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Double rapid adiabatic passage in three optical waveguides with longitudinally varying detunings

Jian Chen , Li Deng ,* Yueping Niu , and Shangqing Gong
Department of Physics, East China University of Science and Technology, Shanghai 200237, China

(Received 9 February 2021; revised 28 April 2021; accepted 3 May 2021; published 11 May 2021)

In this paper, optical simulation of double rapid adiabatic passage (RAP) is investigated in three evanescently
coupled waveguides with longitudinally varying detunings of the propagation constants. Unlike the time-
dependent detuning which is kept linearly increased or decreased when the RAP is applied in two-state atomic
systems, here all possible situations of the corresponding space-dependent detunings with or without sign flips
are considered. At the maximum of the couplings in the waveguide structure, the detunings tend to become zero
and the sign flips are supposed to occur. Theoretical analysis shows that different light evolutions such as light
splitting, complete light transfer, or complete light return can be realized adiabatically, depending on the choices
of the detunings. Moreover, two of the above three phenomena can be observed simultaneously in the waveguide
structure under some circumstances. The theoretical analysis is confirmed by numerical calculations. Due to the
robustness of the double RAP, the technique can be applied to design optical devices such as achromatic beam
splitters or beam couplers.
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I. INTRODUCTION

In recent years, interest in directly applying quantum con-
trol techniques such as Landau-Zener tunneling [1], electro-
magnetically induced transparency, Autler-Townes splitting
[2], and adiabatic elimination [3,4] in optical waveguides has
grown rapidly. It originates from the mathematical similarity
between the time-dependent Schrödinger equation and the
optical wave equation describing the spatial propagation of
monochromatic light in dielectric structures. Classical analogs
of quantum dynamics in optical waveguides has now become
a hot topic and the reasons are the following [5]: First, op-
tical waveguides provide a direct and easy visualization in
space of typical ultrafast phenomena in time; second, optical
waveguides are good platforms to explore coherent dynamical
regimes not yet accessible in atomic systems. Furthermore,
such classical analogs have found important applications in
compact photonic devices [3].

Among those quantum control techniques which have been
optically simulated, adiabatic passages such as the rapid
adiabatic passage (RAP) and the stimulated Raman adia-
batic passage were most investigated in optical waveguides
[6–19]. This is because adiabatic passages in atomic sys-
tems are intrinsically robust and they can take place over a
wide range of the parameters of the incident pulses. Corre-
spondingly, requirements toward the design parameters of the
optical waveguides can be greatly relaxed when carrying out
classical analogs of the adiabatic passages. Therefore, adia-
batic passages were usually applied to design optical devices
with stable performances [13,14,16,17]. What is more, the
lengths of the optical waveguides required by the adiabatic
passages can be further shortened while the adiabaticity is
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still preserved [20–27]. This is achieved with the help of the
“shortcuts to adiabaticity” technique, which was originally
introduced to speed up the adiabatic processes in atomic sys-
tems.

Despite the similarities between the atomic systems and
optical waveguides, it is important to note that there is a con-
ceptional difference between them. As for the atomic states,
the population decrease is generally unavoidable due to the
dephasing effects. However, it is not the case for the optical
waveguides. Light loss in optical waveguides can be negligi-
ble under certain conditions. Such a difference inspires us that,
when borrowing quantum control techniques for the design of
optical devices, not only those which are physically interest-
ing like mentioned above can be employed, those which lack
interest in quantum physics can also be borrowed to design
devices with new functionalities in optical waveguides.

Based on the above idea, we are going to study an ex-
tension of the RAP in optical waveguides in this paper. The
RAP is a well-known adiabatic process in a two-state sys-
tem which can completely transfer the population from the
ground state into the excited state by a linearly chirped pulse.
When extending the use of the RAP in a three-state system
with two chirped pulses, which is a “double RAP” process,
it may also lead to complete population transfer or coherent
superposition of the three states. However, such a technique
in atomic systems more or less lacks interest in quantum
physics. The reasons are mainly the following: On one hand,
the population should be located in the ground state at the
beginning since it is not true if the population initially locates
in the excited states. On the other hand, it is also not interest-
ing if a coherent superposition state is generated between the
excited states because it vanishes rapidly due to the dephasing
effects. In contrast, we do not encounter these problems when
carrying out the classical analog of the double RAP in optical
waveguides. First, light can be incident into any one of the
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FIG. 1. (a) Schematic diagram of double RAP in a ladder-type three-state system where two linearly chirped pulses are employed. Ω jm(t )
and Δ jm(t ) ( j, m = 1, 2, 3) are the time-dependent Rabi frequency and detuning, respectively. (b) Optical simulation of the double RAP in
three evanescently coupled waveguides, where Cjm(z) and �β jm(z)( j, m = 1, 2, 3) are the space-dependent coupling constant and detuning,
respectively. β j (z)( j = 1, 2, 3) and w are the propagation constant and width of the waveguide, while dj ( j = 0, 1, 2, 3, 4) is the distance
between the adjacent waveguides.

waveguides, which correspond to the atomic states, with no
priority. Second, it is meaningful if we observe light transfer
or light splitting in waveguides, since the light loss can rea-
sonably be ignored. Therefore, we consider that the study of
double RAP in optical waveguides is still of interest and may
help us design new optical devices.

We will directly discuss the light propagation in three
evanescently coupled waveguides under the double RAP by
analyzing the “eigenstates” of the coupling matrix of the
coupled mode equations. Since the spatial detuning comes
from the difference between the propagation constants of the
waveguides and can be manipulated with more freedom than
the temporal detuning [28,29], all possible situations of the
spatially varying detunings along the propagation direction
with or without sign flips are investigated. The sign flips are
supposed to occur at the position where the spatial detunings
tend to be zero and the couplings between the waveguides are
increased to their maximum. Note that similar treatment has
been used in Ref. [18] where the light evolution in a three-
waveguide structure was predicted based on the adiabatic
“eigenstates” in the case where the positions of maximum
coupling and zero detuning do not correspond. Based on the
double RAP, theoretical analysis predicts some spatial adia-
batic passages such as light splitting, complete light transfer,
or complete light return under different choices of the detun-
ings. What is more, it is found that two of the above three
phenomena can be observed simultaneously in the waveguide
structure in some cases. Numerical calculations by directly
solving the coupled mode equations and optical simulations
based on the beam propagation method (BPM) are in good
agreement with the theoretical predictions. The double RAP
can have possible applications in optical waveguides for the
design of achromatic beam splitters or beam couplers due to
its robustness.

