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Quantum signatures of chaos in a cavity-QED-based stimulated Raman adiabatic passage
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Nonlinear stimulated Raman adiabatic passage (STIRAP) is a fascinating physical process that dynamically
explores chaotic and nonchaotic phases. In a recent paper [A. Dey and M. Kulkarni, Phys. Rev. Res. 2, 042004(R)
(2020)], such a phenomenon is realized in a cavity-QED platform. There, the emergence of chaos and its impact
on STIRAP efficiency are mainly demonstrated in the semiclassical limit. In the present paper we treat the
problem in a fully quantum many-body framework. With the aim of extracting quantum signatures of a classically
chaotic system, it is shown that an out-of-time-ordered correlator (OTOC) measure precisely captures chaotic
and nonchaotic features of the system. The prediction by OTOC is in precise matching with classical chaos
quantified by Lyapunov exponent analysis. Furthermore, it is shown that the quantum route corresponding to
the semiclassical followed state encounters a dip in single-particle purity within the chaotic phase, depicting a
consequence of chaos. A dynamics through the chaotic phase is associated with spreading of the many-body
quantum state and an irreversible increase in the number of participating adiabatic eigenstates.
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I. INTRODUCTION

A cavity-QED (c-QED) system is an interesting plat-
form that holds immense potential of implementing quantum
networks [1–6], quantum information processing and commu-
nication [1,7–9], efficient quantum simulators for many-body
systems [10–13], etc. The light-matter interaction in a
cavity-QED offers Jaynes-Cummings (JC)-like [14–16] and
Bose-Hubbard-like [17] nonlinearities at various regimes of
parameters. Such nonlinear features result in exciting novel
phenomena such as photon self-trapping [14,15,18], nonlinear
transport [19,20], and chaos [16,21–23].

Chaos, in classical systems, is well defined as the sensi-
tivity to the initial condition and the exponential divergence
of trajectories (with slightly different initial conditions) with
time. However, the nature of manifestation, mechanisms, and
diagnostics of chaos in the quantum counterpart of classi-
cally chaotic systems is relatively less established and is
an active area of research. Equilibration of closed quan-
tum systems is a fundamentally important open question and
it can be a consequence of chaos in their classical coun-
terparts [24,25]. Quantum chaos also delves into the deep
connections among localization of quantum-mechanical wave
functions, quantum-classical transitions, and decoherence
mechanisms [26], and deals with irreversibility in quantum
systems with few degrees of freedom [27]. Therefore, un-
derstanding such features in complex quantum systems and
their correspondence with classical counterparts demands a
thorough theoretical and experimental investigation. A num-
ber of platforms have explored the quantum characteristics of
classically chaotic systems. Some of them are optical real-
izations of kicked harmonic oscillators [28], ultracold atoms
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[29–31], atom-optics realization [32], and cavity-QED setups
[23,33,34].

While the sensitivity to initial conditions for classical
systems is quantified by Lyapunov exponent (LE) analysis,
the corresponding quantum systems usually reflect integrabil-
ity via level spacing statistics of eigenvalue spectra [35,36],
participation number of eigenstates [22,37], the out-of-time-
ordered correlator (OTOC) [38,39], etc. OTOC measures the
dispersion of information (initially localized with a few de-
grees of freedom) to an exponentially large number of degrees
of freedom, thereby resulting in an apparent loss of local
quantum information and distribution of correlation through-
out the entire system [40–42]. This so-called scrambling of
quantum information is considered to be an efficient diagnos-
tic of many-body quantum chaos [33,34,43–47]. Furthermore,
OTOC is shown to be a very reliable measure of quantum
chaos compared to traditional level spacing statistics mea-
surement [48]. The practical measurement of OTOC is quite
challenging due to the need of back evolution during mea-
surement [43] and has been achieved in a limited number of
systems [45–47]. Therefore, seeking efficient strategies [43]
and physical systems with high-precision controllability is
imperative.

Stimulated Raman adiabatic passage (STIRAP) is a pro-
cess of remarkable utility and has been exploited in fields
such as atomic population transfer, optical applications, state
preparation and state transfer for quantum information pro-
cessing, and many more [49,50]. The presence of “dark
states” connecting only terminal nodes of a network facilitates
a robust adiabatic transfer which is immune to dissipation
originating from intermediate nodes [49,50]. STIRAP for
many-particle systems with interparticle interactions can be
treated efficiently in the classical mean-field approximated
framework. The dynamics of field amplitudes (describing
node populations) is described by the nonlinear Schrödinger
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equation, where the nonlinear term is produced by interpar-
ticle interaction [51]. In the present context the light-matter
interaction, which was shown to generate photon-photon in-
teraction [14,17], leads to the study of nonlinear STIRAP
[16]. In the absence of light-matter interaction the stud-
ied case becomes the standard linear STIRAP. In a fully
quantum-mechanical treatment the probability amplitudes
evolve according to the linear Schrödinger equation. However,
it is interesting to see the traces of mean-field nonlinearity on
the quantum-mechanical evolution of STIRAP.

