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Single-photon nonreciprocal excitation transfer with non-Markovian retarded effects
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We study at the single-photon level the nonreciprocal excitation transfer between emitters coupled with a
common waveguide. Non-Markovian retarded effects are taken into account due to the large separation distance
between different emitter-waveguide coupling ports. It is shown that the excitation transfer between the emitters
of a small-atom dimer can be obviously nonreciprocal by introducing between them a coherent coupling channel
with nontrivial coupling phase. We prove that for dimer models the nonreciprocity cannot coexist with the
decoherence-free giant-atom structure although the latter markedly lengthens the lifetime of the emitters. In
view of this, we further propose a giant-atom trimer which supports both nonreciprocal transfer (directional
circulation) of the excitation and greatly lengthened lifetime. Such a trimer model also exhibits incommensurate
emitter-waveguide entanglement for different initial states in which case the excitation transfer is, however.
reciprocal. We believe that the proposals in this paper are of potential applications in large-scale quantum
networks and quantum information processing.
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I. INTRODUCTION

Waveguide quantum electrodynamics (QED) studies in-
teractions between atoms and various one-dimensional open
waveguides. It provides an excellent platform for achieving
strong light-matter interactions due to the strong transverse
confinement on the electromagnetic fields [1,2]. Different
from cavity QED systems, where atoms are commonly cou-
pled with a single or multiple discrete modes in bounded
spaces, atoms can interact with a continuum of modes in
waveguides, similar to those of a thermal reservoir [2]. In
view of this, many disadvantages presented in cavities can be
evaded in waveguide QED systems, such as limited bandwidth
of emitted photons and stochastic release of cavities [3]. Since
the first experimental realization in 2007 [4], waveguide QED
has brought out a great deal of advances, e.g., chiral photon-
atom interactions [5–7], single-photon routers [8–10], and
topologically induced unconventional quantum optics [11] to
name a few. In particular, waveguide-mediated interactions
between far apart atoms (resonators), which can be tailored
to be either coherent or dissipative, exhibit important applica-
tions in achieving large-scale quantum networks [12–17].

In waveguide QED, atoms are commonly regarded as
pointlike dipoles because their sizes are in general much
smaller than the wavelengths of the waveguide modes they
interact with. Recent experiments show that such an approxi-
mation is no longer valid when (artificial) atoms interact with
a surface acoustic wave whose wavelength can be even much
smaller than that of microwave photons [18–20]. Moreover, it
is also possible to couple a single atom with bent waveguides
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at two or more points separated by distances much larger
than one wavelength. Such configurations are referred to as
giant atoms [21], which can exhibit striking effects such as
frequency-dependent decays and Lamb shifts [21,22], chiral
emission [23,24], and oscillating bound states [25]. Recently,
decoherence-free interactions between braided giant atoms
have been theoretically proposed [26] and experimentally
verified [27], where the giant atoms are immune to emitting
photons to the waveguide yet they still interact effectively
with each other. Moreover, giant-atom structures have also
been extended to two or higher dimensions with optical lat-
tices of cold atoms [28]. These seminal works provide new
inspirations for many applications in quantum simulating and
quantum computation.

It has been shown that non-Markovian retarded effects
arising from the large separation distances between, for in-
stance, a single atom and the waveguide end [29–31], different
coupling ports of a giant atom [32], and far apart atoms
[33–35] can markedly modify the dynamics. When the trav-
eling time of photons or phonons in the waveguide between
different atom-waveguide coupling channels is large enough
compared with the inverse of the atomic relaxation rate, the
dynamics can exhibit prominent non-Markovianity and thus
cannot be predicted by common Markovian treatments. This
suggests that the non-Markovian retarded effect should be
taken into account when considering nonlocal couplings that
are inevitable in many large-scale systems (e.g., quantum net-
works). In particular, a counterintuitive phenomenon referred
to as “superradiant paradox” arises if the separation L between
atoms satisfies lc/2 < d < lc, where lc is the coherent length
of photons emitted from the emitters to the waveguide [33,34].
As the number of atom increases, the non-Markovianity is
shown to be non-negligible even for small separations [36].
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Such non-Markovian dynamics in single-photon waveguide
QED can be solved semianalytically via a real-space approach
[37] and fully analytically via a diagrammatic method [38].