II. THEORETICAL ANALYSIS

We start by considering a ladder-type three-state system as
shown in Fig. 1(a). The double RAP occurs when two linearly
chirped pulses interact with such a system. In this figure,
Ω jm(t ) and Δ jm(t )( j, m = 1, 2, 3) are the time-dependent
Rabi frequency and detuning. As for the optical simulation
of the double RAP, three evanescently coupled waveguides

as illustrated in Fig. 1(b) are demanded. The distance d j ( j =
0, 1, 2, 3, 4) between the adjacent waveguides and the prop-
agation constant β j (z)( j = 1, 2, 3) are supposed to vary
along the propagation direction. Consequently, we can obtain
the space-dependent coupling constant Cjm(z) and detun-
ing �β jm(z)( j, m = 1, 2, 3), which mimic the time-dependent
Rabi frequency Ω jm(t ) and detuning Δ jm(t ), respectively.
The propagation of the optical fields in waveguide structure
displayed in Fig. 1(b) can then be described by the coupled
mode theory [30],

i
d

dz
a1 = β1(z)a1 + k12(z)a2

i
d

dz
a2 = β2(z)a2 + k21(z)a1 + k23(z)a3

i
d

dz
a3 = β3(z)a3 + k32(z)a2, (1)

where a j ( j = 1, 2, 3) is the electric field amplitude of the
wave traveling in three waveguides. k jm(z)( j, m = 1, 2, 3)
is the coupling coefficient from waveguide m (WGm) to
waveguide j (WG j). Generally, k jm(z) �= km j (z) unless the
two waveguides are identical to each other. By setting aj =
a′

je
−iβ j (z)z, the above equation can be further written in the

following:

i
d

dz

⎛
⎝a′

1
a′

2
a′

3

⎞
⎠

=
⎛
⎝ 0 k12(z)e−i�β21(z)z 0

k21(z)ei�β21(z)z 0 k23(z)e−i�β32(z)z

0 k32(z)ei�β32(z)z 0

⎞
⎠

×
⎛
⎝a′

1
a′

2
a′

3

⎞
⎠, (2)

in which the detuning �β jm(z) is defined as �β jm(z) =
β j (z) − βm(z) ( j, m = 1, 2, 3). We can continue to per-
form the transformation by setting b1 = √

k21(z)/k12(z)a′
1,

b2 = a′
2e−i�β21(z)z and b3 = √

k23(z)/k32(z)a′
3ei�β31(z)z, and
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we obtain that

i
d

dz

⎛
⎝b1

b2

b3

⎞
⎠ =

⎛
⎝ 0 C21(z) 0

C21(z) �β21(z) C32(z)
0 C32(z) �β31(z)

⎞
⎠

⎛
⎝b1

b2

b3

⎞
⎠. (3)

In this equation, the coupling constants C21(z) =√
k12(z)k21(z) and C32(z) = √

k23(z)k32(z) are defined as
the geometrical averages of the above coefficients k jm(z),
respectively.

By mapping the longitudinal z dependence into time de-
pendence, we can clearly see that Eq. (3) is identical to
the time-dependent Schrödinger equation which describes the
light-matter interaction as depicted in Fig. 1(a). The 3 × 3
matrix in Eq. (3), which we call the “coupling matrix”, cor-
responds to the Hamiltonian in the Schrödinger equation.
The coupling constant Cjm(z) corresponds to the Rabi fre-
quency � jm(t ), while the longitudinally varying detuning
�β jm(z) corresponds to the time-dependent detuning � jm(t ).
Therefore, the spatial dynamics of coupled waveguides are
analogous to the temporal dynamics of atomic systems.

As we know, it is quite an effective method to predict the
evolution of the atomic system by analyzing the eigenstates
of the Hamiltonian. Likewise, the treatment can also be very
helpful to understand the dynamics in optical waveguides.
Hence, we are going to calculate the “eigenstates” of the cou-
pling matrix in Eq. (3) for discussing the light propagation in
the three coupled waveguides. However, we find that a general
solution of the coupling matrix with such a form is difficult
to be obtained. The “eigenstates” can only be achieved under
some special circumstances of the matrix. For this reason,
we simply assume here that the two coupling constants are
equal with each other, which is C21(z) = C32(z) = C(z). In
addition, the detuning between WG1 and WG3 is chosen with
two special values, which are �β31(z) = 0 and �β31(z) =
2�β21(z), respectively. In the following, we will first calcu-
late the “eigenstates” of the coupling matrix under the above
assumptions. Then we will discuss the evolution of light in op-
tical waveguides based on the calculated “eigenstates” under
the double RAP.

For the first special choice with �β31(z) = 0, the two de-
tunings, �β32(z) and �β21(z), satisfy the relation �β32(z) =
−�β21(z) due to the definition of �β31(z), which is
�β31(z) = �β32(z) + �β21(z). In this case, the eigenvalues
and the corresponding “eigenstates” of the coupling matrix
can be easily obtained [31], which are

ε+
1 =

�β21(z) +
√

�β2
21(z) + 8C2(z)

2

ε1 = 0

ε−
1 =

�β21(z) −
√

�β2
21(z) + 8C2(z)

2
(4)

and

�+
1 (z) =

√
2

2
sinγ b1 + cosγ b2 +

√
2

2
sinγ b3

�1(z) =
√

2

2
b1 −

√
2

2
b3

�−
1 (z) =

√
2

2
cosγ b1 − sinγ b2

+
√

2

2
cosγ b3, (5)

respectively. In Eq. (5), the mixing angle γ is defined as

tan2γ = 2
√

2C(z)
�β21(z) .