Nonlinear interaction in an adiabatic passage induces qual-
itative changes in its mean-field stationary energy levels
and results in breakdown of adiabaticity [51–53]. Nonlin-
ear STIRAP explores phases of varying integrability during
a single sweep and is an excellent process to investigate
chaos [16,37,54,55]. The transition from nonchaotic (or reg-
ular) to chaotic phase simply by controlling tunable system
parameters makes nonlinear STIRAP immensely interesting.
Cavity-QED-based STIRAP is usually studied in the context
of state preparation with a three-level atom coupled to cavity
mode [49,56,57]. In contrast our cavity-QED STIRAP models
three spatially separate cavities with one of them containing a
qubit. We are looking for an adiabatic process that leads to
photon population transfer between terminal cavities without
populating the central cavity. The photon-qubit interaction
provides the scope for studying the impact of nonlinearity
on the transfer process [16]. We proposed an efficient pho-
ton transfer protocol in a precisely controllable and scalable
cavity-QED network in Ref. [16], where chaos emerges dur-
ing a STIRAP due to JC-like nonlinearity. In the present paper,
we extend the analysis beyond the semiclassical treatment in
Ref. [16] and handle the problem in a quantum many-body
framework. We show that the quantum process (correspond-
ing to the semiclassical STIRAP) undergoes a spreading of its
evolved many-body state within the chaotic parameter win-
dow, predicted by semiclassical theory. This is associated with
irreversible increase in the participation number of adiabatic
eigenstates of the system. A qualitative comparison is made
between LE analysis (for the semiclassical case) and micro-
canonical OTOC measurement (for the quantum many-body
case). It shows a remarkable agreement in (semiclassically
predicted) chaotic and nonchaotic regimes of the process.
Additionally, the semiclassical followed state (which is nearly
a dark state) is shown to be constituted of a series of diabatic
transitions through the avoided crossings between many-body
eigenstates. The many-body state corresponding to this fol-
lowed state produces a dip in single-particle purity within the
chaotic window.

The paper is arranged as follows. In Sec. II the model
Hamiltonian is introduced and equations for stationary point
(SP) solutions are deduced. Section III deals with the quantum
eigenspectrum and its features in the chaotic regime. LE anal-
ysis and OTOC measurement are elaborated in Sec. IV and
single-particle purity calculation for the quantum states (cor-
responding to the semiclassical followed state) is presented
in Sec. V. The chaotic effects on the slow-sweep real-time
dynamics along with behavior of participation number are
described in Sec. VI. Section VII deals with the sweep rate de-
pendence of transfer efficiency and its behavior with varying
photon number. Sections VIII and IX present the level spacing

statistics and open-system dynamics, respectively. Finally, we
conclude and discuss potential future directions of our analy-
sis in Sec. X.

II. MODEL, EQUATIONS OF MOTION, AND SCHEME

We studied cavity-QED STIRAP in a semiclassical frame-
work in Ref. [16]. We observed emergence of chaotic stages
due to light-matter interactions and worked out strategies
for obtaining efficient photon transfer between terminal cav-
ities of a cavity-QED network. As already mentioned in
the introduction, by the chaotic stage we mean the STIRAP
stage [characterized by J1, J2 values in Eq. (1)] where two
trajectories with slightly different initial conditions diverge
exponentially, thereby producing very different final states.
This means that while evolving through the chaotic stages
any small deviation can dislodge the system from the desired
followed state (that leads to successful adiabatic passage) and
results in inefficient transfer.

In this section our starting point is the same Hamiltonian as
dealt with in Ref. [16] but in contrast to our earlier work we
analyze the Hamiltonian with purely quantum considerations.
The cavity-QED STIRAP Hamiltonian is given by

