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Stable-unstable switching dynamics in semiconductor lasers with external cavities
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Optical feedback in a semiconductor laser was recently used for photonic microwave square-wave generation
by invoking quasiperiodicity for repeated switching between a stable stage of constant intensity and an unstable
stage of intensity oscillations. Based on the Lang-Kobayashi model for a laser with external-cavity feedback, we
investigate such stable-unstable switching dynamics. First, the model is verified to produce the stable-unstable
switching dynamics as the feedback strength and delay are adjusted. The model agrees with former experiments
in spite of previous doubts. Then, the analytical Hopf boundary for the minimum linewidth mode is derived to
be matching the boundaries of the switching regions. Moreover, the trajectory in the plane of instantaneous
frequency and gain is analyzed during the stable stage, where the laser is found to follow an ellipse in
visiting different external cavity modes. Most importantly, an analytical derivation yields the switching period
τ + τε that is slightly expanded from the feedback delay time τ , where the expansion time τε is found to be
inversely proportional to the feedback strength. Such a switching period expansion explains the generation of
a shifted frequency component below 1/τ in quasiperiodic laser dynamics. The results generally contribute to
understanding the switching dynamics in photonic microwave generation.
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I. INTRODUCTION

Semiconductor lasers under perturbations exhibit versatile
nonlinear dynamics in a number of microwave and millimeter-
wave photonic applications [1–4]. Applications in recent years
include tunable millimeter-wave generation [5–7], phase noise
reduction [8–10], square-wave generation [11–13], broad-
band random signal generation [14–17], high-speed reservoir
computing [18–20], secure communications [21,22], and
ranging [23–26]. As a form of perturbation, optical feedback
has attracted continuous attention because of the simplicity in
construction using an external cavity, which enabled the ob-
servations of some fundamental behaviors of a laser [27–34].
Recently developed direct measurements on the diode junc-
tion voltage and the optical frequency have further revealed
the details of the dynamics [5,35,36].

For a single-mode laser subject to feedback, the dynamics
is closely related to the relaxation resonance frequency and the
frequencies of the external cavity modes (ECMs), which are
roughly separated by the reciprocal of the feedback delay time
τ [37,38]. These frequencies are usually incommensurate, re-
sulting in the quasiperiodic route-to-chaos that comprises the
following states [11,32]: A self-locking state yields a stable
intensity as locked to an ECM [32,39]. A periodic state yields
an unstable intensity that rapidly oscillates as the relaxation
resonance is undamped [10,40]. A quasiperiodic state yields
an oscillatory intensity with an undulating envelope when
incommensurate frequency components are mixed [5,11]. A
chaotic state appears when additional frequency components
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emerge [41,42]. Additionally, when biased near the threshold,
the laser can hop around different ECMs for low-frequency
fluctuations [35,43]. The laser with a short external cavity can
emit intermittent chaos or regular pulse packages [44–46].

Recently, experiments in the long-cavity regime unveiled
an interesting dynamics that switches periodically between
a stable stage of constant intensity and an unstable stage
of rapidly oscillatory intensity near the relaxation reso-
nance [11,13]. The intensity oscillation switches off and on
repeatedly at a switching period that is slightly longer than
τ . The stable-unstable switching dynamics can be understood
as a form of quasiperiodicity involving the emergence of
the incommensurate frequencies [10,36]. Such a dynamics
was used to generate a microwave signal near the relaxation
resonance frequency with square-wave modulation [13,47].
The signal can be obtained optically using a photodetector or
electrically from the voltage across the laser [5,10]. It can be
of low phase noise due to the external cavities for photonic
microwave generation [48].

The Lang-Kobayashi model is considered because of its
success in explaining a wide range of phenomena for semi-
conductor lasers under feedback [27,32]. The model was
thoroughly analyzed in the plane of delayed optical phase
difference and charge-carrier density [28,49]. Saddle-node
bifurcations create ECMs including the maximum gain mode
(MGM) and the minimum linewidth mode (MLM) [11,36].
Hopf bifurcations destabilize some ECMs in yielding os-
cillations near the relaxation resonance [29,32]. The model
yielded explanations of phase noise reduction in self-locking
states [49,50], quantification of the feedback conditions for
different dynamical states [32,51], and a qualitative descrip-
tion of trajectories for intermittent chaos, low-frequency
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fluctuations, and quasiperiodicity [17,43]. However, interest-
ing doubts were cast on whether the Lang-Kobayashi model
can predict the stable-unstable switching dynamics, which in
recent experiments appeared to bifurcate from self-locking
states as the feedback strengthens [12]. The model also needs
to explain the expanded switching period that corresponds to
a feedback-dependent frequency component slightly below
1/τ , as commonly observed in quasiperiodic laser dynam-
ics [52–55].

In this paper, we examine the stable-unstable switching
dynamics for a semiconductor laser under feedback. The
Lang-Kobayashi model is first verified to produce the stable-
unstable switching dynamics that practically bifurcates from
the self-locking states, as the feedback strength ξ increases
for different delay times τ . This clears the aforementioned
doubts about the model in experiments [12]. Then, as ξ in-
creases, the Hopf boundary of MLM is derived and is found to
match the boundaries of the stable-unstable switching regions.
Moreover, in the instantaneous frequency-gain plane, the laser
during the stable stage is analytically shown to follow the
ellipse that contains the ECMs. Starting from the stable stage,
the laser slowly moves around some stable ECMs between
MGM and MLM. It then approaches the unstable ECMs that
are destabilized by Hopf bifurcations, resulting in rapid os-
cillations near the relaxation resonance during the unstable
stage. The laser subsequently returns to a stable ECM upon
completing one switching period. Furthermore, we provide an
analytical derivation of the switching period τ + τε, where
the expansion time τε is found to be inversely proportional
to the feedback strength ξ . The analytical results are in good
agreement with the numerical results over a range of feedback
parameters. The analysis explains the intriguing frequency
downshifting from 1/τ commonly observed in laser quasiperi-
odicity.