As for the second special choice with �β31(z) = 2�β21(z),
the two detunings between adjacent waveguides now satisfy
�β32(z) = �β21(z). In this case, the calculation becomes
much more complicated. Nevertheless, we can still obtain the
“eigenstates” with analytical expressions. The eigenvalues of
the coupling matrix can be written as

ε+
2 = �β21(z) + C′(z)

ε2 = �β21(z)

ε−
2 = �β21(z) − C′(z), (6)

where the parameter C′(z) is defined as C′(z) =√
�β2

21(z) + 2C2(z). Correspondingly, the “eigenstates”
of the coupling matrix have the following form:

�+
2 (z) =

√
1 + cos2θ√

2
sinϕb1 + sinθ√

2
b2

+
√

1 + cos2θ√
2

cosϕb3

�2(z) =
√

2

2
sinθb1 + cosθb2 −

√
2

2
sinθb3

�−
2 (z) = −

√
1 + cos2θ√

2
cosϕb1 + sinθ√

2
b2

−
√

1 + cos2θ√
2

sinϕb3, (7)

in which the two mixing angles, θ and ϕ, are defined as tanθ =√
2C(z)

�β21(z) and tanϕ = C′(z)−�β21(z)
C′(z)+�β21(z) , respectively.

According to the above “eigenstates” given in Eqs. (5) and
(7), we can proceed to discuss the evolution of light in the
three coupled waveguides under the double RAP. Note that the
adiabatic condition must be fulfilled for the adiabatic passage
to occur, which is∣∣∣∣

〈
d� j

dz
|�±

j

〉∣∣∣∣ � |ε j − ε±
j |( j = 1, 2). (8)

Generally speaking, the adiabatic condition requires that the
coupling constants and the detunings should vary smoothly.

In the framework of the double RAP, the variations of the
two identical coupling constants, C32(z) and C21(z), are accor-
dant with what is depicted in Fig. 1(b). At the central position
of the structure, which is z = 0, the adjacent waveguides have
minimum distances and corresponding maximum couplings.
Theoretically, the waveguide lengths in Fig. 1(b) are supposed
to be infinitely long. Therefore, the couplings at the inputs and
outputs of the waveguides can be safely ignored.

As for the two spatially varying detunings, �β32(z) and
�β21(z), they are supposed to be linearly varied along the
propagation direction. In addition, the two detunings can have
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sign flips or not. Therefore, the two detunings can be written
as �β jm(z) = ±αz or �β jm(z) = ±|αz| with α the positive
“linear chirp rate”. The expression implies that the absolute
values of the two detunings, |�β jm(z)|, reach their maximum
at the inputs and outputs of the waveguides. The two detunings
tend to be zero at z = 0 where the sign flips may appear.

Since there are many possibilities of the two longitudinally
varying detunings, various light evolutions in the waveguide
structure can be expected. Thus we are going to investigate all
possible situations in the following subsections.

A. Sign flips in both detunings

We first consider the situation that both longitudinally
varying detunings have sign flips, which is �β32(z) = ±αz
and �β21(z) = ±αz. In this situation, the two detunings can
increase (decrease) simultaneously along the propagation di-
rection or they can vary oppositely. Since the same or the
opposite variations of the two detunings may lead to differ-
ent light propagations in the waveguide structure, we should
discuss the two cases separately.

1. Same variations of the two detunings

If both detunings have the same variations, which is
�β32(z) = �β21(z) = ±αz, then it results in �β31(z) =
2�β21(z). In this case, light will evolve adiabatically fol-
lowing the “eigenstates” in Eq. (7) as long as the adiabatic
condition is satisfied.

Given �β32(z) = �β21(z) = αz, we find that C(z) = 0 and
�β21(z) = −∞ in Eq. (7) when the light starts to propagate
from z = −∞. Consequently, the two mixing angles θ and ϕ

in Eq. (7) are calculated to be π and π
2 , respectively. When

the light arrives at z = 0, the coupling C(z) reaches its maxi-
mum and the detuning �β21(z) tend to zero. At this position,
the two mixing angles θ and ϕ gradually evolve to π

2 and
π
4 , respectively. When the light finally comes out from the
waveguides at z = +∞, the coupling C(z) vanishes again and
the detuning �β21(z) = +∞, which leads that both mixing
angles gradually become zero. According to the evolutions of
the mixing angles θ and ϕ, the three “eigenstates” in Eq. (7)
will evolve following

�+
2 (z) :b1 →

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)
→ b3

�2(z) : − b2 →
(√

2

2
b1 −

√
2

2
b3

)
→ b2

�−
2 (z) : − b3 →

(
− 1

2
b1 +

√
2

2
b2 − 1

2
b3

)
→ −b1. (9)

Now we can predict the light propagation in waveguides
from the above evolutions of the three “eigenstates”. Suppose
the light is initially incident into WG1, which means that the
normalized electric field amplitude b1 = 1, then the light will
evolve following the adiabatic state �+

2 (z). We can see from
the adiabatic state that a “superposition state” of the three
waveguides is generated at z = 0, indicating part of the light in
WG1 is gradually coupled into WG3 through the intermediate
waveguide (WG2). When the light comes out from the waveg-
uide structure, all the light left in WG1 and WG2 is coupled

into WG3. Thus we can predict complete light transfer from
WG1 to WG3. Similar is true when the light is initially inci-
dent into WG3. We can find complete light transfer from WG3
to WG1 through WG2, following the adiabatic state �−

2 (z). If
the light starts to propagate from the intermediate waveguide,
then the light will evolve adiabatically following �2(z). It is
found that all the light in WG2 will be coupled into the two
outer waveguides WG1 and WG3 with the same intensity at
position z = 0. However, the light in the outer waveguides
will transfer back into WG2 and finally come out from this
waveguide. Therefore, complete light return can be expected.

We can carry out similar analysis when �β32(z) =
�β21(z) = −αz. Complete light transfer and complete light
return are also found in this case, which are just the same as
those described above. Thus we do not show them here.