Ĥ (t̃ ) =
∑

j∈{a,b,c}
Ĥj − J1(t̃ )(â†b̂ + H.c.) − J2(t̃ )(b̂†ĉ + H.c.),

(1)

where the JC Hamiltonian for cavity a is defined as Ĥa =
ωaâ†â + �aŝz

a + ga(â†ŝ−
a + H.c.). â and ga are the photon

destruction operator and JC coupling intensity for cavity a,
respectively. The qubit is described by the spin operator sα

a
(α ∈ {x, y, z}). �a and ωa denote the frequencies for qubit
and photon modes, respectively. The time-varying coupling
parameters are J1,2(t̃ ) = Kexp[−(t̃ − t̃1,2)2] (where the rela-
tion t̃1 > t̃2 fixes the sequence of pump and Stokes pulses)
with the parametric time defined as t̃ ≡ t/τ [16]. This in
turn parametrizes the time-dependent Hamiltonian Ĥ (t ), mak-
ing it only implicitly dependent on time t . The sweep rate
of couplings is given by ˙̃t = 1/τ and is a key factor for
STIRAP dynamics [16]. Throughout the paper we use the
values t̃1 = 3.697, t̃2 = 2.4242 and consider the resonant case
ωa,b,c = �a,b,c for all the numerical results. To draw cor-
respondence with the semiclassical results of Ref. [16] we
also consider a setup, where ga = gb = 0, gc �= 0 and ωa,c =
ωb − � (where � is central cavity detuning and is fixed at
� = 0.5K throughout the paper, if not specified separately).
Such a nonuniformity for ga,b,c has two aspects. First, the Fock
state |na, nb, nc, sz

c〉 ≡ |N, 0, 0,−1/2〉 becomes the eigenstate
at t̃ = 0; this is advantageous for initialization keeping exper-
imental realization in mind. Here, nj, sz

j are the eigenvalues of
the operators n̂ j, ŝz

j , respectively. Second, gb �= 0 does not al-
ter our findings regarding efficient adiabatic passage, because
cavity b remains negligibly occupied throughout the process.
However, incorporating these assumptions and projecting Ĥ
in the rotating frame of ωa the new Hamiltonian can be
rewritten as

Ĥ (t̃ ) = �n̂b + gc(ĉ†ŝ−
c + H.c.) − J1(t̃ )(â†b̂ + H.c.)

− J2(t̃ )(b̂†ĉ + H.c.). (2)
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The semiclassical approximation 〈â†ŝ−
a 〉 ≈ 〈â†〉〈ŝ−

a 〉 is valid
in the large N limit [14,16]. We employ the Heisen-
berg equation of motion with respect to Ĥ(t̃ ) = Ĥ (t̃ ) −
μ(t̃ )(n̂a + n̂b + n̂c + ŝz

c + 1/2) and apply the above ap-
proximation. Furthermore, replacing the expectation values
as {〈â〉, 〈b̂〉, 〈ĉ〉, 〈ŝ−

c 〉, 〈ŝz
c〉} → {a, b, c, sc, sz

c} and setting the
time derivatives to zero, we obtain the equations for SP solu-
tions given by

J1b + μa = 0, (3)

�b − J1a − J2c − μb = 0, (4)

J2b − gcsc + μc = 0, (5)

2gc c sz
c + μsc = 0. (6)

Here μ is the chemical potential accounting for the conser-
vation

∑
j∈{a,b,c} n j + [sz

c + 1/2] = N [16]. The energies ESP

corresponding to the SP solutions of Eqs. (3)–(6) are plotted
as black dots in Figs. 1 and 2.

The quantum dynamics of the system is dictated by
Schrödinger’s equation

iψ̇ (t ) = Ĥψ (t ), (7)

where ψ (t ) is the quantum-mechanical wave function, which
is prepared as the Fock state |ψ (0)〉 = |N, 0, 0,−1/2〉 at t =
0 (t̃ = 0). For linear STIRAP (when ga,b,c = 0) the system
state is prepared as |ψ (0)〉 = |N, 0, 0〉 and the complete adi-
abatic sweep (from t̃ = 0 to t̃ f ) translates the system to the
desired state |ψ (t̃ f )〉 = |0, 0, N〉. This scheme is implemented
by following the two-cavity coherent eigenstate [37] given by

|ψd〉t̃ = 1√
N!

[cos�(t̃)â† − sin�(t̃)ĉ†]N |vac〉, (8)

where cos� = J2/
√

J2
1 + J2

2 . |ψd〉t̃ does not project on cavity b
and is equivalent to the semiclassical dark state. The nonlinear
version of |ψd〉t̃ slightly deviates from Eq. (8) for moderate
values of gc. In the next section we elaborate the semiclas-
sical adiabaticity when viewed from a quantum many-body
perspective.

