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Photon-photon correlations from a pair of strongly coupled two-level emitters
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We investigate two-color photon correlations in the light emitted by two strongly driven, strongly interacting
two-level emitters. The correlations are interpreted introducing the collective dressed states picture, which allows
us to describe both bunching and antibunching based on the allowed and prohibited transitions. At odds from
weakly interacting emitters, the strong interaction lifts the degeneracy of the energy differences between the
different states, leading to a temporal breaking of symmetry for the correlations: photons of different frequencies
may not be emitted in any order. Finally, we show that most of the virtual processes, which involve pairs
of photons, yield nonclassical correlations when the sum of their energies fits any of the interaction-induced
sidebands in the emitted spectrum. In particular, depending on the frequency of the emitted photons, correlations
strong enough to violate Bell inequalities can appear.
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I. INTRODUCTION

Two-level emitters essentially behave as classical oscilla-
tors when they are weakly driven, and the light elastically
scattered by such systems presents a range of optical phenom-
ena that can be understood using the tools of linear optics:
dispersion, Rayleigh scattering, and even cooperative phe-
nomena such as superradiance [1]. Yet, when strongly driving
a single emitter, inelastic components appear in the scattering,
a signature of the nonlinear reaction of the atom to the field.
A “Mollow triplet” emerges in the fluorescence spectrum,
composed of a carrier centered at the laser frequency, and
two symmetric sidebands shifted away by the Rabi frequency
of the driving field [2]. Of particular interest are the correla-
tions between the photons emitted from the two sidebands,
which were originally measured in atomic systems [3] and
extensively studied theoretically [4–6]. Recently, the field has
drawn renewed attention in the context of quantum dots, with
the recent measurement of photon (anti)correlations between
sidebands [7], thus demonstrating the potential of artificial
atoms as sources of heralded photons.

In this context, the coupling of emitters gives access to new
control parameters, as interaction-induced resonances and in-
terferences phenomena arise [8], which could be used to tune
the correlations in the emitted photons. Indeed, the coupling
of the emitters through common radiation modes results in
dipole-dipole interactions, which manifest in both the ex-
change of excitations and cooperative decay processes [9,10].
As a consequence, the fluorescence spectrum of strongly
driven atoms presents sidebands [11–13] which, for a weak
interaction, appear at twice the Rabi frequency from the
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carrier. Such effects are expected to show up, for instance, in
many-atom dilute clouds, with the resonant optical thickness
playing the role of a cooperativity parameter [14].

Nevertheless, the diversity of photon-photon correlations
emitted from strongly interacting systems has barely been
explored, despite its wide range of applications. For instance,
photon-photon correlation is a key ingredient for a plethora of
applications in quantum information science, such as secure
quantum communication [15] and quantum metrology [16],
and also to test fundamental aspects of the quantum theory
itself [17]. From a technical point of view, the recent devel-
opment of the so-called sensor method [18], where photons
emitted in a given mode are monitored by introducing an
artificial two-level system resonant with its frequency (anal-
ogous to a Fabry-Perot cavity), has allowed one to extensively
explore multiphoton correlations for single emitters [19]. In
particular, the potential of virtual transitions, where photons
are emitted in bundles, as a source of quantum correlations
has been pointed out. As for interacting emitters, the quantum
correlations which emerge for two weakly interacting emitters
have been investigated in the specific configuration of a pump
driving a single emitter, although the fluorescence spectrum is
not substantially affected by the interaction in this configura-
tion [20].

Here we investigate two-color photon correlations in the
light emitted by two strongly coupled two-level emitters.
Spectral filtering allows us to manipulate the light statistics
and we show that the resonances induced by dipole-dipole
interactions give rise to specific correlations, where the time
symmetry of the correlations is broken. To start, in Sec. II,
we present our system and the sensor model [18], which
allow us to calculate the photon-photon correlation func-
tions. In Sec. III, we present the fluorescence spectrum and
the computed photon-photon correlations. We interpret these
correlations based on the collective dressed states picture,
which encompasses both cases associated with specific reso-
nances and classical correlations, and processes where pairs of
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photons are emitted with nonclassical correlations. Such non-
classicality is witnessed by the violation of Cauchy-Schwatz
and Bell inequalities, which is stronger when the system does
transit through “virtual” manifolds, also called “leapfrog pro-
cesses” [21]. Finally, in Sec. IV, we present our conclusions
and perspectives.

II. MODELING AND DETECTION SCHEME

In our work, we consider two identical two-level systems.
Experimentally, this can be either two atoms, two molecules,
or two quantum dots. For this last example, although quantum
dots are promising single-emitter platforms, it remains very
challenging to produce very similar dots, i.e., with very simi-
lar transition frequencies and linewidths. On the other hand,
laser cooling has allowed one to bring the interactions be-
tween cold atoms under a very high degree of control. In this
paper, the two-level system is considered to be a motionless
atom.