2. Opposite variations of the two detunings

If the two detunings along the propagation direction vary
the opposite, which corresponds to �β32(z) = −�β21(z) =
±αz, then we find that the detuning between WG1 and WG3
satisfies �β31(z) = 0. Therefore, the light will propagate fol-
lowing the “eigenstates” in Eq. (5), provided the adiabatic
condition holds. Since the analysis is the same as that in the
above subsection, we will directly give the evolutions of the
mixing angles and the “eigenstates” in the following.

Suppose �β32(z) = −�β21(z) = αz, then we find that the
mixing angle γ in Eq. (5) will evolve according to 0 → π

4 →
π
2 during the light propagation from the inputs to the outputs
through position z = 0. Correspondingly, the evolutions of the
three “eigenstates” obey

�+
1 (z) : b2→

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)
→

(√
2

2
b1 +

√
2

2
b3

)

�1(z) :

√
2

2
b1 −

√
2

2
b3

�−
1 (z) :

(√
2

2
b1+

√
2

2
b3

)
→

(
1

2
b1−

√
2

2
b2+1

2
b3

)
→ −b2.

(10)

Based on the above expression, we can continue to discuss
the dynamics of light in the waveguide structure. If the light
is initially incident into WG2, it will be totally coupled into
WG1 and WG3 with the same intensity after the propaga-
tion, as described by the adiabatic state �+

1 (z). Therefore,
a one-to-two beam splitting can be realized. If the light is
incident into WG1 at the inputs, it is found that its evolution
does not follow any one of the adiabatic states in Eq. (10).
Nevertheless, we note that the situation can be considered as a
superposition of the adiabatic states �1(z) and �−

1 (z), which

is b1 =
√

2
2 [�1(z) + �−

1 (z)] at the inputs. Suppose the adia-
batic condition holds, then the two adiabatic states �1(z) and
�−

1 (z) can evolve independently and we can still predict the
light evolution. At the outputs, the adiabatic state �1(z) does
not change after the light propagation while �−

1 (z) gradually
evolves into −b2. Therefore, the superposition of the two adia-
batic states finally evolves into 1

2 b1 −
√

2
2 b2 − 1

2 b3. Hence, we
predict a light splitting with half of the light intensity coming
out of WG2 while the left half is equally distributed between
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WG1 and WG3. Similar analysis can be carried out when the
light is initially incident into WG3 and the prediction is the
same as that when the light starts to propagate in WG1.

As for the case when �β32(z) = −�β21(z) = −αz, the
analysis leads to the same results as those when �β32(z) =
−�β21(z) = αz. We do not describe them here for simplicity.

B. Sign flip in either one of the two detunings

Now we consider the second situation that only one of
the two detunings has a sign flip. In this situation, there are
still several different choices of the two detunings. First, we
suppose the detuning �β32(z) has no sign flip while the de-
tuning �β21(z) is still linearly varied with a sign flip, which
is �β32(z) = |αz| and �β21(z) = ±αz. Since the increase or
decrease of the detuning �β21(z) along the propagation direc-
tion will lead to different light evolutions, we should discuss
them separately.

1. Linear increase of detuning �β21(z)

If �β21(z) is linearly increased along the propagation di-
rection, which corresponds to �β21(z) = αz, we can find that
the detuning �β31(z) satisfies the condition �β31(z) = 0 dur-
ing the light propagation from z = −∞ to z = 0. When the
light propagates from z = 0 to z = +∞, the detuning �β31(z)
satisfies another condition �β31(z) = 2�β21(z). Therefore,
the light evolution will first follow the “eigenstates” in Eq. (5)
when it is propagating in the left half of the waveguide
structure. If the light is propagating in the right half of the
waveguide structure, it will adiabatically follow the “eigen-
states” in Eq. (7).

When the light propagates from the inputs to z = 0, the
mixing angle γ in Eq. (5) will evolve from π

2 to π
4 . This leads

to the evolutions of the “eigenstates” that

�+
1 (z) :

(√
2

2
b1 +

√
2

2
b3

)
→

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)

�1(z) :

√
2

2
b1 −

√
2

2
b3

�−
1 (z) : −b2 →

(
1

2
b1 −

√
2

2
b2 + 1

2
b3

)
. (11)

During the light propagation from z = 0 to the outputs, the
mixing angle θ in Eq. (7) will evolve from π

2 to 0, while ϕ

will evolve from π
4 to 0. Correspondingly, the “eigenstates” in

Eq. (7) follows

�+
2 (z) :

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)
→ b3

�2(z) : (

√
2

2
b1 −

√
2

2
b3) → b2

�−
2 (z) :

(
− 1

2
b1 +

√
2

2
b2 − 1

2
b3

)
→ −b1. (12)

If the light is initially incident into WG2, the evolution
will first follow the adiabatic state �−

1 (z) and then �−
2 (z)

based on the expressions in Eqs. (11) and (12). Therefore, we
can predict a complete switch of light from WG2 to WG1.
During the process, part of the light will be coupled into

WG3. When the light starts to propagate from WG1 (WG3),
it can be considered as a superposition of the adiabatic states
�+

1 (z) and �1(z), which is b1 =
√

2
2 [�+

1 (z) + �1(z)] (b3 =√
2

2 [�+
1 (z) − �1(z)]). Under the adiabatic condition, the adi-

abatic states will evolve independently following �+
1 (z) and

�1(z) in the left half of the waveguide structure. From z = 0
to the outputs, the adiabatic states will evolve independently
following �+

2 (z) and �2(z). Finally, we can obtain the light

distribution with the form
√

2
2 (b2 + b3) (

√
2

2 (b3 − b2)), which
implies a one-to-two beam splitting with equal intensity.