Following this Introduction, Sec. II presents the model for
investigating the switching dynamics in Sec. III. The asso-
ciated regions in the feedback parameter space are yielded
numerically, while the analytical boundaries are derived in
Sec. IV. The trajectory of the switching dynamics is analyzed
in Sec. V. The expansion of the switching period τ + τε is
analyzed in Sec. VI. The results are discussed in Sec. VII and
summarized in Sec. VIII.

II. RATE-EQUATION MODEL

Consider a laser under delayed optical feedback for in-
voking stable-unstable switching dynamics [12,13]. The laser
is pumped by a bias current above threshold with a nor-
malized value J̃ [15,56]. Light is reflected by a mirror for
feedback with a round-trip delay time τ , where a variable
optical attenuator controls the feedback strength ξ for the
field. The complex intracavity electric field of the laser is√

1 + S(t ) exp (i[ϕ(t ) − ω0t]). S(t ) is the optical intensity
normalized with an offset to unity. ϕ(t ) is the optical phase
so that the instantaneous angular frequency of the field is
�(t ) = −dϕ/dt , which is offset to the free-running optical
angular frequency ω0. Moreover, the charge carriers in the
laser provide an effective optical net gain G(t ) that includes
the effects of cavity loss, imperfect overlap factor, and gain
saturation by intracavity photons [27,57]. G(t ) is equal to the

laser modal gain per unit time subtracted by the intracavity
photon decay rate [32,58]. Based on the Lang-Kobayashi
model, the dynamics of the laser is governed by the following
rate equations for the normalized intensity S, optical phase ϕ,
and gain G [32,58]:

dS

dt
= G(1 + S) + 2γcξσ (1 + S) cos 
ϕ, (1)

dϕ

dt
= −b

2
G − γcξσ sin 
ϕ, (2)

dG

dt
= −γrG − (γn + γp)SG − �2

r S

− 2γpγcξσ (1 + S) cos 
ϕ (3)

with delayed phase difference 
ϕ(t ) = ϕ(t ) − ϕ(t − τ )
and intensity ratio σ 2(t ) = [1 + S(t − τ )]/[1 + S(t )], where
�r = √

γcγn + γsγp is the relaxation resonance angular fre-
quency and γr = γs + γn + γp is the total carrier relaxation
rate. The model is simplified by assuming a zero feedback
phase, which corresponds to having the free-running fre-
quency ω0/2π at a multiple of 1/τ [32,40]. The dynamical
parameters are based on a laser used for communications:
intracavity photon decay rate γc = 536 ns−1, spontaneous car-
rier decay rate γs = 5.96 ns−1, differential carrier relaxation
rate γn = 6.16J̃ ns−1, nonlinear carrier relaxation rate γp =
15.6J̃ ns−1, and the linewidth enhancement factor b = 3.2,
which quantifies the coupling of optical phase and intensity
due to the antiguidance effect [15]. At J̃ = 1.222, the relax-
ation resonance occurs at �r/2π ≈ 10 GHz. The use of γn and
γp follows the commonly adopted approximation of lineariz-
ing the gain function with respect to charge-carrier density and
optical intensity [57–60]. When ξ is zero, the steady-state so-
lution of (S,�, G) is simply (0,0,0) for the free-running laser
with continuous-wave emission at ω0. When ξ is increased,
the terms 
ϕ(t ) and σ 2(t ) give rise to the dynamics. Early
works identified the importance of the fixed-point solutions,
each corresponding to a continuous-wave emission at constant
optical frequency and gain [29,49].

First, a fixed-point solution (�, G) = (�m, Gm) can be ob-
tained from two equations:

1

2
Gm + γcξ cos �mτ = 0, (4)

�m − b

2
Gm + γcξ sin �mτ = 0, (5)

where the number m is for labeling in ascending order of
�m [11,32]. Combining Eqs. (4) and (5) yields

(
�m − b

2
Gm

)2

+
(

1

2
Gm

)2

= γ 2
c ξ 2, (6)

which describes an ellipse in the angular frequency-gain plane
of (�, G). For illustration, Fig. 1 shows such an ellipse for the
fixed-point solutions when ξ = 0.012 and τ = 1.95 ns. Sim-
ilar ellipses have been reported in the plane of charge-carrier
density and delayed phase difference in previous analyses and
experiments, though this work focuses on the plane of (�, G)
for clarity [11,61].
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FIG. 1. Fixed-point solutions in the angular frequency-gain plane
of (�, G). The laser is subject to feedback of strength ξ = 0.012 and
delay time τ = 1.95 ns. The orders m are labeled only for the ECMs.

