, it remains close to this value
at all times, confirming the quasicoherent nature of the steady
state.

Despite being close to a coherent state, the steady state
is far from the conventional steady state of a driven lossy
harmonic oscillator. To show this, we first focus on the condi-
tions for the existence of a steady state. The master equation
(27) has a steady state if and only if the system of equations
governing vss is linearly stable [50], i.e., if max[Re(λ j )] � 0,
with λ j ( j = 1, . . . , 5) the eigenvalues of AS . In the resonant
case under study, ω0 = ωB = ωd , the system is linearly stable
if

γ0 + γ � 4|g|. (53)

In Fig. 8(a) we show a stability diagram for the system as a
function of the bare system linewidth γ0 and the TLS driving
rate �B. For a saturated bath (s � 1) or for a bath in thermal
equilibrium (s � 1) the system is always stable as g → 0
and γ either vanishes or is always positive. Stability is also
guaranteed at large enough γ0, where the decay of the system
to its additional bath (assumed in equilibrium; see Sec. II)
dominates over the TLS-induced dissipation. However, at in-
termediate values of s the system can become dynamically
unstable. Remarkably, the dynamical instability can originate
either from a strong amplification (γ < 0; see the preceding
section) or, as is the case in Fig. 8(a), from a large enough
value of the squeezing rate g [51]. Note that since the small
rate g plays a relevant role in determining stability, the ap-
proximations at g → 0 [Eq. (51)] become inaccurate when
the system is near the instability regime. The dynamics in this
critical, nearly unstable regime is very sensitive to the value
of g, a property that could be used to accurately measure this
rate.

The second unconventional feature of the system’s steady
state is the presence of squeezing. We analyze squeezing in the
stable regime, where the steady state exists and it is Gaussian,

053709-10



EFFECTIVE QUANTUM DYNAMICS INDUCED BY A … PHYSICAL REVIEW A 103, 053709 (2021)

FIG. 8. (a) System stability diagram as a function of the TLS
driving rate �B and the system decay rate γ0, obtained by consid-
ering the stability criterion (53). (b) Dependence of the squeezing
parameter ξ on the TLS driving rate �B for different system decay
rates γ0. Solid curves show the results for the full model and dashed
curves the solution for g → 0. For the smallest decay rate depicted
here (green curve), the squeezing parameter ξ is not well defined in
the unstable region denoted by the shaded green area.

by computing its covariance matrix [52]

σ =
(

Vx Cxp

Cxp Vp

)
, (54)

where Vx = 〈(x̂ − 〈x̂〉)2〉, Vp = 〈( p̂ − 〈p̂〉)2〉, and Cxp = {x̂ −
〈x̂〉, p̂ − 〈p̂〉}/2, with x̂ = (ŝ + ŝ†)/

√
2 and p̂ = i(ŝ† − ŝ)/

√
2

being the quadrature operators. The system squeezing can be
quantified via the squeezing parameter ξ = 1/

√
2 mink (λk ),

where λk ∈ R+ are the eigenvalues of Eq. (54) [52]. The state
is squeezed when ξ > 1, and larger values of ξ correspond to
larger squeezing. In Fig. 8(b) we plot the squeezing parameter
ξ (solid curves) as a function of the TLS driving rate for differ-
ent values of the system decay rates γ0. The shaded green area
marks the instability window for γ0/ωB = 3 × 10−8 [compare
with Fig. 8(a)]. According to Fig. 8(b), the steady state of
the system is squeezed for a range of saturation parameters
around s ≈ 0.1. Larger squeezing is attained at low values
of γ0, where the TLS-induced dissipation dominates over the

system intrinsic dissipation. The steady-state squeezing has
both coherent and dissipative contributions, coming from the
rates g and �, respectively. This is proven by the dashed curves
in Fig. 8(b), which depict the squeezing parameter obtained
under the substitution g → 0. Remarkably, the squeezing
is reduced in the presence of both mechanisms, i.e., when
g, � �= 0, as the corresponding terms in the master equation
induce squeezing in mutually orthogonal directions in phase
space. The comparison between the dashed and solid curves
in Fig. 8(b) also shows that, although approximating g → 0
remains a useful approximation for some steady-state proper-
ties such as the occupation number 〈ŝ†ŝ〉ss, it critically fails to
capture others such as stability and squeezing. We finally note
that the steady-state squeezing is in principle experimentally
observable in magnonics or acoustic platforms, where the
regime s ≈ 1 can be achieved [14,15,18,53].

IV. CONCLUSION

We have developed a theoretical model describing the ef-
fective dynamics of a system in the presence of a coherently
driven two-level-system bath. This has been done by explicitly
tracing out the bath degrees of freedom to obtain a Born-
Markov master equation. In the limit of weak TLS driving, our
results recover the expression given by the standard tunneling
model for undriven TLS baths. In the limit of strong TLS
driving, our model predicts a vanishing linewidth due to sat-
urated TLSs, as observed in experiments. In the intermediate
driving regime exotic dynamics arises as the state of the TLS
bath is maximally out of thermal equilibrium. Specifically,
the TLS can induce linear instability of the system, either
through negative linewidth (amplification) or through single-
mode squeezing. Moreover, in the linearly stable regime the
steady state of the system is squeezed. From a theoretical point
of view, an interesting outlook consists of characterizing the
non-Markovian effects arising for nonmonochromatic TLS
driving [31–33] or for more strongly coupled and/or less lossy
TLS baths.

To conclude, our model provides a theoretical tool for
studying, from the quantum optics perspective, the complex
TLS baths affecting most quantum technological platforms. It
proves that external driving of these baths can be used as a tool
not only to minimize dissipation, e.g., by saturating the TLS,
but also to probe the TLS bath and acquire deeper information
about its properties.
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