2. Linear decrease of detuning �β21(z)

Suppose the detuning �β21(z) is linearly decreased along
the propagation direction, which is �β21(z) = −αz, we find in
this case that the evolutions of all mixing angles and “eigen-
states” are just opposite to those when �β21(z) = αz. The
detuning �β31(z) will first satisfy �β31(z) = 2�β21(z) in the
left half of the waveguide structure, then the condition is ful-
filled �β31(z) = 0 in the right half of the structure. Therefore,
the light evolution will firstly obey one of the “eigenstates” in
Eq. (7),

�+
2 (z) : b3 →

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)

�2(z) : b2 →
(√

2

2
b1 −

√
2

2
b3

)

�−
2 (z) : −b1 →

(
− 1

2
b1 +

√
2

2
b2 − 1

2
b3

)
, (13)

when the light starts to propagate from z = −∞ to z = 0.
During the process, the mixing angle θ in Eq. (7) evolves from
0 to π

2 while ϕ evolves from 0 to π
4 .

When the light continues to propagate from z = 0 to z =
+∞, it will evolve following one of the “eigenstates” in
Eq. (5), which are

�+
1 (z) :

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)
→

(√
2

2
b1 +

√
2

2
b3

)

�1(z) :

√
2

2
b1 −

√
2

2
b3

�−
1 (z) :

(
1

2
b1 −

√
2

2
b2 + 1

2
b3

)
→ −b2, (14)

with the mixing angle γ evolves from π
4 to π

2 .
The opposite evolutions of the “eigenstates” given in

Eqs. (13) and (14) to those in Eqs. (11) and (12) result in
quite different light dynamics in the waveguide structure. If
the light is initially incident into WG1, it will totally come
out from WG2 although part of the light is coupled into WG3
during the propagation. This can be obtained by observing the
adiabatic states �−

2 (z) and �−
1 (z). When the light is incident

into WG2 (WG3) at the inputs, it will come out from WG1
and WG3 with the same intensity, following the adiabatic
states �2(z) (�+

2 (z)) and �1(z) (�+
1 (z)). Therefore, we can

observe complete light transfer and one-to-two beam splitting
simultaneously in the waveguide structure under the current
choice of the two detunings.
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In the situation that either one of the two detunings can
have a sign flip, there are still many other choices. We can
assume �β32(z) = −|αz| and �β21(z) = ±αz. Except for
this, we can also assume that �β32(z) have a sign flip while
�β21(z) does not, which is �β32(z) = ±αz and �β21(z) =
±|αz|. However, a closer look at these choices shows that we
do not need to discuss them because they give similar light
evolutions in the waveguide structure to what we discussed
when �β32(z) = |αz| and �β21(z) = ±αz.

C. No sign flips in both of the two detunings

The last situation of the two longitudinally varying de-
tunings is that both of them have no sign flips, which is
�β32(z) = ±|αz| and �β21(z) = ±|αz|. Similar to the above
discussions, the two detunings without sign flips can have the
same or the opposite variations. Since the two choices may
result in different evolutions of light, we should treat them
separately.

1. Same variations of the two detunings

Suppose the two detunings without sign flips have the same
variations, which can be written as �β32(z) = �β21(z) =
±|αz|, then the detuning between WG1 and WG3 will always
satisfy the condition �β31(z) = 2�β21(z). Therefore, the evo-
lution of light will follow the “eigenstates” in Eq. (7) under the
adiabatic condition.

We can take �β32(z) = �β21(z) = |αz| as an example for
the analysis. When the light starts to propagate from the
inputs to the outputs through z = 0, the evolutions of the
two mixing angles θ and ϕ in Eq. (7) are 0 → π

2 → 0 and
0 → π

4 → 0, respectively. The corresponding evolutions of
the “eigenstates” are

�+
2 (z) : b3 →

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)
→ b3

�2(z) : b2 →
(√

2

2
b1 −

√
2

2
b3

)
→ b2

�−
2 (z) : −b1 →

(
− 1

2
b1 +

√
2

2
b2 − 1

2
b3

)
→ −b1. (15)

It is clear from Eq. (15) that we can always predict com-
plete light return in this case, no matter which individual
waveguide is initially incident into. During the propagation,
the light in one waveguide will be coupled into its neighboring
waveguides.

As for the choice of the two detunings �β32(z) =
�β21(z) = −|αz|, it also leads to the prediction of complete
light return, regardless the incidence of the light at the inputs.

2. Opposite variations of the two detunings

If the two longitudinally varying detunings without
sign flips have opposite variations, which corresponds to
�β32(z) = −�β21(z) = ±|αz|, we find that the condition
�β31(z) = 0 is fulfilled. Thus, the light will propagate fol-
lowing the “eigenstates” in Eq. (5).

We can take �β32(z) = −�β21(z) = |αz| as an instance
for the analysis. During the propagation of light from z = −∞
to z = +∞ through z = 0, the mixing angle γ in Eq. (5) will

evolve following π
2 → π

4 → π
2 while the “eigenstates” will

evolve based on

�+
1 (z) :

(√
2

2
b1 +

√
2

2
b3

)
→

(
1

2
b1 +

√
2

2
b2 + 1

2
b3

)

→
(√

2

2
b1 +

√
2

2
b3

)

�1(z) :

√
2

2
b1 −

√
2

2
b3

�−
1 (z) : −b2 →

(
1

2
b1 −

√
2

2
b2 + 1

2
b3

)
→ −b2. (16)

In this case, we can find complete light return if it is
initially incident into WG2, as described by the adiabatic
state �−

1 (z). If the light is incident into WG1 at the inputs,
it can be considered as a superposition of the adiabatic states
�+

1 (z) and �1(z), which is b1 =
√

2
2 [�+

1 (z) + �1(z)]. After
the independent evolutions of the two adiabatic states under
the adiabatic condition, finally we can still obtain complete
light return in WG1. The phenomenon is the same if the light
starts to propagate from WG3. However, we note that the
prediction actually fails under the incidence of light into WG1
or WG3, which will be explained in detail in the following
section.

As for the case �β32(z) = −�β21(z) = −|αz|, the light
evolution is the same as that when β32(z) = −�β21(z) = |αz|
and we do not show it here.