The system under study is thus composed of two identical
driven two-level systems (TLSs) at positions ri, with transi-
tion frequency ωa and linewidth �. Each atom is described by
the spin-half angular momentum algebra, with σ−

i (σ+
i ) the

lowering (rising) operator of the ith atom (i = 1, 2). In the
Born, Markov, and rotating-wave approximations, the master
equation which describes the dynamics of its density matrix
ρ, in the laser reference frame, is given by [22] (h̄ = 1)

∂ρ

∂t
= i[ρ, H] + Lρ, (1)

where the coherent and incoherent parts are encoded in the
following Hamiltonian and Lindblad superoperator, respec-
tively:

H = 1

2

∑
i

[�∗(r j )σ
−
i + �(r j )σ

+
i ] + �

∑
i, j �=i

δi jσ
+
i σ−

j , (2)

Lρ = �

2

∑
i

(2σ−
i ρσ+

i − σ+
i σ−

i ρ − ρσ+
i σ−

i )

+�

2

∑
i, j �=i

γi j (2σ−
j ρσ+

i − σ+
i σ−

j ρ − ρσ+
i σ−

j ). (3)

The atoms here are resonantly driven by a monochromatic
plane wave �(r) = �eikL ·r, where � stands for the Rabi
frequency and kL the light wave vector. The dipole-dipole
interactions give rise to a coherent and an incoherent coupling,

δi j = −3

4
(1 − cos2 θi j )

cos (kri j )

kri j

+ 3

4
(1 − 3 cos2 θi j )

[
sin (kri j )

(kri j )2
+ cos (kri j )

(kri j )3

]
,

γi j = 3

2

(
1 − cos2 θi j

) sin (kri j )

kri j

+ 3

2
(1 − 3 cos2 θi j )

[
cos (kri j )

(kri j )2
− sin (kri j )

(kri j )3

]
, (4)

with λ = 2π/k the wavelength transition (k ≈ kL), ri j the
distance between the atoms, and θi j the angle between their
dipole moments and the vector joining them, ri j = r j − ri.

Solving the master equation allows one to compute the
scattered electric field. For a given polarization (omitted here-
after, for simplicity) and in the far-field limit, the field radiated
in direction n̂ is given by

E†(t ) =
2∑

j=1

σ−
j (t )e−ikn̂·r j . (5)

The dependence on n̂ is also kept implicit. The field’s tempo-
ral coherence is captured by the first-order and second-order
two-time correlation functions,

g(1)(τ ) = lim
t→∞

〈E (t )E†(t + τ )〉
〈E (t )E†(t )〉 , (6)

g(2)(τ ) = lim
t→∞

〈E (t )E (t + τ )E†(t + τ )E†(t )〉
〈E (t )E†(t )〉2 , (7)

here computed in the steady state. In particular, the fluo-
rescence spectrum, sometimes referred to as the one-photon
spectrum, is obtained from the Fourier transform of the first-
order correlation function,

S(ω) = lim
T →∞

∫ T

−T
g(1)(τ )e−iωτ dτ . (8)

The one-photon spectrum gives the spectral energy distribu-
tion of the light scattered elastically and inelastically, whereas
the second-order correlation function g(2) contains details of
the correlations between the emitted photons, with the anti-
bunching in the trains of photons emitted by a single emitter
as a hallmark of the nonclassicality of this emission [23].

The problem of time-resolved observables is, however,
more challenging. Indeed, as one introduces the field op-
erator in the reciprocal space, Ẽ (ω) = ∫ ∞

t=−∞ e−iωt E (t )dt ,
the problem of studying two-color photon-photon correla-
tions brings in the calculation of a four-time correlator,
〈E (t1)E (t2)E†(t3)E†(t4)〉. Then, the use of the quantum re-
gression theorem, commonly used for two-time observables,
becomes a daunting task [24–26]. This is a strong restriction
to the study of photon-photon correlations, which has long
limited rigorous results to single-emitter physics [27].

An elegant solution was found in the “sensor method”
that allows one to theoretically investigate frequency-resolved
correlations in greater detail [18]. It relies on the introduction
in the system of extra two-level systems which behave as
sensors, as described by the Hamiltonian

HS =
∑

s

ωsξ
†
s ξ−

s + ε
∑

s

(
Eξ−

s + E†ξ †
s

)
, (9)

with ξs (ξ †
s ) the lowering (rising) operator for sensor s, and

ωs its resonant frequency, in the rotating frame at the laser
frequency [28]. The ε parameter corresponds to the coupling
strength between the sensors and the atomic system, which
must be made sufficiently small to not significantly perturb
the dynamics of the latter and to avoid the saturation of
the sensor (ε = 10−4 throughout the paper). The sensors are
also characterized by their linewidth �s, a parameter of im-
portance as we shall see later, which manifests in an extra
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Lindblad term,

LSρ = �s

2

∑
s

(2ξ−
s ρξ †

s − ξ †
s ξ−

s ρ − ρξ †
s ξ−

s ). (10)

The sensor contributions (9),(10) are then added to the master
equation (1), with ρ now describing the density matrix of the
whole system (atoms plus sensors).