In this paper, we focus on nonreciprocal excitation transfer
between emitters in waveguide QED systems with consider-
able non-Markovian retarded effects. We start by considering
a simple dimer model where two small emitters couple
with each other via both direct and indirect (waveguide-
mediated) interactions. By introducing a nontrivial coupling
phase (synthetic magnetic flux) for the direct coupling terms,
nonreciprocal excitation transfer can be achieved and the non-
reciprocity is also dependent on the phase accumulation of
traveling photons in this case. To lengthen the duration of
the nonreciprocal phenomenon, we also propose a giant-atom
trimer in which the excitation exhibits directional circulation
and greatly suppressed dissipation. Dimer models, how-
ever, are proved to be incapable of supporting nonreciprocal
transfer as long as the emitters become “decoherence-free.”
Moreover, we demonstrate that the entanglement between
emitters and the waveguide modes can be quite incommen-
surate in the case of the trivial coupling phase when the single
excitation is initially prepared in different emitters, although
the excitation transfer is reciprocal in this case.

II. MODEL AND EQUATIONS

We first consider a simple model composed of two identical
small emitters and a U-type waveguide (the term “small” here
means that each emitter is coupled with the waveguide at only
one point, in contrast to giant-atom models). As shown in
Fig. 1, emitters a and b are side-coupled with the waveguide
at x = x1 and x = x2, respectively. In addition, we consider a
direct interaction between a and b by assuming that they are
spatially close together. Hereafter, we refer to this model as
the small-atom dimer for simplicity. The Hamiltonian of the
small-atom dimer can be written as (h̄ = 1)

H = He + Hw + Hint, (1)

where He = ω0(σ+
a σa + σ+

b σb) and Hw = ∑
k ωk p†

k pk are the
free Hamiltonians of the emitters and the waveguide, respec-
tively. Here σ+

j and σ j ( j = a and b) are respectively the
raising and lowering operators of emitter j with ω0 being the
transition frequency between the ground state |g〉 and excited
state |e〉. p†

k and pk are respectively the creation and annihila-
tion operators of the traveling photons in the waveguide with
wave vector k and frequency ωk . The dispersion relation of the
waveguide can be approximately given by ωk = vg|k|, with
vg being the group velocity if ω0 is far away from the cutoff
frequency [39,40]. Under the rotating-wave approximation,
the interaction Hamiltonian is written as

Hint =
∑

k

[gk pk (σ+
a + eikdσ+

b ) + H.c.]

+ (Jσ+
a σb + H.c.), (2)

where gk and J are the emitter-waveguide and emitter-emitter
coupling coefficients, respectively, and d = |x2 − x1| is the
separation distance between the two emitters.

FIG. 1. Schematic illustrations of (a) a small-atom dimer and
effective energy levels and (b) a giant-atom trimer with braided
coupling ports.

With the Hamiltonian above, the state at time t in the
single-excitation manifold can be given by

|ψ (t )〉 =
∑

k

uk (t )e−iωkt p†
k|g, g, 0〉

+
∑
j=a,b

c j (t )σ+
j e−iω0t |g, g, 0〉, (3)

where c j (t ) and uk (t ) are the probability amplitudes of excit-
ing emitter j to the excited state and creating a photon with
wave vector k in the waveguide, respectively. |g, g, 0〉 denotes
the vacuum state of the system with both emitters in the
ground state and no photon in the waveguide. By solving the
Schrödinger equation and eliminating the waveguide modes,
one can obtain the time-delayed equations of probability am-
plitudes (see more details in Appendix A):

dca(t )

dt
= − γ

2
eiφcb

(
t − d

vg

)
�

(
t − d

vg

)

− κ + γ

2
ca(t ) − iJcb(t ),

dcb(t )

dt
= − γ

2
eiφca

(
t − d

vg

)
�

(
t − d

vg

)

− κ + γ

2
cb(t ) − iJ∗ca(t ), (4)
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where γ = 2L|gk0 |2/vg is the spontaneous emission rate of
the emitters to the waveguide, with L being the length of the
waveguide and k0 = ω0/vg. φ = k0d is the phase accumula-
tion of photons traveling from one emitter to another through
the waveguide and �(t ) is the Heaviside step function. κ

denotes the loss of the emitters due to other decay channels,
which can be much smaller than γ experimentally.

Equation (4) shows that the waveguide introduces both a
decay channel for each emitter and a retarded indirect cou-
pling between them. In the Markovian limit d/vg → 0 and
for long-time evolution t → ∞, Eq. (4) can be approximately
regarded as simultaneous differential equations, while as d in-
creases gradually, the non-Markovian retarded effect becomes
more and more dominant such that the dynamic evolution can
markedly deviate from the Markovian expectation.