III. NUMERICAL CALCULATIONS

In the framework of double RAP, the above theoretical
analysis has predicted light splitting, complete light transfer,
or complete light return under different choices of the two spa-
tially varying detunings. In this section, we are going to carry
out numerical calculations to demonstrate the above analy-
sis. First, we will directly solve the coupled mode equations
Eq. (3) to verify the theoretical predictions. Afterward, we
will optically simulate the propagation of light in waveguides
with designed parameters according to the calculation results
of Eq. (3).

When solving the coupled mode equations Eq. (3), we will
make use of the fourth-order Runge-Kutta method. During
the calculations, the two identical coupling constants between
adjacent waveguides are supposed to be with Gaussian shapes,
which are C32(z) = C21(z) = C0exp(−ln4z2/z2

0 ) with C0 the
amplitude of the coupling constant and z0 the full width at half
maximum of the Gaussian coupling-constant pulse. The as-
sumption is consistent with that in theoretical analysis. At the
inputs and outputs of the waveguide structure, the couplings
can be ignored. At the central position z = 0, the couplings
reach their maximum. In the calculations, all the parameters
are chosen with respect to z0. The amplitude of the coupling
constant is fixed at C0 = 50/z0, while the positive “linear
chirp rate” of the two detunings is fixed at α = 10/z2

0.
The optical analog of the double RAP is carried out in

planar waveguides in the xz plane based on the calcula-
tion results of Eq. (3). We are going to employ the BPM
method [32], which has been widely used to design optical
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FIG. 2. Evolution of light when �β32(z) = �β21(z) = αz. (a) and (c) are obtained by solving Eq. (3) while (b) and (d) are the optical
simulations in waveguides. During the light propagation, �n1 decreases following 0.001 → 0.0008 → 0.0005 while �n3 increases following
0.0005 → 0.0008 → 0.001. The distances shown in Fig. 1(b) are d1 = d4 = 14 μm and d2 = d3 = 10 μm.

waveguides and predict the light evolution in such structures.
In the optical simulations, straight waveguides instead of
curved ones are used to mimic the Gaussian-type coupling
constants for simplicity, which is due to the reason that Cjm(z)
decreases nearly exponentially with the distance between
waveguides d . As to the space-dependent detunings �β jm(z),
they can be approximately realized by linearly modifying
the refractive indices of the waveguides along the propaga-
tion direction. Experimentally, reconfigurable photoinduced
waveguides on a SrxBa1−xNb2O6 (SBN) crystal with x = 0.61
are good candidates for this purpose [6,33]. The combination
of a local illumination by the control beam and the electric
field applied to the SBN crystal can lead to a local modifica-
tion of the refractive index of the crystal.

During the optical simulations, the refractive index of the
substrate is chosen as ns = 2.3109. The widths and lengths of
the three waveguides are fixed at 5 μm and 80 mm, respec-
tively. The wavelength of the incident light is λ = 633 nm.
The refractive index contrast of WG2 with respect to ns is
kept unchanged at �n2 = 0.0008 while those of the other
two waveguides, �n1 and �n3, are linearly varied along the
propagation direction. However, the refractive index contrasts
of WG1 and WG3 at the position z = 0 are always set equal
to �n2, which is �n1(z = 0) = �n3(z = 0) = 0.0008. This
guarantees that the two detunings are zero at this position.
As to the distances between the three waveguides, they are
supposed to be minimum at the same position z = 0, which
is d0 = 2 μm. Therefore, the corresponding maximum cou-
plings of the three waveguides are estimated to be C0 ≈
0.4 mm−1. This is done by observing light oscillation between
two identical parallel waveguides with their refractive index
contrasts equal to 0.0008. The maximum coupling is obtained
by calculating the coupling length L according to the relation
C0 = π

2L .
In the following, we are going to give the calculation

results with respect to different choices of the two spatially

varying detunings. Note that only those choices which are
analyzed in detail in Sec. II are numerically calculated.

A. Sign flips in both of the two detunings

We first carry out the calculations in the situation that
both of the two longitudinally varying detunings have sign
flips. Same as the discussions in Sec. II, light evolutions are
calculated separately when the two detunings have the same
or the opposite variations along the propagation direction.

If the two detunings vary the same by assuming �β32(z) =
�β21(z) = αz, then the refractive index contrast of WG1,
�n1, is set linearly decreased from 0.001 to 0.0008 in the left
half of the waveguide structure. After the light passes through
the central position z = 0, �n1 continues to decrease linearly
from 0.0008 to 0.0005. Correspondingly, the refractive in-
dex contrast of WG3, �n3, increases following 0.0005 →
0.0008 → 0.001 during the light propagation through z = 0.
Under the choices of �n1 and �n3, the linear increases of the
two detunings, �β32(z) and �β21(z), can be approximately
realized in the waveguide structure. The absolute values of
the two detunings at the inputs and outputs are close to each
other and they are the maximum, which are estimated to be
�βmax

jm ≈ 1.69mm−1. This is done by calculating the prop-

agation constants of the waveguides β j = n j
eff k0( j = 1, 2, 3)

with their refractive index contrasts fixed at 0.001, 0.0008, and
0.0005, respectively. In this expression, n j

eff is the effective
refractive index while k0 = 2π/λ is the wave number. The
distances between the three waveguides at the inputs and
outputs are set to be d1 = d4 = 14 μm and d2 = d3 = 10 μm.
Calculation results by solving Eq. (3) and optical simulations
based on the BPM method are displayed in Fig. 2.

Figures 2(a) and 2(c) are the direct calculations of Eq. (3).
In Fig. 2(a), we can find that light is completely switched
from WG1 to WG3 through the intermediate waveguide. At
z = 0, half of the light intensity is coupled into WG2 while
the other half is equally distributed in WG1 and WG3. We
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FIG. 3. Similar to Fig. 2 but with �β32(z) = −�β21(z) = αz. Both �n1 and �n3 are increased following 0.0005 → 0.0008 → 0.001
during the light propagation. The four distances are d1 = d3 = 10 μm and d2 = d4 = 14 μm.

can also find a similar light switch from WG3 to WG1 and
the result is not shown here. When the light propagation starts
from WG2, it is found that it will still come out from this
waveguide, as shown in Fig. 2(c). At z = 0, all the light will
be equally coupled into WG1 and WG3. These calculation
results are exactly the same as those predictions in the above
analysis. Figures 2(b) and 2(d) are the corresponding optical
analogs of Figs. 2(a) and 2(c) in waveguides. The simulations
are also in good agreement with the calculation results based
on Eq. (3). Therefore, we find that we can simultaneously
observe complete light transfer and complete light return in
the waveguide structure.