The steady-state two-photon time- and frequency-resolved
correlation is then obtained from the second-order correlation
function from the sensors operators,

g(2)
s (ω1, ω2, τ )

= lim
t→∞

〈ξ †
1 (ω1, t )ξ †

2 (ω2, t + τ )ξ2(ω2, t + τ )ξ1(ω1, t )〉
〈ξ †

1 (ω1, t )ξ1(ω1, t )〉〈ξ †
2 (ω2, t )ξ2(ω2, t )〉 .

(11)

Equal-time correlations (τ = 0) characterize the simultaneous
emission of photons of frequencies ω1 and ω2; they are here-
after called two-photon frequency-resolved correlations and
noted by g(2)

s (ω1, ω2), for simplicity. Thus, at the expense of
two extra degrees of freedom, equal-time frequency-resolved
correlations g(2)

s (ω1, ω2) are contained in the steady-state val-
ues of the density matrix, while time- and frequency-resolved
ones [i.e., g(2)

s (ω1, ω2, τ )] are obtained as two-time corre-
lators, using the “standard” (two-time) quantum regression
theorem [29].

Experimentally, frequency-resolved signals can be ob-
tained using frequency filters such as Fabry-Perot cavities
with resonance frequency and linewidth of the sensors, ωs

and �s, but also from time-resolved measurements using
beatnote techniques for the g(1)(τ ) function [30,31], for ex-
ample. Throughout this work, the correlation functions were
computed using the QUTIP toolbox [32,33] and the MATLAB

software, using a solver to reach the steady state.

III. STRONGLY INTERACTING ATOMS

A. Fluorescence spectrum

The radiation spectrum of a strongly driven two-level emit-
ter has a rather intuitive interpretation in the dressed state
picture: after the light modes were traced out to obtain Eqs. (2)
and (3) [9,10], in this picture the photon number is restored
to obtain hybrid atom-field states. The resulting atom-field
eigenstates have been discussed extensively for single emit-
ters [34], and the coupling of light to the atom leads to the
following eigenstates for the Hamiltonian at resonance:

|±〉 = 1√
2

(|↑, n − 1〉 ± |↓, n〉), (12)

where | ↓〉 and | ↑〉 denote the single-atom ground and ex-
cited states, respectively, and n is the photon number in the
driving field (i.e., the laser). This pair of eigenstates forms
the n-excitation manifold: in each manifold, the eigenstates
are split by the Rabi frequency of the driving field (unless the
cavity quantum electrodynamics regime is reached [35,36]).

For a pair of atoms, the dipole-dipole interaction in Eqs. (2)
and (3) generates two collective single-excitation eigenstates,
labeled symmetric and antisymmetric,

|S〉 = (|↑↓〉 + |↓↑〉)/
√

2,

(a)
u1

n

u2
n

u3
n

u1
n−1

u2
n−1

u3
n−1

Δ12

Δ23

Δ13

|A

|S

ωa

ωa

|ΔS − ΔA|

Dressed States Bare States

(b)

FIG. 1. (a) Collective dressed (left) and bare (right) states for two
strongly interacting atoms, in the rotating frame of the laser and in
the laboratory frame, respectively. (b) Spectrum of two interacting
atoms. The colored arrows above the peaks (of the solid blue line)
correspond to the transitions depicted in (a). Simulations carried out
for two atoms driven with a field of Rabi frequency � = 30�, with
dipole orientation θ12 = cos−1(1/

√
3), and separated by a distance

kr12 = 0.05 (solid blue line) and kr12 = 20 (dashed red line).

|A〉 = (|↑↓〉 − |↓↑〉)/
√

2, (13)

which present linewidths �S = �(1 + γ12) and �A = �(1 −
γ12), and energy shifts �S = �δ12 and �A = −�δ12.
Throughout this work, we have fixed cos(θ12) = 1/

√
3, which

implies δ12 < 0 for the interatomic distances considered and,
consequently, �S < �A, as shown in Fig. 1. The choice of
the θ12 angle is somewhat arbitrary since we can obtain the
same results for the photon statistics for other angles, as long
as we properly adjust the dipoles’ orientation (using, e.g., an
external magnetic field) and the relative position between the
emitters. The important parameter here is the effective cou-
plings (coherent and incoherent) between the two two-level
emitters, which depend on both the relative position and the
angle θ12.