Note that the coupling phase θ of the direct interaction
should be considered (i.e., J = |J|eiθ ), which cannot be re-
moved by any gauge transformation in the presence of the
waveguide-mediated coupling. As is shown in the following,
it plays a crucial role for achieving nonreciprocal excita-
tion transfer. Experimentally, such a coupling phase can be
achieved via an ac driving in each emitter [41–44]. For
whispering gallery mode resonators, one can also use an an-
tiresonant linker to introduce an optical path imbalance 
x in
opposite directions between the two resonators, such that the
effective coupling phase reads θ = 2π
x/λ, with λ being the
resonant wavelength of the resonators [45–48].

III. NONRECIPROCAL EXCITATION TRANSFER

Now we consider two initial states |ψ1(0)〉 = |e, g, 0〉 and
|ψ2(0)〉 = |g, e, 0〉 (either a or b is initially prepared in the
excited state) to compare the excitation transfers from a to b
and from b to a, respectively. This can be done by focusing
on the dynamic evolutions of the probabilities Pb,1 and Pa,2,
where Pj,n ( j = a and b; n = 1 and 2) denotes the populations
|c j |2 of emitter j with the initial state |ψn(0)〉. Moreover,
we define η = dγ /vg as the separation distance between the
emitters normalized by the coherence length [32–34]. There-
fore the relation between phase φ and the time delay reads
φ = ω0d/vg = ω0η/γ . For example, if emitters a and b are
two identical superconducting qubits (artificial atoms) with
ω0/2π = 3.276 GHz and γ /2π = 29.2 MHz, we have φ =
{20, 20.5, 21}π for η = {0.56, 0.574, 0.588}, respectively.

We first consider the case of trivial coupling phase θ =
0 and plot in Figs. 2(a)–2(c) the dynamical evolutions of
Pb,1 and Pa,2 with η = 0.56, η = 0.574, and η = 0.588,
respectively. It shows that the waveguide-induced phase
factor φ cannot lead to nonreciprocity since it does not
break the time-reversal symmetry of the Hamiltonian. Note
that the populations decay much slower when φ is an in-
teger multiple of π . This is reminiscent of the Fabry-Pérot
bound states in the continuum in the Markovian limit, which
shows that one of the eigenstates becomes lossless if φ = mπ

(m is an arbitrary integer) [49,50]. For general initial states
considered here, one can find from Eq. (4) that the waveguide-
induced indirect coupling is purely dissipative (i.e., iγ eiφ/2 is
purely imaginary) in the case of φ = mπ , which serves as an
effective gain and thus suppresses the decay of the emitters
[51]. Moreover, the populations decay in an oscillating form
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FIG. 2. Dynamic evolutions of populations Pb,1 (blue solid line)
and Pa,2 (red dashed line) for (a) η = 0.56, (b) η = 0.574, (c) η =
0.588, (d) θ = π/4, (e) θ = π/2, and (f) θ = π . Here we assume
θ = 0 in panels (a)–(c) and η = 0.56 in panels (d)–(f). Other param-
eters are ω0/γ = 112.19, κ/γ = 8.7 × 10−3, and |J|/γ = 0.5.

for φ �= mπ because the excitation bounces between the emit-
ters back and forth.

On the other hand, Figs. 2(d) and 2(e) exhibit obvious non-
reciprocal excitation transfer within a certain time range due
to the nontrivial coupling phase (θ �= mπ ), which breaks the
time-reversal symmetry of the Hamiltonian. In particular, the
optimal nonreciprocal transfer can be achieved for θ = π/2
(the maximum of |Pb,1(t ) − Pa,2(t )| during the evolution max-
imizes for θ = π/2). As shown in the effective energy-level
diagram in Fig. 1(a), the nontrivial coupling phase θ has no
impact on dynamics for t < d/vg because it can always be
gauged away in the absence of the retarded coupling (denoted
by the red dashed line). This is also why Pb,1 and Pa,2 coincide
with each other in the beginning. Once each emitter meets the
retarded feedback coming from the other one at t = d/vg, an
additional transfer path between two emitters is formed such
that the two paths can interfere with each other (see the black
solid and red dashed lines in the energy-level diagram) and the
interference effects of opposite directions are generally differ-
ent for θ �= mπ . Figure 2(f) shows that the transfer becomes
reciprocal again for θ = π , which attributes to the recovered
time-reversal symmetry.