Second, the fixed points are known to be created through
saddle-node bifurcations because �m can be found by elimi-
nating Gm from Eqs. (4) and (5) as [32]

�m +
√

1 + b2 γcξ sin(�mτ + tan−1b) = 0, (7)

where the stability condition subject to phase fluctuations can
be derived as [29]

√
1 + b2 γcξ cos(�mτ + tan−1b + π ) < 1/τ, (8)

which corresponds to differentiating with respect to the
frequency. Each saddle-node bifurcation creates a pair of un-
stable and stable fixed-point solutions according to Eqs. (7)
and (8). Here, while the solutions not satisfying Eq. (8) are
called antimodes, the solutions satisfying Eq. (8) are regarded
as ECMs and integers are assigned to m as the orders of
the ECMs [11]. When there are many ECMs, their angular
frequencies are separated by about 2π/τ [32]. So the number
of ECMs is approximately [29]

M =
√

1 + b2γcξτ/π. (9)

The ECM with �m being closest to zero is called MLM,
as it provides strong damping on phase fluctuations in sup-
pressing the linewidth, for which the order m = 0 is assigned
conventionally [11,32]. The ECM with Gm being minimal is
called MGM, as it relies on the maximal gain compensation
by feedback, for which the order m is negative and �m ≈
−bγcξ [12,62]. Illustrated in Fig. 1, the triangles on an upper
side of the ellipse are the antimodes, while the other symbols
on the lower part of the ellipse are the ECMs. Offset to the
free-running optical frequency, MLM has a frequency of only
�0/2π = −0.1 GHz, while MGM is at about −3.1 GHz with
an order of m = −6.

Third, although an ECM always provides some damping
to phase fluctuations, it can be destabilized by a supercritical
Hopf bifurcation that stems from undamping the relaxation
resonance between the photons and charge carriers [11,32].
A laser undergoing such a Hopf bifurcation becomes un-
stable in exhibiting periodic oscillations at a microwave
angular frequency �p, which is typically very close to that
of the relaxation resonance �r in the long-cavity regime of
�rτ � 2π [38]. Assuming that |�p − �r| � γr, the stability

condition to avoid the Hopf bifurcation is given as [38]√
1 + b2 γcξ cos(�mτ − tan−1b − π ) < γr/2 (10)

for an ECM of order m. In Fig. 1, the unstable and stable
ECMs are labeled as diamonds and circles, respectively. The
ECMs are stable except for those with m = 0 to 6 in the
example. In general, independent of the values of �m, the
sufficient condition to ensure the stability for all ECMs can
be simplified from Eq. (10) to [37,63]

ξ <
γr

2γc

√
1 + b2

, (11)

which is useful for determining the stability boundaries in the
feedback parameter space.

The Lang-Kobayashi model in Eqs. (1)–(3) is expressed
for convenience using the gain G rather than the charge-
carrier density, which can be calculated from G and S [32,56].
Though the model contains no noise nor multiple reflections
within the external cavity, it was well established by ex-
periments [37,38]. Measurements of the emission intensity,
phase, and charge-carrier density were recently demonstrated
by photodetection, heterodyning, and probing the junction
voltage [5,35]. The above summary about the fixed-point so-
lutions enables the following analysis on the stable-unstable
dynamics.

III. STABLE-UNSTABLE SWITCHING

Figure 2 shows the stable-unstable switching for the laser
in the route to chaos through carefully tuning the feedback
strength ξ , while τ = 1.95 ns, J̃ = 1.222, and b = 3.2 are kept
constant. Second-order Runge-Kutta integration is applied in
Eqs. (1)–(3). For every point in the feedback parameter space
(ξ, τ ), rather than allowing the dynamics to begin randomly,
the simulation uses the free-running condition at ξ = 0 for
initialization and then a sequential adjustment of ξ in small
incremental steps of 2 × 10−4, where the complications of
hysteresis associated with reducing ξ are avoided [11]. For
each step of ξ , the dynamics is simulated with a time step of
0.95 ps and a relatively long time span covering at least 2000
round-trips, which ensures the elimination of any residual
transients [47]. Different from some numerical investigations,
the above systematic procedure of simulation facilitates an
improved comparison with experiments, where the feedback
is in practice adjusted continually and slowly with respect to
the laser dynamics [11,40].

Over a window of about 3τ , Fig. 2(i) shows the normalized
intensity time series S(t ), while Fig. 2(ii) shows the associ-
ated optical spectrograms that are obtained using a short-time
Fourier transform (STFT) on the complex field amplitude√

1 + S(t ) exp (iϕ(t )). The spectrograms are offset to the free-
running frequency of the laser for clarity. Each spectrogram is
normalized to its maximum optical power with a sufficiently
fine spectral resolution to reveal the dynamics, as a sufficiently
long sliding Gaussian window of 4π/�r is adopted in the
STFT. The spectrograms reveal the temporal evolution of the
instantaneous optical spectra. They allow the identification
of the dynamics [1]: A self-locking state is identified if the
spectrum at any time has only a single peak that is at least
20 dB stronger than any residual sidebands. A periodic state
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FIG. 2. (i) Normalized intensity S(t ) and (ii) optical spectrogram
for the laser emitting in (a) the self-locking state, (b) switching
dynamics with η = 0.48, (c) switching dynamics with η = 0.64,
(d) switching dynamics with η = 0.70, (e) the periodic state, and (f)
the chaotic state, where the feedback strength ξ increases to 0.010,
0.012, 0.014, 0.018, 0.025, and 0.030, respectively. The feedback
delay time is fixed at τ = 1.95 ns.

is identified if the spectrum at any time has a main peak in
association with strong side peaks, which are with compa-
rable powers of within 20 dB and equally separated by the
peak relaxation resonance frequency. Then, a stable-unstable
switching dynamics is identified if the spectrum temporally
alternates between that of a self-locking state and that of a
periodic state, corresponding to a stable stage and an unstable
stage of rapid intensity oscillations, respectively. Lastly, a
dynamics is regarded as broadband and chaotic if the spec-
trum temporally fluctuates, where for over 20% of the time
neither the self-locking spectrum nor the periodic spectrum is
observed.