Here we consider the case of two very close, strongly in-
teracting atoms (kr12 � 1 or, more specifically, |δ12|  1 and
γ12 ≈ 1), in the presence of a strong resonant driving, char-
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acterized by �2 > �2 + 4|�δ12|2. Following the approach of
Ref. [34], we consider the following basis:

∣∣φ1
n

〉 = |↑↑, n − 2〉, (14a)∣∣φ2
n

〉 = |S, n − 1〉, (14b)∣∣φ3
n

〉 = |A, n − 1〉, (14c)∣∣φ4
n

〉 = |↓↓, n〉, (14d)

which is the four-dimensional subspace of the eigenvectors
of the operator NT = Nν + 1/2 + ∑

i=1,2
(1 + σ+

i σ−
i )/2, where

Nν is the photon number operator for eigenvalue n. In this
basis, the eigenstates of the atom-light system are composed
of the collective dressed states incorporating the eigenstates
of Hamiltonian (2) for two atoms with light-mediated interac-
tions, and the photon number states of the light field i.e., the
n-excitation manifold for our system is given by

∣∣u1
n

〉 = a1|↑↑, n − 2〉 + a2

√
2|S, n − 1〉 + a1|↓↓, n〉, (15a)

|ua
n〉 = |A, n − 1〉, (15b)

∣∣u2
n

〉 = − 1√
2
|↑↑, n − 2〉 + 1√

2
|↓↓, n〉, (15c)

∣∣u3
n

〉 = a2|↑↑, n − 2〉 − a1

√
2|S, n − 1〉 + a2|↓↓, n〉, (15d)

where we have introduced

a1 = −v1/

√
2 + 2v2

1, (16a)

a2 = 1/

√
2 + 2v2

1, (16b)

v1 = −4(kri j )2�2 + cos(kri j )c + cos2(kri j )

(kri j )�[c + 3 cos(kri j )]
, (16c)

c =
√

16(kri j )2�2 + cos2(kri j ). (16d)

These dressed states are characterized by an entangle-
ment between the atomic and field states, apart from the one
containing the antisymmetric atomic state, |ua

n〉. Since the
latter state is not entangled with the field states, nor is it
coupled to the other states through the Hamiltonian, it does
not participate in the dressing. Furthermore, in the limit of
strong coupling of the atoms considered here, it can be shown
that this antisymmetric state does not participate substan-
tially in the steady-state fluorescence spectrum. Although it
is not driven directly by the laser (kr12 � 1 leads to a rather
homogeneous phase profile of the laser on the atoms, thus ad-
dressing the symmetric state), it gets substantially populated
by decay from the atomic state |↑↑〉 and its long lifetime al-
lows it to hold a substantial population [37]. Nevertheless, the
weak linewidth also translates into a low number of emitted
photons. Thus, unless specified (see Sec. III B), we hereafter
neglect this state in our analysis.

Neglecting the asymmetric state leads us to introduce the
collective operator σ+−

S = (σ+−
1 + σ+−

2 )/
√

2 and simplify
the Lindbladian (3) into LσS ρ = �S (2σ−

S ρσ+
S − σ+

S σ−
S ρ −

ρσ+
S σ−

S ) in the strong interaction regime. As a conse-
quence, the n-excitation manifold reduces to the triplet of

(|u1
n〉, |u2

n〉, |u3
n〉), with the frequency difference

�i j = −� ji ≡ Ei
n − E j

n . (17)

The dressed energy levels are then composed of the n-
excitation manifolds, each composed of the above triplet, and
with successive manifolds separated by energy ωL: the dressed
states and the equivalent bare collective energy levels for two
interacting atoms are presented in Fig. 1(a). The one-photon
spectrum is obtained by solving the master equation from
Eqs. (1)–(3) combined with the quantum regression theorem
or, equivalently, monitoring the population of a sensor whose
resonant frequency ωs is tuned. The fluorescence spectrum
for two strongly interacting atoms is depicted in Fig. 1(b)
(kr = 0.05, solid blue line), where the different peaks can
be interpreted in the dressed state picture. Similarly to the
single-atom case, the central peak originates in the |ui

n〉 →
|ui

n−1〉 transitions (i = 1, 2, 3), which do not alter the atomic
state and are characterized by the emission of a photon at the
laser frequency ωL. For comparison, in Fig. 1(b), we also plot
the fluorescence spectrum for two weakly interacting atoms
(kr = 20, red dashed line), which is extremely similar to the
single-atom spectrum.