Although the time-reversal symmetry of the system is bro-
ken by tuning the coupling phase θ , the nonreciprocity is
also dependent on φ in the case of θ �= mπ . As shown in
Figs. 3(a)–3(c), one can observe nearly inverse nonreciprocal
transfer for φ = 20π and φ = 21π (η = 0.56 and η = 0.588),
while the transfer becomes reciprocal for φ = 20.5π (η =
0.574) even if the coupling phase is nontrivial. This is because
the coupling phases are effectively shifted from ±θ to ±θ − φ

by removing φ in the indirect coupling terms, implying that
the moduli of the overall couplings of opposite directions
are effectively swapped in the case of φ = (2m + 1)π . Note
that the nonreciprocal behaviors are not exactly inverse for
φ = 20π and 21π due to different time delays before which
the emitters decay exponentially [33].
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FIG. 3. (a)–(c) Dynamic evolutions of populations Pb,1 (blue
solid line) and Pa,2 (red dashed line) for (a) η = 0.56, (b) η = 0.574,
and (c) η = 0.588. (d) Dynamic evolutions of populations Pb,1 and
Pa,2 with different values of η corresponding to φ = 2mπ . Here we
assume θ = π/2 in all panels and other parameters are the same as
those in Fig. 2.

We point out that η determines the non-Markovianity of
the system such that it also affects the onset time and the
optimal effect of the nonreciprocal transfer. As shown in
Fig. 3(d), the onset time of the nonreciprocal transfer is ex-
actly t = d/vg (i.e., γ t = η). Moreover, all values of η chosen
here correspond to φ = 2mπ (φ = {2π, 20π, 40π} for η =
{0.056, 0.56, 1.12}), which yields the optimal nonreciprocal
transfer for θ = π/2 as discussed above. It shows that the op-
timal effect of the nonreciprocal transfer becomes worse and
worse as η increases. In other words, the retarded effect puts
off the onset and suppresses the degree of the nonreciprocal
excitation transfer.

Note that in the absence of external inputs, the populations
of both emitters should fall to zero rapidly and the nonrecip-
rocal phenomenon can only be observed within a short-lived
duration, as shown in Figs. 2 and 3. It has been shown that
giant atoms (self-interference resonators) can be completely
decoupled from the waveguide and thus no longer emit pho-
tons to it [26,27,52,53]. However, this generally makes the
emitters isolated such that they can hardly interact with each
other if they are spatially separated. Thanks to the braided
structure proposed in Refs. [26,27], decoherence-free cou-
plings can be achieved between far apart giant atoms, i.e., the
spontaneous emissions of the atoms to the waveguide can be
completely suppressed while the indirect coupling between
them is nonvanishing. Nevertheless, we would like to point
out that a dimer model with such a braided structure is unable
to demonstrate nonreciprocal transfer, although the lifetime of
the emitter can be markedly extended in this case (see more
details in Appendix B).

IV. DIRECTIONAL EXCITATION CIRCULATION IN A
GIANT-ATOM TRIMER

As discussed in Sec. II and Appendix B, nonrecipro-
cal excitation transfer is not allowed in dimer models with

“decoherence-free” giant atoms (the quotation marks here
mean that the giant atoms are not exactly decoherence-free
due to the retarded self-interference effects), although the life-
time of the emitters can be markedly lengthened. In view of
this, we extend the braided structure by introducing the third
emitter c (with the raising and lowering operators denoted by
σ+

c and σc, respectively). As shown in Fig. 1(b), emitters a
and c are coupled with the waveguide via the same two ports
located at x = x1 and x = x3, respectively, while emitter b
couples with the waveguide at x = x2 and x = x4, respectively.
The four coupling ports are arranged in a braided manner
to suppress the spontaneous emission to the waveguide and
obtain nonvanishing indirect coupling. We assume that the
coupling ports are evenly spaced (i.e., x2 − x1 = x3 − x2 =
x4 − x3 = d) and all emitter-waveguide couplings are identi-
cal. Moreover, a and c couple directly with each other in terms
of |J|eiθσ+

a σc + H.c. For simplicity, we refer to this structure
as the giant-atom trimer hereafter. In this case, the effective
equations of the probability amplitudes are written as

dca(t )

dt
= − γ

2
(3D1,b + D3,b) − γ (D2,a + D2,c)

− (κ + γ )a(t ) − i(|J|eiθ − iγ )cc(t ),

dcb(t )

dt
= − γ

2
[3(D1,a + D1,c) + D3,a + D3,c]

− (κ + γ )b(t ) − γ D2,b,

dcc(t )

dt
= − γ

2
(3D1,b + D3,b) − γ (D2,a + D2,c)

− (κ + γ )c(t ) − i(|J|e−iθ − iγ )ca(t ), (5)

where Dn,l = cl (t − nd/vg)einφ�(t − nd/vg) (n = 1, 2, and
3; l = a, b, and c) with subscript n corresponding to time
delay nd/vg. Equation (5) shows that there are three different
coupling channels between emitters a and c, including one
direct coupling and two indirect couplings with one of them
being retarded. Clearly, the overall coupling is asymmetric as
long as θ �= mπ and the asymmetry is maximized when J = γ

and θ = (m + 1/2)π (for this reason, we choose J = γ in this
case).