Figures 2(a)–2(f) are obtained as the feedback strength
increases. Starting at ξ = 0 for a free-running laser, any in-
crement of ξ first results in self-locking at MLM that provides
the best stability for the optical phase [38]. The general Hopf
boundary in Eq. (11) is reached as ξ increases to 0.009 and

some ECMs can be destabilized, but MLM remains stable
according to Eq. (10) at m = 0. For example, in Fig. 2(a) with
ξ = 0.010, the laser stays in a self-locking state with emission
at MLM that is stable under the feedback and has a small
frequency of �0/2π = −0.1 GHz. The laser emits a stable
intensity at its free-running value with S(t ) ≈ 0 in Fig. 2(a-i),
while the associated optical spectrogram shows a single peak
at any time in Fig. 2(a-ii).

By slightly tuning ξ from 0.010 in Fig. 2(a) to 0.012 in
Fig. 2(b), MLM becomes unstable because of a supercritical
Hopf bifurcation. The laser is no longer self-locked by MLM
in Fig. 2(a), but practically bifurcates into stable-unstable
switching in Fig. 2(b) as the feedback strength is increased.
Initially, for about 1.04 ns in the stable stage, the intensity S(t )
stays nearly constant in Fig. 2(b-i), and the optical spectrum in
Fig. 2(b-ii) has only a single peak with a gradually increasing
optical frequency. Then, for the next 0.96 ns in the unstable
stage, the intensity rapidly oscillates in Fig. 2(b-i), and the
spectrum in Fig. 2(b-ii) contains a main peak with side peaks,
which are equally separated by a microwave oscillation fre-
quency of �p/2π ≈ 9.1 GHz near the relaxation resonance.
Such stable-unstable switching repeats with a period of about
2.00 ns, where the unstable stage occupies a duty cycle η

of 0.48. Compared to the feedback delay time τ = 1.95 ns,
the switching period is slightly expanded, as exactly three
switching periods are shown within 6.00 ns in Fig. 2(b). The
stable-unstable switching is a form of quasiperiodicity for
which the reciprocal of the switching period is incommensu-
rate with the intensity oscillation frequency �p/2π .

As for ξ = 0.014 in Fig. 2(c), the stable-unstable switching
dynamics continues with an increased duty cycle of η = 0.64.
The unstable stage is lengthened in duration along with an
increased amplitude of intensity oscillations according to S(t )
in Fig. 2(c-i), while the oscillation frequency �p/2π remains
nearly unchanged according to the spectrogram in Fig. 2(c-ii).
At ξ = 0.018 in Fig. 2(d), these trends continue for the stable-
unstable switching dynamics with an increased η = 0.70.
Then, when ξ increases to 0.025 in Fig. 2(e), the duty cycle
η ultimately reaches 1 as the laser enters a periodic state.
The intensity is always unstably oscillating in Fig. 2(e-i),
where the oscillation frequency �p/2π is about 8 GHz ac-
cording to the main peak and side peaks in the spectrogram
in Fig. 2(e-ii) [64]. Finally, a slight increase of ξ results in
an abrupt change into chaotic states. An example is shown at
ξ = 0.030 in Fig. 2(f) for the chaotically fluctuating intensity,
which is accompanied by the time-varying broadband spec-
trum. Such a chaotic behavior continues when the feedback
further strengthens [40].

The stable-unstable switching dynamics is observed as ξ is
adjusted over a fine range on the order of 0.01 in Fig. 2. The
feedback strength for the stable-unstable switching dynamics
cannot be too weak in entering the self-locking states nor
too strong in entering the periodic or chaotic states [38,40].
The systematic simulation with the fine increment of ξ with
a long time span enables the practical observation of the
stable-unstable switching that bifurcates from a self-locking
state. Such an observation agrees with previously reported
experiments [11,13]. It eliminates the earlier doubts about the
validity of the Lang-Kobayashi model regarding the predic-
tion of the switching dynamics [12].
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IV. SWITCHING REGIONS

Regions of the stable-unstable switching are investigated
in the feedback parameter space in Fig. 3, following the pro-
cedures in Sec. III. Analytically, as MLM provides the best
phase stability for the self-locking state, its stability with re-
spect to the Hopf bifurcation is indicative of the boundary for
stable-unstable switching. Considering M � 1 for the usual
situations of having many ECMs, MLM has a small angular
detuning frequency of

�0 ≈ − tan−1 b

τ
(12)

from the free-running optical angular frequency ω0 according
to Eq. (7). So based on Eq. (8), the Hopf stability condition of
MLM becomes

ξ <
γr

√
1 + b2

2γc(b2 − 1)
(13)

for the usual case of b > 1, while the stability condition
is always satisfied for b < 1. Compared to Eq. (11), which
describes a sufficient condition for all ECMs to be sta-
ble, the Hopf stability condition in Eq. (13) is specific for
MLM [37,38]. It provides a more accurate prediction for the
boundaries between the self-locking regions and the stable-
unstable switching regions as detailed below.