The transformation of the doublet of states into a triplet of
states for the n-excitation manifold, due to the interactions,
leads to a seven-peak spectrum. The six sidebands are collec-
tive, corresponding to resonant frequencies ±�i j not present
for single atoms (all transitions are hereafter given in the
laser frame), and the corresponding transitions |ui

n〉 → |u j �=i
n−1〉

are presented schematically in the dressed state picture of
Fig. 1(a).

B. Photon-photon correlations

Let us now study the specific correlations which occur
between these different emission processes. While the tran-
sitions from one manifold to the next are the origin of the
one-photon spectrum, the correlations in the emitted photons
are the essence of the two-photon frequency-resolved correla-
tions, g(2)

s (ω1, ω2), computed using Eq. (11). The two-photon
frequency-resolved correlations corresponding to the situation
of Fig. 1 are presented in Fig. 2(a), the complexity of which
reflects the diversity in photon-photon correlations. For the
sake of comparison, in Fig. 3 we plot steady-state photon-
photon correlations g(2)

s (ω1, ω2) for (a) a single atom, (b) two
atoms separated by kr = 20 (i.e., the interaction is negligible),
and (c) two close atoms, with kr = 0.4. For two remote atoms
(kr = 20), the two-photon correlation function is close to the
single-atom case, yet with less contrast since each atom can
emit independently.

Opposite-sideband correlations. We first discuss the cor-
relation between opposite sidebands, i.e., with frequency
+�i j and −�i j , as shown by the • symbol for (i, j) =
(1, 2) in Fig. 2(a): it corresponds to the two-photon cascade
|u1

n〉 → |u2
n−1〉 → |u1

n−2〉, shown in Fig. 2(b). Being an al-
lowed path of relaxation, it leads to photon-photon bunching,
g(2)

s (�12,−�12) > 1: this case is similar to the opposite-
sideband bunching effect reported for single emitters [6,7].
The same holds true for other transitions of the form |ui

n〉 →
|u j

n−1〉 → |ui
n−2〉, corresponding to the other sidebands.
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(a) (b)
u1

n

u2
n

u3
n

u1
n−1

u2
n−1

u3
n−1

u1
n−2

u2
n−2

u3
n−2

Δ12

Δ23

Δ13

•
∗

◦

⊗

+ (c)

FIG. 2. (a) Steady-state photon-photon correlations g(2)
s (ω1, ω2) for a pair of strongly interacting, strongly driven atoms. (b) Cascade

processes involving the emission of two photons, according to the energy levels of the dressed states picture (allowed cascades with solid
lines, forbidden processes with dashed/dotted ones; see text). The associated g(2)

s (ω1, ω2) is given by the same symbols in (a). Simulations
realized for two atoms with (a) kr12 = 0.05, θ12 = cos−1(1/

√
3), � = 30�, and �s = �. (c) Time-resolved g(2)

s (ω1, ω2, τ ) for the transitions
involving photons of frequency (ω1, ω2) = (�13, −�23) [+ symbol in (a) and (b)] with �s = �. Inset: same curve, for a broader time window.
Simulations realized for two atoms with kr = 0.006, θ = cos−1(1/

√
3), � = 250�, and �s = 5�.

Equal-sideband correlations. Photons emitted from the
same sidebands come antibunched, as in all cases the as-
sociated relaxation path is blocked (as long as there is no
degeneracy, i.e., �12 �= �23). An analogous effect is observed
for single atoms. For instance, a photon of frequency �13

automatically leads the system to state |u3
n−1〉, so the next

photon cannot be emitted at the same frequency as it requires
for the system to be in a state |u1

n−1〉 (states |u1
n−1〉 and |u3

n−1〉
are orthogonal). For this reason, the associated path of re-
laxation is considered blocked [see the ◦ symbol cascade in
Fig. 2(b)], and it is characterized by antibunched photons:
g(2)

s (�13,�13) < 1 [◦ symbol in Fig. 2(a)].
Nevertheless, as can be seen in Fig. 2(a), photons from the

same sidebands suffer from being in the “indistinguishability
bunching line” of the two-photon frequency-resolved correla-
tions. Indeed, two photons with the same frequency cannot be
distinguished by the sensor, which, in turn, leads to bunching
effects. This manifests in the “overbunched” diagonal line in
Fig. 2(a).