If the two detunings vary the opposite by assuming
�β32(z) = −�β21(z) = αz, then the refractive index con-
trasts of WG1 and WG3, �n1 and �n3, are set to increase
following 0.0005 → 0.0008 → 0.001 from the inputs to the
outputs through z = 0. The distances between the waveguides
at the inputs and outputs are set as d1 = d3 = 10μm and
d2 = d4 = 14μm. The calculations based on Eq. (3) and the
corresponding optical simulations are shown in Fig. 3.

We can see from Fig. 3(a) that all the light which is initially
incident into WG2 will be adiabatically coupled into WG1
and WG3 with the same intensity. When the light starts to
propagate from WG1, we can also obtain a light splitting with

half of the total intensity coming out of WG2 while the left is
equally distributed in WG1 and WG3, as shown in Fig. 3(c).
If the light is initially incident into WG3, the evolution is the
same as that in Fig. 3(c) and we do not show it here. These
calculations are consistent with the above theoretical analysis.
The optical simulations in waveguides displayed in Figs. 3(b)
and 3(d) also agree well with the results in Figs. 3(a) and 3(c).

In Figs. 3(c) and 3(d), the light evolution looks non-
adiabatic due to the rapid oscillation of light between WG1
and WG3. We can simply demonstrate the adiabaticity by
calculating the light intensity coming out of one of the three
waveguides under variations of the coupling constant ampli-
tude C0 and the positive “linear chirp rate” α. For instance,
light coming out of WG3 under variations of C0 and α is given
in Fig. 4(a). It is clear from this figure that the light intensity
coming out of WG3 is stable under fluctuations of the two
parameters as long as they are strong enough to satisfy the
adiabatic condition. Furthermore, we can also verify the adia-
baticity by the evolutions of the eigenvalues in Fig. 4(b). Since
b1 =

√
2

2 [�1(z) + �−
1 (z)] at the inputs based on the analysis,

we should focus on the evolutions of the two corresponding
eigenvalues ε1 and ε−

1 . We can see from Fig. 4(b) that the
two eigenvalues do not cross any more after they separate
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FIG. 4. (a) Light coming out of WG3 under variations of the coupling constant amplitude C0 and the positive “linear chirp rate” α, and
(b) evolutions of the eigenvalues in the case of Fig. 3(c).
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FIG. 5. Similar to Fig. 2 but with �β32(z) = |αz| and �β21(z) = αz. During the light propagation, �n1 decreases following 0.001 →
0.0008 → 0.0005 while �n3 varies following 0.001 → 0.0008 → 0.001. The four distances are d1 = d3 = d4 = 14 μm and d2 = 10 μm.

at the inputs. Therefore, the two adiabatic states �1(z) and
�−

1 (z) will evolve independently and the adiabaticity is well
preserved.

B. Sign flip in either one of the two detunings

For the situation that there is a sign flip in either one of the
two detunings, we will carry out the numerical calculations
by choosing �β32(z) = |αz| and �β21(z) = ±αz according to
the analysis in Sec. II. The results are given separately when
the detuning �β21(z) is linearly increased or decreased.

When �β21(z) = αz, the refractive index contrast of WG1,
�n1, is set to decrease following 0.001 → 0.0008 → 0.0005
during the light propagation through z = 0. As to that of WG3,
�n3, it is linearly decreased from 0.001 to 0.0008 in the left
half of the waveguide structure. After the light passes through
the central position, it starts to increase linearly from 0.0008
to 0.001. The distances between the waveguides at the inputs
and outputs are d1 = d3 = d4 = 14 μm and d2 = 10 μm. The
calculation results and the corresponding optical simulations
are presented in Fig. 5.

We can clearly see from Fig. 5(a) that, light will be com-
pletely transferred into WG1 when it is initially incident into
WG2. If the light starts to propagate from WG1 (WG3), it will
always come out from WG2 and WG3 with the same intensity.

In Fig. 5(c), we only present the light evolution starting from
WG1. The calculations are the same as the theoretical predic-
tions. The corresponding classical analogs in Figs. 5(b) and
5(d) are accordant with the calculations in Figs. 5(a) and 5(c).

Since the light evolution looks nonadiabatic due to the
rapid oscillations in Figs. 5(c) and 5(d), we again give a
contour plot of the light intensity coming out of WG3 under
variations of C0 and α to demonstrate the adiabaticity, which
is shown in Fig. 6(a). We can see from this figure that the light
intensity out from WG3 is still stable against fluctuations of
C0 and α. The evolutions of the eigenvalues in Fig. 6(b) also
verify the adiabaticity. Since b1 =

√
2

2 [�+
1 (z) + �1(z)] at the

inputs, we should first focus on the evolutions of eigenvalues
ε+

1 and ε1. After the light passes through the central position,
the two eigenvalues will start to evolve along ε+

2 and ε2.
It is clear from Fig. 6(b) that the two eigenvalues will not
cross anymore after they separate at the inputs. Therefore, the
corresponding adiabatic states can evolve independently and
the adiabaticity is preserved.