III. EIGENSPECTRUM AND SP SOLUTIONS

Here we plot the eigenvalue spectrum for various gc values
and investigate its characteristics in the classically chaotic and
nonchaotic regimes. The eigenenergies Eν (with eigenstate
index ν) of the quantum Hamiltonian [Eq. (2)] are obtained
by diagonalizing Ĥ (t̃ ) at various t̃’s and plotted by solid
continuous lines in Figs. 1 and 2. In Fig. 1(a) the gc = 0.1K
case is presented. There are (N + 1)2 (which is the size of the
Hilbert space) number of eigenvalues Eν (t̃ ) in contrast to only
a few semiclassical ESP’s. The particular ESP branch, that we
follow to achieve cavity-a to cavity-c transfer by negligibly
populating cavity b, is designated by a series of black arrows
beside it. This nearly dark state (note, the dark state is exactly
defined for linear STIRAP ga,b,c = 0 [16,49]) is the special
SP (SSP) branch of our interest. In Fig. 1(b) it is clearly
seen that the SSP branch (ESSP) passes through a series of
avoided crossings between many-body eigenstates. Therefore,

FIG. 1. For gc = 0.1K quantum many-body eigenenergies with
varying t̃ are plotted as colored solid lines. The semiclassically
obtained ESP solutions are plotted by black dots and the red vertical
patch marks the semiclassically obtained chaotic window of t̃ , pre-
dicted by LE analysis in Sec. IV. (a) Full spectrum of many-body
eigenenergies. (b) Zoomed version of panel (a) showing that the
followed SSP branch corresponds to a series of avoided crossings of
quantum-mechanical eigenlevels. In grayscale different energy levels
participating in avoided crossings (along SSP) are distinguished by
varying thickness and shades of solid lines. The black arrows in
panels (a) and (b) direct the SSP branch ESSP that leads to near-unity
photon transfer from cavity a to cavity c with negligible occupancy
of cavity b.

the adiabatic following of classical SSP is actually numerous
diabatic transitions among eigenstates (at an avoided cross-
ing location) in the many-body scenario. Interestingly, unlike
the avoided crossings in the nonchaotic region, the avoided
crossings within the chaotic window of t̃ lack proximity
between participating eigenstates. This actually portrays an
enhancement of level repulsion within the chaotic window
and disrupts the quantum diabatic route corresponding to the
classical SSP branch. At the exit of the chaotic window the
quantum route via closely avoided crossings is again formed
along the SSP branch. Therefore, classically predicted chaos
is remarkably manifested by enhanced level repulsion of the
quantum eigenspectrum, whereas the ESSP solution gives no
trace of chaos. It should be noted that the chaotic window
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FIG. 2. For gc = 0.2K quantum many-body eigenenergies with
varying t̃ are plotted as colored solid lines. The semiclassically
obtained ESP solutions are plotted by black dots and the red ver-
tical patch marks the semiclassically obtained chaotic window of
t̃ , predicted by LE analysis in Sec. IV. (a) Full spectrum of
eigenenergies. (b) Zoomed version of panel (a) showing that the
followed SSP branch corresponds to a series of avoided crossings of
quantum-mechanical eigenlevels. In grayscale different energy levels
participating in avoided crossings (along SSP) are distinguished by
varying thickness and shades of solid lines. The black arrows in
panels (a) and (b) direct the SSP branch ESSP that leads to near-unity
photon transfer from cavity a to cavity c with negligible occupancy
of cavity b.

[red patch in Figs. 1(a) and 1(b)] is drawn by LE analysis
presented in Sec. IV. To strengthen our observation we present
gc = 0.2K in Fig. 2 and observe similar features of eigen-
spectra as in Fig. 1. Here too within the classically chaotic
region the eigenvalues do not facilitate diabatic transitions by
enhancing level repulsion.

At this point it is important to recall the standard
energy-level crossing prescription [37] motivated by linear
Landau-Zener transition [58–61]. For a pair of energy levels
ν, ν ′ engaged in an avoided crossing, the diabatic transition
between the levels requires 1/τ � d2

ν,ν ′/σν,ν ′ , where dν,ν ′ =
(Eν − Eν ′ ) and σν,ν ′ = |〈ν|∂t̃ Ĥ (t̃ )|ν ′〉| at the avoided crossing
location. This depicts the dependence of dynamics on the rate
of change of the Hamiltonian. In other words, when eigen-
values in a pair are widely apart and have a smaller gradient

at their closest proximity (which is the case for participating
eigenlevels within the chaotic window), diabatic transition
becomes challenging, requiring a very fast sweep of J1,2.

In the next section we quantify chaos for both semiclassical
and quantum cases and draw a comparison.