Cross-sideband correlations. Let us now discuss processes
which involve photons from two different sidebands, corre-
sponding to g(2)

s (±�i j,±�i′ j′ ) with (i, j) �= (i′, j′). For these
processes which involve the three states (15a), (15c), and
(15d), a more careful analysis is needed, as photons of dif-
ferent frequencies may be emitted in a specific order. For
instance, the double transition |u1

n〉 → |u3
n−1〉 → |u2

n−2〉, indi-

cated by a + symbol in the dressed state representation of
Fig. 2(b), is allowed, and thus permits the successive emission
of photons of frequency �13 and −�23, in that order. But
a photon of frequency −�23 cannot be followed by one of
frequency �13 since this would correspond to the succes-
sive |u3

n〉 → |u2
n−1〉 and |u1

n−1〉 → |u3
n−2〉 [see ⊗ symbol in

Fig. 2(b)], which is a blocked path since |u2
n−1〉 and |u1

n−1〉
are orthogonal.

Monitoring the zero-delay photon-photon correlations
g(2)

s (�i j,�i′ j′ ) does not allow one to distinguish the two pro-
cesses, but its time-resolved version does. As illustrated by the
computation of g(2)

s (�13,−�23, τ ) in Fig. 2(c), we observe
a strong bunching at delays τ ∼ +1/�, but a below-unity
g(2)

s for τ ∼ −1/� [negative times corresponds to the reverse
order since g(2)

s (�13,−�23, τ ) = g(2)
s (−�23,�13,−τ )]. The

same phenomenon is observed for transitions with photon
pairs of frequency (±�12,∓�13) and (±�12,±�23). Thus,
these double transitions, which involve the three different
atomic states, present a time-symmetry breaking for the g(2)

s
function, which corresponds to a specific ordering of the emit-
ted photons. It is due to the interaction between the emitters,
which leads to a splitting of the energy levels of the atomic
system.

It is interesting to note that on timescales τ of sev-
eral single-atom excited state lifetimes, the correlator
g(2)

s (�13,−�23, τ ) does not go to 1 as one would expect: this

(b) (c)(a)

FIG. 3. Steady-state photon-photon correlations g(2)
s (ω1, ω2), for comparison with Fig. 2(a), for (a) a single atom, and for two interacting

atoms with (b) kr = 20, and (c) kr = 0.4. Simulations realized for � = 30�, �s = �, and θ = cos−1(1/
√

3) (two-atom cases).
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is the signature of the antisymmetric state holding a substan-
tial part of the atomic excitations, yet these are released on the
mode timescale [37] [see inset of Fig. 2(c)].

Finally, the case of double processes that depart twice from
the same atomic state, but go to the two other atomic states
(i.e., |ui

n〉 → |u j
n−1〉 and |ui

n−1〉 → |ul
n−2〉, with i, j, and l all

different), are naturally antibunched. Indeed, both possible
orders for the double transition are blocked. Consequently,
g2

s (�i j,�il ) is below unity, as can be observed in Fig. 2(a)
(see the � symbol).

Sideband-central peak correlations. Finally, cascades
which involve one sideband photon plus a central peak photon
can, in principle, occur successively since the latter does not
involve a change in the atomic state (i.e., |ui

n〉 → |ui
n−1〉).

Furthermore, both orders of emission for the photons could
equally occur. Nonetheless, these pairs of photons come anti-
bunched. As discussed for the case of single emitters [38], this
effect originates from a destructive interference, due to the
fact that the state of the system is not modified by Rayleigh
emission. Thus, despite the two cascades involving photons
of relative frequency (in the rotating frame of the laser field),
�i j and 0 are degenerate (they have the same initial and final
states), and the interference between the amplitude of their
transition probability prevents the process instead of favoring
it [see Fig. 2(a)].

Finally, we point out that a clear observation of anti-
bunching, and other kinds of photon-photon correlations as
we investigate in this paper, requires the use of sensors of
linewidth at least comparable to the atomic linewidth (here
they are taken to be equal: �s = �). Indeed, it has recently
been shown that antibunching (and other photon-photon cor-
relations), even in the temporal domain [39–41] [as given by
g(2)(τ )], is strongly reduced in the case of a sublinewidth
filtering since it results in long integration time, which in turn
averages out the correlations [42].

C. Leapfrog processes

The cascades described above involve two-photon emis-
sion processes that encompass real transitions through in-
termediate states, where the system state is described by
the manifolds from the dressed atom picture. There ex-
ist other kinds of two-photon transitions, where the system
does not transit through one of these intermediate states,
but rather through a “virtual” manifold, labeled “leapfrog
processes” [21]. These transitions are characterized by the
joint emission of two photons and have recently been ob-
served in single quantum dots [43]. Most of these two-photon
collective processes yield correlations much stronger than
(cascade) resonant transitions, and their quantum nature has
been demonstrated for single emitters using Cauchy-Schwarz
and Bell inequalities [42].