We plot in Figs. 4(a) and 4(b) the dynamic evolutions
of the populations Pb,3 and Pa,4, respectively, where Pj,3(4)

( j = a, b) denotes the population |c j |2 of emitter j with the
initial state |ψ3(0)〉 = |e, g, g, 0〉 (|ψ4(0)〉 = |g, e, g, 0〉). We
find that in the giant-atom trimer, nonreciprocal excitation
transfer emerges again for θ �= mπ due to the asymmetric
overall coupling between a and c. Different from the behav-
iors in Figs. 2 and 3, Pb,3 and Pa,4 oscillate here with a fixed
phase difference. To understand this difference, we also plot
in Figs. 4(b) and 4(c) the evolutions of the populations of
all three emitters in the case of θ = π/2, with initial states
|ψ3(0)〉 and |ψ4(0)〉, respectively. One can find that for both
initial states, the excitation exhibits a directional circulation
along the same direction of a → c → b → a after t = d/vg,
which is a signature of broken time-reversal symmetry that
cannot be observed for θ = mπ . That is to say, the single
excitation initially prepared in emitter b is preferentially trans-
ferred to a while that initially prepared in emitter a shows
a preferential transfer to c. Note that circulations along the
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FIG. 4. (a) and (b) Dynamic evolutions of populations Pb,3 (blue
solid line) and Pa,4 (red dashed line) for (a) θ = 0 and (b) θ = π/2.
(c) and (d) Dynamic evolutions of populations of all three emitters
with (c) θ = π/2 and the initial state |ψ3(0)〉 and (d) θ = π/2 and
the initial state |ψ4(0)〉. Other parameters are the same as those in
Fig. 3(a) except for |J|/γ = 1 (|J| and θ denote in this case the
amplitude and phase of the direct coupling coefficient between a and
c, respectively).

opposite direction a → b → c → a can be achieved for θ =
−π/2. This is analogous to chiral currents of electrons in an
Aharonov-Bohm cage and of photons in a synthetic magnetic
field [42,54–56]. In this way, the target emitter (b for |ψ3(0)〉
and a for |ψ4(0)〉) can be excited efficiently within different
durations for the two initial states. Note that another ini-
tial state |ψ5(0)〉 = |g, g, e, 0〉 results in essentially the same
dynamics as those with |ψ3(0)〉. This is because Eq. (5) is
invariant by exchanging the amplitudes ca and cc and chang-
ing the sign of θ simultaneously (with identical θ , |ψ3(0)〉
and |ψ5(0)〉 lead to exactly reverse circulations). Moreover,
since emitter b is not requested to interact directly with a or c
in this case, the trimer model can be used for nonreciprocal
excitation transfer between far apart emitters, which is of
potential application in large-scale quantum networks.

Finally, we focus on the dynamic evolutions of the
giant-atom trimer in the long-time limit. We first plot in
Figs. 5(a)–5(d) the evolutions of the populations of all three
emitters with different values of θ and initial states. Two major
differences between the cases of θ = π/2 and θ = 0 can be
found: (i) for θ = π/2 the populations of all three emitters
decay in similar oscillating manners and tend to vanish to-
gether, while for θ = 0 the population of b exhibits obviously
different evolution from those of a and c; (ii) for θ = π/2
the long-time evolutions of the populations are similar for
both initial states [see Figs. 5(a) and 5(b)] while this is not
true for θ = 0, i.e., the long-time evolutions are quite differ-
ent for initial states |ψ3(0)〉 and |ψ4(0)〉 [see Figs. 5(c) and
5(d)]. Physically, this is because, for θ = π/2, the giant-atom
trimer exhibits directional excitation circulation as mentioned
above, yet the oscillation amplitudes of all three populations
diminish gradually due to both the other decay channels