IV. LYAPUNOV ANALYSIS AND OTOC MEASURE

For a classically chaotic system the phase-space trajec-
tories are extremely sensitive to the initial conditions. Two
trajectories, which are infinitesimally separated in the phase
space at t = 0, exponentially diverge with time, resulting in a
completely varied outcome at long times. Chaos is quantified
by the LE providing the rapidity of divergence. We consider
a reference trajectory to be characterized by SSP solution at
a particular t̃ and a test trajectory initially δ0 separated (with
respect to the reference trajectory) in the phase space. Both the
trajectories are evolved for a time step ξ followed by a reset
of the test trajectory such that the new phase-space distance δ1

between the trajectories becomes δ0 along the same direction
as δ1 [62–66]. The procedure is repeated for a large number of
steps M and the LE is extracted as

λM = lim
δ0→0

1

MKξ

M∑
j=1

log

(
δ j

δ0

)
. (9)

Here, δ j denotes the phase-space distance just before the jth
reset. The maximum LE λmax is defined for M → ∞, whereas
the finite-time LE λM measures the divergence for an evolu-
tion time t = KMξ . This procedure is advantageous compared
to the usual procedure because the phase space for our system
is bounded due to the constraint na + nb + nc + sz

c + 1/2 = N
and this does not allow a monotonic growth of distance be-
tween the trajectories.

Now for a quantum counterpart of the classically chaotic
system chaos is captured by the exponential growth of the
commutator of observables, provided that the initial commu-
tator value is considerably small [33,34,39–47]. The thermal
OTOC is defined as

O(t )T = −〈[U (t ),V (0)]2〉T , (10)

where U and V are two operators; 〈...〉T denotes the thermal
average defined as 〈Â〉T = Z−1 ∑

n〈n|Â|n〉e−βεn where β =
1/kBT , εn is the energy of the energy eigenstate |n〉, and Z is
the partition function. In our analysis we only focus on the
particular energy eigenstates corresponding to the followed
SSP branch and deal with the microcanonical OTOC defined
as Oν (t ) = 〈ν|[n̂a(t ), n̂c(0)]2|ν〉 [23,39]. At t = 0 n̂a and n̂c

commute. Expanding Oν (t ) in the energy eigenbasis we write
it as

Oν (t ) =
∑
ν ′

|〈ν|[n̂a(t ), n̂c(0)]|ν ′〉|2. (11)

In Fig. 3(a) we plot the LE (corresponding to ESSP) at three
representative t̃ values and obtain a positive LE for t̃ = 2.7879
falling within the chaotic window marked in Fig. 2. In con-
trast, λmax → 0 for t̃ on either side of the window, indicating
nonchaotic regions [16]. Figure 3(b) plots the microcanonical
OTOC for eigenstates having energies closest to ESSP. We
observe an exponential increase in Oν [inset of Fig. 3(b)]
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FIG. 3. Depicting quantum-classical comparison of chaos for
gc = 0.2K . (a) LE plots at three representative t̃ values: t̃ = 2.7879
[solid blue (black)] within the chaotic window introduced in Fig. 2
and t̃ = 2.5758 [solid magenta (gray)] and 3.0303 (dotted black)
at either side of the window. (b) OTOC plots at the same t̃ values
for eigenstates [of the fixed Hamiltonian H (t̃ )] along semiclassical
ESSP[t̃]. Here, the selective eigenstates are |ν〉 ≡ |169〉, |164〉, |158〉
for t̃ = 2.5758, 2.7879, 3.0303, respectively. The inset in panel
(a) shows that the LE is asymptotically approaching zero for non-
chaotic t̃ . The inset in (b) plots log-scaled Oν for the t̃ = 2.7879
case and an additional instance for t̃ = 2.7273 [green (gray) for
|ν〉 = |165〉] within the chaotic window. The vertical blue dashed line
marks exponential growth of Oν followed by a saturation region.

only for t̃ that produces a positive λmax in its semiclassical
counterpart. The exponential growth of Oν tends to saturate at
long times.

V. ONE-PARTICLE PURITY

The one-particle density matrix is very useful for extract-
ing information about many-body quantum systems [67,68].
Expectation values of single-particle operators are resourceful
measurable quantities for experiments. A one-particle reduced
density matrix is obtained by integrating out degrees of free-
dom of N − 1 particles from the N-particle density matrix
[67]. The purity of the one-particle density matrix quantifies
coherence of one-particle states of a whole system [37,69].

In this section we analyze the single-particle purity along
the quantum-mechanical diabatic route for cavity-a to cavity-c

0 2 4 6
0

0.5

1

FIG. 4. One-particle purity at various t̃ for eigenstates along the
SSP solutions. gc = 0, 0.1K, 0.2K are plotted as dashed blue, solid
magenta (gray), and solid black, respectively. The corresponding
chaotic windows are marked by vertical dotted lines of the same
color.

transfer of photons. The single-particle purity is defined as

γ = Trace([ρsp]2). (12)

Here the single-particle reduced density matrix corresponding
to the N-particle eigenstate |ν〉 is defined as

ρ
sp
i, j = (1/N )〈ν|Â†

i Â j |ν〉, (13)

where Âi ≡ {â, b̂, ĉ, ŝ−
c } and |ν〉 is the eigenstate of interest.