Figure 3 shows the mappings of the different laser dy-
namics in the parameter space of feedback strength ξ versus
feedback delay time, bias current, and linewidth enhancement
factor. Regions are found for the self-locking states (white),
stable-unstable switching (light blue), periodic states (dark
blue), and chaotic states (black). In Fig. 3, the regions for the
stable-unstable switching dynamics are shown in light blue,
where the scaled colors with the contour lines show the duty
cycle η of the unstable stage. For the white regions of self-
locking states, ξ is small and the laser stays in MLM because
of its maximal stability for the optical phase. The general
Hopf bifurcation boundaries for ξ in Eq. (11) are shown as
the gray curves. However, for destabilizing MLM, the specific
Hopf bifurcation boundaries for ξ in Eq. (13) should be used
instead. Such MLM Hopf boundaries are shown as the red
curves. Clearly, regions in light blue for the stable-unstable
switching dynamics are found for ξ exceeding the specific
Hopf bifurcation boundaries for MLM. As ξ increases, the
duty cycle η generally increases from 0 within the regions of
stable-unstable switching. Additionally, there are very small
regions of periodic states in dark blue that correspond to
η = 1, but they are next to the large regions of broadband and
chaotic states in black at the relatively strong ξ . Thus, Fig. 3
illustrates the route to chaos consisting of the self-locking
states, stable-unstable switching as a form of quasiperiodicity,
and also periodic states. The specific Hopf bifurcation condi-
tion for MLM in Eq. (13) corresponds to the boundaries for
the stable-unstable switching with η ≈ 0.

For Fig. 3(a), the dynamical regions are obtained for ξ ver-
sus the normalized feedback delay time τ̃ = τ�r/2π , while
keeping J̃ = 1.222 and b = 3.2. Stable-unstable switching
dynamics is found only in the long-cavity regime with τ̃ � 1,
which agrees with experiments [13,36]. As shown in light
blue, a region for the switching dynamics is bounded by
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FIG. 3. Regions of the laser dynamics in the parameter space of
feedback strength ξ vs (a) normalized delay time τ̃ , (b) normalized
bias current J̃ , and (c) linewidth enhancement factor b. The laser is in
a self-locking state (white), stable-unstable switching (light blue), a
periodic state (dark blue), and a chaotic state (black). The switching
dynamics comprises a stable stage and an unstable stage with a duty
cycle of η (contour lines). The gray curves are the Hopf bifurcation
boundaries for any ECMs in general according to Eq. (11). The
red curves are the Hopf bifurcation boundaries specific to MLM
according to Eq. (13).
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ξ = 0.011, which coincides with the specific Hopf boundary
for MLM in Eq. (13) as the red curve presents. The duty cycle
η increases with ξ as the laser leaves the self-locking region
in approaching the chaotic region. For Fig. 3(b), while fixing
τ̃ = 20 and b = 3.2, the mapping is obtained for ξ versus
J̃ for the normalized current biased above threshold. As an
operational parameter, the current can be easily adjusted for
varying the dynamical parameters γn and γp, which results in
the tuning of �r and γr of the relaxation resonance. So both
the general and specific Hopf boundaries of ξ increase with
J̃ according to Eqs. (11) and (13). Stable-unstable switching
dynamics is again found in a region above the specific Hopf
boundary in red for MLM. As for Fig. 3(c), while fixing
τ̃ = 20 and J̃ = 1.222, the dynamical regions are obtained for
ξ versus the linewidth enhancement factor b. Both the general
and specific Hopf boundaries by Eqs. (11) and (13) show
the increment of ξ as b is reduced. Reducing b is commonly
known for suppressing nonlinear dynamics [37]. As far as b
is greater than 2, stable-unstable switching can be found in
a region above the specific Hopf boundary in red for MLM
using Eq. (13).

Based on Fig. 3, stable-unstable switching is in practice
found to bifurcate from a self-locking state. The regions of
stable-unstable switching are generally bounded by the spe-
cific Hopf condition in Eq. (13), where the duty cycle η for
the unstable stage increases with ξ .

V. SWITCHING TRAJECTORY

The switching dynamics is investigated using the trajectory
in the plane of instantaneous angular frequency �(t ) and gain
G(t ). As mentioned in Sec. III, the switching period is slightly
expanded from τ . The switching period is now denoted as τ +
τε to include the period expansion time τε. For analyzing the
trajectory, �(t ) is approximated as perfectly periodic in τ +
τε, so the phase ϕ(t ) changes accumulatively by a constant of

θ = −
∫ τ+τε

0
�(t )dt (14)

for every period of stable-unstable switching. During the sta-
ble stage, except for a narrow time window of τε immediately
before the stage ends, dS(t )/dt vanishes and S(t ) = S(t +
τε ), which equals S(t − τ ) because S(t ) is also periodic in
τ + τε. As a result, σ (t ) = 1 and 
ϕ(t ) can be eliminated in
Eqs. (1) and (2) to yield(

�(t ) − b

2
G(t )

)2

+
(

1

2
G(t )

)2

= γ 2
c ξ 2, (15)

which is an equation for an ellipse as in Eq. (6). Thus,
although not staying in a particular ECM at (�m, Gm), the
time-varying trajectory [�(t ), G(t )] should follow the ellipse
of Eq. (15) during the stable stage. In other words, the ellipse
is applicable to not only the usual self-locking states but also
the switching dynamics [3,12].