FIG. 5. (a)–(d) Dynamic evolutions of populations of all three
emitters with (a) θ = π/2 and the initial state |ψ3(0)〉, (b) θ = π/2
and the initial state |ψ4(0)〉, (c) θ = 0 and the initial state |ψ3(0)〉,
(d) θ = 0 and the initial state |ψ4(0)〉. (e) and (f) Dynamic evolutions
of linear entropies and total populations with (e) θ = π/2 and (f)
θ = 0. Other parameters are the same as those in Fig. 4.

and the non-Markovian retarded effect (as discussed in
Appendix B, the decoherence of the emitters to the waveguide
can be exactly suppressed in the case of κ → 0 and d/vg → 0
such that the populations oscillate stably). For θ = 0, the
excitation can be transferred simultaneously from one emitter
to both the other two. The transfer probability from b to a
and that from b to c should be equal because the two paths
are identical. However, the transfer probability from a (c) to b
and that from a (c) to c (a) are unequal because the two paths
are quite different [the overall coupling between a (c) and b is
purely coherent with time delays d/vg and 3d/vg while that of
a and c contains both coherent and dissipative parts with time
delays 0 or 2d/vg]. For the initial state |ψ3(0)〉, the excitation
is apt to be transferred from a to c rather than from a to b while
it comes back equiprobably from b to a and from b to c. As a
result, the excitation tends to bounce between a and c in the
long-time limit. For the initial state |ψ4(0)〉, the populations of
a and c are always identical because the excitation initialized
in b is transferred between b and a or between b and c with
identical probabilities since the beginning.

We point out that the entanglement between the emitters
and the waveguide mode can be markedly incommensurate for
initial states |ψ3(0)〉 and |ψ4(0)〉 in the case of θ = 0. This can
be verified by calculating the linear entropy S = 1 − Tr(ρ2),
which estimates here the correlation between the emitters
and the electromagnetic field in the waveguide [33,57]. ρ

denotes the reduced density matrix of the emitters, which can
be obtained by taking a trace over the waveguide states, i.e.,
ρ = Trw[|ψ (t )〉〈ψ (t )|], with |ψ (t )〉 given in Eq. (3). We plot
in Figs. 5(e) and 5(f) the linear entropies S (corresponding to
the initial state |ψ3(0)〉) and S′ (corresponding to the initial
state |ψ4(0)〉) for θ = π/2 and θ = 0, respectively. It can be
found that for θ = 0 the evolutions of linear entropy can be
quite different by initially exciting different emitters (a or b) to
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the excited state while for θ = π/2 there is no significant dif-
ference between the two cases. We also plot in Figs. 5(e) and
5(f) the total populations of all emitters (i.e., survival proba-
bilities) Ptot = Pa,3 + Pb,3 + Pc,3 and P′

tot = Pa,4 + Pb,4 + Pc,4

for θ = π/2 and θ = 0, respectively. As expected, the total
populations exhibit behaviors similar to those of the linear en-
tropies [33]. Such a result is reminiscent of the nonreciprocal
entanglement demonstrated in Ref. [58], which reveals that
the conditions of nonreciprocal entanglement and transport
are not necessary the same. However, we refer to the phe-
nomenon here as incommensurate entanglement to distinguish
it from the phenomena stemming from broken time-reversal
symmetry. As a final note, the incommensurate entanglement
vanishes in the Markovian limit, where for θ = mπ the excita-
tion is transferred equally from the initial emitter to the other
two and comes back with the same probability, independent
of the initial state.

V. CONCLUSIONS

In summary, we have studied the nonreciprocal excitation
transfer in the presence of non-negligible non-Markovian re-
tarded effects by considering two waveguide QED models,
i.e., a small-atom dimer and a giant-atom trimer. Both models
exhibit nonreciprocal single-excitation transfer if a coherent
coupling channel with a nontrivial coupling phase is intro-
duced, while the waveguide-induced phase accumulation does
not break the time-reversal symmetry and thereby cannot re-
sult in nonreciprocity solely. The retarded effects, which are
inevitable in the presence of nonlocal couplings, are shown to
put off the onset and suppress the degree of the nonreciprocal
transfer. In particular, we have demonstrated that the giant-
atom trimer supports both nonreciprocal excitation transfer
(in a directionally circulatory manner) and greatly suppressed
decoherence of the emitters, which cannot be achieved in
dimer models with similar decoherence-free structures. More-
over, incommensurate emitter-waveguide entanglement has
been revealed when different emitters of the giant-atom trimer
are initially excited, whose condition is independent of the
time-reversal symmetry. The results in this paper may inspire
applications based on large-scale quantum networks due to the
rapid progress in relevant experimental platforms.
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APPENDIX A: DERIVATION OF EQ. (4)