For these leapfrog processes, the energy of each photon
does not need to be related to a specific level transition energy,
only their sum needs to obey the relation

ω1 + ω2 = 0, ±�i j (18)

(the frequency in the laboratory frame is obtained by adding
2ωL). The leapfrog transitions correspond to the antidiagonal
lines marked by color arrows (green, black, and orange) in

Figs. 4(b) and 4(c), and the associated (virtual) transitions are
depicted in Fig. 4(a). Note that if, in addition to condition (18),
the energy of each photon belongs to the allowed resonant
transitions, the photon emission process is that described in
the previous section and the correlations between the photons
are classical.

To characterize the nonclassicality of these correlations, we
use the Cauchy-Schwarz inequality (CSI) for the second-order
correlation functions at zero delay g(2)

kl = g(2)
s (ωk, ωl ),[

g(2)
12

]2 � g(2)
11 g(2)

22 , (19)

which we monitor by studying the ratio

Rs =
[
g(2)

12

]2

g(2)
11 g(2)

22

. (20)

Values Rs larger than unity are the signatures of nonclas-
sical correlations between the two emitted photons [42].
Figure 4(b) shows the CSI violations for two strongly inter-
acting atoms. In order to show more explicitly how different
two-photon correlations are in the strongly interacting case,
as compared to the single-atom and to the weakly interacting
atom cases, we plot in Fig. 5 the ratio Rs for different config-
urations: (a) for a single atom, and for two atoms [with dipole
orientation θ = cos−1(1/

√
3)] separated by (b) kr = 20 and

(c) kr = 0.4. We note that for kr � 1, Rs essentially behaves
like in the single-atom case. Differently, for kr = 0.4, new an-
tidiagonal lines start to appear, although no strong correlations
result from them (Fig. 3) and no CSI violation is observed in
these lines [Figs. 5(c) and 6(c)].

In Fig. 4(a), leapfrog processes which involve different
initial and final atomic states are presented: the system does
not emit photons from specific (“real”) transitions, only the
sum of the two-photon energies corresponds to a transition be-
tween specific states in the dressed states picture. As one can
observe from the antidiagonal lines in Fig. 4(b), which corre-
spond to ω1 + ω2 = 0, ±�i j , the Cauchy-Schwarz inequality
is violated for most of these joint emission processes (Rs > 1).
Nevertheless, the Cauchy-Schwarz inequality is not violated
for antibunched resonant transitions, i.e., for photon pairs with
frequencies (0,±�i j ) or (±�i j, 0) [see, for example, symbol
� for frequencies (�13, 0)]. Neither is it violated for pairs of
real photons, for frequencies (±�12,±�23). Also, as we can
observe in Figs. 6(a) and 6(b), a sublinewidth filtering leads to
weaker violations of Cauchy-Schwarz inequality [42].

Finally, one observes that the inequality is also violated
for some emission processes which involve real transitions,
where the correlations between emitted photons are classical
[see the + or ⊗ symbols, for example, in Fig. 4(b)]. In order
to properly observe the classicality of these correlations, as
they correspond to photons of real transitions located in the
leapfrog lines, it is necessary to use a sensor with a better
resolution. Indeed, the use of a sensor linewidth �s = � leads
to an averaging over processes with different kinds of cor-
relations. To illustrate this point, we show in Fig. 6(a) the
change in Cauchy-Schwarz inequality as the sensor linewidth
is changed from � to �/10: the above-mentioned transitions
for the photons from resonant transitions do not violate any
Cauchy-Schwarz inequality, showing the classical nature of
their correlations [42].
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FIG. 4. (a) Two-photon “leapfrog” processes, with the system transiting through virtual dressed levels. (b) Ratio Rs from the Cauchy-
Schwarz inequality, and (c) Bs from the Bell inequality, when tuning the frequency of each sensor. Simulations realized for kr = 0.05, θ =
cos−1(1/

√
3), � = 30�, and �s = �.

Furthermore, as for single emitters [42], violations of
Cauchy-Schwarz inequality may appear for transitions of the
central antidiagonal line (ω1 + ω2 = 0), even for real tran-
sitions and for well-resolved frequencies: Fig. 6(b) presents
such violations of Cauchy-Schwarz inequality (see the •, ∗,
and × symbols). This failure of Cauchy-Schwarz inequality
to detect classical correlations can be addressed by using the
Bell inequality (BI), as monitored by a quantifier adapted to
the sensor approach [42],

Bs =
√

2

∣∣∣∣B1111 + B2222 − 4B1221 − B1122 − B2211

B1111 + B2222 + 2B1221

∣∣∣∣, (21)

with Bjklm = 〈ξ †
1 (ω j )ξ

†
2 (ωk )ξ2(ωl )ξ1(ωm)〉. Values Bs > 2 are

a violation of the BI, which are considered as a true signature
of quantum correlations. As can be seen in Fig. 4(c) for �s =
�, Bell inequalities are violated only for specific areas of the
central antidiagonal line, yet not for the real transitions of •
and ∗. This behavior is similar to the single-emitter case [42],
confirming that only transitions involving virtual states hold
true quantum correlations between the emitted photons. Note
that the Bell inequality and Cauchy-Schwarz inequality are
sensitive to the frequency resolution of the sensors, as narrow
linewidth sensors correspond to long averaging time, which in
turn washes out the correlations [42].