Numerically, focusing on one complete switching period,
the trajectory of the stable-unstable switching dynamics is
examined in detail in Figs. 4 and 5. The laser is subject to
feedback of strength ξ = 0.012 and delay time τ = 1.95 ns
as in Fig. 2(b). The switching dynamics repeats with a period
of τ + τε = 2.00 ns with τε = 0.05 ns. The switching period
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2.0

p

FIG. 4. Normalized intensity S(t ), optical phase ϕ(t ), instan-
taneous frequency �(t )/2π , and gain G(t ) in one period of
stable-unstable switching. The switching period is τ + τε = 2.00 ns
with an expansion time of τε = 0.05 ns. The duty cycle for
the unstable stage is η = 0.48. Feedback parameters are (ξ, τ ) =
(0.012, 1.95 ns).

contains the stable stage for 0 < t < 1.04 ns and the unstable
stage for 1.04 ns < t < 2.00 ns in correspondence to a duty
cycle of η = 0.48. The switching period is clearly longer
than τ as Fig. 4 shows. In Fig. 4(a), the normalized intensity
in blue shows a nearly constant value at S(t ) ≈ 0 for t = 0
to (1 − η)(τ + τε ) during the stable stage, followed by the
rapid unstable oscillations with a period of 2π/�p and a full
amplitude of about 0.7 during the unstable stage. The laser
returns to the stable stage upon completion of a switching
period of τ + τε = 2.00 ns. The corresponding optical phase
ϕ(t ) in gray shows a gradual increment during the stable stage,
followed again by some rapid oscillations with a successive
reduction during the unstable stage. In Fig. 4(b), by taking the
time derivative on −ϕ(t ), the instantaneous angular frequency
�(t ) as offset from ω0 is obtained. During the stable stage, the
instantaneous frequency in blue is mostly negative, as it starts
at around −2 GHz and increases nearly linearly at a rate of
about 3 GHz/ns. Rapid oscillations between −6 and 8 GHz
are then observed during the unstable stage. The correspond-
ing temporal variation of the gain G(t ) in gray resembles that
of �(t ), although the details can be better examined in the
plane of (�, G).

Over one complete period τ + τε of stable-unstable switch-
ing, Fig. 4 shows that the intensity S(t ), instantaneous
frequency �(t )/2π , and gain G(t ) basically return to their
respective initial values, while the phase ϕ(t ) increases by
θ ≈ 1.2 rad as labeled. Interestingly, in a narrow time window
of τε immediately before the stable-to-unstable switching at
t = (1 − η)(τ + τε ), the phase difference 
ϕ(t ) compares
ϕ(t ) in the current stable stage to ϕ(t − τ ), which is at time
−η(τ + τε ) + τε in the previous unstable stage. In fact, the
term ϕ(t − τ ) in the rate equations brings the rapid variations
during the previous unstable stage for switching the current
stable stage into the unstable stage [32]. Thus, the nonzero
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FIG. 5. Trajectories in the plane of (�, G) in one period of stable-
unstable switching, including (a) the stable stage for 0 < t < 1.04 ns
and (b) the unstable stage for 1.04 ns < t < 2.00 ns. The stable stage
is further divided into subplots (i), (ii), and (iii) for clarity in confirm-
ing Eq. (15). Feedback parameters are (ξ, τ ) = (0.012, 1.95 ns).

expansion time τε is essential for the stable-unstable switch-
ing.

Figure 5 further presents the trajectory in the angular
frequency-gain plane (�, G). The stable ECMs, unstable
ECMs, and antimodes are denoted by circles, diamonds,
and triangles, respectively, as in Fig. 1. Starting at t = 0,
Fig. 5(a-i) shows over a transient of about 0.20 ns that the
trajectory spirals into the stable ECM of m = −3, which is
between MGM and MLM. As the stable stage continues in
Fig. 5(a-ii) for 0.20 ns < t < 0.84 ns, the trajectory slowly
migrates along the lower part of the ellipse in Eq. (15), while
visiting the stable ECMs of m = −2 and −1. At about 0.84 ns
in Fig. 5(a-iii), the stable stage is about to end as the trajectory
approaches MLM of m = 0. MLM is unstable so that the
trajectory quickly moves to a few other ECMs of up to m ≈ 5
at t = 1.04 ns. Lastly, in Fig. 5(b), the trajectory exhibits rapid
oscillations with large variations of (�, G) for 1.04 ns < t <

2.00 ns during the unstable stage.
In the plane of (�, G), Fig. 5 complements different early

investigations about the portraits of carrier density or the de-
layed phase difference [32]. The trajectory in Fig. 5 directly
illustrates the behaviors of the instantaneous frequency and
gain experienced by the laser light. Agreeing with Eq. (15),
the trajectory in Figs. 5(a-i)–5(a-iii) confirms that the laser
visits several ECMs around MLM during the stable stage,
where the lower part of the ellipse is followed.

VI. SWITCHING PERIODICITY

While Fig. 4 specifically shows one switching period, the
value of the period expansion time τε can be more accurately
determined by consecutively observing a large number of
switching periods in Figs. 6 and 7. To analytically obtain the
expansion time, the periodicity of �(t ) in τ + τε is used to
express


ϕ(t ) = ϕ(t ) − ϕ(t + τε ) + θ, (16)

where θ from Eq. (14) is the phase change accumulated in one
switching period. During the stable stage, there are no rapid
changes of �(t ) and so


ϕ(t ) ≈ θ + τε�(t ) (17)

except for a narrow time window of τε immediately before ev-
ery stable-to-unstable switch. Substituting 
ϕ(t ) in Eq. (17)
into the rate equation of Eq. (2) yields

�(t ) − b

2
G(t ) − γcξ sin(θ + τε�(t )) = 0, (18)

which governs the trajectory in the plane of (�, G).
The trajectory in Eq. (18) cannot be perfectly fitted to the

ellipse in Eq. (15), but it can be fitted to a specific point
and slope on the ellipse. Due to the proximity to MLM, the
point at � = 0 on the lower part of the ellipse is chosen
for which G = −2γcξ/