Note that the flipping of the qubit from ground to excited
state is associated with absorption of one photon and ŝ+

c ŝ−
c

is quantitatively equivalent to one photon excitation. γ falls
within the range {1/4, 1}. When γ = 1 the many-body eigen-
state is a coherent state having localized distribution in the
phase space. On the other hand, γ = 1/4 corresponds to a
maximally mixed state. In Fig. 4 we plot γ along the quantum
diabatic route corresponding to the classical adiabatic SSP
branch. We pick |ν〉 along the classically adiabatic route ESSP

and calculate γ . We observe that γ has a sharp dip in the
regime where the system is classically chaotic. Moreover, for
stronger gc the depth of the dip increases. This is because the
phase-space distribution of the adiabatic eigenstate spreads
over the chaotic zone and considerably deviates from being a
coherent state [37]. Therefore, the strong reduction of single-
particle purity is reflected here as a consequence of chaos.

So far we have dealt with features of the eigenspectrum
at various t̃’s falling inside and outside the chaotic window.
In the subsequent sections we explore their consequences on
the real-time dynamics of the system and on the STIRAP
efficiency.

VI. QUANTUM DYNAMICS AND CHAOTIC SPREADING

Here we investigate the chaotic effects on the real-time
dynamics of the system. It is to be noted that the dynamics
very much depends on the sweep rate 1/τ [16] (i.e., how
fast the system Hamiltonian is tuned), although the eigenspec-
trum only depends on the parametric time t̃ [i.e., on Ĥ (t̃ ) in
Eq. (2)]. The slower-sweep semiclassical dynamics initiated
at the SSP branch at t = 0 starts oscillating about the SSP
branch within the chaotic window, thereby diminishing the
transfer efficiency [16]. For a quantum case we initiate the
system in the Fock state |ψ (0)〉 ≡ |N, 0, 0,−1/2〉 and the
dynamics is studied using the Schrödinger equation given by
Eq. (7). Within the chaotic window the evolved many-body
state |ψ (t )〉 suffers a spreading over the adiabatic eigenstates
supported by the chaotic energy range.
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FIG. 5. (a) Real-time quantum dynamics of cavity populations
for gc = 0.2K , when the system is initialized to |na, nb, nc, sz

c〉 ≡
|20, 0, 0,−1/2〉 at t̃ = 0 and swept at a rate 1/τ = 0.003K . (b) Prob-
ability distribution over adiabatic eigenstates for the dynamics
described in panel (a). The color coding for probability distribution
is logarithmically scaled. (c) Dynamics of participation number cor-
responding to panel (a). Vertical dotted lines in all three panels mark
the chaotic window.

Figure 5 describes the dynamics through various t̃ values
for the specified sweep rate 1/τ . In Fig. 5(b) we plot the
probability distribution over the adiabatic eigenstates while
the slow-sweep dynamics is carried out. It is clear that the
system’s many-body state spreads out exactly within the semi-
classically predicted chaotic window and the consequence is
reflected in the diminished transfer (from cavity a to cavity
c) in Fig. 5(a). Moreover, the cavity-b population starts in-
creasing within the chaotic window deteriorating the STIRAP
protocol. The spreading can be quantified by the participa-
tion number of eigenstates in the evolved state |ψ (t )〉 and is
given by

η(t ) = 1

/ ∑
ν

|〈ν|ψ (t )〉|4, (14)

where 1/η is termed as the inverse participation ratio. In
Fig. 5(c) η shows only reversible spikes (1 < η < 2) before
reaching the chaotic window. These occur due to the dia-
batic transitions while evolving. In contrast, the increment
of η within the chaotic window irreversibly goes beyond 2
and distinctively portrays a nonchaotic-to-chaotic transition.
Therefore, the signature of chaos in a quantum framework is
expressed as spreading of the evolved state and irreversible
growth of participation number [22,37].