When �β21(z) = −αz, it corresponds that the detuning
�β21(z) is linearly decreased along the propagation direction.
In this case, the refractive index contrast of WG1, �n1, is set
to increase following 0.0005 → 0.0008 → 0.001 while the
variation of �n3 is the same as that in the case of �β21(z) =
αz during the light propagation through z = 0. The distances
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FIG. 6. (a) Light coming out of WG3 under variations of the coupling constant amplitude C0 and the positive “linear chirp rate” α, and
(b) evolutions of the eigenvalues in the case of Fig. 5(c).
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FIG. 7. Similar to Fig. 2 but with �β32(z) = |αz| and �β21(z) = −αz. During the light propagation, �n1 increases following 0.0005 →
0.0008 → 0.001 while �n3 varies following 0.001 → 0.0008 → 0.001. The four distances are d1 = 10 μm and d2 = d3 = d4 = 14 μm.

between the waveguides at the inputs and outputs are set to
be d1 = 10μm and d2 = d3 = d4 = 14μm. Results including
the calculations based on Eq. (3) and the optical simulations
in waveguides are given in Fig. 7.

If the light is initially incident into WG1, we can find from
Fig. 7(a) that it will be completely transferred into WG2.

However, WG3 still takes part into the coupling during the
evolution of light. If the light starts to propagate from WG2
or WG3, we will find the appearance of light splitting. The
light will always come out from WG1 and WG3 with equal
intensity, as displayed in Figs. 7(c) and 7(e). These calculation
results based on Eq. (3) are exactly the same as the theoretical
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FIG. 8. Similar to Fig. 2 but with �β32(z) = �β21(z) = |αz|. During the light propagation, the variations of �n1 and �n3 follow 0.0005 →
0.0008 → 0.0005 and 0.001 → 0.0008 → 0.001, respectively. The four distances are d1 = d2 = 10 μm and d3 = d4 = 14 μm.
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FIG. 9. Similar to Fig. 2 but with �β32(z) = −�β21(z) = |αz|. During the light propagation, the variations of �n1 and �n3 follow
0.001 → 0.0008 → 0.001. The four distances are d1 = d2 = d3 = d4 = 14 μm.

predictions. Still, the corresponding optical simulations agree
very well with the results in Figs. 7(a), 7(c), and 7(e), as can
be found in Figs. 7(b), 7(d), and 7(f). In this case, we find
that we can observe light splitting and complete light transfer
simultaneously in the waveguide structure.

C. No sign flips in both of the two detunings

The last possibility of the two longitudinally varying de-
tunings is that they both have no sign flips while they vary
the same or the opposite. According to the theoretical anal-
ysis, we will calculate the light evolutions in the case of
�β32(z) = �β21(z) = |αz| and �β32(z) = −�β21(z) = |αz|,
respectively.

If the two detunings without sign flips have the same varia-
tions, which is �β32(z) = �β21(z) = |αz|, then the refractive
index contrast of WG1, �n1, will vary following 0.0005 →
0.0008 → 0.0005 during the light propagation. As to the vari-
ation of �n3, it will follow 0.001 → 0.0008 → 0.001. The
distances between the waveguides at the inputs and outputs
are set to be d1 = d2 = 10μm and d3 = d4 = 14μm. The
calculation results based on Eq. (3) and the corresponding
optical simulations are illustrated in Fig. 8.

In this figure, either the calculations from Eq. (3) or the
optical simulations clearly show that we will always observe
complete light return in this case, no matter which waveguide
is initially incident into. Besides, the neighboring waveguides
will be involved into the coupling during the light propa-
gation. When the light starts to propagate from WG3, the
evolution is similar to that in Fig. 8(a) and we do not present it
here. All the results in Fig. 8 are consistent with the theoretical
predictions in Sec. II.

If the two detunings without sign flips have the opposite
variations, which is �β32(z) = −�β21(z) = |αz|, then both

of the two refractive index contrasts of WG1 and WG3, �n1

and �n3, will vary the same following 0.001 → 0.0008 →
0.001. The distances between the waveguides at the inputs
and outputs are also the same, which are d1 = d2 = d3 =
d4 = 14 μm. The corresponding calculation results are given
in Fig. 9.

In this figure, we can observe complete light return when
the light is initially incident into WG2. During the propaga-
tion, the two neighboring waveguides WG1 and WG3 take
part in the coupling. The calculation results still agree with
theoretical predictions. However, we note that the light evo-
lution is nonadiabatic if it is incident into WG1 (WG3) at
the inputs. The calculation results are contrary to the the-
oretical analysis in Sec. II C that there will be a complete
light return. The nonadiabatic light evolution is clear by
calculating the light coming out of WG1 under variations
of C0 and α if it starts to propagate from this waveguide,
which is depicted in Fig. 10(a). We can see from this figure
that light intensity coming out of WG1 is quite sensitive
to the two parameters, indicating the nonadiabaticity of the
light evolution. The failure of the prediction in Sec. II C
can be explained by the evolutions of the eigenvalues in
Fig. 10(b). Since b1 =

√
2

2 [�+
1 (z) + �1(z)] at the inputs, we

can see from this figure that the corresponding two eigenval-
ues ε+

1 and ε1 will coincide with each other again during the
propagation. Therefore, the two adiabatic states �+

1 (z) and
�1(z) cannot evolve independently and the adiabaticity is not
preserved.

The numerical demonstrations of the adiabatic light evo-
lution indicate that the double RAP is robust in most of the
cases mentioned above, which is similar to the other adia-
batic passages [9,12–17]. The robustness of the double RAP
promises possible applications of the technique in designing
devices such as achromatic beam splitter or beam coupler. The
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FIG. 10. (a) Light coming out of WG1 under variations of the coupling constant amplitude C0 and the positive “linear chirp rate” α, and
(b) evolutions of the eigenvalues when the light is initially incident into WG1 in the case of �β32(z) = −�β21(z) = |αz|.
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devices can even possess the two functionalities simultane-
ously without adjusting the parameters.

IV. CONCLUSIONS

To conclude, we have investigated the classical analog of a
quantum control technique, the double RAP, in three evanes-
cently coupled waveguides. The two detunings between the
waveguides are supposed to be space dependent and they can
have sign flips or not when they tend to zero. Both the the-
oretical analysis and numerical calculations show that beam

splitting, complete light transfer, or complete light return can
be observed in the waveguide structure, which is determined
by the choice of the two detunings. The technique in optical
waveguides can have possible applications in designing de-
vices such as the achromatic beam splitter or beam coupler.
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