In this Appendix, we show in detail the derivation of
Eq. (4) in the main text. With the Hamiltonians and the
single-excitation wave function given in Eqs. (1)–(3) and solv-
ing the Schrödinger equation, one can obtain the equations of

the probability amplitudes:

dca(t )

dt
= − i

∑
k

gkc(k, t )e−i(ωk−ω0 )t − iJcb(t ),

dcb(t )

dt
= − i

∑
k

gkc(k, t )eikd e−i(ωk−ω0 )t − iJ∗ca(t ),

duk (t )

dt
= − ig∗

kei(ωk−ω0 )t [ca(t ) + e−ikd cb(t )]. (A1)

The formal solution of uk (t ) can be written as

uk (t ) = −i
∫ t

t0

dt ′g∗
kei(ωk−ω0 )t ′

[ca(t ′) + e−ikd cb(t ′)], (A2)

where t0 < t is the initial time and uk (t0) = 0 represents the
initial vacuum state of the waveguide. Substituting Eq. (A2)
into Eq. (A1), one has

dca(t )

dt
= − iJcb(t ) − L

2π

∫ t

t0

dt ′eiω0(t−t ′ )
∫ +∞

−∞
dk

× |gk|2[ca(t ′) + e−ikd cb(t ′)]e−iωk (t−t ′ ),

dcb(t )

dt
= − iJ∗ca(t ) − L

2π

∫ t

t0

dt ′eiω0(t−t ′ )
∫ +∞

−∞
dk

× |gk|2[eikd ca(t ′) + cb(t ′)]e−iωk (t−t ′ ), (A3)

where L is the length of the waveguide. Considering that both
ωk and gk are even functions of k, i.e., ωk = ω−k and gk =
g−k , one can change the variable that is being integrated, i.e.,

dca(t )

dt
= − iJcb(t ) −

∫ t

t0

dt ′eiω0(t−t ′ )
∫ +∞

0
dω

L|gk|2
2πvg

× [2ca(t ′) + 2 cos (kd )cb(t ′)]e−iω(t−t ′ ),

dcb(t )

dt
= − iJ∗ca(t ) −

∫ t

t0

dt ′eiω0(t−t ′ )
∫ +∞

0
dω

L|gk|2
2πvg

× [2 cos (kd )ca(t ′) + 2cb(t ′)]e−iω(t−t ′ ), (A4)

where we have denoted ωk by ω for simplicity. Note
that, according to Fermi’s golden rule [59], L|gk|2/vg =
L|gk|2(dk/dω) = 2π |gk|2D(ω) describes the spontaneous
emission of the emitters to the waveguide, where D(ω) =
(dk/dω)L/2π is the density of states in the waveguide
[21,27]. Assuming that ω0 is far away from the cutoff fre-
quency of the waveguide (in this case the dispersion relation of
the waveguide can be approximately linearized as ω = ω0 +
ν) and gk ≈ gk0 in the vicinity of k0 = ω0/vg (the Markovian
approximation) [32,34,39], we have

dca(t )

dt
= − γ

2π

∫ +∞

−∞
dν

∫ t

t0

dt ′e−iν(t−t ′ ){ca(t ′)

+ cos [(k0 + ν

vg
)d]cb(t ′)} − iJcb(t ),

dcb(t )

dt
= − γ

2π

∫ +∞

−∞
dν

∫ t

t0

dt ′e−iν(t−t ′ ){cb(t ′)

+ cos [(k0 + ν

vg
)d]ca(t ′)} − iJ∗ca(t ), (A5)
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FIG. 6. Schematic illustration of braided giant-atom dimer.

where γ = 2L|gk0 |2/vg. According to the definition of the
delta function

∫
dωeiωt = 2πδ(t ), Eq. (A5) can be simplified

as Eq. (4) in the main text by including the decay κ for
each emitter. Note that we have dropped the contribution of
δ(t ′ − t − d/vg) at this step because it is centered outside
the the range of integral, i.e., t ′ − t − d/vg is negative for
t ′ ∈ [0, t]. This is always true as long as d is not exactly zero,
even if d is very small.