FIG. 6. (a) Efficiency P plotted with varying total
excitation number N and for gc

√
N = 0.8944K , �N = 10K ,

J1,2N = 20Kexp[−(t̃ − t̃1,2)2]. Cases with sweep rates
1/τ = 0.0606K, 0.0152K, 0.003K, 0.0015K are plotted by square,
circle, “×,” and triangle line types, respectively. Vertical dashed
lines mark N = 8 and 10. The eigenvalue spectra are plotted for (b)
N = 8 and (c) 10, respectively. Squares in panels (b) and (c) describe
the route (composed of a series of avoided crossings) that leads to
cavity-a to cavity-c photon transfer. The dashed circle in (c) indicates
the region where the energy gap between participating eigenstates
becomes much wider, disrupting the diabatic crossing. (d–f) Oν

is plotted in logarithmic scale for eigenstates on the followed
route at various t̃ and these states are marked by “×” in panels
(b) and (c). Oν plots in panel (d) corresponding to panel (b) are for
{t̃, ν} : {2.3333, 33} [dotted magenta (gray)], {2.9697, 31} (dashed
orange), and {3.3939, 31} (solid black). Panel (e) corresponds to
panel (c) for {2.5758, 48} [dotted magenta (gray)] and {2.8182, 46}
(solid black). Panel (f) corresponds to panel (c) for {3.3939, 44}
[dotted magenta (gray)] and {3.3939, 45} (solid black).

In the next section we explore transfer efficiency with
varying sweep rate and investigate the physics when the total
excitation number is varied.

VII. SWEEP-RATE DEPENDENCE AND PHOTON
NUMBER DEPENDENCE

So far we have seen that the quantum signature of chaos
is consistent with the semiclassical prediction for relatively
larger values of N . Here we investigate the chaotic features
when the total excitation N is varied. In Fig. 6(a) we plot
the efficiency P = 〈n̂c〉end/N , where 〈n̂c〉end is the expectation
value of cavity-c population at the end of the STIRAP scheme.
The reduction in efficiency with slower sweep rates describes
the presence of chaos [16,54]. Such an outcome originates
solely due to the fact that a slower sweep permits the sys-
tem spending a longer time within the chaotic window and
enhances the spreading of the evolving state (see Fig. 5). Note
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that here the analysis is for the closed-system case. For an
open-quantum system scenario, dissipation also contributes
to reducing efficiency for slower sweep rates (see Sec. IX).
For interesting studies on open-system adiabatic evolution and
the open STIRAP problem see Refs. [70,71]. Another aspect
of Fig. 6(a) is the appearance of chaotic features with the
varying photon number N . In Fig. 6(a) P is plotted for various
N by keeping the characteristic parameters J1,2N , �N , and
gc

√
N fixed [14]. We observe that up to some N (e.g., N = 8

for 1/τ = 0.003K) the efficiency smoothly increases for a
particular 1/τ . This is due to the fact that with increasing
N P becomes larger compared to the excitation shared with the
qubit in cavity c. The cavity-c state entangles photon and qubit
degrees of freedom. Following this there is a sudden decrease
in efficiency with further increment of N and a nonmonotonic
jagged behavior thereafter. P in this regime of N considerably
varies for various 1/τ values and decreases with smaller 1/τ .
Therefore, emergence of chaos demands a certain level of
complexity in the quantum system and the complexity results
from larger photon number. To clarify this point we plot
Figs. 6(b) and 6(c), where the widely-avoided-crossing feature
[as pointed out in Sec. III and marked by circle in Fig. 6(c)]
can only be seen in Fig. 6(c) for N = 10. This feature in
the eigenspectrum nicely correlates with the onset of chaotic
(jagged) behavior in Fig. 6(a). Furthermore, OTOC plots in
Figs. 6(d)–6(f) confirm chaotic eigenstates in the encircled
region of Fig. 6(c). Another interesting observation is that the
efficiency for faster sweep rates monotonically increases for
larger N , whereas for slower rates its behavior is jagged. This
hints that chaotic disruption takes place at slower sweep rates,
whereas a sufficiently faster sweep dodges such effects. In
other words, during the slow dynamics (with slower sweep
rates) the system spends a longer time within the chaotic
window producing more damage to the adiabatic passage.
This feature is contrastingly different from that of a standard
STIRAP (with ga,b,c = 0), where the adiabatic passage per-
forms better with slower sweep rates.

VIII. LEVEL SPACING STATISTICS

This section deals with level spacing statistics for the
Hamiltonian given by Eq. (1). The chaoticity measure can be
extracted from the distribution of the correlation parameter rn

of adjacent energy levels. rn is given by

rn = min{sν, sν−1}
max{sν, sν−1} , (15)

where sν = Eν+1 − Eν measures the spacing of nearest-
neighbor energy levels with ordered Eν . An average of rn

over a small energy window is denoted by 〈r〉 and serves
as a good measure for chaoticity. Regular behavior with un-
correlated energy levels is characterized by 〈r〉 ≈ 0.386 for
Poisson distribution, whereas a chaotic phase with strong
level repulsion is characterized by 〈r〉 ≈ 0.536 for Gaussian
orthogonal ensemble (GOE) distribution [72–74]. Any inter-
mediate value for 〈r〉 reflects a mixed phase space having both
chaotic and quasi-integrable regions. Such measure is advan-
tageous compared to the traditional level statistics because it
is independent of local density of levels.