√
1 + b2 with an associated slope of

G′ = 2b/(1 + b2), according to Eq. (15). Therefore, the fitting
of Eqs. (15) and (18) at � = 0 yields the expansion time of

τε = 1√
1 + b2γcξ

(19)

as a major result of the analysis. The period expansion from τ

explains the frequency component that is slightly lower than
1/τ in quasiperiodic laser dynamics [11,32]. The fitting also
yields the accumulated phase of

θ = tan−1 b − 2πn (20)

for some integer n. The results derived in Eqs. (19) and (20)
are based on requiring the trajectory in Eq. (18) to follow the
ellipse in the plane of (�, G), where MLM and the neigh-
boring ECMs are visited. Such a requirement is consistent
with the fact that the stable ECMs have basins of attraction.
The migration of the laser between the ECMs is confirmed
numerically in Fig. 5 and analytically in Eq. (15).

For simplicity, by recalling M in Eq. (9) for the number of
ECMs, Eq. (19) can be rewritten as τε = τ/πM. Additionally,
Eq. (20) yields the time-averaged optical angular frequency as

〈�(t )〉 = − tan−1 b + 2πn

τ + τε

, (21)

which is obtained through dividing the accumulated phase θ

by the switching period τ + τε. For the usual case involving
a large number of ECMs M, τε � τ and so Eq. (21) becomes
〈�〉 = − tan−1 b/τ for n = 0, which matches the frequency of
MLM in Eq. (12). As for a nonzero n, 〈�〉 matches an ECM
of order m = n. Thus, despite the stable-unstable switching
dynamics, the laser emission is still on average at MLM or at
an ECM.

Numerically, for clearly determining the periodicity of
the stable-unstable switching, Fig. 6 presents the intensity,
frequency, and gain using space-time plots in (r, N), where
time t = (N + r)(τ + τε ) for r in [0, 1), and N is an integer.
Because τε is much smaller than τ , r is interpreted as the
space coordinate in the external cavity, whereas N denotes the
number of periods [4,53]. As in Figs. 4 and 5 with η = 0.48,
the parameters are kept as ξ = 0.012 and τ = 1.95 ns in
Fig. 6. Figure 6 shows that the expansion time τε has to be
set at 0.05 ns in order to keep the boundary between stable
and unstable stages independent of N , where the boundary is
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FIG. 6. Normalized intensity S, instantaneous frequency �/2π ,
and gain G of stable-unstable switching as space-time plots of (r, N),
where r is the space coordinate and N is the number of switching
periods. Each switching period is τ + τε = 2.00 ns. Feedback pa-
rameters are (ξ, τ ) = (0.012, 1.95 ns).

located at r = 0.52 in correspondence to 1 − η. The stable
spatial region in 0 < r < 1 − η contains a nearly constant
S ≈ 0 with only gradual and small changes of � and G. The
unstable spatial region in 1 − η < r < 1 contains about nine
rapid oscillations with large amplitudes for S, �, and G at
any fixed N . There are slanted stripes corresponding to a
minor change of the microwave phase of oscillation in every
increment of N , but the microwave phase change is only about
0.28π and is ignored in the analysis for simplicity. In brief,
the separate spatial regions of stable and unstable dynamics
are essentially independent of N in Fig. 6, which confirms the
approximations of S(t ), �(t ), and G(t ) as periodic functions
in τ + τε.

To verify the analytical results in Eqs. (19) and (21), Fig. 7
presents the numerical results obtained from accurately deter-
mining an expansion coefficient τε/τ and the averaged optical
frequency 〈�〉/2π , which are based on long-term simula-
tions using a large N on the order of 103. For comparison,
the analytical results from Eqs. (19) and (21) are shown by
the curves. The numerical results are shown by the closed
symbols for the ranges of ξ that yield the stable-unstable
switching dynamics, where the black circles, red triangles, and
blue squares are for τ = 1.95, 2.93, and 3.90 ns, respectively.
The simulations are conducted in rows (a), (b), and (c) for
b = 2.0, 3.2, and 4.4, respectively. Column (i) in Fig. 7 shows
the expansion coefficient τε/τ of the switching period. The
stable-unstable dynamics is observed within different ranges
of ξ as marked by the numerical data points. The numerical
results and the analytical results of Eq. (19) are generally
in good agreement, despite some small deviations for large
ξ near the chaotic regions. The results show a continuous
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FIG. 7. (i) Switching period expansion coefficient τε/τ and (ii)
averaged optical frequency 〈�〉/2π for the stable-unstable switching
dynamics as functions of ξ for τ = 1.95 ns (black), 2.93 ns (red), and
3.90 ns (blue), where b = (a) 2.0, (b) 3.2, and (c) 4.4. Numerical re-
sults are in closed symbols, while the corresponding analytical curves
are from Eqs. (19) and (21) with n = 0. For completeness, the open
symbols are numerical results of 〈�〉/2π shifted for comparison with
Eq. (21).

reduction of τε as ξ strengthens. Column (ii) in Fig. 7 shows
the averaged optical frequency 〈�〉/2π for the stable-unstable
switching dynamics. For small ξ within the ranges of inducing
the switching dynamics, the closed symbols from the nu-
merical simulations closely match the analytical curves from
Eq. (21) with n = 0. Thus, long-term averaged over many
switching periods, the laser under stable-unstable dynamics
simply emits at the frequency of MLM. As for a relatively
large ξ , the averaged frequency 〈�〉/2π can jump to different
values, while the open symbols show the values offset by
multiples of 1/(τ + τε ) with τε obtained from Eq. (19). The
open symbols again match the analytical curves of Eq. (21),
indicating the emissions at an ECM when time-averaged,
though further increasing ξ drives the laser into chaos.