APPENDIX B: EXTENDED LIFETIME WITH BRAIDED
GIANT-ATOM STRUCTURE

In this Appendix, we aim to prove that two giant atoms
with decoherence-free indirect coupling cannot exhibit non-
reciprocal transfer even in the presence of a direct coupling
between them. As shown in Fig. 6, both emitters a and b cou-
ple with the waveguide twice in a braided manner, i.e., emitter
a (b) couples with the waveguide at x = x1 and x = x3 (x = x2

and x = x4). The emitter-waveguide couplings are assumed to
be identical (i.e., g) and the coupling ports are evenly spaced
by distance d . Such a braided structure can be implemented,
for example, with an S-type waveguide [26,27]. To distinguish
from the small-atom dimer in Fig. 1(a), we refer to this model
as the giant-atom dimer. Once again, we consider the direct
coupling |J|e±iθ between a and b. In this case, the effective
equations of the probability amplitudes ca and cb are written
as

dca(t )

dt
= − γ ca(t ) − γ

2
(3D1,b + D3,b)

− γ D2,a − i|J|eiθcb(t ),

dcb(t )

dt
= − γ cb(t ) − γ

2
(3D1,a + D3,a)

− γ D2,b − i|J|e−iθ ca(t ), (B1)

where φ = k0d = ω0η and Dn,l = cl (t − nd/vg)einφ�(t −
nd/vg) (n = 1, 2, and 3; l = a and b). Here we have ne-
glected other decay channels for simplicity which can be
experimentally much weaker than the spontaneous emission
to the waveguide.

We plot in Fig. 7(a) the dynamic evolutions of Pb,1 and Pa,2

by numerically calculating Eq. (B1). The separation distance
d between adjacent coupling ports is well tailored such that
2φ = π . According to Refs. [26,27], the emitters become
decoherence-free in this case yet can still interact with each

0 5 10
0

0.2

0.4

0.6
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0 5 10
0

0.5

1
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FIG. 7. Dynamic evolution of populations Pb,1 (blue solid line)
and Pa,2 (red dashed line) with (a) η = 0.154 (φ = 5.5π ) and (b) η =
0.014 (φ = 0.5π ). Other parameters are the same as those in Fig. 3.

other in the absence of the direct coupling. However, as shown
in Fig. 7(a), the excitation transfer becomes reciprocal in this
case, although the coupling phase θ = π/2 is nontrivial (we
have also checked the dynamic evolutions with other val-
ues of θ , which always show reciprocal transfer). Moreover,
we can find that in the presence of considerable time delay,
the excitation transferred between two emitters still shows a
damped oscillation, although the damping is much weaker
than that in Fig. 2(b). This is because the emitters are not
exactly decoherence-free due to the retarded self-interference
effects. As η (i.e., d) decreases gradually, the non-Markovian
retarded effect becomes more and more negligible such that
the emitters tend to be completely decoherence-free, as shown
in Fig. 7(b).

The results above can be understood as follows. In the
Markovian limit (d/vg → 0), the waveguide-induced indirect
coupling between the two braided giant atoms reads geff =
−i γ

2 (3eiφ + e3iφ ), which is purely real in the case of φ =
(m + 1/2)π . On the other hand, the direct coupling coeffi-
cients |J|e±iθ possess identical real and opposite (vanishing)
imaginary parts as long as θ �= mπ (θ = mπ ). In view of this,
the overall coupling between a and b is always reciprocal due
to the identical strength (modulus) for both directions. For the
non-Markovian case here, this can be seen from the Laplace
transformation of Eq. (B1), i.e.,

sc̃a(s) − ca(0) = − γ (1 + e2ϕ )c̃a(s) − i|J|eiθ c̃b(s)

− γ

2
(3eϕ + e3ϕ )c̃b(s),

sc̃b(s) − cb(0) = − γ (1 + e2ϕ )c̃b(s) − i|J|e−iθ c̃a(s)

− γ

2
(3eϕ + e3ϕ )c̃a(s), (B2)

where c̃ j (s) ( j = a and b) is the Laplace transformation
of c j (t ) and ϕ = iφ − sd/vg. Equation (B2) shows a pair
of complex conjugate overall coupling coefficients in the s
domain, implying that the excitation transfer should be re-
ciprocal in the absence of other mechanisms that may induce
nonreciprocity (such as optical Sagnac effects [60]). We point
out that the nonreciprocal transfer can never be achieved as
long as the emitters are “decoherence-free” [i.e., the phase
accumulation between the two coupling ports of each emit-
ter is (2m + 1)π ], even if the separation distances between
adjacent coupling ports are not equal or the coupling ports
are not arranged in the braided manner (this can be veri-
fied with some algebraic calculations). This is because the
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waveguide-induced indirect coupling is either vanishing or
purely coherent (the coefficient is real valued) in this case

while the nontrivial coupling phase θ can only introduce op-
posite imaginary coupling terms.
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