FIG. 7. Level spacing statistics with N = 80 and � = 0.125K
for (a) gc = K and (c) gc = 1.5K . The color coding is displayed
according to 〈r〉 values. Panels (b) and (d) plot 〈r〉 for fixed energy
levels corresponding to panels (a) and (c), respectively. Peak values
for dotted red and solid blue plots are marked by “+” and “×,”
respectively. Symbols in panels (b) and (d) correspond to similar
symbols in panels (a) and (c), respectively. Horizontal dashed lines
in panels (b) and (d) mark the values 0.536 and 0.386, respectively.

In Fig. 7 we present level spacing statistics as explained
above and observe chaotic stages during the course of STI-
RAP. Comparing Figs. 7(b) and 7(d) we see enhancement
of chaoticity with increasing gc value. Here we choose very
strong gc as we do not get strong enough level repulsion
for smaller values of gc. Moreover, large N is used to attain
a dense spectrum and relatively accurate statistics. Here we
should mention that the OTOC measure is more reliable and
definitive (compared to level statistics) when chaoticity of
specific energy levels is of interest [48].

IX. OPEN-SYSTEM DYNAMICS

The analysis so far deals with a closed system. However,
a realistic cavity-QED system is affected by various decay
channels and requires an open-quantum system treatment. In
this section we treat the problem with Lindblad formalism and
numerically solve the Lindblad master equation given by

˙̂ρ(t ) = −i[Ĥ, ρ̂(t )] + κ{L[â] + L[b̂] + L[ĉ]} + γL[ŝ−
c ],

(16)

where L[Â] = [2Âρ̂(t )Â† − Â†Âρ̂(t ) − ρ̂(t )Â†Â]/2. κ and γ

are decay rates for cavity photons and qubit, respectively. In
Fig. 8 we plot the dissipative dynamics of cavity-QED STI-
RAP for two sweep rates. Comparing Figs. 8(a) and 8(b) we
observe decrease of transfer efficiency with slower dynamics
for fixed decay rates. This feature is as expected and demands
a sweep rate 1/τ � κ, γ to achieve considerable efficiency.
Comparing Figs. 5(a) and 8(a) we see that our closed-system
analysis holds well as long as 1/τ � κ, γ . In fact, both in
Figs. 5(a) and 8(a) cavity b starts getting populated within the
chaotic window.
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FIG. 8. Lindblad dynamics of na (solid black), nb [solid magenta
(gray)], and nc (dashed blue) for (a) 1/τ = 0.0121K and (b) 1/τ =
0.003K . Dissipation rates are given by κ = γ = 10−4K .

As an important future direction it would be interesting
to analyze the spectrum statistics of the full Liouvillian of
the problem and characterize chaos for an open STIRAP
problem [75,76]. As we have already noticed that the closed
nonlinear STIRAP has a rich structure of mixed phase space,
its dissipative version becomes more complex. This requires
extensive analysis of the Liouvillian spectrum and will be
dealt elsewhere.

X. CONCLUSION AND DISCUSSION

In this paper we have investigated the quantum signatures
of chaos in a c-QED-based STIRAP. Throughout the paper

we deal mostly with a Hermitian case but in a realistic system
non-Hermitian contributions are activated through cavity loss
and qubit decay. However, our analysis can well be justified
when the decay rates are considerably smaller than the sweep
rate (see supplementary material of [16]). In this situation
the STIRAP scheme is completed well before the dissipation
affects it significantly.

Our analysis is demonstrated in an experimentally real-
izable setup of c-QED STIRAP. Well-developed techniques
of high-precision state preparation, measurement, and control
of the cavity-QED system make c-QED STIRAP an inter-
esting platform for testing quantum chaos signatures and
design protocols for efficient population transfer in nonlin-
ear realistic systems. Experimental determination of OTOC
is a challenging task because it requires time-reversal evolu-
tion in principle [43,46]. This would require engineering the
Hamiltonian to reverse its sign. The realizability of OTOC
measurement in cavity-QED systems has been explored for
large spin systems [77] and atomic ensembles [33]. The pos-
sible engineering of photon-qubit interaction includes phase
manipulation in dispersive Jaynes-Cummings interaction [78]
and phase-shifting gate operation on the qubit [79]. Fur-
thermore, the intercavity photon tunneling can be tuned via
tunable couplers [80,81]. However, a detailed analysis is
needed to develop a concrete strategy to overcome such hurdle
[43] in the studied case. As a future direction, it is interesting
to extend such protocols in larger c-QED networks and inves-
tigate steady-state properties in a driven-dissipative version of
the studied case.
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