As illustrated for the pair of photons (±�13,∓�13), a sen-
sor linewidth �s = � presents a violation of BI, yet reducing
the sensor linewidth to �/10 removes the violation of the BI;

see Fig. 6(d), where the pair of (�13,−�13) is indicated by
×. This again highlights that the narrow linewidth sensors
correspond to a finer structure for the quantum quantifiers and
the necessity of using sensors with a linewidth comparable to
the atomic transition one, in order to detect the stronger cor-
relations. Differently, the sidebands which rise directly from
the interaction, at ω1 + ω2 = 2�, do not present signatures of
nonclassicality, as illustrated in Fig. 6(c).

IV. CONCLUSION AND PERSPECTIVES

Strong interactions between two two-level emitters give
rise to a series of new sidebands in the fluorescence spectrum,
whose shift from the atomic transition depends on both the
interaction strength and the driving field. Similarly to the
single emitters, the leapfrog processes with frequencies that
sum to zero or the frequency of one of the interaction-induced
sidebands are characterized by strong correlations, which can
be either classical or quantum. This suggests that strongly
coupled emitters are potential sources of heralded photons,
with extra control parameters through the interaction, as com-
pared to single emitters.

Another regime of interest is that of a weak dipole-dipole
interaction, i.e., when the collective dressed levels are equally
spaced in energy (�12 = �23), which occurs when the dis-
tance between the emitters is comparable or larger than the
optical wavelength. In this regime, the first correction to
the single-atom fluorescence spectrum is the emergence of

(a) (b) (c)

FIG. 5. Ratio Rs from the Cauchy-Schwarz inequality when tuning the frequency of each sensor, for comparison with Fig. 4(b), for (a) a
single atom, and for two interacting atoms with θ = cos−1(1/

√
3) and (b) kr = 20 and (c) kr = 0.4. Simulations are realized for � = 30� and

�s = �.
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FIG. 6. Quantifier Rs for the Cauchy-Schwarz inequalities (with a violation above the dashed line) for �s = � (solid blue) and �s = �/10
(dotted red), for the leapfrog lines (a) ω1 + ω2 = �12, (b) ω1 + ω2 = 0, and (c) ω1 + ω2 = 2�. (d) Quantifier Bs for the Bell inequalities (with
a violation above the dashed line) for �s = � (solid blue) and �s = �/10 (dotted red) in the leapfrog line of ω1 + ω2 = 0. The vertical lines
with a symbol at the top refer to the processes discussed in Figs. 2(a), 4(b) and 4(c). In (c), we show that collective leapfrog lines for two atoms
with kr = 0.4 do not show a CSI violation as a signature of single-atom physics domination. Simulations realized for θ = cos−1(1/

√
3) and

� = 30�, in (a),(b),(d) kr = 0.05 and (c) kr = 0.4.

sidebands shifted from the laser frequency by twice the Rabi
frequency (ω = ±2�). This phenomenon was predicted to
scale with the resonant optical depth for dilute extended
clouds, as a signature of the raising two-atom quantum corre-
lations [14]. We have investigated photon-photon correlations
g(2)(ω1, ω2) for a pair of atoms at a distance of the order of λ

[kr = 0.4 − 1 and θ = cos−1(1/
√

3)] and strongly driven, yet
photon-photon correlations appear to be largely dominated by
single-atom physics. This is reminiscent of the antibunching
phenomenon which vanishes for a large number of indepen-
dent emitters, unless specific conditions for their interference
is achieved [44]. Furthermore, the leapfrog processes asso-
ciated with the new sidebands, ω1 + ω2 = ±2�, present no
violation of the Cauchy-Schwarz inequality [see Fig. 6(c)].
This suggests that although these sidebands result from cor-
relations between the quantum fluctuations of the two dipoles
[14], the photons associated with these processes may be only
classically correlated.

The variety of sidebands and photon-photon correlations
encountered for a pair of atoms calls for a dedicated study for
larger systems. Indeed, although the coherent manipulation of
atoms at scales below the diffraction limit is experimentally

challenging, schemes have been proposed to surpass these
limitations, based on the transparency-induced dark states
[45–48], which have already allowed for the generation of
subwavelength cold atom structures [49–52]. In this context,
strongly interacting cold atom ensembles may be a promising
tunable source for entangled pairs of photons, but also for
larger bunches of photons [19].
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