Overall, Fig. 7 shows the good agreement between the nu-
merical results and the analytical results in Eqs. (19) and (21).
The laser tends to remain in MLM when averaged over many
switching periods. The results indicate the importance of
MLM on the laser dynamics. The expansion time τε, repre-
senting the reaction time of the laser in responding to the
feedback light, is numerically and analytically confirmed as
inversely proportional to ξ .

VII. DISCUSSIONS

In relation to the previous experiments [12], the detailed
behaviors around the onset of switching dynamics are ex-
amined in Fig. 8, where the oscillation amplitude of S(t ) is
plotted along with η over a narrow range of ξ . The oscillation
amplitude is recorded as half of the peak-to-peak value of S(t ).
The feedback delay time is fixed at 1.95 ns. The top row of
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FIG. 8. Duty cycle and oscillation amplitude recorded as ξ is
increased over a narrow range near the onset of switching. Top row:
S(t ) for ξ = (i) 0.0108, (ii) 0.0110, (iii) 0.0112, (iv) 0.0114, and (v)
0.0116. The oscillation and then the switching both begin within an
extremely narrow range of ξ from 0.0108 to 0.0112, which is merely
a 3.7% relative change.

Fig. 8 records some very fine details of the dynamics between
those in Figs. 2(a) and 2(b). For ξ up to 0.0108 in Fig. 8(i),
the laser is self-locked at MLM, which is in accordance with
Fig. 3(a). For ξ of 0.0110 in Fig. 8(ii), the boundary in Eq. (13)
is reached for a supercritical Hopf bifurcation of MLM, where
S(t ) begins to oscillate periodically with a small amplitude of
less than 0.07. The small-amplitude oscillation is very weak
when compared to the large-amplitude oscillation for the pe-
riodic state in Fig. 2(e-i). It is still numerically identified as a
self-locking state rather than a periodic state, which is because
its optical spectrum has only very weak side peaks of less than
−20 dB of the main peak. As for ξ of 0.0112 in Fig. 8(iii), the
stable-unstable switching dynamics begins, while the oscilla-
tion amplitude is much boosted to 0.31. Further increasing ξ

gives continual increments of the duty cycle and oscillation
amplitude in Figs. 8(iv) and 8(v).

In Fig. 8, the dashed curve for the oscillation amplitude
rises from zero when ξ is increased beyond the Hopf bifur-
cation boundary. The solid curve for the switching duty cycle
also rises as ξ increases. The two curves start to rise at nearly
the same ξ of between 0.0108 to 0.0112. In other words,
the Hopf bifurcation and then the switching begin within the
extremely narrow range of 0.0004 for ξ , which corresponds
to a relative change of merely 3.7%. Such a range of ξ is too
narrow for developing a sufficiently large periodic oscillation
amplitude for identifying with a periodic state. The switching
dynamics thus appears to practically bifurcate from the self-
locking state, as illustrated in Sec. III. The extremely narrow
range of ξ and the small amplitude of oscillations are probably
the reasons for not observing any periodic oscillations imme-
diately before the onset of switching in experiments [12].

Moreover, in relating to other photonic systems, the result
in Eq. (19) sheds important light on the repeated stable-

unstable switching dynamics. There is always an expansion
of the switching period, where the expansion time τε is
inversely proportional to ξ . This corresponds to the gen-
eration of the feedback-dependent frequency downshifted
from 1/τ as commonly observed in quasiperiodic dynam-
ics of lasers [32,55]. The period expansion has been noted
as drifts of the switching period in early works on laser
dynamics [33,53]. More recently, in the context of cavity
solitons, such a period expansion by a time inversely pro-
portional to the feedback strength was also observed in the
study of temporal dissipative localized states [65,66]. Similar
drifts have been observed in the spatiotemporal dynamics
for chimeras and reservoir computing in lasers under feed-
back [18,67], optoelectronic oscillators [68], mode-locked
lasers [69,70], and edge-emitting lasers with polarization-
rotated feedback [71,72]. Though the period expansion is
often attributed to some general internal reaction times of the
lasers, the result in Eq. (19) offers a quantitative explana-
tion for the stable-unstable switching for extensions to other
dynamics in the future.

VIII. CONCLUSION

To conclude, the stable-unstable switching dynamics is
thoroughly investigated for the semiconductor laser under
optical feedback. Contrary to the recent doubts, the Lang-
Kobayashi model is first verified to produce the switching
dynamics that practically bifurcates from the self-locking
states when the feedback strengthens, as is consistent with
previous experiments [12]. Then, the analytical Hopf bound-
ary of MLM is derived in matching the boundaries of the
switching regions in the feedback parameter space in Eq. (13).
Moreover, during the stable stage, the laser is analytically
shown to follow the ellipse of ECMs in Eq. (15) while mi-
grating around some stable ECMs between MGM and MLM
in the plane of (�, G). Finally, as the trajectory follows the
ellipse near MLM, the switching period expansion time τε is
analytically derived in Eq. (19) to be inversely proportional
to the feedback strength ξ . The period expansion explains the
general observation of a shifted frequency component slightly
below 1/τ in quasiperiodic laser dynamics. While further
analyzing the more complicated spatiotemporal behavior is
possible, the results essentially contribute to harnessing the
switching dynamics in photonic microwave generation.
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